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Abstract Clustering is an important tool in data mining
process. Fuzzy c-means is one of the most classic methods.
But it has been criticized that it is sensitive to the initial cluster
centers and is easy to fall into a local optimum. Not depend-
ing on the selection of the initial population, evolutionary
algorithm is used to solve the problems existed in original
fuzzy c-means algorithm. However, evolutionary algorithm
emphasizes the competition in the population. But in the real
world, the evolution of biological population is not only the
result of internal competition, but also the result of mutual
competition and cooperation among different populations.
Co-evolutionary algorithm is an emerging branch of evo-
lutionary algorithm. It focuses on the internal competition,
while on the cooperation among populations. This is more
close to the process of natural biological evolution and co-
evolutionary algorithm is a more excellent bionic algorithm.
An immune clustering algorithm based on co-evolution is
proposed in this paper. First, the clonal selection method is
used to achieve the competition within population to recon-
struct each population. The internal evolution of each popu-
lation is completed during this process. Second, co-evolution
operation is conducted to realize the information exchange
among populations. Finally, the iteration results are com-
pared with the global best individuals, with a strategy called
elitist preservation, to find out the individual with a highest
fitness value, that is, the result of clustering. Compared with
four state-of-art algorithms, the experimental results indicate
that the proposed algorithm outperforms other algorithms on
the test data in the highest accuracy and average accuracy.
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1 Introduction

Clustering is an important and common technique used to
mine the potential characteristics of data. And clustering
analysis is a procedure which divides the data into different
clusters naturally in the case of little or no priori information.
This enables the data within the same cluster to have high sim-
ilarity and low similarity among different clusters. Clustering
algorithm is widely used in data analysis, pattern recognition,
image processing and market research (Rao 1971; Lillesand
and Keifer 1994). Therefore, cluster analysis has become an
increasingly popular area in data mining.

The current major clustering algorithms are as follows:
(1) partition-based method: the process of this method first
creates an initial partition, then iterates to reposition the indi-
vidual objects, and ultimately achieves the clustering results
by adjusting the range of movement of all of the objects in
each division. Typical methods are k-means (Dunn 1973),
fuzzy c-means (Hoppner et al. 1999), etc.; (2) hierarchy-
based approach: this method treats all the data objects as a
tree. The hierarchical decomposition process from bottom to
up is called cohesion clustering. The method regards each
object as a separate cluster, and then merges these clusters
until all objects are in one cluster. In contrast, the process
from up to bottom is called split clustering. This approach
is opposite from the cohesion clustering. It regards all the
objects as a large cluster and then breaks it down to some
small clusters gradually until all the objects are separate
clusters. Typical algorithms are BIRCH (Zhang et al. 1996),
CURE (Guha et al. 1998), etc.; (3) density-based method:
it regards the clusters as high-density regions separated by
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some low-density regions. The main process is to observe
the density (number) around an object point, and when the
density exceeds a certain threshold, cluster continues. The
advantages of this method are that it has the ability to dis-
cover arbitrary shapes clusters and a better noise robustness.
Typical algorithms are DBSCAN (Ester et al. 1996), OPTICS
(Ankerst et al. 1999), etc.; (4) grid-based method: in this
method, the space of the data objects is quantized into a lim-
ited number of grids. All the clustering operations are done
in each grid. The advantage of the method is fast processing
speed, and the processing time is only related to the num-
ber of the grid. Typical algorithms are STING (Wang et al.
1997), WaveCluster (Sheikholeslami et al. 1998), CLIQUE
(Agrawal et al. 1998), etc.; (5) model-based approach: this
approach is to define a model for each cluster and then find
out the best fitting of the given model. Typical methods are
based on statistical, such as RSDE (Girolami and He 2003)
and FRSDE (Deng et al. 2008), and neural network-based
methods (Kohonen 1982); (6) spectral graph theory-based
method: this method is based on spectral theory. The data
objects are defined as an affinity matrix by the similarities
between data points, thereby calculate the feature vector,
and finally select the appropriate feature vectors to clus-
tering all the data points. Typical algorithms are minimum
cuts (Higham and Kibble 2004), normalized cuts (Meila and
Xu 2004), etc. In addition, there are some new clustering
methods, such as the affinity propagation algorithm (Frey
and Dueck 2007; Mézard 2007), the nonnegative matrix
factorization-based method (Lee and Seung 1999), a graph-
based relaxed clustering (Lee et al. 2008), rough subspace-
based clustering ensemble for categorical data (Gao et al.
2013), GACH: a grid-based algorithm for hierarchical clus-
tering of high-dimensional data (Eghbal and Mansoori 2013),
improving a multi-objective differential evolution optimizer
using fuzzy adaptation and K-medoids clustering (Kotinis
2013), parallel and scalable CAST-based clustering algo-
rithm on GPU (Lin et al. 2013) and cooperative bare-bone
particle swarm optimization for data clustering (Jiang and
Wang 2013). In all clustering methods, Fuzzy c-means algo-
rithm is one of the most simple and effective, and the most
widely used clustering methods. It bases on fuzzy theory,
and describes the real world more accurately. Its algorithm
is simple and has fast convergence. But it also has its own
drawbacks: sensitive to the initial cluster centers and easy to
fall into local optimum. This limits its use and accuracy of
clustering. But the drawbacks can be solved using the evolu-
tionary computation to some extent.

Evolutionary computation is such an algorithm that sim-
ulates the process of biological evolution. It starts searching
from multi-points, and it is not easy to fall into local opti-
mum. In addition, the evolutionary algorithm has an adaptive
probabilistic searching technology. The selection, crossover
and mutation operators are carried out based on a probabilis-

tic approach, thereby increasing the flexibility of its search
process. Such evolutionary algorithm does not depend on
the selection of the initial population and has a better search
capability to find out the global optimal solution. This makes
it received widely attentions and applications. These advan-
tages of evolutionary algorithm can be used to solve the prob-
lems of fuzzy c-means algorithm exactly.

There is no denying the fact that competition relationship
in each species, between species and between species and
the environment does exist in nature, but there exist other
relationships. With the development of modern biology, it
has been found that a variety of organisms are in a certain
ecosystem. The existing relationship among the organisms
is not just competition, but more importantly is the collab-
orative relationship. So, although the superiority of evolu-
tionary algorithm has been widely noted, the inferior of most
evolutionary algorithms only considering competition within
a population, the so-called “survival of the fittest”, but not
considering the cooperation among populations should not
be underestimated. In this case, the co-evolution theory that
considering both competition and collaborative relationships
begins to get more and more recognition (Jazen 1980).

In 1978, the concept of sub-groups is first mentioned by
Holland in his paper. In 1994, co-evolutionary genetic algo-
rithm is proposed by Potter and De Jong (1994). Over a year
later, Potter and De Jong have published many papers on the
co-evolutionary algorithms (Potter and De Jong 1995, 2000,
1998). Subsequently, Ficici and Watson also studied the co-
evolutionary algorithm (Ficici and Pollack 2000; Powers and
Watson 2007). Co-evolutionary algorithm is based on the
co-evolution theory, which considers both the relationship
between two populations, and the relationship between the
population and the environment. It is a higher level simu-
lation of biological evolution that overcomes the premature
convergence in traditional evolutionary algorithm. The co-
evolutionary algorithm is much more close to the process
of the biological evolution, and is a more excellent bionic
algorithm than the traditional evolution algorithm. Biologi-
cal evolution is a long process. The common disadvantages
of evolutionary algorithm (include the co-evolutionary algo-
rithm) are the slow convergence speed and easy to “prema-
ture” and a lot of iterations. However, the immune clonal
selection operation has the ability to improve the convergence
speed and to select higher fitness individuals in a population
while maintaining diversity of the population.

The immune clonal selection theory is an important part
of the biological immune system theory. Its principle was
first proposed by Jerne, later was fully expanded by Bur-
net (1957) and has been widely accepted now. The clonal
selection algorithm is a process simulating by the immune
clonal selection theory. It is self-encoded so that the search
process has nothing to do with the problem (de Castro and
Zuben 2000; Kim and Bentley 2002). The clonal selection
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algorithm has many advantages, for example, improving the
convergence speed of the algorithm, increasing the diver-
sity of the population while keeping the best individuals.
Because of these advantages, a lot of researches have begun to
focus on immune clonal selection clustering methods. Chen
et al. (2008) combine the immune clonal selection method
with classical hierarchical clustering algorithm and proposed
a dynamic clonal selection immune clustering algorithm,
which could achieve clustering without priori knowledge.
Al-Muallim and El-Kouatly (2010) proposed a data-driven
and adaptive classification method. Zhong and Zhang (2011,
2012) proposed a new fuzzy clustering method, which has
two steps. The first step is used to cluster the data accord-
ing to the immune clonal selection theory. And the second
step is used to adjust the number of clusters to output the
best result. Also, Ahmad and Narayanan (2011) discuss a
new immune clonal algorithm called population-based arti-
ficial immune system clustering algorithm. All of the above
researches have been proven to be efficient. However, as a
part of artificial immune system, immune clonal selection
algorithm overrelies on local research and lacks of learn-
ing mechanism. Therefore, co-evolution mechanism should
be introduced to the AIS; not only considering the relation-
ships among individuals, but also the relationship between
population and the environment and between population and
population. That is a new target of AIS research.

Therefore, to solve the shortcomings of the fuzzy c-mean
that is sensitive to the initial clusters and easy to fall into
local optimization and the traditional evolutionary compu-
tation and immune clonal selection methods that lacks of
considering the collaboration between populations and slow
convergence, an immune clustering algorithm based on co-
evolution is proposed in this paper. First, the clonal selection
method is used to achieve the competition within popula-
tion. This step consists of three operators: clone operator,
mutation operator and clone selection operator. Through the
clone operator, the proportion of the individuals which have
a higher fitness value in the population goes up. The mutation
operator is used to avoid the optimization process falling into
a local optimum. The following is the clone selection opera-
tor. This operator selects the individuals with high fitness val-
ues to reconstruct each population. The internal evolution of
each population is completed during this process (Du and Jiao
2002; Liu et al. 2003). Second, co-evolution operation among
populations is conducted. This step includes four operators:
better solution set neighborhood crossover operator, cooper-
ative operator, annexation operator and division operator. As
we all know, a better solution may exist in the nearby area
of a good solution. And the better solution set neighborhood
crossover operator is used to achieve the function of a local
search to find out better solutions. Cooperation operator and
annexation operator are used to complete the cooperation and
competition among populations. These two operators realize

the information exchange among populations and confirm
with the process of biological evolution. After performing
the annexation operator, the scale of one population expands
because one population merges with another. To make the
algorithm iterate, we perform division operation. In the divi-
sion operator, we introduce a little mutation operator. As the
iteration of the algorithm, the mutation becomes smaller. So
taking the diversity into consideration, the convergence speed
is ensured at the same time. Finally, the evolutionary results
are compared with the global best individual results, with a
strategy called Elitist Preservation, to find out the individ-
ual who has the highest fitness value, that is, the result of
clustering. This strategy is used to maintain the diversity of
solutions and to avoid the loss of solutions.

The rest of the paper is organized as follows. In the Sect. 2
the fuzzy c-means algorithm is introduced briefly. Section 3
presents the proposed immune clustering algorithm based on
co-evolution. In Sect. 4, we analyze the influence of parame-
ters on the result of the experiment in our algorithm and test
and analyze the clustering results of four algorithms on UCI
datasets and artificial datasets. At last, we make a conclusion
of this paper.

2 Related work

In this part, the fuzzy c-means algorithm (FCM) is intro-
duced. FCM algorithm is a soft clustering method based on
fuzzy theory (Dunn 1973). It differs from k-means hard clus-
tering algorithm which divides the data into groups, and cal-
culates the cluster centers to minimize the objective func-
tion. And each point belongs to a group fixedly. However,
the result of FCM algorithm is a membership degree matrix
in which the values are between 0 and 1. And the values of
membership degree matrix are used to determine the extent
of one point belonging to various groups. According to the
membership degree matrix, the respective data are placed
into their corresponding cluster. This is similar to the natural
environment and is very useful in calculating boundary point.
Membership can be more accurate to describe the relation-
ships between data and clusters, which enables us understand
the deep inner relationship among data. The process of fuzzy
c-means algorithm is as follows: at first initialize the cluster
centers randomly; iterate the membership degree matrix U
and cluster center matrix C to minimize the objective func-
tion value; complete the process of clustering.

FCM is based on the minimum value of the objective func-
tion of the following formula (1):

Jm =
k∑

j=1

N∑

i=1

umi j
∥∥xi − c j

∥∥2
, 1 < m < ∞ (1)

where m is a weight: a real number and greater than 1.
This article takes m = 2. ui j is the membership degree

123



1506 R. Shang et al.

matrix, indicating the membership degree of xi in cluster
c j . ‖xi − c j‖2 indicates the distance between data xi and
cluster center c j . k is the number of clusters and N is the
number of data.

The process of membership degree matrix ui j iterates as
following formula (2):

ui j = 1
k∑

p=1

( ‖xi−ci‖‖xi−cp‖
) 2

m−1

(2)

Cluster center matrix c j iterates as following formula (3):

c j =

N∑
i=1

ui j · xi
N∑
i=1

ui j

(3)

The algorithm iterates the above two formulas to update
the membership degree matrix U and cluster center matrix
C , so as to minimize the objective function values. When
(max{|ut+1

i j − uti j |}) < ε, the iteration stops, where t is the
number of iteration; ε is a real number and is greater than
0 and less than 1. When the iteration stops, the algorithm
converges to a local minimum value of Jm .

When FCM algorithm converges, a group of cluster cen-
ters theoretically will be obtained and identify the classes to
which all data belong through the membership degree matrix
U . However, FCM is a local search method, and the final
result depends closely on the initial selected points. If the ini-
tial points selected improperly, the algorithm is easy to find
local optimal solution rather than the global optimal solu-
tion. But this problem can be just solved with evolutionary
algorithm.

3 Co-evolution-based immune clonal algorithm
for clustering

To solve the shortcomings of FCM and the traditional
evolutionary computation, an algorithm called clustering
algorithm based on co-evolution (ICCE) is put forward. It
combines the advantages of FCM algorithm simplicity and
fast convergence and the advantages of co-evolutionary algo-
rithm, not depending on the initial population and able to find
the global optimum.

3.1 Fitness function

To meet the requirements of evolutionary algorithm to select
individuals with high fitness, the following formula (4) fitness
function (Liu et al. 2012) is used:

Fitness(xi ) = c

Jm + d
(4)

Here, Jm is the objective function of FCM. c and d are con-
stants and greater than zero. c is used to scale the objective
function value, so that it is convenient to observation and
c = 100 in this paper. d is used to guarantee the denomina-
tor is not 0.

3.2 Initialization

The populations X and Y are initialized as formulas (5) and
(6) shown below:

X = {Cx1;Cx2; . . . . . . ;CxM } (5)

Y = {Cy1;Cy2; . . . . . . ;CyN } (6)

The size of population X is M and that of population Y is N .
M and N can be different or be the same.

It is shown that the individual formats are initialized in
formulas (5) and (6) below:

Cxi = {x11
i , x12

i , . . . , x1d
i , x21

i , x22
i , . . . , x2d

i ,

. . . . . . , xK1
i , xK2

i , . . . , xKd
i }, i ∈ [1, M] (7)

Cyj = {y11
j , y12

j , . . . , y1d
j , y21

j , y22
j , . . . , y2d

j ,

. . . . . . , yK1
j , yK2

j , . . . , yKd
j }, j ∈ [1, N ] (8)

where K is the amount of clusters, d is the dimension of
the data, and xi and y j are respectively the cluster centers
of each dimension of the data. xi and y j are generated as
random decimal numbers. The range of the initialization is
between the maximum value and minimum value of each
dimension in a data object.

3.3 Cloning and clonal selection operation

3.3.1 Clone operation

For the population X , considering the fitness value of the i th
individual Cxi in the population, clone operation executes in
accordance with the formula (9) rules (Du and Jiao 2002; Liu
et al. 2003):

Nclone(i) = int

⎛

⎜⎜⎜⎝Nc · fitness(Cxi )

N∑
j=1

fitness(Cx j )

⎞

⎟⎟⎟⎠ , i=1, 2, . . . , M

(9)

where Nclone(i) represents the amount of clone for the i th
individual. Nc is a constant, which means the size of popula-
tion after clone. Fitness(Cxi ) represents the fitness of the i th
individual in the population. int(y) represents the smallest
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integer which is greater than or equal to y. The determina-
tion method of clone amount in population Y is consistent
with that of X .

After clone operation, the formats of populations X and
Y are as shown in formulas (10) Xc and (11) Yc below:

Xc = {Cx1;Cx1; . . . ,Cx1;︸ ︷︷ ︸
Nclone(1)

Cx2;Cx2; . . . ,Cx2;︸ ︷︷ ︸
Nclone(2)

. . . . . . ;CxM ;CxM ; . . . ,CxM }︸ ︷︷ ︸
Nclone(M)

(10)

Yc = {Cy1;Cy1; . . . ,Cy1;︸ ︷︷ ︸
Nclone(1)

Cy2;Cy2; . . . ,Cy2;︸ ︷︷ ︸
Nclone(2)

. . . . . . ;CyM ;CyM ; . . . ,CyM }
︸ ︷︷ ︸

Nclone(N )

(11)

As mentioned above, first calculate the individuals’ fit-
ness values and the needed clone amount of each individ-
ual in a population according to formula (9), and finally the
individuals are cloned. After clone operation, the amount of
individuals with high fitness values in the new population
rises.

3.3.2 Mutation operation

Assuming that xi j is a component of some individual in pop-
ulation Xc, x ′

i j is a component of this individual after muta-
tion operation. In accordance with the formula (12) (Liu et al.
2012) rules for mutation:

x ′
i j =

⎧
⎪⎪⎨

⎪⎪⎩

2 · α, xi j = 0, α ≥ pm
−2 · α, xi j = 0, α < pm
(1 + 2 · α) · xi j , xi j �= 0, α ≥ pm
(1 − 2 · α) · xi j , xi j �= 0, α < pm

(12)

whereα is a random constant between 0 and 1. pm is the muta-
tion probability and is also a constant. Its value is between
0 and 1. Here, the individuals before mutation operation are
replaced with the individuals after that. The mutation method
of population Yc is consistent with that of Xc. The names of
populations Xc and Yc alter to Xm and Ym then.

3.4 Clonal selection operation

For the new population Xm after clone operation and muta-
tion operation, its scale is Nc. Suppose thatCxi (t) is the indi-
vidual before clone operation and mutation operation at t th
generation and C ′

xi (t) is the individual after that. According
to Formula (13) rules (Liu et al. 2012) to generate a selection
probability value of an individual:

pCS(Cxi (t + 1)) = C
′
xi (t)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, fitness(C
′
xi (t)) ≤ fitness(Cxi (t)),Cxi (t) = bestCxi (t)

e

(
− fitness(Cxi )−fitness(C

′
xi )

b

)

, fitness(C
′
xi (t)) ≤ fitness(Cxi (t)), and Cxi (t) �= bestCxi (t)

1, fitness(C
′
xi (t)) > fitness(Cxi (t))

(13)

where b is a constant that is greater than zero. pcs is the
probability thatC ′

xi replacesCxi . According to the following
rules for clonal selection operation: if pCS = 0, Cxi still
remains itself after clonal selection operation; if pcs = 1,
Cxi is replaced by C ′

xi after clonal selection operation; If
pcs �= 0 and pcs �= 1, generate a random number between
0 and 1 and compare r and pcs . When r ≥ pcs , operate
as that of pCS = 0, and when r < pcs, operate as that
of pCS = 1. Clonal selection operation for population Yc
is consistent with that for Xc. The scale of the population
returns to its previous state after Clonal selection operation.
After this operation, we suppose the populations are X ′ and
Y ′. Algorithm 1 shows the clonal selection process.
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Algorithm 1. the Clonal Selection Algorithm

1. Initialize the population X and population Y.

2. In accordance with the individual fitness value and the Formula (9) for the Clone Operation , and then generate population

Xc and Yc.

3. According to Formula (12) to do the Mutation Operation, and then generate population Xm and Ym.

4. Based on the fitness value of mutated individual with Formula (6) for Clonal Selection Operation , and then generate 

population X’ and Y’ that are the result of competition within each population.

5. The algorithm ends when fitness is stable at T generations; otherwise, go to step 2.

3.5 Better solution set neighborhood crossover operator

For the current population X ′, its individuals are Cxi , i =
1, 2, . . . , M . The former percentages a(a1, a2) of best indi-
viduals in the population constitute the set P , which is
called a better solution set. And its individual is px j , j =
1, 2, . . . , a · M . Randomly select an individual px j , j ∈
[1, a·M] from P , and according to the following formula (14)
(Jiao et al. 2012) to generate a new solution Cxipto replace
the original solution Cxi :

Cxip = px j + G(0, 1) · (px j − Cxi ), i ∈ [1, M] (14)

where G(0, 1) represents a random number generator of
Gaussian distribution.a(a1, a2) is a constant, which is greater
than 0 and less than 1.

As we all know, there may be a better solution near a
good solution. In fact, the better solution set neighborhood
crossover operator is used to search for these solutions in a
local searching way.

In this algorithm, the total execution time of the better
solution set neighborhood crossover operator is pc1 ∗M , and
pc1 is a real number which is greater than 0 and less than
1. The better solution set neighborhood crossover operator
for population Yc is consistent with that for Xc. After this
operation, the populations X ′ and Y ′ alter to X ′′ and Y ′′.

3.6 Cooperation operator

After better solution set neighborhood crossover operator,
cooperation operation or annexation operator is executed.
The main role of this operator is to introduce the better indi-
viduals of one population into another. Thus, the update rate
of population is accelerated, and the phase of falling into
local optimum can be avoided. For the two populations X ′′
and Y ′′, their individuals are C ′′

xi and C ′′
y j , respectively. The

former percentages a1 and a2 of better individuals in the
populations X ′′ and Y ′′ constitute the set Px and Py , which
are called better solution sets. And their individuals are pxk
(k = 1, 2, . . ., a1 ∗ M) and pyl (l = 1, 2, . . ., a2 ∗ N ). Ran-

domly select two individuals pxk, k ∈ [1, a1 ∗ M] and pyl ,
l ∈ [1, a2 ∗ N ] from Px and Py , and then according to the
following formulas (15) and (16) to cooperate the two pop-
ulations (Jiao et al. 2012):

C ′′′
xi = pyl + G(0, 1) · (pyl − C ′′

xi ), i ∈ [1, M] (15)

C ′′′
y j = pxk + G(0, 1) · (pxk − C ′′

y j ), j ∈ [1, N ] (16)

wherein C ′′′
xi and C ′′′

yi represent the individuals in population
X ′′′ and population Y ′′′ after cooperation operation. M and N
are the sizes of two populations. G(0, 1) represents a random
number generator of Gaussian distribution. The new individ-
uals replace the old ones. And here, the total execution time
of the cooperation operator is pc2 ∗ n, and n is the size of the
population. pc2 is a real number which is greater than 0 and
less than 1.

X andY are two evolved populations separately and search
for solutions only in their own populations. Here, pyl is a bet-
ter individual; through the cooperation operator (15), infor-
mation of population Y is exchanged to population X and the
search space of the algorithm is expanded while still main-
taining the diversity of population (so does pxk). After the
Cooperation Operator, the populations X ′′′ and Y ′′′ are writ-
ten as Xnew and Ynew.

3.7 Annexation operator

If one population is superior to the other one, it is not neces-
sary for all these two populations to evolve. Then execute the
annexation operator, and the superiority population merges
with the inferiority population and then produces a new pop-
ulation X ′′′ or Y ′′′. The individuals of them are C ′′′

x and C ′′′
y .

Here, we suppose that the population X ′′ is superior to Y ′′.
The principle we judge which population is superior is that
the former percentage b1 of fitness values in population X ′′
are greater than that b2 in population Y ′′. Randomly select
two individuals from Px and Y ′′, called pxi , i ∈ [1, a1 ∗ M]
and C ′′

y j , j ∈ [1, N ]. And then operate according to the fol-
lowing formulas (17) and (18) (Jiao et al. 2012) for the infe-
riority population:
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Fig. 1 Judgment process of execute cooperation operator or annexa-
tion operator

C ′′′
y j = pxi + G(0, 1) · (pxi − C ′′

yk), i ∈ [1, a1 ∗ N ], j ∈ [1, N ]
(17)

The formula (17) is the operation that X ′′ merges with Y ′′.
In turn, the operation that Y ′′ merges with X ′′ is as follows:

C ′′′
xi = pyj + G(0, 1) · (pyj − C ′′

xi ), i ∈ [1, M], j ∈ [1, a2 · N ]
(18)

After this operation, the superiority population and the fresh
inferiority population are combined to form a new population
called Z , and its size is M + N .

Here, the total execution time of the annexation operator
is pc3 ∗n, and n is the size of the population. Namely execute
pc3 ∗ M times for population X ′′ and pc3 ∗ N times for Y ′′.

Although the inferiority population is less likely to obtain
the optimal solution, it still has some useful information.
Through the above formula (17) and (18), we keep this
information. Whether the cooperation operator or annexa-
tion operator carried out is in accordance with Fig. 1.

3.8 Division operator

After the annexation operator, the size of the population alters
to M+N . The division operator is used to ensure the iteration
of the algorithm. After that, the new population Z is split into
two sub-populations. Here, the new population Z is randomly
divided into two sub-populations Xnew and Ynew with the size
M and N , and perform the following operation to one sub-

population. Assuming the population is Xnew and its scale
is M and the individuals in the population are represented
as Cxi , i = 1, 2, . . . , M . According to the formula (19):

Cxi =
{
Cxi ,G(0, 1) < 1

n
Cxi +U (0, 1

t ),G(0, 1) ≥ 1
n

, i = 1, 2, . . . , M

(19)

Here, G(0, 1) and U (0, 1
t ) represent random number gener-

ators of Gaussian and uniform distribution, respectively. t is
the time of iteration. The above operation (19) is equivalent to
a small mutation, and thus the diversity of population is main-
tained so that the premature convergence of the algorithm is
avoided. The operation of population Ynew is consistent with
that of Xnew.

3.9 Elitist preservation strategy

After all co-evolution operations, the percentage px of out-
standing individuals are reserved to form the global outstand-
ing individual group, namely the elite group. It is used to
compare with the outstanding individuals in next generation
to select the amount of px · (M + N ) individuals to form the
new elite group. Then, the iteration goes on. This strategy
executes once in each of the next iterations then. It is helpful
to maintain the solution diversity, to avoid loss of solution
and to find out the global optimal solution.

And here is a clearly explanation about the concept of co-
evolution. The cooperation operator, the annexation opera-
tor and division operator are different from the concepts in
clonal selection and affinity maturation. In clonal selection
and affinity maturation, the operators are operated among
individuals. However, in co-evolution, the concepts are used
among populations. They are the operators of populations,
not of the individuals. These operators are used to promote
the mutual evolution of populations. In fact, in the environ-
ment, the collaboration is a common phenomenon. Those
operators are the collaborative operators of co-evolution
algorithm.

3.10 The overall process of the proposed algorithm

Algorithm 2 gives the overall process of the proposed algo-
rithm in the paper.
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Algorithm 2. A clustering algorithm based on immune co-evolution

1. Initialize two cluster center populations X and Y, and set the parameters.

2. For the cluster center populations, Cloned, Mutation and Clonal Selection Operation are executed. Then produces 

optimized populations X’ and Y’ .

3. Optimizing population X’ and Y’ according to co-evolution operations. Firstly execute the Better Solution Set 

Neighborhood Crossover Operator to generate the population X’’ and Y’’; secondly judge to execute the Cooperative 

Operator or Annexation Operator and Division Operator according to Figure 1 to generate new populations Xnew and Ynew.

4. Execute the Elite Preservation Strategy. Compare the fitness values of the best individual group in old population and that 

in the new population; update the global best individual group and record the best individual and its fitness value; replace 

the old population with the new one.

5. If the termination condition of iteration is satisfied, the algorithm terminates. Otherwise, go to step 2. The termination 

condition may be a certain number of iteration, such as T1, and it also can be the fitness value of the best individual does not 

change in T2 generations. T1=200 is chosen in this paper’s experiments.

6. According to the U matrix to judge the final clusters which all the data belong to

Moreover, in the implementation process of the algorithm, if the cluster center matrix changes, FCM clustering algorithm is 

executed iteration once to speed up the convergence.

3.11 Complexity analysis

The computational complexity of all operators is analyzed
in this part. Here, N is the amount of the data and d is the
dimension of the data. K is the number of real clusters, n is
the amount of the individuals in a population. Nc, pc1, pc2

and pc3 are as that of 3.3.1, 3.5, 3.6 and 3.7 defined.
The complexities of the main operators are shown as fol-

lows. The computational complexity of Initialization oper-
ator is O(K ∗ d ∗ n). The computational complexity of
clone and the division operators is O(n). The computational
complexity of mutation and clonal selection operators is
O(d ∗ K ∗ Nc). The computational complexities of better
solution set neighborhood crossover, cooperation and annex-
ation operators are O(d ∗ K ∗ pc1 ∗ n), O(d ∗ K ∗ pc2 ∗ n)

and O(d ∗ K ∗ pc3 ∗ n), respectively. The computa-
tional complexity of fitness operator is O(kdnN ). Thus, the
worst computational complexity of the proposed algorithm is
O(K ∗ d ∗ n)+2O(n)+O(d ∗ K ∗ Nc)+O(d ∗ K ∗ pc1 ∗
n)+O(d ∗ K ∗ pc2 ∗ n)+O(d ∗ K ∗ pc3 ∗ n)+O(k ∗ d ∗
n ∗ N ) = O(K ∗ d ∗ n+n+d ∗ K ∗ Nc+d ∗ K ∗ pc1 ∗
n+d ∗ K ∗ pc2 ∗ n+d ∗ K ∗ pc3 ∗ n+ k ∗ d ∗ n ∗ N ).

Because of N 
 n, k, d, and according to the analysis
above, the total computational complexity can be simplified
as O(k ∗ d ∗ n ∗ N ). Therefore, reducing the time of the
fitness function should be considered when dealing with big
data with the proposed algorithm.

4 Experiments and analyses

Three algorithms are implemented in Matlab R2010a on HP
dc7800 (Intel(R) Core(TM) 2 Duo CPU and the system of
Microsoft Windows 7). That are Inmmunodomaince-based
Clonal Selection Clustering Algorithm (ICSCA) (Liu et al.
2012), Inmmunodomaince-based Clonal Selection Cluster-
ing Algorithm with Elitist preservation (ICSCAE) and the
proposed algorithm (ICCE).

4.1 Datasets

Each algorithm is tested on eight UCI datasets and eight
artificial datasets. The UCI datasets are iris, wine, seeds,
lung_cancer, vote, sonar, a sample script dataset—Handwrit-
ten Digital and Spambase (http://archive.ics.uci.edu/ml/
datasets.html). Figure 2 shows the artificial datasets.

It can be seen from Fig. 2 that data01 is a basic prob-
lem with four clusters. Its boundary is clear and easy to dis-
tinguish. data02 is a blurred boundaries clustering problem.
data03, data04, data05, and data06 are clustering problems
which have a number of different sizes and different distri-
butions of clusters. data07 is a clustering problem with dis-
crete points. data08 is a clustering problem with 20 clusters
and 2,000 data points, which is a multi-point and multi-class
problem.
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(1) (2) 

(3) (4) 

(5) (6) 

(7) (8) 

Fig. 2 Artificial datasets. 1 data01, 2 data02, 3 data03, 4 data04, 5 data05, 6 data06, 7 data07, 8 data08
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For example, there are three classes in the datasets called
1, 2, 3 and A, B, C are the data sets of each class, that is, A
is the data set of first class with real labels 1, B is the second
with 2 and C is the third with 3. After the clustering, there
may be a result as that A is the third cluster, B is the first and
C is the second. According to this result, each of A, B and
C has an incorrect cluster. Actually, we have clustered A, B
and C correctly. So, the mapping relation between the labels
obtained by clustering and the real labels should be defined.

Clustering is an unsupervised process without a training
process. In this manuscript all the test datasets have a real
class value, and the real values are used to calculate the accu-
racy in the experiment.

The following approach is used to define the mapping
relation: to select the majority of the real label in a cluster as
the new label of the cluster. Thus, A is the first class, B is the
second, and C is the third.

In fact, the accuracy is defined as most literatures do. It
is the ratio of the size of the correct clustering units and the
size of the data. The ‘mean accuracy’ is computed with the
mean accuracies of 30 independent runs.

Suppose N1 is the amount that the new labels are same
with the actual label of a data, and the size of dataset is N .
The accuracy is calculated as formula (20):

accuracy = N1

N
(20)

Then the way to calculate the mean accuracy meanacc is
shown in formula (21):

meanacc = 1

m

m∑

i=1

accuracy(i) (21)

wherem is the times of experiments; accuracy(i) is the cluster
accuracy in the i th experiment. Similarly, labels are added
to each datum in the generation of artificial two-dimensional
datasets.

Script dataset comes from the UCI dataset “Optical
Recognition of Handwritten Digital Dataset” (http://archive.
ics.uci.edu/ml/datasets.html). 120 records are randomly
selected to constitute the Handwritten Digit dataset, called
“digit” simply. The numbers of the digit dataset are 2, 5, 6
and 9. Each number selects 30 records. A part of the digit
dataset is shown in Fig. 3.

4.2 Parameter analysis

The parameters used in this paper are as follows: M and N for
the sizes of populations X andY, respectively; the scale Nc of
clone operation; the mutation probability Pm ; the parameter
b in clonal select operation; the percentages a1 and a2 of the
better solution group; the percentage pc1 in the better solution
set neighborhood crossover operator; the probability pco and
pmerge of cooperative operator and annexation operator; the

Fig. 3 Handwritten dataset “digit”

percentage pc2 in cooperative operator; the percentage pc3 in
annexation operator; the percentage px in Elitist Preservation
Strategy.

In the experiments of this paper, the parameter values of
clonal selection are selected as per the reference (Liu et al.
2012). Namely, M = 50, N = 50, Nc = 80, pm = 0.3 and
b = 0.16. On the basis of the experience, the percentages a1,
a2 and px are determined in [0.1, 0.2]. Here, choose a1 =
a2 = 0.1, px = 0.1. And the probability pco = 0.7 and
pmerge = 0.3. The parameters pc1, pc2 and pc3 are analysis
below. pc1 is selected from 0.1 to 0.7 with interval 0.1. So
the total amount of pc1 is eight. For each pc1, pc2 and pc3 are
selected from 0 to 1, with the interval 0.1. So both pc2 and
pc3 have 11 values. Thus for each pc1 value, there are 121
corresponding fitness values. Here, the proposed algorithm
ICCE is performed on dataset wine. And pc2 and pc3 are x
and y coordinates; the fitness value fitness is z coordinate.
The averaged fitness value of ten times is taken as fitness. In
the analysis process, the other parameters are as mentioned
above. Three-dimensional graphs are shown in Fig. 4.

It can be seen from Fig. 4 that the result of the algorithm
is relatively stable when pc1 is 0.1 and 0.2. In this case, the
maximum fitness value is at pc1 = 0.1, pc2 = 0.3, pc3 = 0.3
and pc1 = 0.1, pc2 = 0.2, pc3 = 0.7 and the average fitness
value fitness = 0.9515. Noting that the larger pc1, pc2, pc3

are, the greater calculation amount is, then the parameters
pc1 = 0.1, pc2 = 0.3, pc3 = 0.3 are chosen.

4.3 Experimental results and analysis

4.3.1 The analysis of main operators

The references (Al-Muallim and El-Kouatly 2010; Liu et al.
2012) have proven the effectiveness of some operators. How-
ever, there are also some limitations in these operators. Thus,
to improve the effective, three co-evolution operators are pro-
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(1) pc1 pc1=0.1 

(3) pc1 pc1=0.3 

(5) pc1 pc1=0.5 

 (7) pc1

=0 (2) 

=0.2 (4) 

=0.4 (6) 

=0.6 (8) pc1=0.7 

Fig. 4 The relationship between the average fitness value and pc1, pc2, pc3
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Table 1 The mean accuracy of 30 independent runs of the proposed
algorithm without some operator

Dataset A B C

Iris 0.9558 (0.0092) 0.9567 (0.0065) 0.9582 (0.0043)

Wine 0.9481 (0.0028) 0.9487 (0.0019) 0.9466 (0.0051)

Seeds 0.8929 (0.0058) 0.8929 (0.0063) 0.8935 (0.0058)

Lung_cancer 0.5067 (0.0581) 0.4917 (0.0525) 0.5063 (0.0515)

Vote 0.8620 (0.0004) 0.8602 (0.0034) 0.8606 (0.0035)

Sonar 0.5545 (0.0144) 0.5529 (0.0204) 0.5494 (0.0139)

Digit 0.7794 (0.0553) 0.7617 (0.0687) 0.7586 (0.0510)

Spambase 0.7339 (0.0463) 0.7351 (0.0290) 0.7324 (0.0570)

data01 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

data02 0.9437 (0.0280) 0.9535 (0.0084) 0.9535 (0.0052)

data03 0.9977 (0.0016) 0.9978 (0.0006) 0.9981 (0.0008)

data04 0.9768 (0.0275) 0.9702 (0.0205) 0.9746 (0.0177)

data05 0.9885 (0.0231) 0.9888 (0.0219) 0.9905 (0.0203)

data06 0.9700 (0.0512) 0.9815 (0.0352) 0.9855 (0.0337)

data07 0.9839 (0.0142) 0.9854 (0.0049) 0.9864 (0.0015)

data08 0.9947 (0.0216) 0.9896 (0.0571) 0.9956 (0.0145)

Bold values represent best result
A: The proposed algorithm without Better solution set neighborhood
crossover operator
B: The proposed algorithm without cooperative operator
C: The proposed algorithm without annexation operator and division
operator

posed in the proposed algorithm. They are better solution set
neighborhood crossover operator, cooperative operator, and
annexation operator and division operator. The effectiveness
of the three operators is evaluated in this section. Table 1
gives the mean accuracy of 30 independent runs of the pro-
posed algorithm without one of these three operators to test
the contribution of each operator to the proposed algorithm.

It can be seen from Table 1 that the proposed algorithm
without better solution set neighborhood crossover opera-
tor has the highest mean accuracies in five of the datasets,
the proposed algorithm without cooperative operator has the
highest mean accuracies in two datasets, and the proposed
algorithm without annexation operator and division operator
has the highest mean accuracies in eight datasets. That means
the Annexation Operator and Division Operator are the most
important operators in the algorithm, followed by better solu-
tion set neighborhood crossover operator, and finally, coop-
erative operator.

4.3.2 Experimental results and analysis

The evaluation indexes are the highest accuracy fitness, the
average accuracy meanacc of 30 independent runs and the
standard deviation std, and the t test results. Table 2 shows
the highest accuracy fitness of various algorithms. Table 3

Table 2 The comparative test results of the highest accuracy fitness in
various algorithms

Dataset Amount of dataset ICSCA ICSCAE ICCE

Iris 150 0.9600 0.9600 0.9667

Wine 178 0.9551 0.9551 0.9663

Seeds 210 0.9048 0.9000 0.9286

Lung_cancer 32 0.5938 0.5938 0.6250

Vote 435 0.8713 0.8713 0.8805

Sonar 208 0.6058 0.6298 0.6875

Digit 120 0.8500 0.8917 0.9500

Spambase 4,601 0.7448 0.7659 0.8059

data01 400 1.0000 1.0000 1.0000

data02 300 0.9600 0.9680 0.9720

data03 250 1.0000 1.0000 1.0000

data04 515 0.9961 0.9961 0.9981

data05 535 0.9981 0.9963 1.0000

data06 605 0.9950 0.9950 0.9983

data07 320 0.9875 0.9906 0.9969

data08 2,000 1.0000 1.0000 1.0000

Bold values represent best result

Table 3 The average accuracies of the results of 30 independent runs
and the corresponding standard deviations

Dataset ICSCA ICSCAE ICCE

Iris 0.9564 (0.0052) 0.9544 (0.0058) 0.9589 (0.0031)

Wine 0.9431 (0.0072) 0.9419 (0.0052) 0.9493 (0.0018)

Seeds 0.8938 (0.0036) 0.8930 (0.0039) 0.8962 (0.0064)

Lung_cancer 0.5021 (0.0666) 0.4990 (0.0430) 0.5115 (0.0529)

Vote 0.8608 (0.0040) 0.8608 (0.0036) 0.8634 (0.0045)

Sonar 0.5438 (0.0121) 0.5479 (0.0226) 0.5622 (0.0261)

Digit 0.7178 (0.0605) 0.7044 (0.0647) 0.8310 (0.0627)

Spambase 0.6444 (0.0509) 0.6610 (0.0518) 0.7366 (0.0628)

data01 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

data02 0.9500 (0.0040) 0.9507 (0.0042) 0.9557 (0.0088)

data03 0.9985 (0.0009) 0.9987 (0.0010) 0.9981 (0.0006)

data04 0.9771 (0.0181) 0.9757 (0.0180) 0.9814 (0.0201)

data05 0.9814 (0.0172) 0.9790 (0.0175) 0.9915 (0.0112)

data06 0.9846 (0.0150) 0.9899 (0.0118) 0.9874 (0.0379)

data07 0.9875 (0.0000) 0.9875 (0.0000) 0.9879 (0.0037)

data08 0.9950 (0.0201) 0.9850 (0.0267) 0.9980 (0.0092)

Bold values represent best result

shows the meanacc (std) of algorithms. Table 4 shows the t
values between the proposed algorithm ICCE and the com-
pared algorithms with a significance level of 0.05.

It can be seen that the highest accuracies of the proposed
algorithm are higher than other two algorithms in eight UCI
datasets from Table 2. For datasets wine, seeds, lung_cancer,
sonar, digit and spambase, the highest accuracy of the pro-
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Table 4 The t values between ICCE and the compared algorithms

Dataset Iris Wine Seeds Lung_cancer Vote Sonar Digit Spambase

ICCE/ICSCA 1.9867a 4.5687a 1.0648b 0.6037b 2.2895a 4.3842a 2.9902a 6.2508a

ICCE/ICSCAE 3.3559a 7.3048a 1.5683b 1.0046b 2.4866a 2.5598a 3.6461a 5.0886a

Dataset data01 data02 data03 data04 data05 data06 data07 data08

ICCE/ICSCA – 3.2296a 0.0000b 0.8784b 1.7972a −0.0267b 0.6107b 0.9074b

ICCE/ICSCAE – 2.8280a −0.8234b 1.1709b 2.2966a −1.0853b 0.6107b 3.0460a

Bold values represent best result
a ICCE is significantly better than the compared algorithm
b ICCE has no significant performance difference with the compared algorithm

posed algorithm is 0.01–0.06 higher than the other three algo-
rithms. Especially for datasets lung_cancer digit and spam-
base, the accuracy is 0.04–0.06 higher than all the other
algorithms. On dataset digit, the accuracy of the proposed
algorithm is 0.6 higher than other two algorithms. This indi-
cates that a better result is achieved by the proposed algo-
rithm in high-dimensional and more complex dataset than
the other two algorithms. In the artificial datasets, the pro-
posed algorithm can accurately separate the clusters to which
all the points belong. For dataset data2, which boundary is
not clear, the accuracy got by the proposed ICCE is the high-
est in the four algorithms, showing that ICCE has the ability
to deal with the dataset which has an unclear boundary. ICCE
can find higher fitness value and will not fall into local opti-
mum. For datasets data6 and data7, which are multi-clusters
and with different sizes and distributions, the proposed algo-
rithm clusters precisely show that ICCE has the ability to
find small clusters and adapt to different distributions. The
above analysis shows that the proposed algorithm has a better
optimization searching capability.

It can be seen from Table 3 that in all the datasets, the
average accuracies got by ICSCAE and ICCE are higher
than that by ICSCA because these two algorithms use an
Elitist Preservation Strategy. This experiment result proves
that the Elitist Preservation Strategy is helpful to obtain a sta-
bility result of the algorithm. Comparing the average accu-
racies of ICSCAE and ICCE in these 16 datasets, it can
be found that the average accuracies of ICCE are higher
than that of ICSCAE in 14 datasets. It is because ICCE
has the idea of co-evolution and these experiment results
prove that the co-evolutionary algorithm stabilizes the whole
algorithm. In particular dataset digit, average accuracy got
by the proposed algorithm ICCE is 0.05 more than the two
contrasting algorithms, which shows that ICCE algorithm
is very effective for high-dimensional dataset. In artificial
datasets, the average accuracies got by ICSCA are lower
than ICSCAE and ICCE. This indicates that the algorithms
with Elitist Preservation Strategy have a stable result in both
UCI and artificial datasets. In these artificial datasets, the

average accuracies got by ICCE are higher than ICSCAE
in six datasets, which shows that the joint co-evolutionary
algorithm is helpful in testing the stability of the clustering
result for the artificial datasets. Especially for data8, which
has 20 clusters and 2,000 data, is used in the experiment
to test the validity of the algorithms for multi-clusters and
large-scale dataset, the proposed ICCE has an average accu-
racy 1. It reveals that ICCE is effective with this kind of
dataset.

To compare the clustering effect of ICCE and ICSCA
and ICSCAE, t test is used here and the significance level
α = 0.05 is selected. First, all the three algorithms are run
for 30 times randomly. Second, assume that the mean accu-
racy of ICCE is better than of ICSCA and ICSCAE. And
the rejection region is t ≥ t0.05(30 + 30 − 2) = 1.67065. It
means that ICCE is better than the corresponding compared
algorithms: while t value in this region has no significant per-
formance difference with the compared algorithm while out
of the region. Table 4 gives the t values between ICCE and
the compared algorithms.

It can be seen from Table 4 that the proposed ICCE algo-
rithm is significantly better than the other algorithms in eight
UCI datasets and two artificial datasets. For dataset spam-
base, whose size is 4,601, it is a large-scale dataset. It can
be seen that the t values are large from Table 4. It indicates
that the proposed algorithm ICCE has the ability to deal with
a large-scale dataset. The t values are also large for datasets
data02, which is a blurred boundaries clustering problem,
which indicates that ICCE has a better ability to deal with
the blurred boundaries clustering problems.

The reference (Liu et al. 2012) has been compared the
effectiveness of ICSCA and FCM. So here some datasets are
used to compare k-means, FCM, ICSCAE and the proposed
algorithm.

It can be seen from Table 5 that the immune clonal algo-
rithms have a better effect than k-means and FCM. Although
most of the experimental results with the proposed algorithm
are better than the other algorithms, the limitation of the pro-
posed is that it could not deal with manifold data.
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Table 5 The average accuracies
of 30 independent runs and the
corresponding standard
deviations of FCM, ICSCAE
and ICCE

Bold values represent best result

Dataset k-Means FCM ICSCAE ICCE

Iris 0.8131 (0.2115) 0.8933 (0.0000) 0.9544 (0.0058) 0.9589 (0.0031)

Vote 0.8579 (0.0478) 0.8621 (0.0001) 0.8608 (0.0036) 0.8634 (0.0045)

Sonar 0.5442 (0.0121) 0.5530 (0.0015) 0.5479 (0.0226) 0.5622 (0.0261)

data01 0.8455 (0.1799) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

data03 0.8229 (0.1019) 0.9790 (0.0493) 0.9987 (0.0010) 0.9981 (0.0006)

data05 0.7949 (0.0682) 0.8598 (0.0615) 0.9790 (0.0175) 0.9915 (0.0112)

data07 0.9770 (0.0576) 0.9875 (0.0000) 0.9875 (0.0000) 0.9879 (0.0037)
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Fig. 5 The fitness value graph with the number of iteration in three algorithms

4.4 Convergence and diversity analysis

4.4.1 Convergence analysis

In this part, the fitness value curves of the three algorithms
are given to observe the convergence of the algorithms in four
UCI datasets (http://archive.ics.uci.edu/ml/datasets.html).

It can be seen from Fig. 5 that the fitness value curves of
ICSCAE are fluctuated and in a state of non-convergence,
but that of the ICSCAE and the proposed ICCE are stable
and unchanged after several iterations. This indicates the role
of the Elitist Preservation Strategy in maintaining the diver-

sity of the solutions while retaining the excellent solutions.
Especially for datasets new_thyroid, pima_indians and heart,
it can be seen that the proposed ICCE has a largest fitness
value than the other algorithms and the curve has a gradually
upward trend, which show that the co-evolutionary algorithm
plays a better role in maintaining the population diversity in
the searching process for the global optimum solutions.

In addition, observing Fig. 5 carefully, it can be found that
the number of iteration with ICCE is smaller than that with
the other two algorithms while achieving the same fitness
values. For example, for dataset new_thyroid, to achieve the
fitness value 2.7, the proposed algorithm ICCE only needs 7
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(1) wdbc (2) data04

(3) data06 (4) data08 

Fig. 6 The comparison of diversity

times iteration, while ICACS needs 15 times and ICSCAE
needs 35 times; for dataset pima_indians, to achieve the fit-
ness value 0.236, the proposed algorithm ICCE only needs
3 times iteration, while ICACS needs 68 times and ICSCA
does not converge. This shows that the ICCE algorithm con-
verges faster than the other two algorithms. What is more,
for dataset heart, it can be found that the ICSCAE algorithm
falls into a local optimum situation but ICCE does not. This
in another way shows that the ICCE algorithm is able to
search for the global optimal solutions. All the above show
that the proposed algorithm ICCE only needs a few iterations
while getting a better result. These prove that the proposed
algorithm can converge fast while achieving a higher fitness
value.

4.4.2 Diversity analysis

In Fig. 6, ICSCA, ICSCAE and the proposed ICCE are
compared to analysis the diversity of the algorithms in four
datasets.

In Fig. 6, for dataset wdbc, which is special for the high-
dimensional and complex data structures, the fitness value
curve of ICSCAE is unstable while that of ICCE is stable step
by step. The phenomenon can also be observed in datasets
data4 and data6. Furthermore, in the iteration process, the fit-
ness value of the proposed algorithm ICCE increases rapidly
at the beginning, which shows the advantages of the Elitist
Preservation Strategy, and when it is large this value increases
slowly but do not stop, which shows the advantages of co-
evolution operations in avoiding falling into a local opti-
mum. These are the lack of the other two algorithms. For
dataset data8, which size is 2,000 and has 20 different clus-
ters, it can be noticed that ICCE converges faster than the
other algorithms, which shows the advantages of ICCE in
processing the large-scale dataset. Summarize the results of
the algorithms on these four datasets, it can be seen that the
proposed algorithm has the highest fitness values and the
fastest convergence speed. This indicates that the proposed
algorithm ICCE has the ability to find out the global opti-
mal solutions, and proves that ICCE has a better diversity
indirectly.
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5 Conclusion

Clustering is an important mean in data mining, and FCM
algorithm is one of the most classical clustering algorithms.
It is based on fuzzy theory and has a good effect. What
is more, it is easy to understand and implement. But the
FCM algorithm is sensitive to the initialization of clus-
ter centers and different initializations will lead to differ-
ent clustering results. In addition, this algorithm is easy to
converge to a local optimal solution. These problems can
be solved with the evolutionary algorithms. But the tradi-
tional evolutionary algorithms simply emphasize the compe-
tition within populations while biological evolution in nature
is not just an internal competition but what more impor-
tant is the relationships between populations. Co-evolution
algorithm is a newest branch of the evolutionary algorithm
and is different from the traditional evolutionary algorithm
which just underlines the struggle within the population. The
co-evolution algorithm is a combination of cooperation and
competition among populations and is more similar to the
relationships among species in nature. To solve the existing
problems of FCM and traditional evolutionary algorithms,
we propose an immune clustering algorithm based on co-
evolution (ICCE) in this paper. First, the clonal selection
method is used to achieve the competition within popu-
lation to select the individuals with high fitness values to
reconstruct each population. The internal evolution of each
population is completed during this process. Second, co-
evolution operation is conducted to realize the information
exchange among populations and this operation accords with
the process of biological evolution. Finally, the evolutionary
results are compared with the global best individual results,
with a strategy called elitist preservation, to find out the indi-
vidual who has the highest fitness value, that is, the result
of clustering. The algorithms mentioned are tested in UCI
datasets and artificial datasets, and are analyzed. In addi-
tion, the convergence and diversity of the proposed algo-
rithm are tested in the paper and have been demonstrated
above.

Although the proposed algorithm ICCE overcomes the
shortcomings of FCM and ICSCA algorithms, and can get a
better solution, there are some limitations with it such as have
to specify the number of clusters which is a common prob-
lem of many clustering algorithms. And the time complexity
of the proposed algorithm is relatively high, that makes it
impossible to deal with big data. There are also some issues
that are not discussed in the article such as the impact of
the amount of populations. These issues will be discussed in
future research.
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