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a b s t r a c t

This paper addresses the problem of unsupervised change detection in Synthetic Aperture Radar (SAR)
images. Previous approaches have used evolutionary clustering optimization methods, which can suffer from
reduced accuracy, because they often use only a single objective function and can easily become trapped at
locally optimal values. To overcome these difficulties, we propose a new approach which combines the
artificial immune system (AIS) theory with a multi-objective optimization algorithm. First, the self-adaptive
artificial immune multi-objective algorithm is adopted to pre-sort the difference image. During this
procedure, the difference image is categorized into three classes – changed class, unchanged class and
uncertain samples. Second, based on wavelet decomposition to extract features from the difference image,
the immune clonal multi-objective clustering algorithm is used to search for the optimal clustering centers of
uncertain samples, labeling them as changed or unchanged. Experimental comparisons with four state-of-
the-art approaches show that the proposed algorithm can obtain a higher accuracy, is more robust to noise,
and finds solutions which are more globally optimal. Additionally, the proposed algorithm can improve the
local search ability for the optimal solutions and produces better cluster centers.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Change detection in remote sensing, is a process that analyzes
images of the same geographical area at different times in order to
identify any changes which have taken place between the
two assigned acquisition dates (Celik, 2009). Over the past three
decades, there have been significant developments in both the
remote imaging devices and also the methods for detecting changes
in the images (Gong et al., 2012). Being insensitive to atmospheric
and illumination conditions, the Synthetic Aperture Radar (SAR)
system has the advantages of being an all-day, all-weather device,
as well as offering wide area coverage (Curlander and McDonough,
1991). Therefore SAR images are considered to be more useful than
other remote sensing methods for detecting change over significant
geographical areas. However, SAR images suffer from speckle noise,
making change detection in SAR images more challenging than in
conventional optical images (Zhang et al., 2013).

This paper introduces a novel approach to change detection in
SAR images, which makes use of multi-objective artificial immune

system (AIS) methods to optimally cluster image pixels into
changed or unchanged classifications. Our method comprises
two main novel contributions.

(1) Previous literature has shown the benefits of Evolutionary
Algorithms (EA) (Droste et al., 2002) or genetic algorithms
(GA) (Goldberg and Holland, 1988) for numerical optimization
of the parameters of clustering or statistical models of changed
and unchanged pixels, which can then be used for pixel
categorization. However, pre-dominantly, these methods rely
on optimizing with respect to a single objective-function,
which makes them vulnerable to convergence on locally
optimal solutions, reducing their accuracy. In contrast, this
paper shows how to incorporate multi-objective optimization
within an AIS approach, and demonstrates superior accuracy
of change detection over the single-objective approaches.

(2) The methods described in previous literature apply sophisti-
cated modern optimization methods; however, pre-domi-
nantly, these only make use of simple gray-level values of
difference-image pixels. This single feature alone means that
such methods do not fully exploit all of the information
available in the difference image. Furthermore, SAR images
are particularly vulnerable to speckle-noise, which cannot be
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overcome by using individual pixel features, requiring addi-
tional contextual information. In contrast, our method shows
how different kinds of features can be combined within the
pixel classification optimization process. Apart from pixel gray
levels, our method also exploits wavelet texture features. This
enables us to successfully overcome severe speckle noise, and
demonstrate superior change detection performance over
single feature methods.

In order to combine the benefits of these two different kinds of
features, we propose a two-stage procedure for change detection.
In the first stage, pixel gray levels alone are used to perform an
initial segmentation. Those pixels, for which gray levels provide
enough information for high confidence, are categorized into
“changed” and “unchanged” classes. Any remaining pixels are
categorized as “uncertain”. The second stage uses additional
texture features, based on wavelet transforms, to provide the
additional information needed to classify these uncertain pixels.

The reason for the two stage process is that this saves computa-
tional expense (compared to combining both features in a single
stage, or reversing the order of the stages). The proposed two-stage
procedure means that the maximum number of pixels are classified
using only the simplest and cheapest features. The more complex
and expensive features are then used to classify any remaining pixels.
In contrast, if both features were fused into a single stage, then the
system would suffer additional expense due to informational redun-
dancy. Furthermore, it is not obvious how to best combine these two
different features in order to carry out single image segmentation.

This paper is organized into five sections. Section 2 provides a
review of SAR change detection methods, evolutionary algorithms
and artificial immune systems, and highlights the contributions of
this work by placing it in context. Section 3 introduces the multi-
objective model and related definitions, and describes the steps of
the proposed method in detail. Section 4 presents the experimental
results and analysis. Section 5 provides a summary and conclusions.

2. Related work

In previous literature, several methods for SAR image change
detection have been proposed. Some are supervised and others are
unsupervised (Belghith et al., 2013). Supervised approaches rely on
the methods of supervised classification to detect changed and
unchanged regions; however this process requires ground truth
data in order to extract a suitable training set for the learning
process of the classifiers. For many real applications, suitable
ground truth training data is not available and would be prohibi-
tively difficult to obtain. In contrast, unsupervised classifiers do
not require any training data, and so unsupervised change detec-
tion approaches can be more useful in many SAR change detection
applications (Ghosh et al., 2011). This paper focuses on the
problem of unsupervised change detection.

Unsupervised change detection methods are typically posed in
terms of a two-class discrimination problem, applied to a differ-
ence image derived from the two original SAR images from two
acquisition dates. These unsupervised change detection methods
can generally be divided into three steps: (1) image pre-proces-
sing, (2) difference image calculating, and (3) classification of the
difference image. In the third step, several unsupervised classifica-
tion methods have been proposed, such as the Expectation
Maximization (EM) method (Amayr and Bouguila, 2013), Markov
Random Field (MRF) (Ghosh et al., 2013), the Gaussian mixture
model (GMM) (Zhang et al., 2013), K-means (Celik, 2009), Fuzzy
C-means (FCM) (Dunn, 1973), Images fusion and fuzzy clustering
(Gong et al., 2012) etc. EM (Dempster et al., 1977) and MRF (Geman
and Geman, 1984; Besag, 1986) methods are based on the Bayes

theory. The EM based method is free of parameters and selects the
decision threshold for identifying changed and unchanged regions
while minimizing the overall change detection error with the
grayscale pixel values of the difference image. EM based methods
need to set the value of initial parameters, and this in turn
influences the accuracy of the threshold. The MRF based and
GMM based approaches depend on reliable estimation of para-
meters which influence the spatial contextual information during
the change detection process, and also on a priori assumptions in
modeling the difference image data which influence the accuracy
of the change detection result. K-means and FCM methods are two
well-known classification techniques which performwell on many
problems. However they suffer from accuracy problems in detect-
ing changed areas under strong noise contamination of images
(common in SAR images which suffer from speckle noise). Their
performance is also dependent on the number of the classes.

To address the above problems, GA based methods have been
proposed and used to improve automatic parameter estimation or to
avoid the need for parameter estimation, a priori assumptions
or pre-setting the number of classes. Bazi et al. (2009) used
the EM algorithm initialized with a robust strategy based on genetic
algorithms to estimate the statistical parameters of the changed
and unchanged classes, which are assumed to follow a generalized
Gaussian distribution in the analyzed log-ratio image. Celik (2010a)
adopted an N components Gaussian mixture model (GMM) and a
genetic algorithm to achieve image change detection by using the GA
to estimate the parameters of the GMM. These two methods use
genetic algorithms to estimate statistical parameters, thereby reducing
errors due to poor parameter estimates and increasing the automation
of change detection over methods where parameters are selected by
hand. Furthermore, Celik (2010b) proposed another change detection
method which uses a GA method to find the final change detection
mask with minimum cost, by evolving the initial realization of the
binary change detection mask through generations. This method can
produce the change detection result without needing a priori assump-
tions, such as pre-setting the number of classes.

GA based methods also have some disadvantages in handling
individual solutions within a population. The randomness of crossover
and mutation operators means that GA based methods sometimes fail
to reproduce excellent individuals, which can increase the number of
iterations needed to reach an optimal solution. In contrast, the clone
operator which is included in artificial immune algorithms maintains
good affinity antibodies and increases the probability of selecting good
antibodies. Artificial immune systems (AIS) also imitate other biologi-
cal immune functions, providing features such as protective immunity,
immune memory, immune learning (Yang et al., 2011), etc. Artificial
immune algorithms have previously been successfully applied to
solving complex problems in image processing (Yang et al., 2011),
pattern classification (Aydin et al., 2010) and other applications (e.g.
Chang et al., 2009; Kalinli and Karaboga, 2005).

Therefore, in this paper, we adopt an AIS method and show
how it can be used to successfully classify difference images for
SAR image change detection. Benefits of the proposed approach
are self-adaptive and retention of good affinity antibodies, without
the need for a priori knowledge such as number of categories,
training data or parameter models.

AIS based methods can broadly be divided into single objective
and multi-objective optimization methods. As regards single
objective optimization methods, literature variety of AIS methods
have been proposed, and shown to outperform GA methods in
several applications. Timmis et al. (1999) presented a resource
limited artificial immune network model which was applied to
solving unsupervised classification problems with complex iris
data. Huang and Jiao (2008) presented an immune clonal cluster-
ing method by combining artificial immune networks and support
vector machines for SAR image segmentation. Based on the work
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of Celik (2010b), Wan and Jiao (2011) proposed a method of using
a clonal selection algorithm, instead of genetic algorithm, to
improve the accuracy of change detection results. Li et al. (2011)
proposed a quantum-inspired immune clonal algorithm, based on
the grayscale pixel values of the difference image, to search for
optimal clustering centers for change detection.

All of the above algorithms are essentially single objective optimi-
zation methods which are based on artificial immune algorithms.
However, despite often outperforming GA methods, these methods
also have some problems in practical applications. SAR images are
prone to speckle noise, which can be difficult to model, and this can
lead to single objective change detection methods converging on
unilateral optimal solutions which fail to take account of global
performance, leading to suboptimal cluster centers or solutions. In
contrast, the multi-objective optimization algorithm can enlarge the
search space and improve the diversity of solutions.

A variety of multi-objective artificial immune systems (Omkar
et al., 2008) have been proposed since the first pioneering study
on evolutionary multi-objective algorithms was published in 1985
(Schaffer, 1985). The first work using AIS for evolutionary multi-
objective optimization was described in (Yoo and Hajela, 1999). Later
work, Cutello et al. (2005), proposed a modified method of Pareto
archived evolution strategy algorithms, using a polypeptide chain
and two immune operators. Coello and Cortes (2002) first proposed
a clonal selection principal for multi-objective optimization algorithm.
Bandyopadhyay et al. (2007) proposed multi-objective genetic cluster-
ing for pixel classification in remote sensing imagery. Yang et al. (2011)
proposed a SAR image segmentation approach which uses an artificial
immune multi-objective algorithm with fused complementary fea-
tures. Zou et al. (2013) proposed a method of multi-objective
optimization using a teaching–learning-based optimization algorithm.
These methods help enlarge the search space, generate a set of good
solutions and improve the diversity of solutions.

A drawback of previous multi-objective AIS methods is that
they pre-dominantly use only a single kind of image feature which
is the grayscale pixel values. However, SAR images contain many
other kinds of information, such as grayscale pixel values, texture,
spatial features and other kinds of features. Therefore, one feature
alone cannot utilize all information contained in a SAR image, and
it would be advantageous to develop new approaches which
utilize more of the available information.

The key contribution of this paper is that we use both grayscale
pixel values and texture features of the difference image and
propose a novel unsupervised method which combines artificial
immune system with multi-objective optimization for SAR image
change detection. This procedure consists of two stages, which
both use multi-objective AIS in different ways.

(1) In the first stage, a self-adaptive artificial immune multi-objective
algorithm is used to pre-sort the difference image into three
classes (changed class, unchanged class and uncertain samples),
based on difference image gray-level pixel values alone.

(2) The second stage uses additional features to classify any pixels
identified as “uncertain” during the first stage. A non-
subsampled wavelet transform is applied to the difference
image, yielding a 10 dimensional texture feature vector for each
pixel. An immune clonal multi-objective clustering algorithm is
then used to optimally separate these 10D vectors into two
clusters, representing the changed and unchanged classification.

3. Artificial immune multi-objective clustering algorithm

This section introduces the multi-objective models and related
definitions, describes the mathematical details of each of the two

stages of our change detection method, and provides an overall
summary of the change detection procedure.

3.1. Multi-objective optimization model and related definitions

Multi-objective optimization problems (Deb, 2001) can be
described as

min y¼ f ðxÞ ¼ ðf 1ðxÞ; f 2ðxÞ;…; f nðxÞÞT
s:t: giðxÞr0 i¼ 1;2;…; q

hjðxÞ ¼ 0 j¼ 1;2;…; p ð1Þ
where x¼ ðx1;…; xnÞAX � Rn represents the n-dimensional deci-
sion vector, X is an n-dimensional decision space,
y¼ ðy1;…; ynÞAY � Rn represents the n-dimensional target vector,
and Y is an m-dimensional objective space. The objective function
f ðxÞ denotes n mapping functions from the decision space to
the objective space. giðxÞr0 ði¼ 1;…; qÞ represents q inequality
constraints and hjðxÞ ¼ 0 ðj¼ 1;…; pÞ defines p equality
constraints.

The proposed multi-objective SAR image change detection
model has two objectives. Its model can therefore be described as

min FðxÞ ¼ ðf 1ðxÞ; f 2ðxÞÞT ð2Þ
where x¼ ðx1;…; xmÞ represents the m-dimensional features con-
stituting a decision vector. The objective function FðxÞ defines two
mapping functions from the decision space to the objective space.
These two functions are conflicted with each other and cannot be
optimized simultaneously. Thus, there is no unique global optimal
solution and a multi-objective optimization algorithm can gener-
ate a set of non-dominated solutions.

We now present some basic concepts of AIS-based multi-
objective optimization methods. A searching problem can be
regarded as an antigen in AIS. The multi-objective optimization
defined by Eq. (1) can be seen as the antigen. The candidate
solutions of Eq. (1) are called antibodies. The binding intensity
between antigen and antibody is named the antigen–antibody
affinity, which are the values of objective functions of candidate
solutions.

The concept of dominance in multi-objective optimization is
described here. For antibodies x, xnAX, xn is called Pareto-
dominance (Deb, 2001) and recorded as xnmac; sc; x when xn

satisfies

ð8 iA 1;…;nf g : f iðxnÞr f iðxÞÞΛð( jA 1;…;nf g : f iðxnÞo f iðxÞÞ ð3Þ
An antibody xn is said to be non-dominated if xn meets the

following rule (Deb, 2001):

:(xAX : x≻xn ð4Þ
In this paper, the procedure of the proposed method has two

steps, each of which uses a multi-objective method. In each of
these two steps, we adopt different sets of objective functions.
The first step uses grayscale pixel values to initialize the popula-
tion, and each antibody of the population represents one possible
classification result. The first step searches for detection results
which have the nearest neighbor relationship between the intra-
class samples and have the smallest distance between the samples
and the clustering centers of the intra-classes. So in this step, the
adaptive classification problem is changed into two objective
functions, and the multi-objective model can be described as

FðxÞ ¼ ðDevðxÞ;ConnðxÞÞT : ð5Þ
The details of functions Dev and Conn will be described in

Section 3.2.2.
The second step uses the texture information of SAR images to

initialize a population, where each antibody of population repre-
sents a possible set of clustering centers for uncertain samples.
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The second step searches for a set of clustering centers which
assign the best possible classifications to samples labeled as
uncertain in the first stage. Such optimal classifications should
produce the smallest possible differences between the intra-class
samples and the largest possible differences between the inter-
classes samples. Again, these two competing requirements can be
written as a multi-objective model and can be described as

FðxÞ ¼ ðJMðxÞ;XBðxÞÞT ; ð6Þ
where the details of the functions JM and XB will be described in
Section 3.3.3.

The two stages, described above, make use of different sets of
objective functions. We now explain the reasons for this.

Firstly, the initialization requirements for each stage are differ-
ent. In the first stage, in order to fully automate the algorithm, it
adopts the neighbor relationship based antibody link mechanism to
initialize the population. This encoding mechanism does not require
hand initialization of the number of classes. It uses the neighbor
relationship to classify the difference image and generate the
number of categories. For good results, objective functions require
the obtained number of categories to control the relationships
between inter-classes. If the number of categories is not taken into
account, then an extreme case can arise wherein the number of
categories becomes equal to the number of samples, and each
sample forms its own cluster center, contrary to the original
purpose of the data classification. In contrast, the second stage
initializes cluster centers randomly, using a pre-known number of
categories (two categories, changed and unchanged). So the objec-
tive functions of the second stage do not need the number of
categories to control the relationship between inter-classes.

Secondly, in the first stage, the population of antibodies
represents a set of possible results for change detection. This uses
an antibody link mechanism based on neighbor relationships. For
good results, these objective functions need to measure the
neighborhood relationship between each component of one anti-
body. In contrast, in the second stage, each antibody only has two
components (the first one is the clustering center of the first
category and the second one is the clustering center of the second
category) and it does not need to measure the neighborhood
relationship between each component of each antibody.

Thirdly, using different sets of objective functions in the first
and second stages can increase the number of objective functions,
enlarge the search space and improve the diversity of solutions.

3.2. Stage 1: initial clustering by gray-level using self-adaptive
artificial immune multi-objective optimization

This section describes the first stage of our change detection
method. In this stage, a self-adaptive artificial immune multi-
objective optimization algorithm is used with gray-level pixel
values of the difference image. This algorithm divides the differ-
ence image into three classes: changed, unchanged, and uncertain.

3.2.1. Initialization
We begin initialization by using the watershed transformation

(Beucher, 1992) to partition the difference image into non-
overlapping and homogeneous regions. Then, the number of these
regions is used as the length of antibodies and the neighbor
relationship based antibody link mechanism (Handl and Knowles,
2007) is used to initialize the population. This encoding mechan-
ism can automatically determine the correct number of categories
and is explained in Fig. 1. To illustrate this method, Fig. 1 shows an
example, where there are 10 components in an antibody p, i.e., in
this example, the watershed transformation partitioned the dif-
ference image into 10 regions. The components of the antibody are
randomly selected integers from 1 to the length of the antibody.

At the first iteration, t ¼ 0, the population is initialized according
to the above encoding mechanism and generates antibody groups
with scale x – PðtÞ ¼ ½p1ðtÞ;p2ðtÞ;…;pxðtÞ�T :

According to the above encoding mechanism, these antibodies
will be divided into different categories by the neighbor relationship.
However, the population is initialized with some randomness, and
each antibody will have different neighbor relationships, so that each
antibody may be divided into different classes. For example, in Fig. 1,
this antibody p is divided into three classes. It can be seen from Fig. 1
that p1 is assigned number 8 randomly, where 8 represents the
eighth element p8. p8 is assigned number 4 randomly, where
4 represents the fourth element p4. p4 is assigned number 4 ran-
domly, where 4 represents the fourth element p4 itself. Therefore, p1,
p4 and p8 are in the same category. In the same manner, p2, p3, p6
and p5 are in the same category, and p7, p10 and p9 are in the same
category. Therefore, in this step, we will select some antibodies as the
candidate solutions which have the same number of categories for
the next step. The rule of selection is (1) record the number of
categories of each antibody of population as A; (2) count the
maximum number of antibodies, which have the same number A
as each other and record this number as B; (3) select the antibodies
which have the number B. These antibodies will be regarded as
candidate solutions for the next step.

3.2.2. Affinity
Affinity (Yang et al., 2014) is defined in terms of the objective

functions Dev and Conn of Eq. (5). For each antibody, these are
defined as

f 1ðpnðtÞÞ ¼Dev¼MðpnðtÞÞ � ∑
MðpnðtÞÞ

i ¼ 1;ci A c
∑
jA ci

dðpnj;miÞ; mi ¼
1
jcij

∑
pnj A ci

pnjðtÞ:

ð7Þ

f 2ðpnðtÞÞ ¼ Conn¼
∑
s

i ¼ 1
∑
L

j ¼ 1

dðpniðtÞ; pnjðtÞÞ
j

; pniðtÞAcm4pnjðtÞAcm

0; otherwise

8><
>: :

ð8Þ
where MðpnðtÞÞ is the number of categories for antibody pnðtÞ
at the t-th iteration and is necessary for normalization, i.e.,
MðpnðtÞÞA ½0;1�. ci and cm are the classification subsets. pniðtÞ and
pnjðtÞ are components in an antibody. mi is the cluster center of
subset ci. s is the total number of components in an antibody.
dðpniðtÞ; pnjðtÞÞ is the Euclidean distances between the component
pni and its L nearest neighbor components pnj at the t-th iteration.
j is a penalty factor. The greater the distance between the sample
and its L-th neighbor is, the greater the penalty j. The minimum
value of j, corresponding to no penalty, is 1. This strategy ensures
that samples which are close to each other (most likely to be
nearest neighbors according to the Euclidian distance) are most
likely to be classified as the same class. The rule of neighborhood
relations is shown in Fig. 2. Here we use the same example of
antibody p, as shown in Fig. 1, to explain the rule of neighborhood
relations. First, we use the Euclidean distance to calculate the

Fig. 1. The antibody encoding mechanism.

R. Shang et al. / Engineering Applications of Artificial Intelligence 31 (2014) 53–6756



neighbor relationship matrix D of antibody p, thus each component
of antibody p has a distance vector with other components. Second,
we arrange the components of distance vector in ascending order,
and the L smaller components are the nearest neighbors of the
component of antibody p. It can be seen from Fig. 2 that, for
element p1 in antibody p, there are four nearest neighbors p9, p10,
p3 and p7, among which p9 is the nearest one and p7 is the farthest
one. So for p9, j¼1; for p10, j¼2; for p3, j¼3, and for p7, j¼4.

Eq. (7), describes the sum of the distances between all samples and
the clustering centers. The smaller the value of this index, the more
likely the classification of samples is to be correct. If this index does
not consider the number of categories of samples, then extreme case
can occur, where all samples form their own cluster centers, so that
the value of this index is zero, thus failing to satisfy the intended
purpose of classification. Therefore, in order to avoid this extreme case,
the choice of number of categories is very important. Eq. (8) describes
the relationship between samples. Nearest neighbor samples which
have a greater probability of mutual consistency will be labeled as
belonging to the same class. It is helpful to ensure that samples in the
same class have the nearest neighbor relationship. Therefore, these
two objective functions are mutually complementary. They seek an
optimal image segmentation wherein the distance between each
sample and its respective cluster center is minimized, and the samples
of the same class occur in close proximity to each other. However,
Eqs. (7) and (8) are also mutually exclusive. The minimum value of Eq.
(8) means that the samples are close to each other, which will increase
the sum of the distances between all samples and the clustering
centers. The minimum value of Eq. (8) means that all the samples are
near their clustering centers, which will increase the value of Eq. (7).
Therefore, it is generally difficult to find minimum solutions of
Eqs. (7) and (8) and simultaneously, and so a set of non-dominated
solutions is obtained.

3.2.3. Selection operator
The selection operator is used to select the best antibodies from

the previous iteration, to form a new antibody population which
increases local affinity. This process divides antibodies into non-
dominated or dominated antibodies and selects non-dominated
antibodies for the new population. To search for non-dominated
antibodies, an antibody p* ðpnAPÞ is a non-dominated antibody, if
and only if the following conditions are satisfied:

:(papnAP; ðf 1ðpnÞZ f 1ðpÞ&f 2ðpnÞ4 f 2ðpÞÞjjðf 1ðpnÞ4 f 1ðpÞ&f 2ðpnÞZ f 2ðpÞÞ:
ð9Þ

Here the scale of the non-dominated antibodies is defined as S.
If the number of non-dominated antibodies selected by this

operation is less than S, then non-dominated antibodies continue
to be selected (random selection with replacement) until the scale
S is reached. If the number of non-dominated antibodies is more
than S, S non-dominated antibodies are selected randomly.

3.2.4. Clone operator
The clone operator is used to copy good affinity antibodies.

The cloning rule at each iteration can be expressed as

NumðwÞ ¼ Pc �w
S

ð10Þ

where w represents the number of non-dominated antibodies
selected at each iteration. S is the scale of the non-dominated
antibodies and Pc is the scale of the clone pool.

3.2.5. Immune operators
The immune operators include a crossover operator and a

mutation operator which increase the diversity of the population,
promote cooperation among antibodies and accelerate convergence
rates. In this work, we use uniform crossover (Handl and Knowles,
2007) as crossover operator. This operator is explained in Fig. 3.

We also use the neighbor-based mutation operator (Handl and
Knowles, 2007) which is defined in Algorithm 1.

Algorithm 1. The neighbor-based mutation operator
Preparation: The current population set P ¼ ðp1;p2;…;pnÞ, the
mutation rate pm, the number of the nearest neighbors L.

Step1: [POP, Num]¼decode(P), Num is the number of categories
for each antibody.

Step2: [n, m]¼size(POP);
for i¼1:n

for j¼1: N(i)
a¼find(POP(i,:)¼ j);
x¼ length(a);
if (x/m)opm

[s,y]¼sort(neighbor(:,a));
POP(i,a)¼y(l); y(l)!¼a, l¼2,…,L

endif
endfor

endfor
Step3: Return POP.

3.2.6. Antibody update operator
The antibody operator helps prevent overcrowding of antibo-

dies and maintains diversity within the population. Individuals

Antibody p

8 3 4 5 5 10 4 9 96

p1 p2 p4 p5 p6 p7 p8 p9 p10p3

The neighbor relationship matrix D

d is the Euclidean distance between each
element of Antibody p

Each element has a distance vector with other elements

Sort this vector

D p1 p2 ... p10
p1 d11 d12 ... d110
p2 d12 d22 ... d210
. . . ... .
. . . ... .
. . . ... .
p10 d110 d210 ... d1010

1 1 4 9 9 16 16 25 inf4

p9 p10 p7 p5 p6 p4 p8 p2 p1p3

p9,p10,p3,p7 are the 4 nearest neighbors of element p1 of antibody p, here L=4

Fig. 2. The rule of neighborhood relations.
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enter into the next generation, depending on whether or not they
are non-dominated. During the clone operator stage, there may be
many non-dominated solutions in one generation; therefore, the
scale of the non-dominated solutions can increase rapidly in
successive iterations. During successive generations, increasing
numbers of non-dominated antibodies can be selected, reducing
the diversity of the population and potentially reducing the speed
of convergence. The update operator ensures that when the
number of the non-dominated antibodies reaches a certain thresh-
old after clone selection, the most crowded antibodies in the
Pareto front will be deleted to ensure that solutions are well
spread out along the Pareto front. Thus, this operator helps
maintain the diversity of the antibody population (Shang et al.,
2012), which improves the speed of convergence. The antibody
operator is shown in Algorithm 2.

Algorithm 2. Antibodies update operator
Preparation: The current population set represents
P ¼ ðp1;p2;…;pnÞ:

The number of antibodies n.
The number of the expected antibodies m.
The antibody objective functions of antibody x:
FðxÞ ¼ fðf 11ðxÞ; f 12ðxÞÞ; ðf 21ðxÞ; f 22ðxÞÞ;…; ðf n1ðxÞ; f n2ðxÞÞg:

Step1: Initialization: Fðn� 2Þ, i¼ 1, i is the number of object
functions.

Step2: f or i¼ 1 : 2
yf i ¼ Fð:; iÞ;
yf i ¼ sortðyf i Þ;
Ci1 ¼1;Cin ¼1;

f or j¼ 2 : n�1

Cij ¼ Cijþ
yf i ðjþ1Þ�yf i ðj�1Þ

f i max � f i min
;

endfor
endfor

Step3: Delete the antibody which has the minimum fitness
function value Cij and get the new antibody population P1 and

objective function matrix F1. Set n : ¼ n�1, P ¼ P1, F ¼ F1,
if n¼m, stop and output antibodies, otherwise go to step 1.

3.2.7. Summary of stage 1
In summary, the pseudo-code algorithm for stage 1 is shown in

Algorithm 3.

Algorithm 3. Self-adaptive artificial immune multi-objective clus-
tering algorithm

Input: The maximum operating generation gmax 1; the initial
population Pð0Þ; the crossover probability pc; the mutation
probability pm1; and the scale of non-dominated antibodies
S1.

Output: The result of classification.
Step1: Raw classification: Classify the difference image by
watershed transformation.

Step2: Initialization: Initialize population Pð0Þ by mapping the
results of watershed segmentation with the neighbor
relationship based antibody link mechanism and initialize the
iteration number t¼0.

Step3: Calculate the affinity: Calculate the affinity of the
antibodies by Eqs. (7) and (8).

Step4: Clone operator: Find non-dominated antibody
population, perform cloning on the selected S1 antibodies and
generate population PcðtÞ.

Step5: Immune operator: Perform uniform crossover and
neighbor-based mutation operators for population PcðtÞ and
generate population PrðtÞ.

Step6: Antibody update operator: Update population PrðtÞ
Step7: Stop condition judgment: If trgmax 1, t¼tþ1 and go to
step 2, otherwise output the current antibody population.

3.3. Stage 2: classification of uncertain pixels from texture features
using immune clonal multi-objective clustering algorithm

During stage 1 (Section 3.2), the difference image is rapidly
divided into three classes (changed, unchanged and uncertain
samples) with low computational cost, by using the most simple
features of pixel gray-levels. In stage 2, any remaining uncertain
samples from stage 1 are further analyzed by an immune clonal
multi-objective clustering algorithm using (more expensive but
more discriminating) texture features derived from wavelet
decomposition.

3.3.1. Texture feature extraction
Popular methods for parameterizing and extracting texture

features include gray level cooccurrence matrix (GLCM) (Haralick
et al. 1973), wavelet decomposition (Hu et al., 2001) and a variety
of other methods. Here we adopt wavelet decomposition, because
it extracts multi-scale image information and makes full use of
local time–frequency characteristics, multi-scale variation charac-
teristics and direction features. The non-subsampled wavelet
transform is shown in Fig. 4.

Fig. 4 shows the four subimages which are obtained by wavelet
decomposition of the image. In Fig. 4, H and L represent the high-
pass and low-pass filters. LL subimage is obtained by the trans-
verse and longitudinal low-pass filter. The subimages of LH, HL and
HH contain high frequency component.

We use the l1 norm and average deviation as the measures of
texture. The definitions of these features are

e¼ 1
M � N

∑
M

m ¼ 1
∑
N

n ¼ 1
ωðm;nÞ
�� �� ð11Þ

Fig. 3. Uniform crossover operator.
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where M�N is the size of image, and m and n represent the row
and the column of the image, respectively. ω stands for wavelet
coefficient. The dimension of feature vector is D¼ 3� Lþ1. L is
the selection of decomposition level of wavelet. In experiments,
we adopt three levels of wavelet decomposition and a 15�15
sliding window is used to get feature vectors ðeLL�1; eLH�1;

eHL�1; eHH�1; eLH�2; eHL�2; eHH�2; eLH�3; eHL�3; eHH�3Þ. Once tex-
ture feature values have been assigned to each pixel of the
difference image, classification of any remaining uncertain pixels
proceeds as follows.

3.3.2. Initialization
Fig. 5 illustrates how an antibody can encode a candidate

solution for the location of cluster centers for each class. k is the
number of categories and m is the dimension of each clustering
center, i.e., the dimension of texture features.

At iteration t ¼ 0, population Q(0) is initialized randomly. At each
subsequent iteration t, antibody groups Q ðtÞ ¼ ½q1ðtÞ; q2ðtÞ;…;qyðtÞ�T
are obtained and are regarded as candidate solutions.

3.3.3. Affinity
Two fuzzy clustering indices XB and JM are adopted as the

affinity function. Maulik and Bandyopadhyay (2002) proved that
XB and JM indicators find a set of non-dominated antibodies
which are mutually exclusive and complementary. Yang et al.
(2011) showed how these two indices could be successfully used
with an artificial immune multi-objective clustering algorithm to
segment images. XB and JM can be defined as

g1ðqmðtÞÞ ¼ JM¼ ∑
H

j ¼ 1
∑
K

n ¼ 1
μ2
nj Jxj�qmnðtÞJ2 ð12Þ

g2ðqmðtÞÞ ¼ XB¼ s
H
� 1
dmin

ð13Þ

where

s¼ ∑
K

n ¼ 1
∑
H

i;j ¼ 1
μ2
nj Jxj�qmnðtÞJ2; dmin ¼mini;j ¼ 1;…;K ;ia j JqmiðtÞ�qmjðtÞJ2;

and qmðtÞ is the m-th antibody of the antibody population at the
t-th iteration. K is the number of classes. H is the number of pixels
in the image. xj ðj¼ 1;2;…;HÞ is the characteristic vector of
pixels. qmnðtÞ ðn¼ 1;2;…;KÞ is the clustering center of each class
at the t-th iteration. μnj is the fuzzy membership.

In Eq. (13), XB is a densification–separation effectiveness function
and it describes the ratio between the sum of fuzzy mean square
distance and the minimum distance between clustering centers. Small
values of XB indicate better partition. In Eq. (12), the JM indicator is the
sum of overall pixels fuzzy mean square distance. It can be seen that
JM is a measure of pixel classification index, and XB is the product of
the JM and the minimum distance of the nearest neighbor between
classes. Thus, XB's minimization depends on the minimization dmin of
JM and the maximization of the separability of the nearest neighbor
classes. Therefore, it is generally difficult to find minimum solutions of
XB and JM simultaneously, and so a set of non-dominated solutions is
obtained.

3.3.4. Selection and cloning
For stage 2, the selection operator and clone operator are the

same as those used in stage 1, see Sections 3.2.3 and 3.2.4.

3.3.5. Immune operators
In immunology, mutation is the main operator of the affinity

maturation. In this stage, non-uniform mutation is used to change
the components of antibodies. Non-uniform mutation uses local
search to improve the affinity between antibodies and antigens,
generating improved solutions. Moreover, it makes the range of
variation relatively large in the early evolution iterations. With the
development of evolution (successive iterations), the range of
variation will become smaller and smaller, providing a fine tuning
role in the evolution procedure.

3.3.6. Antibody update
The antibody update operator is the same as that used in stage

1, described in Section 3.2.6.

3.3.7. Summary of stage 2
In summary, the process of second part algorithm is shown in

Algorithm 4.

Algorithm 4. Immune clonal multi-objective clustering algorithm
Input: The sample category number k; the maximum operating
generation gmax 2; the initial population Q(0); the non-
dominated antibody scale S2; and the mutation probability
pm2:

Output: Clustering centers.
Step 1: Initialization: Initialize the population Q ð0Þ, the
iteration number t ¼ 0 and the category number k.

Step 2: Calculate affinity: Calculate the affinity g1 and g2 by
Eqs. (13) and (14).

Step 3: Clone operator: Find non-dominated antibodies,
perform cloning on the selected S2 antibodies at different
ranks and generate new population Qc(t).

Step 4: Immune operator: Perform non-uniform mutation
with probability pm and generate a new populationQ rðtÞ:

Step 5: Antibody update operator: Update population Q r ¼ ðtÞ:
Step 6: Iteration terminal condition: If trgmax 2, t¼tþ1, and
go to step 2, otherwise output the current antibody
population.

3.4. Summary of the two-stage change detection method

The specific steps of the change detection method are shown in
Algorithm 5.

Algorithm 5. Artificial immune multi-objective clustering based
SAR image change detection.
Input: Two SAR images It1 and It2.
Output: Result image.
Step1: Use SAR images It1 and It2 to generate a difference image
DI (see Section 4.2 for details).

Step2: Perform initial segmentation of DI pixels into three
classes (changed, unchanged, and uncertain) using only pixel
gray level features, by using self-adaptive artificial immune
multi-objective clustering method. Its implementation
procedure is shown in Section 3.2.

Step3: Extract textural features of image DI by using wavelet
decomposition.

Step4: Calculate clustering centers of the uncertain samples in
the high dimensional wavelet texture feature space c, by

image

H

L

H

L

L

H

HH

HL

LL

LH

Fig. 4. Non-subsampled wavelet transform.
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using the immune clonal multi-objective clustering method.
Its implementation procedure is shown in Section 3.3.

Step5: Classify the uncertain samples by Euclidean distance
and use the third evaluation index to select the optimal
solution. The third index is expressed as

f ¼ ∑
1

r ¼ 0

Tr

M � N
∑

8 ði;jÞARr

ðDIði; jÞ�μrÞ2
(14)

where M�N is the size of the image. Tr represents the
number of unchanged or changed pixels. Rr is a set of pixels.
DIði; jÞ is the grayscale pixel values of the difference image.
μr is the mean gray value of changed or unchanged classes.

4. Experimental results

4.1. Description of experimental data sets

In order to show the effectiveness of the proposed method for
SAR image change detection, we have tested it on four publicly
available ground truth data sets which are popular in the literature
and have been used to test a variety of other important methods
for SAR image change detection. This allows our method to be seen
in the context of other key papers from the literature.

The first data set is a section (350�290 pixels) of two SAR
images over the city of Ottawa acquired by the Radarsat SAR
sensor. The changed areas of the two SAR images are mainly due to
the onset of the rainy season, in May and August 1997, the ground-
truth for the changed number of target pixels is the 16049.

The second data set was acquired over an area near the city of
Bern by the European Remote Sensing 2 satellite SAR sensor in
April and May 1999. The size of these two images is 301�301.
Ground changes are due to the River Aare flooding large parts of
the cities. The changed number of target pixels is 1155.

The third and fourth data sets were acquired by Radarsat-2
at the region of Yellow River Estuary in China in June 2008 and
2009. The image of 2008 was acquired as a single visual image.
The image of 2009 was composed from four visual images. Thus,
the images at the earlier and later dates have very different
noise levels. This phenomenon leads to a complex process of
change detection, but also can reveal useful observations about the
performance of the proposed method. Because these two
7666�7692 SAR images are too large to show the detailed
information of change areas, we have selected two areas of size
257�289 and 306�291 to test the proposed method.

4.2. Choice of image differencing method

For the performance of SAR image change detection, the quality
of the difference image is very important. The subtraction operator
and the ratio operator are well-known methods for producing a
difference image. However, the ratio operator is more suitable for
SAR images, where the ratio difference image usually comprises
log-ratio and mean-ratio images (Rignot and Van Zyl, 1993). In
many literatures, both methods have yielded effective results for
SAR image change detection. In this paper, mean-ratio (Gong et al.,
2012) is used to generate the difference image.

DI¼ 1� min
μ1

μ2
;
μ2

μ1

� �
ð15Þ

where μ1 and μ2 represent the local mean values of multi-
temporal SAR images.

4.3. Comparison against other methods

Our experiments evaluate the proposed method and compare it
against four other well known methods from the literature. These are:

(1) Change detection in satellite images using a genetic algorithm
(GA) approach (Celik, 2010b). This contrast method uses an
evolutionary algorithm with a single objective to deal with
image change detection. Comparatively performance of this
approach confirms the necessity of the two step algorithm in
our proposed method.

(2) Change detection for SAR images based on quantum-inspired
immune clonal clustering (QICC) algorithm (Li et al., 2011).
This contrast method uses an immune clonal clustering algo-
rithm with a single objective to deal with image change
detection. Therefore, its deficiencies support our claims for
the effectiveness of our multi-objective clustering method.

(3) Image change detection using the Gaussian mixture model and
the genetic algorithm (GMGA) (Celik, 2010a). Comparison with
this method is used to support our choice of artificial immune
methods over GA methods.

(4) Our fourth comparison method is the same as the proposed
method, except that the second part is modified to use a K-means
algorithm based on the difference image gray levels to search the
optimal clustering centers for uncertain samples. This contrast
method self-adaptive immune multi-objective pre-processingþ
K-means (SIMPþK-means) is used to verify the effectiveness of
the second step algorithm of the proposed method and to confirm
the necessity of using texture features in this second step.

4.4. Experimental parameter settings

The parameters in the proposed method and four contrast
methods are used as follows:

(1) Genetic algorithm (GA) method (Celik, 2010b): population
consists of 20 individuals, crossover rate is 0.8, mutation rate
is 0.01, and the largest number of iterations is 200,000.

(2) Quantum-inspired immune clonal clustering (QICC) method
(Li et al., 2011): population consists of 20 individuals.

(3) Image change detection using the Gaussian mixture model and
genetic algorithm (GMGA) (Celik, 2010a): β¼1.67.

(4) SIMPþK-means method: population consists of 20 indivi-
duals, the scale of clone is 40, and the maximal number of
iterations is 100, crossover rate is 0.8, mutation rate is 0.01.

(5) The proposed method: population consists of 20 individuals,
crossover rate is 0.8, the first mutation rate is 0.01, the second
mutation rate is 0.1, the scale of clone is 40, and the maximal
number of iterations is 100.

The values of parameters of GMGA, GA and QICC methods
adopt the best values in the literatures (Celik, 2010a, 2010b;
Li et al., 2011). In order to compare with GMGA, GA and QICC
methods, some values of parameters of SIMPþK-means and the

Fig. 5. An antibody encodes a candidate solution for the set of k class cluster centers of m dimensions.
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proposed method are set to be the same as for the comparison
methods, and others are justified empirically in the experiments.

4.5. Evaluating indicators

In order to evaluate the result of detection, four indicators are
used to evaluate the quality of the results (Rosenfield and
Fitzpatrick-Lins, 1986). Im is the reference image. I is the
result image.

(1) False Positive (FP) number: unchanged pixels wrongly
judged as changed pixels. It is defined by

FP¼ ∑
Ntotal

i ¼ 1
ui ð16Þ

where

ui ¼
1 if unchanged pixel xi is judged as changed one
0 others

�
:

Ntotal is the total number of the unchanged image pixels.
(2) False Negative (FN) number: changed pixels that missed

detection. It is defined by

FN¼ ∑
Mtotal

i ¼ 1
vi ð17Þ

where

ui ¼
1 if unchanged pixel xi is judged as changed one
0 others

�
:

Mtotal is the total number of the changed image pixels.
(3) Overall error (OE) number: the sum of the number of

unchanged pixels wrongly judged as changed pixels and
the number of changed pixels wrongly judged as unchanged
pixels, i.e., the sum of FP and FN. It is defined by

OE¼ FPþFN ð18Þ

(4) kappa coefficient: it is a measure of classification accuracy
index based on difference between error matrix and chance
agreement. The closer to 1 the value is, the more approx-
imate to the real classification the results are. It is defined by

kappa¼ Pa�Pe

1�Pe
ð19Þ

where

Pa ¼ TN�TE
TN

; Pe ¼ ðTaþFNÞðTaþFPÞ
TN2 þðTbþFNÞðTbþFPÞ

TN2 ;

Ta ¼ TN�FN; Tb ¼ TN�FP

and TN is the total number of pixels.

Note: for the problem of change detection, small values of
FP, FN and OE indicate good results (accurate change detection).
In contrast, high values of kappa indicate good results.

4.6. Results and analysis

The experiment results on four data sets are shown and
analyzed as follows:

4.6.1. Results and analysis on the Ottawa data set
In the first data set experiment, in order to validate the

effectiveness of the proposed method on the results of SAR-
image change detection, a comparison analysis is carried out
on four difference methods which are GMGA, GA, QICC and

SIMPþK-means. The change detection results of the Ottawa data
by five different methods are shown in Fig. 6.

Fig. 6(e) is the classification result by SIMP (the first stage of
our proposed two-stage method). The difference image is divided
into three classes. The gray pixels stand for uncertain samples. The
white pixels represent changed class and the black pixels belong
to the unchanged class. It can be seen from Fig. 6(f) and (g) that
the change detection results achieved by GA and QICC, which
adopt a single objective function with the evolutionary algorithm,
contain lots of false change information. This can be explained by
the tendency of these two methods to converge on local optima
and their inability to consider information about spatial context
and texture information. In contrast, by considering the multi-
objective optimization and the features of local information, the
change detection results generated by SIMPþK-means [Fig. 6(i)]
and the proposed method [Fig. 6(j)] reduces the false change
information and are much closer to the ground truth reference
image. In Fig. 6(i), by using gray value information of difference
image to classify uncertain samples, the change detection result
reduces the false change regions, but still fails to detect fine details
of change information. In contrast, by using texture information
and a multi-objective evolutionary algorithm to classify uncertain
samples, the best result is obtained as illustrated in Fig. 6(j). It
reduces the false change errors and produces results much closer
to the ground truth reference image. Fig. 6(h) is obtained by the
method for SAR image change detection using GMGA where a
genetic algorithm is used to estimate the parameters of a Gaussian
mixture model. This method uses a statistical model to realize
change detection. As shown in Fig. 6(h), the GMGA method can
generate better results than GA and QICC, but due to the speckle
noise of SAR images, GMGA gets worse result than the proposed
method.

In order to illustrate the effectiveness of the proposed method,
the quantitative results of SAR image change detection are shown
in Table 1. It describes the results of FP, FN, OE and kappa by these
different methods on the Ottawa data set.

It can be seen from Table 1, compared with other four methods,
the change detection result of GA is the worst and FP and FN are
higher than the proposed method. Compared with GA, QICC,
GMGA and SIMPþK-means methods, FP of the proposed method
is lower than the four comparison methods; however FN is
significantly higher than the other methods except for GA. The
low FP rate for our method can be explained by the fact that
GMGA, QICC and SIMPþK-means only use grayscale pixel values of
the difference image, but the proposed method additionally makes
use of texture features of the difference image, which reduces the
noise and the detail information. Therefore, the number of FP of
the proposed method is reduced compared to other methods. But
the FN is increased. For the coefficient of OE which is the sum of FP
and FN, the smaller value of OE, the better the result. And for the
coefficient of kappa, the closer to 1 the kappa is, the better the
method is. It can be seen from Table 1, GA has the lowest value of
kappa, but GMGA, QICC, SIMPþK-means and the proposed
method have the higher kappa (0.8957 for QICC, 0.9195 for GMGA,
0.9375 for SIMPþK-means and 0.9427 for the proposed method).
The proposed method generates the highest kappa (0.9427) and
the lowest OE (1565), suggesting that it outperforms the other
methods overall. The reason why our proposed method shows
increased FN errors may be that the additional features suppress
useful edge information at the same time as suppressing harmful
speckle noise.

4.6.2. Results and analysis on the Bern data set
Fig. 7 represents the results of five methods for the Bern data.

Fig. 7(d) is the difference image. Fig. 7(e) is the classification result
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by SIMP (the first stage of our proposed two-stage method) which
divides the difference image into three classes, where the gray
pixels represent uncertain samples. The second stage of both
SIMPþK-means and our proposed method make use of these
uncertain pixel labels. In Fig. 7(f), the result of change detection
has lots of spots of false detections. This phenomenon can be

explained because GA fails to take account of the image speckle
noise and also uses only a single feature. It does not take into
account context information and multi-objective optimization.
Figs. 7(g), 6(h) and 5(i), show that QICC reduces the amount of
missing information (FN false negatives) while GMGA and
SIMPþK-means reduce patches of FP false detections. The pro-
posed algorithm appears to be the most resistant to noise, thereby
reducing the error rate and preserving the detailed information of
the change detection.

The simulation results of FP, FN, OE and kappa by the five
methods on the Bern data set are shown in Table 2. The change
detection result of GA is the worst. GMGA, QICC and SIMP–K-
means result in higher kappa (0.8438 for GMGA, 0.8018 for QICC
and 0.8482 for SIMP–K-means) than GA. The maximum kappa
(0.8514) and the lowest FP (313) are acquired by the proposed
method, which shows the suitability and stability of the proposed
method overall.

Table 1
Simulation results of FP, FN, OE and kappa by five methods on the Ottawa data set.

Data set Method FP FN OE Kappa

Ottawa GA 2232 1004 3236 0.8764
QICC 1971 299 2270 0.8957
GMGA 1976 96 2072 0.9195
SIMPþK-means 1221 434 1655 0.9375
The proposed method 577 988 1565 0.9427

Best results in bold.

Fig. 6. Experiment results of the Ottawa data set. Images acquired (a) before and (b) after the flood. (c) Ground truth. (d) The difference image. (e) The result of classification
by SIMP. (f) GA. (g) QICC. (h) GMGA. (i) SIMPþK-means. (j) The proposed method.
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4.6.3. Results and analysis on the HuangHe1 data set
In the third data set, we use more complicated data in which

the speckle noise in Fig. 8(b) (the image from the earliest date)
is much greater than Fig. 8(a) (the image from the later date) to
analyze the suitability of the proposed approach. The change
detection results obtained by five methods for the HuangHe1 data
set are shown in Fig. 8.

It can be seen from Fig. 8 that the change detection result
obtained by GA has lots of FP false positive errors as illustrated in
Fig. 8(f). On the other hand, in Fig. 8(i), much information is lost as

FN false negative errors by SIMPþK-means, although this method
does improve over GA in terms of less FP false positive errors.
In Fig. 8(g), the QICC method has generated a large amount of FP
false positive errors. As shown in Fig. 8(h), the proposed method
has less noise, significantly reduces the FP false positive errors, and
is much closer to the ground truth.

Table 3 gives the results of FP, FN, OE and kappa by five
methods on the HuangHe1 data set.

As shown in Table 3, the proposed method results in the
highest kappa and the lowest FP and OE. These quantitative results
on the HuangHe1 data set show that the proposed method
significantly outperforms the comparison methods overall.

4.6.4. Results and analysis on the HuangHe2 data set
The fourth data set has similar complex data as in the third data

set, with significantly differing noise levels in the images from the
two time steps. The change detection results by the five different
methods for the HuangHe2 data set are shown in Fig. 9. The
change detection result obtained by GA has lots of FP false positive
errors as illustrated in Fig. 9(f). Fig. 9(g)–(i) also shows significant

Fig. 7. Experiment results of the Bern data set. Images acquired (a) before and (b) after the flood. (c) Ground truth. (d) The difference image. (e) The result of classification by
SIMP. (f) GA. (g) QICC. (h) GMGA. (i) SIMPþK-means. (j) The proposed method.

Table 2
Simulation results of FP, FN, OE and kappa by five methods on the Bern data set.

Data set Method FP FN OE Kappa

Bern GA 3019 19 3038 0.4165
QICC 294 98 392 0.8018
GMGA 269 90 359 0.8438
SIMPþK-means 188 162 350 0.8482
The proposed method 67 246 313 0.8514

Best results in bold.
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false positive errors. It can be seen from Fig. 9(j), that the proposed
method has less noise, reduces false positive errors, and is much
closer to the ground truth.

The results of FP, FN, OE and kappa by these different methods
on HuangHe2 data set are shown in Table 4. As shown in Table 4,
the proposed method results in the highest kappa and the lowest

FP and OE which show the effectiveness and the suitability of the
proposed method.

It can be seen from the simulation results that the proposed
method can obtain a higher accuracy rate at difference levels of
noise of multi-temporal SAR images. Therefore, it can be con-
cluded that the proposed method shows improved robustness
to noise.

From the results of experiments above it can be seen that the
proposed method can effectively achieve better detection results
with a high rate of precision. Due to the speckle noise of SAR
image, the grayscale pixel values of the difference image are
influenced by noise, thus many pixels are misclassified by techni-
ques which rely only on grayscale values. In contrast, texture
features can overcome the influence of speckle noise. Therefore,
the number of FP of the proposed method is reduced compared to
other methods, but the number of FN has increased a lot. There-
fore, our method may be less well suited to particular applications
where FN errors are considered more important than FP errors.
The reason why our proposed method shows increased FN errors

Fig. 8. Experiment results of the HuangHe1 data set. (a) Image acquired in June 2008. (b) Image acquired in June 2009. (c) Ground truth. (d) The difference image. (e) The
result of classification by SIMP. (f) GA. (g) QICC. (h) GMGA. (i) SIMPþK-means. (j) The proposed method.

Table 3
Simulation results of FP, FN, OE and kappa by five methods on the HuangHe1
data set.

Data set Method FP FN OE Kappa

HuangHe1 GA 4020 2610 6630 0.7039
QICC 4146 1734 5880 0.7047
GMGA 3943 683 4642 0.7610
SIMPþK-means 3087 1250 4337 0.7862
The proposed method 1279 2514 3793 0.8297

Best results in bold.
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may be that the additional features suppress useful edge informa-
tion at the same time as suppressing harmful speckle noise.

4.7. The running time comparison analysis

Table 5 shows the mean running time of GA, QICC, GMGA,
SIMPþK-means and the proposed method on the test images.
These five methods are implemented in Matlab R2013a on HP
dc7800 (Intel(R) Core(TM) 2 Duo CPU and the system of Microsoft
Windows 7).

It can be seen from Table 5 that GA requires the longest running
time and gets the worst result. The reason may be that the size of
the images is too large and GA regards the results as initial
population directly and uses the genetic algorithm to search the
minimum solution of fitness function as change detection result in
all possible directions. Therefore, the convergence speed of GA is
slow. QICC is the lowest in computational times. GMGA and
SIMPþK-means also have less running time. However, they cannot
get the best detection accuracy. The running time of the proposed
method is only less than GA and more than other three methods. It
can be explained that the main computational load of the five
methods lie in the antibody initialization, antibody selection and
population iterations. What is encouraging is that the proposed
method adopts the best detection results compared with QICC,

Fig. 9. Experiment results of the HuangHe2 data set. (a) Image acquired in June 2008. (b) Image acquired in June 2009. (c) Ground truth. (d) The difference image.
(e) The result of classification by SIMP. (f) GA. (g) QICC. (h) GMGA. (i) SIMPþK-means. (j) The proposed method.

Table 4
Simulation results of FP, FN, OE and kappa by five methods on the HuangHe2
data set.

Data set Method FP FN OE Kappa

HuangHe2 GA 2096 644 2740 0.7553
QICC 1213 837 2050 0.7861
GMGA 1046 776 1822 0.8081
SIMPþK-means 1217 768 1985 0.8175
The proposed method 284 1422 1706 0.8415

Best results in bold.

Table 5
The mean running time of GA, QICC, GMGA, SIMPþK-means and the proposed
method.

Methods GA QICC GMGA SIMPþ
K-means

The proposed
method

Times(s) 31,020.472 46.816 97.546 298.303 1856.376

R. Shang et al. / Engineering Applications of Artificial Intelligence 31 (2014) 53–67 65



GMGA, and SIMPþK-means. Additionally, the running time of the
proposed method could be reduced greatly by initialization
compared with GA. Therefore, the proposed method can obtain a
balance between the computational time and the detection
accuracy.

5. Conclusion

In this paper, a novel unsupervised change detection method for
SAR images based on artificial immune multi-objective clustering has
been proposed. This method treats the change detection problem
as multi-objective optimization problem. The key idea is to use gray
value and texture characteristics of the difference image with an
artificial immune multi-objective optimization algorithm respec-
tively to classify the difference image. Its procedure is divided into
two stages. Both of these two stages use the artificial immune multi-
objective clustering algorithm, but they have different goals, different
encoding mechanisms and different operators and use different
informations.

These two stages can be described as follows: First, the self-
adaptive artificial immune multi-objective algorithm is used to
pre-sort the difference image, using gray scale data alone. It
outputs those pixels for which an initial segmentation category
is uncertain. The second stage exploits the non-subsampled
wavelet transform features of the difference image, and uses an
immune clonal multi-objective clustering algorithm is adopted to
classify uncertain samples, which can efficiently search optimal
clustering centers of uncertain samples and improve the local
search ability.

The experimental results on four groups of SAR images have
evaluated the effectiveness of the proposed method, and the
results show that the proposed method can effectively improve
the accuracy of image change detection results. Moreover, the
evaluation of detection performance illustrates that the proposed
method can detect fine detail information more accurately, reduce
the false detection rate and achieve detection results with a high
detection rate.

In summary, the method of this paper has effectively combined
the multi-objective optimization algorithm with artificial immune
system, successfully applied to SAR image change detection and
realized the self-optimization, self-learning of the method with
simple information.

The encoding mechanism, choice of objective functions and
feature extraction all play key roles in the proposed method. Once
suitable objective functions and features are proposed, the compli-
cation of method can be reduced, and this method may be can
realized by one step. Currently, many methods of extracting features
from difference images have been proposed, there is still no single
unified method which can successfully be applied to all SAR image
data, obtained by different devices, for detecting change while
overcoming speckle noise. Although methods which rely solely on
grayscale pixel values may be effective for some images, they will
fail to work for other images. Therefore, the proposed method is
useful in that it shows how to combine the advantages of multiple
features within a single image processing tool.
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