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Abstract—The fuzzy c-means (FCM) clustering algorithm has
been widely used in image segmentation. However, FCM exhibits
poor robustness to noise, often leading to unsatisfactory seg-
mentations on noisy images. Additionally, the FCM algorithm is
sensitive to the choice of initial cluster centers. In order to solve
these problems, this paper proposes clone kernel spatial FCM
(CKS_FCM), which improves segmentation performance in sev-
eral ways. First, in CKS_FCM, an immune clone algorithm is
used to generate the initial cluster centers, which helps prevent the
algorithm from converging on local optima. Second, CKS_FCM
improves the robustness to noise by incorporating spatial informa-
tion into the objective function of FCM. Third, CKS_FCM uses
a non-Euclidean distance based on a kernels metric, instead of
the Euclidean distance conventionally used in FCM, to enhance
the segmentation accuracy (SA). We present experimental results
on both real and synthetic SAR images, which suggest that the
proposed method can generate higher accuracy, and obtain more
robustness to noise, as compared against six state-of-the-art meth-
ods from the literatures.

Index Terms—Fuzzy C-means (FCM) cluster, immune clone
algorithm, kernels metric, spatial information.

I. INTRODUCTION

S YNTHETIC aperture radar (SAR) image segmentation is
the process of partitioning an SAR image into several dif-

ferent spatial regions, such that the pixels within each such
region share similar characteristics, but are different between
regions [1]. SAR Image segmentation plays a key role in envi-
ronmental monitoring and civil applications [2]. The result of
image segmentation directly affects the quality of subsequent
image analysis. Methods for quickly and effectively dividing
the target area of interest from a complex background are
therefore of significant interest [3]. SAR image segmentation
algorithms have been researched for several decades, and a
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large number of different image segmentation methods have
been proposed. These methods include threshold method [4],
[5], region split and merge [6]–[8], model [9], [10], level set
[11], [12], clustering [13]–[16], and others. Fuzzy theory has
proved to be a useful way of handling image uncertainty and
has, therefore, been widely applied to image segmentation. One
of the most successful and popular methods in the literature is
the fuzzy c-means (FCM) algorithm. FCM algorithm performs
unsupervised clustering without needing human supervision,
making it suitable for automatically segmenting images under
conditions of fuzziness and uncertainty [17].

FCM is a nonlinear iterative optimization algorithm based on
an objective function [18]. The objective function of FCM is a
weighted similarity measure for each pixel of the image and
the cluster centers [19]. The algorithm for image segmentation
minimizes the objective function by iteration to choose appro-
priate cluster centers and membership degree matrix [20]. After
the convergence, the segmented image can be obtained by using
the membership and centers [21]. However, FCM often over-
looks the spatial information of the image and uses Euclidean
distance, often resulting in low segmentation accuracy (SA) and
poor robustness to noise [13].

Many improved FCM algorithms have been proposed to try
and exploit spatial information from the image. Ahmed et al.
[22] proposed FCM_S, which introduced a spatial information
term into the objective function. In this algorithm, the neigh-
borhood term is computed in each iteration step, so the time
complexity is high. In order to solve this problem of FCM_S,
Chen et al. [23] proposed FCM_S1 and FCM_S2. FCM_S1 and
FCM_S2 modified the objective function by introducing mean
and median filtering terms, respectively, instead of the neigh-
borhood term. The time complexity of FCM_S1 and FCM_S2
algorithm was reduced because the mean and median filtered
images can be calculated in advance. To improve the speed
of the clustering algorithm, Szilayi et al. [24] proposed the
EnFCM algorithm, which formed a linear weighted image from
the original image and the mean filtering image and used the
histogram of the weighted image instead of pixels, thereby
reducing computational complexity. Cai et al. [25] proposed
a fast FCM (FGFCM) algorithm, which introduced similarity
between pixels [26] to form a nonlinearly weighted image.

When the noise of the image is large, the neighborhood infor-
mation may also contain abnormal features. So the nonlocal
information is utilized in improved FCM algorithms. LNFCM
[27], FCM_NLS [28], and FCA_NLASC [29] incorporate the

1939-1404 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



SHANG et al.: SPATIAL FUZZY CLUSTERING ALGORITHM WITH KERNEL METRIC BASED ON IMMUNE CLONE 1641

nonlocal spatial information into FCM, respectively. All of
these algorithms have been applied to noisy images, but the
filtering degree parameter is hard to choose when the level of
noise in an image is unclear. Jian et al. proposed NS_FCM
[30]. This method improved a nonlocal means, including a new
distance measure and an adaptive filtering degree parameter.
NS_FCM also introduced between-cluster variation [31] into
the objective function so that the robustness of the algorithm is
increased.

The above-mentioned algorithms can achieve promising
results on synthetic images, natural images, and medical
images. However, when dealing with SAR images, they often
generate unsatisfactory results. Furthermore, they may generate
poor segmentation performance for images, which contain a
lot of noise and some very similar classes. In addition, they are
sensitive to the initial choice of cluster centers and prone to
local optima convergence. Therefore, the automatic segmen-
tation of SAR images using clustering algorithms remains a
challenging problem. Our motivation is to try to solve these
problems.

This paper proposes a spatial fuzzy clustering algorithm
with kernel metric based on immune clone (CKS_FCM). It
first uses the immune clone to get the initial cluster centers,
which can reduce the likelihood of FCM converging on local
optima. Then, we propose the improved nonlocal means fil-
ter in which the filter parameter is adjusted according to the
noise. We introduce between-cluster variation and a nonlocal
spatial information term into the objective function, which are
obtained by the improved nonlocal means filter. By introducing
these two terms, CKS_FCM utilizes nonlocal spatial informa-
tion to reduce the effects of the noise and it considers both
the compactness and the separation of the clustering results.
So, CKS_FCM can adjust the distance between the cluster
centers flexibly. Next, we use a non-Euclidean kernel-based
distance in CKS_FCM, instead of the conventional Euclidean
distance used in FCM. Clustering algorithms based on the
non-Euclidean distance have been shown to be robust to out-
liers and noise [32]. Therefore, CKS_FCM is able to generate
high SA and is more robustness to noise and outliers. The
differences between the proposed method and the previously
methods are summarized as follows. In CKS_FCM, the non-
local spatial information term is introduced into FCM. The
difference between the previously proposed FCM algorithms
(e.g., LNFCM, FCM_NLS, and FCA_NLASC) is that the non-
local spatial information in the CKS_FCM is obtained by the
improved nonlocal means. The improved nonlocal means is
proposed in this paper by using the adjustable filter parame-
ter. The improved nonlocal means obtains the filter parameter
according to the noise of the image and gets more reason-
able result. The between-cluster variation term is introduced
in CKS_FCM which is inspired by NS_FCM. By introduc-
ing the between cluster variation term, CKS_FCM considers
both the compactness and the separation of the clustering
results.

This paper is organized as follows. Section II introduces the
CKS_FCM algorithm in detail. Section III describes empiri-
cal experiments on synthetic SAR images, real SAR images.
Section IV provides concluding remarks.

II. PROPOSED ALGORITHM

A. Motivation and Notation

In conventional FCM, if the initial cluster centers are close to
the final cluster centers, the number of iteration will be less, the
amount of computation will be small and the convergence of
the algorithm will be fast. Therefore, it is crucial to produce the
good initial cluster centers. Immune clone is an optimization
algorithm that simulates the biological principle of acquired
immune clone. It is stable and comparatively reliable for finding
optimal solutions. Immune clone can overcome the weaknesses
of FCM, which is sensitive to initial choices of cluster centers
and is prone to convergence on local optimal. In view of these
shortcomings, this paper obtains the initial cluster centers from
the immune clone algorithm, and further optimizes them by
using an improved FCM algorithm. The proposed method not
only takes advantages of the global search ability of immune
clone but also exploits the local search ability of FCM. Hence,
the clustering results are more reliable and image segmentation
quality is significantly improved.

This paper also introduces a mean filtering term and a
between-cluster separation term into the objective function of
the FCM algorithm. Nonlocal image information is encoded
in the mean filtering image term so that it can reduce the
impact of noise on the original image. The between-cluster
separation term can effectively solve the problem that FCM
only considers compactness within cluster and ignores separa-
tion distance between clusters. Using non-Euclidean distance
based on a Gaussian kernel, instead of the Euclidean distance
of the conventional FCM algorithm, the proposed method can
significantly improve SA and robustness against image noise.

The notation is summarized as follows. In immune clone,
ai(t) denotes the antibody, A1(t) denotes the initial antibody
groups, A2(t) denotes the cloning antibody groups, A3(t)
denotes the mutation antibody groups, pm denotes the mutation
probability, and NC denotes the number of clones. In improved
nonlocal means, r denotes the radius of the nonlocal search
window. xi denotes the nonlocal weighted mean. In improved
FCM, N denotes the number of pixels in the image, c is the
number of clusters and uki is the membership degree of pixel
xi belonging to the cluster k. Parameter m is a weighting expo-
nent on each fuzzy membership and xi denotes the pixels of
the original image. Gki is a fuzzy factor, k(xi, Vk) denotes the
non-Euclidean distance.

B. Image Clustering Procedure

The basic framework of CKS_FCM can be divided into three
parts: initialization of cluster centers; image filtering based on
improved nonlocal means; and iteration of CKS_FCM.

1) Initialize Cluster Centers: The initial cluster centers
must be given in FCM. FCM is sensitive to the choice of initial
cluster center positions, and is prone to local minima conver-
gence. The immune clone algorithm [33] can help overcome
these weaknesses of FCM. The main steps of immune clone
algorithm [34] adapted for CKS_FCM are as follows.

a) Antibody encode: In CKS_FCM, we encode the anti-
body based on the clustering center as genes by floating-point.
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Fig. 1. form of antibody ai(t).

TABLE I
CLONE OPERATOR FOR INITIALIZING CLUSTER CENTERS

The image pixels are encoded as samples and the number of
the samples is n. Then, we randomly select c samples as ini-
tial cluster centers and these samples are cascaded to form an
antibody vector ai(0). By repeating this process N times to
get N antibodies, we obtain the initial antibody groups A1(0).
Then, the antibody groups of the tth generation are A1(t) =
{a1(t),a2(t), . . . ,ai(t), . . . ,aN (t)} and ai(t) denotes the
antibody. Antibody ai(t) is shown in Fig. 1, where the xi1(t)
denotes the genes.

b) Affinity: In CKS_FCM, affinity is defined in terms of
the objective function of the FCM. For each antibody ai(t), the
affinity is calculated as follows:

Af (ai(t)) = 1/ (1 + JFCM (U, V )) . (1)

JFCM (U, V ) is the objective function of the FCM algorithm.
The smaller the objective function, the closer the cluster centers
will be to the globally optimal cluster centers.

c) Clone operator: In this paper, the antibody clone
operator is based on antibody affinity. The larger the values for
antibody affinity, the closer the cluster centers of the antibody
become to the optimal cluster centers. Therefore, we should
choose the antibody with largest affinity for cloning. The affin-
ity of the antibody groups is calculated and sorted. Then, we
choose the best antibodies of the top 20% sorting affinity for
NC1 number of cloning and other 20%–40% antibodies for
NC2 number of cloning. After the cloning, we obtain the new
cloning antibody groups A2(t). The procedure for the clone
operator used in CKS_FCM is shown in Table I.

d) Immune operator: For each antibody of the cloning
antibody groups A2(t), the immune operator used in
CKS_FCM randomly generates an integer n between 1 and
c, which indicates the position of mutation. Then, it randomly
generates a number p between 0 and 1. If p is less than mutation
probability pm, it will use the other random samples to replace
the nth gene in the antibody ai(t). By the immune operator, we
get the mutation antibody groups A3(t). The process is shown
in Table II.

In summary, the process of initializing cluster centers is
shown in Table III.

The flowchart for initializing cluster centers by immune
clone is shown in Fig. 2.

2) Image Filtering Based on Improved Nonlocal Means:
FCM considers the image gray value features, but does not

TABLE II
IMMUNE OPERATOR FOR INITIALIZING CLUSTER CENTERS

TABLE III
PROCESS FOR INITIALIZING CLUSTER CENTER

Fig. 2. Flowchart of initialization cluster centers.

take into account the image spatial information, which leads
to discontinuities within the segmented image regions. In order
to improve the quality of image segmentation, we should also
consider spatial characteristics of the image.

The pixels in the nonlocal window around the center pixel
generally have the same characteristics, we can get nonlocal
mean of the pixels in the nonlocal window of the pixel by these
same characteristics. Here, the “nonlocal mean” means the
mean value of the pixels in the nonlocal window. The nonlocal
means (NL-means) algorithm for image denoising is proposed
by Buades et al. [35], [36].

The filter parameter of NL-means has a significant influence
on the filter result. We cannot obtain ideal results if the filter
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parameter h is too small or too large. Too large h will cause
the over-smoothing result and damage the image information.
Too small h causes the under-smoothing result and the noises
exist in the image. Therefore, the parameter should be adjusted
according to the nonlocal information of the image. If the noise
in the image is serious, the parameter h will be large, and vice
versa. In the proposed algorithm, we use an adjustable filter
parameter instead of the fixed values that are conventionally
employed in NL-means.

For each pixel xi in the image, the adjustable filter parameter
hi is calculated by the following formula

hi =
1

r2 − 1

r2∑
j=1

‖v(Ni)− v(Nj)‖22,σ , j ∈ Ni (2)

where σ > 0 is the standard deviation of the Gaussian ker-
nel, v(Ni) = {xj , xj ∈ Ni} is the element within the nonlocal
search window, r is the radius of the nonlocal search window
size.

This paper obtains a filtered image Im by using the improved
NL-means. It calculates the nonlocal weighted mean of each
pixel in the nonlocal search window. For each pixel xi in the
image, we first generate a nonlocal search window of radius r
and then calculate the similarity between the center pixel xi and
pixel xj in the search windows. The formula for computing the
similarity is as follows:

Sij = ‖v(Ni)− v(Nj)‖22,σ . (3)

Then, we calculate weight wij of pixel xj in the search
window by using the similarity sij usingthe following formula

wij =
1

Zj
exp

(
−Sij

/
hi

)
(4)

where Zj is the normalizing parameter, hi is the adjustable
filtering parameters. The Zj is defined as follows:

Zj =
∑
j∈Ni

exp

(
−sij

/
hi

)
. (5)

Finally, we calculate the nonlocal weighted mean of each
pixel by using the weight wij , with the formula

xi =
∑
j∈Ni

wijxj (6)

where xi denotes the nonlocal weighted mean and Ni denotes
the nonlocal search window of radius r. In summary, the
improved nonlocal means algorithm is shown in Table IV.

The flowchart of the improved nonlocal means is shown in
Fig. 3. The additional steps of the nonlocal means algorithm
(beyond conventional methods) are indicated by a broken line.

3) General Framework of CKS_FCM Iteration: The non-
local spatial information term and between-cluster variation
term are introduced into the objective function. Then, a non-
Euclidean distance based on kernel is used in CKS_FCM
instead of the Euclidean distance used in FCM.

TABLE IV
PROCESS OF IMPROVED NONLOCAL MEANS FOR FILTERING IMAGE

Fig. 3. Flowchart of the improved nonlocal means algorithm.

a) Objective function of CKS_FCM: The objective func-
tion of CKS_FCM is defined as follows:

Jm(U, V ) =

n∑
i=1

c∑
k=1

um
ki‖Φ(xi)− Φ(Vk)‖2

+ α

n∑
i=1

c∑
k=1

um
ki‖Φ(xi)− Φ(Vk)‖2

− n(k)

n∑
i=1

c∑
k=1

um
ki‖Φ(x)− Φ(Vk)‖2 +Gki

(7)

where n is the number of pixels in the image, c is the num-
ber of clusters, and uki is the membership degree of pixel xi

belonging to the cluster k. Parameter m is a weighting expo-
nent on each fuzzy membership and xi denotes the pixels of the
original image. Gki is a fuzzy factor [37], which uses the non-
Euclidean distance. ‖Φ(xi)− Φ(Vk)‖2 is the mean filtering
term and xi denotes the pixels of the filtered image generated
by the improved nonlocal means algorithm. Parameter a con-
trols the effect of the mean filtering term. ‖Φ(x)− Φ(Vk)‖2 is
the between-cluster variation term and x denotes the mean of all
pixels of the original image. Parameter n(k) controls the effect
of the between-cluster separation term and is calculated as

n(k) =
(b/4)mink′ �=k‖v(k)− v(k′)‖2

maxj‖vj − x‖2 . (8)

‖•‖ denotes the Euclidean norm and Φ is an implicit nonlin-
ear map [38] in the feature space and the inner product between
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Φ(xi) and Φ(Vk) is Φ(xi)
TΦ(Vk) = K(xi, Vk). Through the

kernel replacement, we can get

‖Φ(xi)− Φ(Vk)‖2
= (Φ(xi)− Φ(Vk))

T (Φ(xi)− Φ(Vk))

= Φ(xi)
TΦ(xi)− Φ(Vk)

TΦ(xi)− 2Φ(xi)
TΦ(Vk)

= K(xi, xi) +K(Vk, Vk)− 2K(xi, Vk) = 2(1−K(xi, Vk)).
(9)

In this way, the non-Euclidean distance based on kernels
in the original data is obtained. For simplicity, we select a
Gaussian radial basis kernel function (GRBF). Kernel distance
based on the Gaussian kernel is defined as follows:

K(xi, Vk) = exp

(
−‖xi − Vk‖2

σ

)
(10)

where σ is the bandwidth of the GRBF. The parameter σ is set
on the basis of the distance of all pixels, which is similar to the
work of [39]. Let disi = ‖xi − x‖ be the distance from pixel xi

to the pixels average x. The mean distance of disi is calculated
as follows:

dis =

n∑
i=1

disi

n
. (11)

Then, we can get σ as follows:

σ =

(
1

n− 1

n∑
i=1

(disi − dis)2

)0.5

. (12)

Thus, the objective function of CKS_FCM with non-
Euclidean distance based on the Gaussian kernel is given as
follows:

Jm(U, V ) =

n∑
i=1

c∑
k=1

um
ki(1−K(xi, Vk))

+ α

n∑
i=1

c∑
k=1

um
ki(1−K(xi, Vk))

− n(k)

n∑
i=1

c∑
k=1

um
ki(1−K(x, Vk)) +Gki. (13)

In (13), the fuzzy factor Gki is written as follows:

Gki =
∑

j∈Ni,i �=j

1

1 + dij
(1− ukj)

m‖Φ(xi)− Φ(Vk)‖2

=
∑

j∈Ni,i �=j

1

1 + dij
(1− ukj)

m(1−K(xi, Vk)) (14)

where Ni is a neighborhood window of radius t with respect
to the center pixel i, dij is Euclidean distance between cen-
ter pixel i and pixel j in the neighborhood window Ni. ukj

is membership degree.

b) Iterative formula of CKS_FCM: According to the
above process, the objective function of the proposed algorithm
is obtained. We obtain the updating formula of membership
degree and cluster centers by minimizing the objective function
of CKS_FCM by using Lagrange multipliers as follows.

We define a new objective function with constraint condition
(15) as follows:

Lm =
n∑

i=1

c∑
k=1

um
ki(1−K(xi, Vk))

+ α
n∑

i=1

c∑
k=1

um
ki(1−K(xi, Vk))

− n(k)

n∑
i=1

c∑
k=1

um
ki(1−K(x, Vk)) +Gki

+
n∑

i=1

λ

(
1−

c∑
k=1

uki

)
. (15)

Next, we derive the partial derivative of Lm with respect to
uki and λ, and then set the partial derivative to equal to zero

∂Lm

∂uki
= muki

m−1((1−K(xi, Vk)) + α(1−K(xi, Vk))

(16)

−n(k)(1−K(x, Vk)) +Gki)− λ = 0

∂Lm

∂λ
=

c∑
k=1

uki − 1 = 0. (17)

From equation (16), we can get

uki =

⎛
⎜⎜⎜⎝ λ

m((1−K(xi, Vk)) + α(1−K(xi, Vk))

−n(k)(1−K(x, Vk)) +Gki)

⎞
⎟⎟⎟⎠

1
m−1

.

(18)

Substituting (17) into (18), we obtain

(
λ

m

) 1
m−1

c∑
j=1

⎛
⎜⎜⎜⎝ 1

(1−K(xi, Vj)) + α(1−K(xi, Vj))

−n(k)(1−K(x, Vj)) +Gji

⎞
⎟⎟⎟⎠

1
m−1

= 1. (19)

Therefore,(
λ

m

) 1
m−1

=

⎛
⎜⎜⎜⎜⎝

1

c∑
j=1

(
(1−K(xi, Vj)) + α(1−K(xi, Vj))

−n(k)(1−K(x, Vj)) +Gji

)
⎞
⎟⎟⎟⎟⎠

−1
m−1

.

(20)
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Finally, substituting (20) into (18), we can get the member-
ship degree in (21), shown at the bottom of the page.

Similarly, we obtain the partial derivative of Lm with respect
to Vk

∂Lm

∂Vk

=

n∑
i=1

uki
m

(
K(xi, Vk)

2(xi−Vk)
σ + αK(xi, Vk)

2(xi−Vk)
σ

−n(k)K(x, Vk)
2(x−Vk)

σ

)
= 0.

(22)

From (22), we have
n∑

i=1

uki
m (K(xi, Vk)xi + αK(xi, Vk)xi − n(k)K(x, Vk)x)

=

n∑
i=1

uki
m (K(xi, Vk) + αK(xi, Vk)− n(k)K(x, Vk))Vk.

(23)

Finally, we get the cluster center as follows:

Vk

=

n∑
i=1

uki
m(K(xi, Vk)xi + αK(xi, Vk)xi − n(k)K(x, Vk)x)

n∑
i=1

uki
m (K(xi, Vk) + αK(xi, Vk)− n(k)K(x, Vk))

.

(24)

The CKS_FCM algorithm constantly updates its member-
ship matrix and cluster centers by using the membership degree
formula (21), shown at the bottom of the page, and cluster cen-
ters formula (24). It will not stop until the difference between
the new cluster centers and the last cluster centers is less than
the stop condition. Once the algorithm has converged, we can
generate the segmented image by using the final membership
degree and cluster centers.

c) Key steps of the CKS_FCM algorithm: The impor-
tant steps of the spatial fuzzy clustering algorithm with kernel
metric based on immune clone for SAR image segmentation
(CKS_FCM) are: first use the immune clone algorithm to gen-
erate global initial cluster centers; then uses the improved
nonlocal means algorithm to obtain filtered images; finally use
(21) and (24) to update membership degree and cluster centers.
The overall algorithm process is shown in Table V.

The overall flowchart of the proposed algorithm CKS_FCM
is shown in Fig. 4.

III. EXPERIMENTAL RESULTS

A. Experimental Data

In this paper, two synthetic SAR images and two real SAR
images are included in the experiment. They are shown in

uki =

c∑
j=1

((1− k(xi, Vj)) + α(1− k(xi, Vj)− n((k)(1− k(x, Vj) +Gji)
1

m−1

((1− k(xi, Vk)) + α(1− k(xi, Vk)− n((k)(1− k(x, Vk) +Gki)
1

m−1

. (21)

TABLE V
PROCESS OF CKS_FCM

Fig. 4. Flowchart of CKS_FCM.

Fig. 5. The size of the first synthetic image is 244× 244. The
ground-truth pixels of the synthetic image comprise four differ-
ent image regions, with pixel intensity values 0, 85, 170, and
255 respectively, as shown in Fig. 5(a). The size of the second
synthetic image is 256× 256, as shown in Fig. 5(b). The syn-
thetic SAR images are contaminated with different noise. The
type of noise is different-level fully developed speckle noise.
Numbers of looks are 1, 2, 4, and 6 [40]. The first real SAR
image is a VV polarization, four-look European remote sens-
ing satellite (ERS-2) image with 12.5-m resolution near Rome,
Italy, shown in Fig. 5(c). It can be divided into three types of
crops. The second real SAR image is an airborne X-band, eight-
look image with 1-m resolution near Xi’an, China [13]. It can
be divided into four types of land covers: three types of crops
and water, shown in Fig. 5(d).
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Fig. 5. Experimental data.

B. Evaluation Indexes

In this paper, we use the SA, partition coefficient vpc and par-
tition entropy vpe as the evaluation indices. SA is defined as the
sum of correctly classified pixels divided by the total number of
pixels [41]

SA =

c∑
i=1

Ai ∩ Ci
c∑

j=1

Cj

(25)

where c is the number of clusters, Ai denotes the pixels belong-
ing to the ith class found by algorithm, and Ci denotes the
pixels belonging to the ith class in the reference segmented
image.

Partition coefficient vpc and partition entropy vpe [42] are
defined as

vpc =

∑n
i=1

∑c
k=1 u

2
ki

n
(26)

vpe =
−∑n

i=1

∑c
k=1 (uki log uki)

n
(27)

where n is the number of pixels in the image, c is the number
of clusters, and uki is the membership degree.

The best clustering result is achieved when SA approaches
to1, vpc approaches to1 and vpe approaches to 0.

C. Performance Comparison of Algorithms and Parameter
Analysis

In order to evaluate the efficiency of CKS_FCM, we use the
FCM_S1 [21], FCM_S2 [21], KFCM_S1 [21], KFCM_S2 [21],
FLICM [37], and NS_FCM [29] as the compared algorithms.
For all algorithms, we set the fuzziness index m = 2, the thresh-
old e = 0.01, the maximum iteration number Tmax = 500,
respectively. The radius of neighborhood for compared algo-
rithms is 3. According to the literature [21], the parameter α is
set to 5 for FCM_S1, FCM_S2, KFCM_S1, and KFCM_S2.
The parameter α and β for NS_FCM are 5.5. The nonlocal
mean search window is 11× 11 for NS_FCM. The parameters
uses in this method are analyzed as follows:

Fig. 6. SA values, the partition coefficient vpc, and partition entropy vpe of
CKS_FCM with different size of window.

1) Size of Search Window and the Size of Neighborhood
Window: The size of the nonlocal search window and the size
of the neighborhood window are analyzed in this section. We
investigate these two parameters on 4-look amplitude synthetic
speckled image, which is shown in Fig. 5(a). The value of
search window r changes from 5 to 13 with an interval of 1.
The value of neighborhood window t changes from 1 to 5 with
an interval of 1. The SA values, the partition coefficient vpc and
partition entropy vpe of CKS_FCM with different radiuses are
shown in Fig. 6.

It can be seen from Fig. 6 that the size of the nonlocal search
window and the size of the neighborhood window affect the
results. It is shown in Fig. 6(a) that with each r, the SA val-
ues are low when the neighborhood window t is 1 and 2. When
t is larger than 3, the SA becomes higher. The curve of parti-
tion coefficient vpc rises acutely with the increase of t from1 to
3. The curve of partition entropy vpe reduces acutely with the
increase of t from1 to 3. Moreover, with each t, the SA curve
and partition coefficient vpc ascend acutely with r from 5 to 11,
and changes little with r is more than 11. The partition entropy
vpe reduces acutely with r from 5 to 9, and changes little with r
is more than 9. So, we choose the size of neighborhood window
t = 3, the size of nonlocal search window r = 11, considering
the tradeoff between performance and computational cost.

2) Parameters a and b: Two free parameters a and b are
analyzed in this section. Parameter a controls the effect of
the mean filtering term and b is a part in n(k), ****which
controls the effect of the between-cluster separation term. We
study these two parameters on the synthetic image 1 shown
in Fig. 5(a). The 4-look amplitude synthetic speckled image is
used for testing. The SA values, the partition coefficient vpc,
and partition entropy vpe of CKS_FCM with different values of
α and b are shown in Fig. 7.

It can be seen from Fig. 7(a) that the SA value increases
significantly with the increase of α and b from 1 to 6. From
Fig. 7(b), with the increase of both a and b from 1 to 6, the
partition coefficient vpc value increases. When a is 6 and b is
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Fig. 7. SA values, the partition coefficient vpc, and partition entropy vpe of
CKS_FCM with different a and b.

Fig. 8. SA values of CKS_FCM with different clone number Nc2 .

larger than 3, the value of partition coefficient vpc reaches its
maximum value. When a is larger than 6, the partition coeffi-
cient vpc value begins to reduce. From Fig. 7(c), the value of
partition entropy vpe decreases significantly with the increase
of a from 1 to 6. When a is larger than 6, the partition entropy
vpe begins to increase. Better clustering results correspond to
larger SA values, larger partition coefficients, vpc and smaller
partition entropies vpe. Hence, the key parameters setting are
a = 6 and b = 6.

3) Parameters in Immune Clone: For CKS_FCM, we set
the antibody groups size N = 60. The number of cloning NC2

and mutation probability pm are analyzed in this part. We inves-
tigate these two parameters on the 4-look amplitude synthetic
speckled image, which is shown in Fig. 5(a). The SA values of
CKS_FCM with different clone number NC2 from 1 to 9 with
an interval of 1 are shown in Fig. 8.

It can be seen from Fig. 8 that the SA value shows a sharp
rise when NC2 increases from 1 to 5. When NC2 is larger than
6, the increase of SA values is not obvious. Larger cloning num-
ber needs higher computation cost. So we choose NC2 = 5.
In CKS_FCM, the top 20% best antibodies are cloned with
cloning number NC1 and other 20%–40% antibodies are cloned
with cloning number NC2. So we choose NC1 = NC2 + 1 so
that the top 20% best antibodies can get more chance to survive.

The influence of mutation probability pm to the performance
of CKS_FCM is also analyzed. The curve is shown in Fig. 9,

Fig. 9. SA values of CKS_FCM with different mutation probability pm.

Fig. 10. Segmentation results on the 4-look amplitude synthetic speck-
led image. (a) Original image. (b) Noisy image. (c) FCM_S1 result.
(d) FCM_S2 result. (e) KFCM_S1 result. (f) KFCM_S2 result. (g) FLICM
result. (h) NS_FCM result. (i) CKS_FCM result.

where mutation probability pm changes from 0.1 to 0.9 with an
interval of 0.1.

It can be seen from Fig. 9 that SA value increases when the
mutation probability pm is less than 0.5 and decreases when pm
is larger than 0.5. So SA value gets the maximum value when
pm = 0.5. Hence, we set the mutation probability to be 0.5.

D. Results on Synthetic Images

The noise-free image is corrupted by speckle noise to gener-
ate the synthetically speckled image [43]. The L-look amplitude
synthetic speckled image is contaminated with different-look
fully developed speckle is used in the experiments, and the per-
formance of algorithms is evaluated by SA, partition coefficient
vpc, and partition entropy vpe. The speckle looks is arranged as
1, 2, 4, and 6.

The 4-look amplitude synthetic speckled image of size 244×
244 is shown in Fig. 10(b). The segmentation results by the
algorithms are shown in Fig. 10(c)–(i).
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Fig. 11. Segmentation results on the 6-look amplitude synthetic speck-
led image. (a) Original image. (b) Noisy image. (c) FCM_S1 result.
(d) FCM_S2 result. (e) KFCM_S1 result. (f) KFCM_S2 result. (g) FLICM
result. (h) NS_FCM result. (i) CKS_FCM result.

The segmentation results on the 4-look amplitude syn-
thetic speckled image of FCM_S1 FCM_S2, KFCM_S1, and
KFCM_S2 are shown in Fig. 10(c)–(f). Each segmented region
is affected by noise seriously and the region uniformity is
poor. The boundaries between the green and yellow regions
are not well defined. The segmentation result of FLICM and
NS_FCM is shown in Fig. 10(g) and (h). The misclassified
points in the segmented image are less than the segmented
images of FCM_S1, FCM_S2, KFCM_S1, and KFCM_S2. The
segmentation result of CKS_FCM is shown in Fig. 10(i). The
misclassified points in the segmented image of CKS_FCM are
significantly less than the segmented image of FLICM and
NS_FCM. The region uniformity is good and the boundaries
between regions are clear. This suggests that the proposed
algorithm can generate satisfactory SA with good robustness.

The 6-look amplitude synthetic speckled image of size 256×
256 is shown in Fig. 11(b). The segmentation results by the
algorithms are shown in Fig. 11(c)–(i).

Fig. 11(c)–(f) shows the segmentation results on the 6-look
amplitude synthetic speckled image using FCM_S1 FCM_S2,
KFCM_S1, and KFCM_S2. All segmented images exhibit
significant misclassified points. The region uniformity in the
yellow region is poor. The segmentation result of FLICM on
the 6-look amplitude synthetic speckled image is shown in
Fig. 11(g). It can be seen that FLICM can remove a large
proportion of the noise. The segmentation result of NS_FCM
is shown in Fig. 11(h). The misclassified points in the seg-
mented image of NS_FCM are less than the segmented images
of FCM_S1 FCM_S2, KFCM_S1, KFCM_S2, and FLICM.

TABLE VI
SEGMENTATION ACCURACY (SA%) ON FIRST SYNTHETIC

SPECKLED IMAGE

TABLE VII
SEGMENTATION ACCURACY (SA%) ON SECOND SYNTHETIC

SPECKLED IMAGE

TABLE VIII
vpc AND vpe ON FIRST SYNTHETIC SPECKLED IMAGE

The misclassified points in segmented image [Fig. 11(i)] of
CKS_FCM are very small. This suggests that the proposed
algorithm is superior to the compared algorithms in terms
of SA.

Table VI shows the SA value of the proposed and the com-
pared algorithms on the first L-look amplitude synthetic speck-
led image. The speckle looks is arranged as 1, 2, 4, and 6. The
value is the mean value and standard deviation mean ± std%)
for CKS_FCM with ten runs for each noise.

Table VII gives the SA value of the proposed and the com-
pared algorithms on the L-look amplitude synthetic speckled
image. The speckle looks is arranged as 1, 2, 4, and 6.

It can be seen that the SA of CKS_FCM is significantly higher
than those of the other six compared algorithms from Tables VI
and VII. The SA on the first 6-look amplitude synthetic speckled
image is up to 99.04 ± 0.12 and the SA on the 6-look ampli-
tude synthetic speckled image is up to 97.70 ± 0.14, which are
higher than the other algorithms. With increasing the speckle
looks, the SA increases, as expected. With the different looks
of speckle noise, the proposed algorithm consistently generates
better SA than the comparison algorithms.

Table VIII shows the partition coefficient vpc and partition
entropy vpe values of the proposed and the compared algo-
rithms on the first 6-look amplitude synthetic speckled image.
The mean value and standard deviation (mean ± std) of vpc and
vpe are given in Table VIII.

Table IX shows the partition coefficient vpc and partition
entropy vpe values of the proposed and the compared algo-
rithms on the 6-look amplitude synthetic speckled image. The
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TABLE IX
vpc AND vpe ON SECOND SYNTHETIC SPECKLED IMAGE

Fig. 12. Segmentation results on first real SAR image. (a) Original image.
(b) FCM_S1 result. (c) FCM_S2 result. (d) KFCM_S1 result. (e) FCM_S2
result. (f) FLICM result. (g) NS_FCM result. (h) CKS_FCM result.

mean value and standard deviation (mean ± std) of vpc and vpe
are given in Table IX.

It can be seen from Tables VIII and IX that the partition
coefficient vpc index of CKS_FCM is significantly closer to 1
than the other algorithms and partition entropy vpe is signifi-
cantly closer to 0. This suggests that the proposed algorithm
outperforms the compared algorithms on this kind of test data.

E. Results on Real SAR Images

In this section, we use two real SAR images to test the effec-
tiveness of the proposed algorithm. The first real SAR image is
a four-look second ERS-2 image, shown in Fig. 12(a). It can be
divided into three types of crops, visible in the image as white,
gray, and black. Fig. 12(b)–(h) shows the segmentation results
of the compared and proposed algorithms.

The segmentation results of the compared algorithms on
the first real SAR are shown in Fig. 12(b)–(g). Fig. 12(h)
shows the segmentation results generated by the proposed
algorithm. The blue area, yellow area, and red area in the
segmentation results represent the black crop, the gray crop,
and white crop, respectively, in the original image. It can be
seen that the segmentation result by FCM_S1 [Fig. 12(b)],

Fig. 13. Segmentation results on second real SAR image. (a) Original image.
(b) FCM_S1 result. (c) FCM_S2 result. (d) KFCM_S1 result. (e) FCM_S2
result. (f) FLICM result. (g) NS_FCM result. (h) CKS_FCM result.

FCM_S2 [Fig. 12(c)], KFCM_S1 [Fig. 12(d)], and KFCM_S2
[Fig. 12(e)] exhibit comparatively poor performance in terms of
segmented region uniformity, and the boundaries between the
white and gray crops are not well defined. FLICM [Fig. 12(f)]
and NS_FCM [Fig. 12(g)] exhibit many misclassified regions in
white and gray crops and many gray crops are misclassified as
white crops. Overall, CKS_FCM obtains the best segmentation
result, demonstrating good region uniformity, less misclassified
regions, and better defined region boundaries.

The second real SAR image is an eight-look SAR image of
an open field in the western region of China. It can be divided
into four types of land coverage: three types of crops and water.
The original image is shown in Fig. 13(a) and the segmentation
results by the compared algorithms and the proposed algorithm
are shown in Fig. 13(b)–(h).

The segmentation results of seven different compared algo-
rithms on the second real SAR image are shown in Fig. 13.
The green, yellow, red and blue areas in the segmentation
results represent the three types of crops and water, respec-
tively. FCM_S1 [Fig. 13(b)], FCM_S2 [Fig. 13(c)], KFCM_S1
[Fig. 13(d)], and KFCM_S2 [Fig. 13(e)] misclassify the second
crop regions (yellow area) and the third crop regions (green
area), so the region uniformity of the segmentation results by
the four comparison algorithms is poor. The boundaries in
the segmentation results by FLICM [Fig. 13(f)] and NS_FCM
[Fig. 13(g)] are not well defined and some regions are mis-
classified. In contrast, CKS_FCM [Fig. 13(h)] obtains more
appropriate and satisfying segmentation results, with more
defined boundaries and few misclassified regions with better
region uniformity.
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TABLE X
vpc AND vpe VALUES FOR FIRST REAL SAR IMAGE

TABLE XI
vpc AND vpe VALUES FOR SECOND REAL SAR IMAGE

Table X shows the partition coefficient vpc and partition
entropy vpe for the proposed and the compared algorithms on
the first real SAR image. For CKS_FCM, the mean value and
standard deviation (mean ± std) values are shown in Table X.

Table X shows the partition coefficients vpc and partition
entropy vpe of the proposed and the compared algorithms for
the second real SAR image. For the proposed CKS_FCM algo-
rithm, the mean and standard deviation (mean ± std) values are
shown Table XI.

It can be seen from Tables X and XI that the partition coef-
ficient vpc index of CKS_FCM is closer to 1 than the other
algorithms. The vpe is closer to 0 than the compared algorithms.
This suggests that the proposed algorithm is capable of superior
segmentation on this kind of image.

Experiments on real images suggest that CKS_FCM can gen-
erate clearer segmented images, highly consistent segmented
region uniformity, less misclassified regions, and better bound-
aries localization, as compared to the other state of the art
algorithms from the literature.

F. Comparison Between Different Versions of CKS_FCM

CKS_FCM incorporates three different key components. In
this section, the three different components are tested indi-
vidually to evaluate the impact of these components on the
algorithm’s overall performance and to investigate which com-
ponents play the most significant role in improving the final
results. These variants are summarized as follows: “CK_FCM”
denotes the CKS_FCM without spatial constraint; “CS_FCM”
denotes the CKS_FCM without kernel trick; “KS_FCM”
denotes CKS_FCM without immune clone. The algorithms are
tested on the first synthetic image corrupted by different-level
fully developed speckle noise. Speckle looks is arranged as 1,
2, 4, and 6, respectively. Table XII gives the SA of the pro-
posed CKS_FCM and different versions of CKS_FCM on the
first L-look amplitude synthetic speckled image. The SA val-
ues reported for CK_FCM, CS_FCM, and CKS_FCM show
the mean value and standard deviations (mean ± std %) for 10
independent runs.

It can be seen from Table XII that the SA values of
CKS_FCM consistently outperform the other comparison
methods. The experimental results of CK_FCM are worse than

TABLE XII
SEGMENTATION ACCURACY (SA%) FOR DIFFERENT VERSIONS

OF CKS_FCM ON THE FIRST SYNTHETIC L-LOOK AMPLITUDE

SYNTHETIC SPECKLED IMAGE

Fig. 14. Running time of the seven algorithms.

CKS_FCM when the image is corrupted by speckled noise.
With the spatial constraint, CKS_FCM can take into account
the image spatial information to help improve the segmenta-
tion result. The experimental results of CKS_FCM are better
than those of CS_FCM, which suggests that the kernel trick
is playing an important role in improving the final results.
The experimental results of CKS_FCM are somewhat better
than KS_FCM, suggesting that the immune clone can reduce
the likelihood of converging on local optima. It appears that
the spatial constraint contributes more than the kernel trick,
and the immune clone contributes the smallest (but still sig-
nificant) out of the three main contributions suggested in the
proposed algorithm. By combining together, the three proposed
improvements clearly provide an overall improvement in the
performance of the proposed algorithm, as compared to other
state-of-the-art methods.

G. Time Complexity of the Proposed Algorithm

In this section, we introduce Fig. 14 to illustrate the time cost
of the compared algorithms as compared to the proposed algo-
rithms on images of various different sizes. All experiments
were performed on the Intel (R) Core(TM) i3 CPU M380 @
2.53 GHz, 2G RAM, Windows 7 computer using MATLAB
2010.

As shown in Fig. 14, all algorithms can quickly gener-
ate results and the time cost is similar with the small image
size. With increasing image size, the FCM_S1, FCM_S2,
KFCM_S1, and KFCM_S2 algorithms are much faster than
other algorithms. The proposed algorithm is time consuming
comparatively, since it needs to generate the initial cluster cen-
ters by using the immune clone before fuzzy clustering, and
it introduces some terms into the objective functions, so it
needs to calculate each iteration step. But this drawback is
compensated for by its good performance as shown above.

Analyzing the results of two groups of experiments suggests
that the proposed algorithm works well. Misclassified pixels are
reduced and image SA is significantly improved compared to
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the other six compared algorithms. The proposed algorithm per-
forms well in terms of region uniformity and less misclassified
regions in real SAR images.

IV. CONCLUSION

FCM algorithms often fail to achieve high SA and typically
offer poor robustness against image noise. FCM is sensitive to
the choices of initial cluster centers and easily becomes trapped
in local optima. In order to overcome these shortcomings, this
paper has proposed an improved FCM algorithm CKS_FCM.
An immune clone algorithm was used to optimize the initial
cluster centers, enabling convergence to the global optimum.
The spatial information is added in the objective function and
CKS_FCM uses a non-Euclidean distance based on kernel
function to replace the Euclidean distance. This contributes to
improve SA and robustness. Simulation results show that the
proposed algorithm has higher SA and better robustness on
both synthetic images and real SAR images. One shortcoming
of the proposed work is that the number of clusters must be
given a priori in CKS_FCM. Our ongoing and future work is
investigating new ways of solving this problem.
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