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ABSTRACT

Feature selection algorithms eliminate irrelevant and redundant features, even the noise, while
preserving the most representative features. They can reduce the dimension of the dataset, extract
essential features in high dimensional data and improve learning quality. Existing feature selection
algorithms are all carried out in data space. However, the information of feature space cannot be fully
exploited. To compensate for this drawback, this paper proposes a novel feature selection algorithm for
clustering, named self-representation based dual-graph regularized feature selection clustering (DFSC).
It adopts the self-representation property that data can be represented by itself. Meanwhile, the local
geometrical information of both data space and feature space are preserved simultaneously. By imposing
the I, ;-norm constraint on the self-representation coefficients matrix in data space, DFSC can effectively
select the most representative features for clustering. We give the objective function, develop iterative
updating rules and provide the convergence proof. Two kinds of extensive experiments on some datasets
demonstrate the effectiveness of DFSC. Extensive comparisons over several state-of-the-art feature
selection algorithms illustrate that additionally considering the information of feature space based on
self-representation property improves clustering quality. Meanwhile, because the additional feature
selection process can select the most important features to preserve the intrinsic structure of dataset, the
proposed algorithm achieves better clustering results compared with some co-clustering algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In machine learning and data mining communities, high-
dimensional data processing has emerged as a challenging problem.
Examples of high-dimensional datasets include document data, user
ratings data, gene expression data etc. [1,2]. Oftentimes, not all the
features are important and discriminative, since correlation and
redundancy exist between most of the features and sometimes some
features are even noisy. Therefore, it is necessary and indispensable to
use feature selection algorithms [1] to select an optional feature
subset while retaining the salient characteristics of the original dataset
as far as possible for compact data representation [2-4|. Feature
selection algorithm has wide application, such as speech recognition
[5], gene expression analysis [6], and disease diagnosis [7].

According to the way of utilizing label information [8], feature
selection algorithms can be categorized as supervised algorithms
[9], semi-supervised algorithms [10] and unsupervised algorithms
[11]. Supervised approaches evaluate correlation between features
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using the label information, and discriminative information can be
obtained from label information. Semi-supervised approaches use
the labeled data as additional information to improve learning
performance. However, the acquisition of label information needs
an excessive cost in human label. Unsupervised feature selection
determines the importance of features based on underlying
properties of original dataset in the absence of label information
[12]. In many practical applications, there is no label information
available directly, which makes unsupervised feature selection
quite demanding and challenging [13].

Traditional unsupervised feature selection approaches are pro-
minent in many cases. However, there still exists some improve-
ment as stated in the following [14].

1) Recent researches have shown that the observed data are found
to lie on a low dimensional manifold embedded in a high
dimensional space [15], while the manifold structure has not
been fully taken into consideration.

2) Traditional unsupervised feature selection approaches focus
only on data statistical character to rank the features, as in
feature learning they often lack in learning mechanism, which
is proved to be powerful and widely used in many fields [16,17].
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3) Traditional unsupervised feature selection approaches only
performed in data space, and the duality between data points
and features is ignored.

As regard to learning mechanism, many clustering-based
unsupervised feature selection algorithms [12,18,19] have been
proposed. All these algorithms exploit either the manifold struc-
ture or discriminative structure of the dataset in data space to
select the most representative features. However, the manifold
structure of the feature space is ignored.

Some investigations have dedicated to leverage both the
manifold structure and learning mechanism. Typical methods
include: Laplacian score (LapScore) [20], spectral feature selection
(SPEC) [21], multi-cluster feature selection (MCFS) [22], minimum
redundancy spectral feature selection (MRSF) [23], joint embed-
ding learning and sparse regression feature selection (JELSR)[14],
and locality and similarity preserving embedding feature selection
(LSPE) [24]. These methods construct graphs to characterize the
manifold structure at first. LapScore and SPEC then calculate
metrics based on which to rank all features. MCFS and MRSF add
sparse constraints in multi-output regression, but both of them
solve embedding learning and sparse regression in sequence. The
difference is that MCFS uses l;—norm as sparse regularization
while MRSF uses [, ;—norm instead. JELSR combines embedding
learning and sparse regression, and applies the two steps jointly.
LSPE unifies embedding learning and feature selection. These
methods can be further improved in consideration of the afore-
mentioned three factors.

Many unsupervised feature selection algorithms are used for
clustering [24-29]. Clustering is the problem of dividing the data into
several categories so that data points belonging to the same class have
high similarity, while data points belonging to different classes have
low degree of similarity [30-32]. For feature selection clustering
methods, since the representative features obtained after selection
are used for clustering, the clustering quality is enhanced.

On the other hand, in cluster analysis, matrix factorization based
approaches have attracted considerable attention. Two typical matrix
factorization methods widely applied in cluster analysis are nonne-
gative matrix factorization (NMF) [33] and concept factorization (CF)
[34]. Based on NMF, Cai et al. proposed graph regularized nonnegative
matrix factorization (GNMF) [35], GNMF can find a compact repre-
sentation which uncovers the hidden semantics and simultaneously
respects the intrinsic geometric structure. Based on CF, Cai et al. [36]
proposed locally consistent concept factorization (LCCF) to extract the
underlying concepts with respect to the intrinsic local geometric
manifold structure. However, all the matrix factorization based
approaches mentioned above performed in a single direction, i.e., in
the row or column of the data matrix. The intrinsic information of the
dataset cannot be fully discovered. Recent studies have found that not
only the observed data are found to lie on a nonlinear low dimen-
sional manifold, i.e., data manifold, but the features lie on a manifold,
i.e,, feature manifold [37]. Due to the consideration of the duality
between data manifold and feature manifold, co-clustering
approaches have shown to be superior to traditional one-sided
clustering [15,37-40]. In [37], on the basis of CF, Ye et al. proposed
dual-graph regularized concept factorization clustering (GCF). GCF
considers the geometrical structures of both the data manifold and
feature manifold for clustering to improve clustering accuracy. In [38],
Dhillon et al. modeled a document collection as a bipartite graph
using which a spectral algorithm is proposed for words and docu-
ments co-clustering. In [39], Dhillon et al. proposed a co-clustering
algorithm which intertwines both the row and column clustering at
all stages to increase the preserved mutual information monotonically.
Shang et al. [15] improved GNMF by considering the geometrical
information of both the data manifold and feature manifold simulta-
neously, and proposed graph dual regularization non-negative matrix

factorization for co-clustering algorithm (DNMF). Ding et al. [40]
proposed an orthogonal nonnegative matrix tri-factorization for
clustering, which is used for words-documents co-clustering. All these
co-clustering algorithms have achieved encouraging performance,
which demonstrate that it is promising to consider the duality
between data points and features.

Redundant features have properties of self-representation, i.e.,
each feature can be approximated by a linear combination of
relevant features [41]. In real practice, the self-similarity is wide-
spread. Any natural images involve high degree of self-similarity
and redundancy. Similarity exists between different blocks of the
same image, and the time series of climate monitoring may be
very similar. Different sections of one coastline are also very alike.
The self-similarity is used in a wide range of signal and image
processing applications. In [42], the proposed joint image denois-
ing algorithm uses self-similarity to construct similar patch
groups. Self-similarity is also utilized to detect structural changes
in time series [43]. Self-similarity property generally holds for
most high-dimensional data and has been extensively used in
machine learning and computer vision fields [41]. Just as sparsity
leads to sparse representation, self-similarity results in self-
representation [41].

Taking into account of manifold learning and feature selection,
and inspired by the self-representation property and the idea of
dual-regularization learning [44,45], we propose a novel feature
selection algorithm for clustering, named self-representation
based dual-graph regularized feature selection clustering (DFSC).
This algorithm represents the data matrix and feature matrix
simultaneously using self-representation property. In DFSC, two
neighborhood graphs in data space and feature space are con-
structed respectively to encode the local geometrical information
of both data space and feature space. We seek compact recon-
struction of data matrix and feature matrix in data space and
feature space respectively using self-representation property, and
a sparse constraint is exerted on self-representation coefficients
matrix in the data space, based on which to determine the
importance of the features. We unify self-reconstruction, local
manifold learning and sparse regression into a joint objective
function and minimize this objective function with iterative and
alternative updating optimization schemes.

DFSC differs from previous feature selection algorithms
[18,19,24-28,31] in that it can preserve the local geometrical
structure of the feature space. On the other hand, DFSC is related
to co-clustering algorithms. Both of them preserve the information
of data space and feature space. However, DFSC belongs to feature
selection algorithms, which have a “selection” process, i.e., to
select the most representative and effective features, and to
eliminate redundant and relevant features. Our key contributions
are highlighted as follows:

1. We adopt the property of self-representation in the proposed
algorithm. The coefficients matrices in data space and feature
space are used for local geometrical information preservation.
And the underlying structure of the dataset can be detected
effectively.

2. Compared with some co-clustering algorithms, DFSC can select
a representative feature subset. It is more powerful for
clustering.

The remaining of this paper is organized as follows. We
introduce some related works in Section 2. In Section 3, we
propose our framework and provide the convergence analysis of
our optimization scheme. Extensive experiments are conducted in
Section 4. In Section 5, we make some discussion about the
efficiency of DFSC. Finally, we conclude our work with some
possible improvement.
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2. Related work

Before we go into the details of our algorithm, we briefly
review some works that are closely related to this paper. We will
introduce some feature selection methods that include LapScore,
SPEC, MCFS, JELSR, MRSF and LSPE. And we also introduce some
matrix factorization based clustering approaches including NMF,
CF, DRCC, LCCF, GCF and DFSC.

We first introduce some notations. For matrix B e R, the I,, —
norm is defined as follows:

1/p

s ‘ r/p
IBllrp=|>_ (Z B,»j}r) M

i=1 \j=1
When r=p=1, it is ;—norm and we briefly denote it as | - |;.
When r=p =2, it is I, — norm and we briefly denote it as || - |,.
When r=2,p=1, it is l,;—norm.

Given a dataset X =[X{,Xp,...,X;] € R™®™  where x;=[x;,
....Xim]" e R™. x; is the m-dimensional feature vector of the i-th
data. n and m are the number of instances and features respec-
tively. Feature selection aims at selecting a feature subset that
optimizes certain criteria [46].

2.1. Feature selection methods

2.1.1. LapScore and SPEC

LapScore constructs the nearest neighborhood graph to model
the local geometric structure of the dataset and chooses some
features which have the largest Laplacian score. LapScore selects
those features which are the smoothest on the graph.

SPEC can be regarded as an extension of LapScore. Both Lap-
Score and SPEC select those features which can best reflect the
underlying manifold structure.

While in LapScore and SPEC, the graph Laplacian is only used to
characterize the data structure. They are lack of learning mechanism.

2.1.2. MCFS and MRSF

MCFS computes the low dimensional embedding Y at first, and
then regresses each sample with /; —norm regularization. MCFS can
be regarded as solving the following problems in a two stage way:

arg min Tr(YLYT)
YY' =1, 2)
argmmi/n WX Y|} +alW|;

Similarly, MRSF can be regarded as solving the following two
problems in a two stage way:

argnl(tl_li:n’dTr<YLYT>

3)
argmin [|W'X Y3 +a|| W2,

where Y e R®" is the low dimensional embedding, L is the
graph Laplacian, W e R™*¢ is the transformation matrix, d is the
dimensionality of embedding, and a >0 is the regularization
parameter.

From the framework of MCFS and MRSF, though they apply
different sparse constraints, both of them compute the low
dimensional embedding and then rank the features based on
regression coefficients. Since they separate embedding learning
and sparse regression, the performance is degraded. Therefore, we
expect to solve embedding learning and sparse regression jointly.

2.1.3. JELSR and LSPE
The framework of JELSR is

arg min Tr(YLY") +(IW'X - Y I3 +al W] ) )
wyy’ =1,

where f,a > 0 are two regularization parameters.
LSPE solves the following problem:

min|lA"(X - XQ)I” + ATr(QLQ")+allAl,1 (5)

where A is a projection matrix whose row vectors act as measure-
ment for the importance of features, and a > 0 is the regulariza-
tion parameter.

Comparing the formulations in (4) and (5), we know that JELSR
selects the features which can best preserve the locality, and that
LSPE preserves the locality and similarity of data space simulta-
neously to find the optimal feature subset. However, none of them
considers the structure of feature space.

2.2. Co-clustering methods

2.2.1. NMF

NMF seeks to factorize X into the product of two low rank
nonnegative matrices which are basis matrix U e R™ and coeffi-
cient matrix V e R™k where k < < min(m, n). The objective func-
tion of NMF can be concluded as follows:

. _ T2
min| X~ UV

s.t. Uv=0

(6)

where || - || denotes Frobenius norm (F-norm).

2.2.2. DRCC

DRCC is based on semi-nonnegative matrix tri-factorization,
which factorizes the data matrix into three matrices. It also
preserves the geometrical manifold structures of both data graph
and feature graph. It solves the problem as follows:

U,v>0
)
where A, 4 > 0 are two regularization parameters, and F is a matrix
whose entries can take any sign.Ly =DV — WV and Ly =DV - WV
are the graph Laplacian of data graph and feature graph respec-

tively. Ly and Ly reflect the label smoothness of data points and
features respectively.

ming gy |X —UFVT |2 +ATr(V Ly V) +uTrU Ly U)sct.

223. CF

CF differs from NMF in that it can be applied to data containing
negative values and it can adopt the idea of the kernel method
[34]. CF solves the following problem:

min|| X - XWVT |2
by ®)
s.t. W,v>0

where W e R™F is the association matrix, and V e R™¥ is the
projection matrix. Cluster labels can be derived from V.

2.24. LCCF

Compared with CF, LCCF aims to preserve the intrinsic local
manifold geometry structure of the dataset, and the objective
function of LCCF is as follows:
min|IX — XWVT I3+ ATr (V'LV)
uv
s.t. W,Vv>0

(C))

where W eR™k is the association matrix, VeR"™¥ is the
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projection matrix, A > 0 is the regularization parameter, and L is
the graph Laplacian matrix.

2.2.5. GCF
GCF simultaneously considers the geometrical information of
data manifold and feature manifold. The objective of GCF is

%19||x —XWVT |12 4 ATr(V Ly V) + uTr(WT Ly W)

st.  W,Vv=0 (10)

where A,u>0 are two regularization parameters, Ly is the
Laplacian matrix of data graph, Lw=X"LyX, and Ly is the
Laplacian matrix of feature graph.

3. The proposed algorithm
3.1. Objective function

Data points and features are represented by themselves by
exploiting self-representation. For each vector x;, by self-
representation property we know that x; can be represented by
all the features in X, i.e., X;,X>, ..., X,. We have

n
xi=> XSi+f; an
k

where S =[S;;] € R"™" is the self-representation coefficients matrix
in feature space, and f; is the residual error term. Formula (11) can
be rewritten in matrix form as follows:

X=XS+F (12)

F is the corresponding error matrix. Similarly, we have the
following formula in data space:

X"=X"P+H (13)

where PeR™ ™ is the self-representation coefficients matrix in data
space, and H is the corresponding error matrix. Since P and S reflect
the contribution of features and data points in the process of self-
representation, we restrict P and S to be non-negative, i.e., P,S > 0.

We minimize the self-representation reconstruction error, and
solve the following problem:

min X —XS|| +SIX" —X"P|? (14

where the parameter > 0 balances these two self-representation
error terms.

To detect the underlying geometrical structure, many manifold
learning algorithms have been proposed [15], such as locally linear
embedding (LLE) [47], ISOMAP [48] and Laplacian Eigenmap [49].
These methods adopt the locally invariant idea [50], namely the
nearby points are likely to have similar data representation. It has
been proven that preserving the geometrical structure of the data
can improve learning quality significantly.

Now, two neighborhood graphs in data space and feature space
are constructed to preserve the local geometrical information, i.e.,
data graph and feature graph.

In data space we construct the nearest neighborhood graph G.
Each node of the graph corresponds to a data point. An edge is set up
if two data points are in the k nearest neighborhood. The similarities
between the two data points act as the edge weight. We choose
Gaussian kernel function or 0-1 weighting scheme as weight function.
The Gaussian kernel function is defined as follows:

[WP] _ { exp ( - Hx:,i 7X:,]' H 2/25> 5 lf x:,ieN(x:j) or X:,}'EN(X:,i)s
i 0 otherwise

(15)

where x.j denotes the j-th column of the matrix X, N(x.;) denotes the
k nearest neighborhood set for ., and o is the bandwidth parameter.
The 0-1 weighting scheme is defined as follows:

wl,~{s

The data graph Laplacian matrix is L =D" —W?’, and D" is a
diagonal matrix with [D"]; = 57;[W"];.

Similarly, we construct feature graph in feature space, and the
nodes correspond to the feature set {X{:, ...,inv.}. Gaussian kernel
function has the following definition:

_Jexp ( — %~ 2/ZU) . if %.eN®;.) orx; . eN(;,),
0, otherwise

if x.;eN(x.;) orx.;eN(&.;),

otherwise (16)

w,

ij
a7)

where x;. denotes the i-th row of the matrix X, and N(¥;.) denotes
the k-nearest neighborhood set for feature ;...
The 0-1 weighting is defined as follows:

wl,~{s

The Laplacian matrix for feature graph is LS =D°—W?°, D° is a
diagonal matrix, and [D°]; = Zj[WS],j.
We know that Wg- means the similarity between data points x;

if xi,:EN(Xj,:) or Xj,:eN(xi,:),

otherwise (8)

and x;, and a large value of W,(]’- means that x; and x; have high

degree of similarity. From Eq. (8), we have

Xi =X181i +X282i +... +XnSpi

Xj =X181j + X280+ ... +XnSp; (19)
We denote the i-th and j-th column of § as

Si =811, 821 ... Spil"

S; = (51} 52j. ... Sns]” (20)
If x; and x; have high degree of similarity, driven by the idea

that nearby points are likely to have similar data representation,

we draw a conclusion that a large value of W‘; means that §; and S
are close. Thus we have the representation smoothness as follows:

n n
2y/P
DD lsi—siIPwj

i=1j=1
n n n
= ES,‘TSl‘DE — Z ES,‘TSI‘WZ
i=1 i=1j=1
=Tr(SD"ST)—Tr(SW"’s")
=Tr(SL"S") 21
Similarly, considering the self-representation matrix P in data

space and the similarity matrix W5, we have the following data
representation smoothness:

m m
- Ipi-piIPw;

i—1j=1
m m m s
= ZP;‘TP:‘DI‘S,‘ - Z ZP;‘TPiWU
i-1 i—1j=1
=Tr(PD°P")—Tr(PW°P")
=Tr(PL°P") (22)
Based on the above data graph and feature graph, exploiting
the self-representation property, and considering the manifold

information of data space and feature space simultaneously, we
seek to get a compact representation in both data space and
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feature space. DFSC solves the following minimization problem:

min || X —XS||2+BIX" — X P||2+a, Tr(SL"ST) + a, Tr(PL°PT),
st. §>0,P>0 (23)

where the parameters >0, a; >0,a; >0. For simplicity and
easy adjustment, we let @y = a, =@, and the objective function
can be rewritten as follows:

min ||X—x5||,%+/}||XT—XTP||§+a(Tr($L”sT)+Tr(PL5PT)),
st. S>0,P>0 24)

Let P=[P;...;P;;...;Pp], P; is the i-th row of the matrix P.
IIP; |2 stands for the contribution of the i-th feature in the process
of self-representation. Therefore ||P;|l; can be used as feature
weights to rank features. To avoid the trivial solution P = I, (I,, is
an m-dimensional identity matrix) and to ensure sparsity, we
exert I 1 —norm on matrix P. The I, ; — norm constraint ensures
that matrix P is row-sparse, so ||P; ||, reflects the importance of the
i-th feature in the whole feature. According to ||P; ||, we select the
most important features. Thus, our problem is

min||X —XS|I7 +AIX" — X" Pllf +a(Tr(SL’S") + Tr(PL'P) + AlIPl1,

st. $>0,P>0 (25)
The parameter A>0 balances the last sparse item with
other items.

3.2. Iterative updating schemes for solving DFSC

For the problem in (25), it is difficult to obtain a closed-form
solution. Therefore, we propose an iterative and alternative
optimization scheme. Formula (25) can be rewritten as follows:

L(P,S) = | X —XS||Z+BIX" —X"P||}+Tr(SL"S")+ Tr(PL°P"))+ A||P|2,1

=Tr(XX" —2XSX" + XSS"X")+ fTr(X"X — 2X"PX + X" PP X)
+a[Tr(SL'S™)+Tr(PLSP")] + A||P||2.1 (26)

Let y;; and qSk] be the corresponding Lagrange multiplier for
constraint P; >0 and S;; >0, respectively. Then we have the
following Lagrange function:

=Tr(XX" — 2XSX" + XSSTX")+ fTr(X"X —2X"PX + X" PP X)
+a[Tr(SL'S™) +Tr(PLSP")]+ A||P|l21 + TrapPT) + Tr(pST)  (27)
The partial derivative of L; with respect to S is

Ly

5= —2X"X+2X"XS+2aSL" +¢ (28)

Using the KKT conditions, ¢k[;sk] =0, we have (- X"X+X"XS+
aSL"s =0. Since L'=D"—W", then [—-X"X+X'XS+aSD" -
W")}S =0, we get the following updating formula:

T P
X+aSW
S= Sxi 29
X'XS+asD” @9

Similarly, for updating rule for P, we first introduce an auxiliary

function, then (27) can be rewritten as follows:

Ly =TrXX" —2XSX" + XSSTX")+ fTr(X"X — 2X"PX + X" PP"X)
+a[Tr(SL’ST)+ Tr(PLSPT )|+ ATr(PTUP) + Tr(wP") + Tr(¢pST)
(30)
where U € R™™ is a diagonal matrix and the i-th diagonal element
of which is given as follows:

1

vi= 2|P; 2

(€3]

Taking the partial derivative of L; with respect to P, we arrive at

% =2aPL® —23XX" +2XX" P+ 20UP +y (32)
Using the KKT conditions y/,]P,J_O we have (2aPL® —

2BXX" +2/XX"P+2AUP)P =0, since =D -W°,

[aP(D° —WS)— BXXS+pXXSP+AUPIP =0, we get the following
updating formula:
T s
p_p XX +aPW 33)
aPD’ + XX P+ AUP

To avoid overflow, we introduce a sufficiently small constant &
in the definition of the matrix U.

1
Uj=-—————
"2 max(IP; Iz, €)

Table 1 shows the process of DFSC.

(34

3.3. Convergence analysis

In this section, we will investigate the convergence of the
proposed algorithm. We prove that the objective function (25) is
monotonically decreasing under the updating rules (29) and (33).

We start from the convergence analysis of Eq. (29).

Definition 1. If the following conditions

G(u,u’) > F(u) 35)
and
G(u,u) = F(u) (36)

are satisfied, G(u, v’ is an auxiliary function for F(u).Then F is non-
increasing under the following updating formula:

u®*+ D = arg min G(u, u®) 37)
u

Proof. Fu®+1) < Gu+b, u®) < Gu®,u®) = Fu®). Let
F(S) = Tr(—2XSX" +XSS"X")+ aTr(SL"S") (38)

The first-order and second-order partial derivatives for F(S)
with respect to S are

,_[oF] T T P . P T
= {ﬁ]lf [—2X"X+2X"XS+2aSL ;and Fj=2alL Li+2[x x|
(39
Lemma 1. The following function:
[X"Xs+asD"|
G(Syj,S}) = Fy(S{)+Fy(S ) (S —S{)+ 50 IS -S>
ij
(40)
is the auxiliary function of Fj.
Proof. The Taylor expansion of Fj(S;) is
Fii(Sy) = Fy(S{) +Fy(S)S; — i)+ 1L}y + X X1} —S{)?
41
G(S,],S D) > F;i(Sy)is equivalent to
[xsz+aSD”]
s(..” [ ] +[ } (42)
n
Since [xsz] > [x Tx] S > [XTX} s and
=1
_ (t) (t) (t) P () | P
[SD”] aZS [DP ;205 [DP] > as|! [DP w ], as| [L ]j]‘
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Table 1
DFSC algorithm.

Input: data matrix X e R™", wP, we, a, 3,2, the maximum iteration number maxiter, the number of selected features g, the number of clusters c.

Output: Self-representation matrices P and S, clustering label.
1. Initialize matrix U, S, P as identity matrices, U=1In, S=1In, P=1I;.

2. Updating the S, P, U according to the iterative updating rules (29), (33) and (34), until the convergence conditions are satisfied.
3. Ranking all the features in descending order according to ||P; ||, select the top p features.

4. Clustering the selected features using K-means algorithm.

therefore, (42) holds and G(S,-,-,Sf.j”) > F;i(S;), we have G(S;;,Sj) =
Fii(Sj).

Next, we will make use of the auxiliary function to show that F;
decreases monotonically under the updating rules in Eq. (33).

Proof. Substituting G(S,-,,Sﬁf’) in (37) into (40), we can get

g (43)

ij

[x’x + asw”]

v clt)
st _go_go_ FiSi) g
! T V2[x"xs+asD”] Y [XTXS+aSD']
ij
Since (41) is an auxiliary function for Fy, F; is non-increasing
under the updating rule stated in Eq. (29).

For the convergence proof of updating rules in Eq. (33) for P,
we adopt the similar process as in [27].

Lemma 2. For any nonzero vector X,y € R™,

I3
21yl

IyI3
2%l

%112 — <Iyll2— (44)

See detailed proof of Lemma 2 in reference [24].
We now give the proof of the convergence.

Proof. In the i-th iteration, we fix U as U‘, compute $*! and
P!, and we have the following inequality:

Tr(—2XS”1XT+XS‘“(S”1)TXT)+a[Tr(S”ILP(Sf+1)T)+Tr(P‘+1L5(P”1)T)]
+PTr(=2XTP 1 X 4 XTP L (PH DT X) 4 ATr(PTH HTU P T
<Tr(—2XS'X" +XS'(SH'X") +a [Tr(st"(sf)T) +TrP'LS (PI)T)]
+pTr(=2XTP' X+ XTP'(P")"X)+ ATr((P") U'P") (45)
Since ||P|l21 = >/ 1 lIP; |2, the above inequality indicates

Tr(72XSt+1XT+XSI+1(St+1)TXT)+a{Tr(St+1LP(St+1)T)+Tr(pt+1L$(Pt+l)T)]

m PHl 2
HATr(=2X"PHIX+ X P (P X)L AP g +4 (”2”‘# ””22 LA P
i=1 i.

< Tr(—2XS'X"+XS'(S)X")+a[Tr(S'L"(S)) + TrP L (P

m Pf 2
+/3Tr(ZXTP‘X+XTPf<Pf)TX>Mquuz.]+AZ( Ll ||Pf_2||z>
i=1

21IP 112
(46)
According to Lemma 2, we have
P12 PL2
W 02 ypeet, gy = 02 _ypr 47)
2|1P; I 2|1P; I

From (47) and (48), we have
Tr(72XSt+1xT+XSI+1(Sr+1)TXT)+(l [Tr(st+1LP(St+1)T)+Tr(Pt+1LS(Pt+1)T)]
+ﬁTr(7 2xTPt+1X+XTPt+](P[+])TX)+/1”Pt+1 ”2.1
<Tr(—2XS'XT + XS'(SH'X") +a [Tr(st" SHNH+TrP'Ls (Pf)T)]
+BTr(=2XTP X + XTP*(P") X)+ A||P'|21 (48)

In summary, the objective function in (25) decreases mono-
tonically in the alternative updating rules in (30) and (34).

4. Experiments and analysis

In this section, we present the experimental clustering results
on some datasets. Our experiments have two parts. We firstly
show the comparison results of the proposed DFSC and other
feature selection algorithms on 7 datasets. Then we compare the
proposed algorithm with some co-clustering algorithms. We also
give an analysis of the results.

4.1. Comparison with other feature selection algorithms

4.1.1. The Compared algorithms

DFSC is an innovative feature selection algorithm. It preserves
the geometrical information of both data space and feature space
simultaneously, which is the key difference from previous feature
selection algorithms that performed only in data space. DFSC is
related to some other feature selection algorithms.

DFSC does not use the projection matrix, but it makes use of self-
representation property of data and features, and it uses self-
representation coefficients matrix in the data space as importance
measurement for the self-representation construction of feature
among all features. The compared algorithms include LapScore [20],
SPEC [21], MCFS [22], JELSR [14], MRSF [23] and LSPE [24]. LapScore
only preserves the locality of data manifold. SPEC can be seen as an
extension of LapScore, but it is mainly used for supervised feature
selection [27]. MCFS preserves the multi-cluster structure of the
dataset, considering the relation between different clusters. JELSR
unifies embedded learning and sparse regression in an unsupervised
feature selection framework, and the learned sparse projection matrix
is used to select features. MRSF is based on sparse multi-output model
to minimize redundancy features. LSPE integrates embedded learning
and feature selection in a joint framework. All the above feature
selection algorithms are performed in data manifold space. Some
preserve the local information, and some preserve similarity to
improve the learning performance. DFSC preserves not only the
manifold information of data, but also the manifold information of
feature space, where the learned self-representation coefficients
matrix in the data space is used to rank features.

4.1.2. Datasets

We first compare clustering ability between the proposed
algorithm and some other feature selection algorithms on several
datasets. The datasets is similar to those in [27], shown in Table 2.

4.1.3. Evaluation metrics

We evaluate the performance of clustering by two widely used
evaluation matrices, i.e., clustering Accuracy (ACC) [51,52] and
Normalized Mutual Information (NMI). The larger value of ACC
and NMI indicate better performance.
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Given a data point x;, ¢; and g; are clustering label and the
ground truth label of x; respectively. ACC is defined by

ACC — 2i=19(8i.map(c)

L 49)

where n is the total number of data, &(,.,) is the delta function

1, x=y

0. otherwise’ and map(.) is the optimal

defined by &(x, y):{

mapping function using Hungarian algorithm [53] to permute
clustering labels and the ground truth labels.
NMI is defined as

MI(C,C)

NMI = max(H(C), H(C))

(50)
where C and C are clustering labels and the ground truth labels
respectively. MI(C, C') is the information entropy between C and C,
and

p(ci.c)

MI(C,C) = p(ci).p(c))

> p(ci,c)).log,

Cie C,C]f eC

(€3]

where p(c;) and p(c)) denote the probabilities a sample belongs to
the clusters ¢; and ot respectively. p(ci,c) is the joint probability
that a sample belongs to the clusters ¢; and c; simultaneously.
ACC is based on one-to-one match between clustering labels
and the ground truth labels. NMI is an external criterion, which
evaluates the degree of similarity between clustering labels and

Table 2
Datasets used in this paper.

Dataset Dimensionality Size Class
Umist 644 575 20
Isolet 617 1560 26
ORL 1024 400 40
Sonar 60 208 2

BC 30 569 2
lonosphere 34 351 2
Dbworld_bodies 4702 64 2

Table 3

ACC of some feature selection algorithms on seven datasets (MEAN + STD%).

the ground truth labels. ACC and NMI are two clustering evalua-
tion criteria, they may not be best on one dataset simultaneously.

4.14. Experimental settings

We also use all features as the baseline. For graph-based
algorithms, such as DFSC, LSPE, LapScore, JELSR, SPEC and MCEFS,
the neighborhood size of graph is chosen from {3, 5, 7, 10, 15}.
The bandwidth ¢ for Gaussian function is chosen from
{10°10310°). For LSPE, a is chosen from {300, 500, 800, 1000,
2000, 3000, 4000, 5000, 6000, 7000, 8000}. We tune /3 from {0.01,
0.1, 0.5, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.00, 15.00, 17.00}. For DFSC, we
set a as {0.01, 0.1, 0.5, 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, 13.00, 15.00, 17.00}.
A is searched from{300, 500, 800, 1000, 2000, 3000, 4000, 5000,
6000, 7000, 8000}. We tune f3 in the range of {10, 100, 1000}. The
number of clusters is set equal to the true number of clusters.

We tune these parameters so that the algorithms have the best
ACC and NMI. Different parameters may be used for different
datasets. We cluster samples based on the selected features using
K-means algorithm. We repeat the clustering 100 times with
random for each step since the performance of K-means algorithm
depends on initialization.

4.15. Experimental results and analysis

We record the best clustering results from the optimal para-
meters. The average ACC with standard deviation (std) on 7 data-
sets is reported in Table 3. We highlight the best results in bold.

Table 4 shows clustering results of these feature selection
algorithms in terms of NMI on these datasets, the best results
are marked in bold.

From Tables 3 and 4, we have the following observations. DFSC is
superior to all other algorithms and acquires the best result in terms
of clustering accuracy on almost all the datasets. It is evident that the
proposed algorithm has satisfactory performance, which demon-
strates the effectiveness of the proposed algorithm. Compared with
other feature selection algorithms, the main improvement is that
DFSC utilizes the information in feature space by self-representation
property. We can draw a conclusion that the information in feature
space is of great importance for clustering. We know that SPEC, MCFS
and MRSF are two-stage feature selection algorithms, while JELSR,

Algorithms Umist Isolet ORL Ionosphere Sonar BC Dbworld_bodies
All features 44.23 +1.02 50.58 + 0.85 50.00 + 0.43 63.81 +0.50 54.32+1.20 72.27 +£0.20 73.81+0.00
LapScore 37.30+0.93 48.79 +0.56 44.50 +0.73 66.94 +2.20 58.80 + 1.14 70.17 + 0.36 73.47 + 1.16
SPEC 42.56 + 1.20 49.50 +0.63 49.88 +0.23 67.70 +2.33 61.00 + 1.26 74.00 £ 0.23 7794+ 1.85
MCFS 46.55 + 1.00 54.48 +0.84 49.40 +0.93 57.26 +3.00 54.20 +0.84 71.00 + 0.58 9113 + 1.04
JELSR 48.90 + 1.03 55.08 + 0.45 50.02 +0.56 67.90 +2.81 64.20 + 0.94 74.20 + 0.30 90.63 + 0.00
MRSF 48.38 + 1.05 50.80 + 0.69 49.78 + 0.69 63.00 +2.30 60.33 + 1.40 72.79 +£0.22 85.02 +1.59
LSPE 49.26 + 1.12 56.11 + 0.63 50.25+0.80 70.00 + 2.66 66.25 + 1.67 75.86 +0.24 93.75 + 0.00
DFSC 50.12 +2.79 60.14 + 3.51 51.71 + 2.61 82.90 +0.29 58.57 + 2.31 85.41 + 0.00 91.75 + 1.09
Table 4
Clustering NMI of feature selection algorithms on seven datasets (MEAN =+ STD%).
Algorithms Umist Isolet ORL lonosphere Sonar BC Dbworld_bodies
All features 60.30 + 1.45 73.02 +£0.92 70.36 + 1.17 13.12 £ 0.00 0.88 +0.00 17.61 +0.00 24.00 +0.00
LapScore 56.32 + 1.52 66.80 + 1.20 67.80 + 1.76 8.16 +0.00 1.68 +0.00 16.79 + 0.00 23.82+1.01
SPEC 57.04 + 1.24 66.90 + 1.49 70.26 + 1.65 8.33+0.00 5.97 +0.42 18.83 +0.00 25.20 + 1.62
MCFS 69.20 + 1.31 70.43 +1.93 70.98 +1.78 1.01 +0.77 1.87 +2.85 17.32 4+ 0.00 67.88 + 1.62
JELSR 70.18 + 1.64 70.50 + 1.34 70.20 £ 1.72 7.84+1.21 6.24 +0.00 18.86 + 0.00 54.89 + 0.00
MRSF 66.67 + 1.43 68.35 + 1.67 70.50 + 1.81 3.8240.00 2.96 + 1.04 17.32 4+ 0.00 56.79 +2.39
LSPE 70.91 + 1.50 71.01 + 1.85 71.04 + 1.11 1310 +0.49 7.24 +0.38 18.83 +0.00 68.09 + 0.00
DFSC 65.85 + 1.76 73.98 +1.33 73.27 +1.25 30.52 +0.79 222+103 42.23 +0.00 58.93 +3.67
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Fig. 1. Clustering accuracy with regard to different values of @ and . (a) Umist (b) ORL, (c) Isolet (d) lonosphere, (e) Sonar (f) BC, and (g) Dbworld_bodies.

LSPE and DFSC simultaneously solving two objective functions. JELSR representation, manifold embedding and feature selection. Overall,
unifies embedded learning and sparse regression, LSPE integrates JELSR, LSPE and DFSC have better clustering quality than other
embedded learning and feature selection, and DFSC combines self- algorithms, which indicates that simultaneously solving several
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problems is superior to solving problems in sequence. LSPE is the
second best algorithm in our experiments, which validates that it is a
better way to solve embedding learning and feature selection jointly
for feature selection.

4.1.6. Parameters sensitivity

There are some parameters needed to be set in advance for
DFSC, such as graph neighborhood number k, Gaussian kernel
bandwidth parameter o, 4, regularization parameters & and /3, and
the number of selected parameters q. Here we only focus on the
sensitivities of &, 5, 4 and o. As for analyzing the clustering results
with regard to different values of o and f3, we fix 1=8000 the
parameters k, o and q as constants. We chose a and f from a wide
range {103, 1072, 1071, 1, 10, 10% 10}. We record the average
results of 20 runs, and plot seven 3-D figures in Fig. 1.

From Fig. 1, we have some observations. On “lonosphere” dataset,
when #=1000, the clustering results fluctuate with changing o. DFSC
has really consistent results in terms of clustering ACC with regard to
different values of o and /3 in general, which demonstrates that DFSC
is insensitive to regularization parameters ¢ and f3.

Now, we change the value of ¢ with other parameters fixed. We
select the bandwidth parameter ¢ from a wide range {103, 1072,
10~1,1,10, 10%, 10%,10% 10°). The performance of DFSC is quite steady
on these datasets with the changings. We take “lonosphere” dataset
as an example to present how the performance of DFSC changes with
the changing ¢ in Fig. 2.

07 | 1
06 | —4¢—ACC| |
05 | —O - NMI| |
04 | 1
030 --8- —0—- 8-
02 | 1
01 | 1

performance

0 . . .
102% 102 10" 1 10 102 10°  10* 10°

Fig. 2. Clustering performance on “lonosphere” dataset with regard to different
values of o.

Table 5

From Fig. 2, it is clear that the performance of DFSC is really
stable with changing o.

Similarly, just like parameter o, when parameter A changes
from a wide range {1073,102, 1071, 1, 10, 10%, 103, 10%, 10°}, the
clustering results hardly change.

We also present how the results of LSPE and DFSC change in a
wider range. We perform experiments when ¢ is less than 1, o for
LSPE less than 300, and f for LSPE greater than 20. Similarly, we
set a for DFSC greater than 20, and S for DFSC less than 10. We
record the average results of 20 runs, shown in Tables 5 and 6.
All the results remain approximately constant. When ¢ changes
from {1073, 10=2, 10—}, 1, 10, 102, 103, 10% 10°}, the clustering
results of LSPE hardly change. When /3 changes from {103,102,
10—, 1, 10, 102, 103, 10%, 10}, the clustering results of DFSC hardly
change. We take “Sonar” dataset as an example to show how the
performances change when ¢ = 103 for LSPE and when #= 1073
for DFSC in Tables 5 and 6 respectively.

From the data in Table 5, we have conclusion that the clustering
results of LSPE are insensitive to  and f3.

From the data in Table 6, we have conclusion that the clustering
results of DFSC are insensitive to ¢ and A.

4.2. Comparisons with co-clustering algorithms

DFSC has some connection with co-clustering algorithms, what
they have in common is that both of them have considered the
information of feature space and data space. But DFSC belongs to
feature selection algorithm, since it has a “selection” process,
where it chooses the most important features from all the features,
and removes related features to avoid redundancy.

Next, we conduct experiments on COIL20 dataset to compare
clustering qualities using DFSC, matrix factorization based algo-
rithms (NMF, CF, LCCF) and co-clustering algorithms (DRCC, GCF).
COIL20 dataset consists of 1440 images of 20 objects, each image is
scaled to 32 x 32 pixel, and each image is represented by a 1024-
dimensional vector.

In the test, we explore the clustering performance of these
algorithms with different clusters. We take K-means and NMF as
baselines. For LCCF, DRCC, GCF and DFSC, we use 0-1 weighting
scheme to construct neighborhood graph and set the size of neigh-
borhood graph p=5. For LCCF algorithm, we set A = 100. For DRCC
and GCF, we set A=y =100. For fair comparison and adjustment

Clustering ACC (first row) and NMI (second row) of LSPE with regard to different values of « and s on “Sonar” dataset.

i
a 0.01 0.1 1 10 20 50 100 200 500 1000
0.001 0.5260 0.5264 0.5235 0.5250 0.5240 0.5276 0.5269 0.5276 0.5288 0.5255
0.0013 0.0012 0.0007 0.0021 0.0008 0.0017 0.0014 0.0017 0.0017 0.0014
0.01 0.6058 0.6019 0.6310 0.6082 0.6038 0.6029 0.6062 0.6086 0.6091 0.5990
0.0330 0.0315 0.0366 0.0349 0.0324 0.0322 0.0335 0.0350 0.0350 0.0306
0.1 0.5365 0.5336 0.5308 0.5336 0.5336 0.5336 0.5394 0.5336 0.5336 0.5322
0.0060 0.0053 0.0047 0.0053 0.0053 0.0053 0.0066 0.0053 0.0054 0.0050
1 0.5560 0.5567 0.5575 0.5558 0.5575 0.5582 0.5539 0.5582 0.5560 0.5567
0.0071 0.0093 0.0095 0.0090 0.0095 0.0097 0.0086 0.0097 0.0091 0.0093
10 0.5570 0.5529 0.5488 0.5488 0.5567 0.5553 0.5519 0.5510 0.5613 0.5534
0.0085 0.0077 0.0069 0.0069 0.0084 0.0082 0.0075 0.0073 0.0093 0.0078
100 0.5500 0.5507 0.5498 0.5498 0.5512 0.5534 0.5503 0.5495 0.5507 0.5505
0.0065 0.0064 0.0065 0.0065 0.0063 0.0078 0.0064 0.0066 0.0064 0.0064
200 0.5507 0.5505 0.5500 0.5505 0.5503 0.5500 0.5491 0.5503 0.5512 0.5488
0.0064 0.0064 0.0065 0.0065 0.0064 0.0065 0.0066 0.0064 0.0063 0.0067
500 0.5501 0.5507 0.5493 0.5493 0.5500 0.5510 0.5500 0.5507 0.5507 0.5495
0.0065 0.0064 0.0066 00066 0.0065 0.0063 0.0065 0.0064 0.0064 0.0067
1000 0.5500 0.5500 0.5500 0.5500 0.5503 0.5495 0.5498 0.5498 0.5503 0.5505
0.0065 0.0065 0.0065 0.0065 0.0064 0.0066 0.0065 0.0065 0.0064 0.0064
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Table 6
Clustering ACC (first row) and NMI (second row) of DFSC with regard to different values of « and A on “Sonar” dataset.
o
by 0.01 0.1 1 10 20 50 100 200 500 1000
0.001 0.5846 0.5791 0.5820 0.5789 0.5767 0.5794 0.5741 0.5813 0.5810 0.5818
0.0226 0.0200 0.0215 0.0199 0.0190 0.0202 0.0178 0.0209 0.0207 0.0212
0.01 0.5760 0.5873 0.5851 0.5808 0.5866 0.5765 0.5810 0.5863 0.5813 0.5863
0.0185 0.0238 0.0230 0.0205 0.0233 0.0188 0.0206 0.0231 0.0209 0.0231
0.1 0.5868 0.5976 0.5914 0.5762 0.5791 0.5794 0.5863 0.5741 0.5760 0.5813
0.0235 0.0284 0.0253 0.0186 0.0201 0.0202 0.0231 0.0178 0.0183 0.0208
1 0.5741 0.5844 0.5837 0.5887 0.5810 0.5839 0.5688 0.5871 0.5885 0.5842
0.0178 0.0225 0.0219 0.0241 0.0207 0.0221 0.0154 0.0237 0.0239 0.0222
10 0.5837 0.5736 0.5818 0.5736 0.5861 0.5839 0.5709 0.5813 0.5844 0.5813
0.0219 0.0174 0.0213 0.0175 0.0228 0.0221 0.0163 0.0209 0.0224 0.0209
100 0.5791 0.5861 0.5839 0.5837 0.5738 0.5844 0.5815 0.5736 0.5866 0.5813
0.0201 0.0229 0.0221 0.0218 0.0176 0.0225 0.0220 0.0174 0.0233 0.0209
200 0.5868 0.5897 0.5714 0.5789 0.5818 0.5767 0.5839 0.5743 0.5808 0.5794
0.0234 0.0248 0.0167 0.0199 0.0213 0.0190 0.0221 0.0180 0.0205 0.0202
500 0.5738 0.5914 0.5815 0.5794 0.5770 0.5849 0.5866 0.5784 0.5851 0.5916
0.0176 0.0293 0.0210 0.0203 0.0192 0.0228 0.0233 0.0195 0.0230 0.0255
1000 0.5842 0.5791 0.5765 0.5717 0.5731 0.5791 0.5868 0.5844 0.5794 0.5902
0.0223 0.0200 0.0188 0.0168 0.0171 0.0200 0.0235 0.0225 0.0230 0.0252
Table 7
Clustering ACC on COIL20.
K 2 3 4 5 6 7 8 9 10 Avg
KM 92.71 79.35 73.19 71.67 67.78 68.34 66.13 66.23 64.60 72.22
NMF 89.84 77.80 73.01 70.36 65.20 64.64 65.16 64.87 65.37 70.69
CF 89.72 79.34 73.04 71.33 75.21 63.85 64.64 62.86 62.15 71.34
DRCC 91.04 83.42 80.36 75.15 77.74 70.13 71.67 67.42 68.97 76.21
LCCF 90.74 84.22 7814 74.46 79.59 70.08 71.64 67.87 65.71 75.82
GCF 92.48 85.36 82.69 79.23 82.90 73.62 75.51 70.02 68.44 78.91
DFSC 100.00 92.01 90.10 80.27 84.84 81.94 80.44 7919 72.32 84.56
Table 8
Clustering NMI on COIL20.
K 2 3 4 5 6 7 8 9 10 Avg.
K-means 79.64 66.11 67.56 68.95 71.51 7217 71.32 72.39 70.57 7113
NMF 71.25 63.42 67.87 66.07 68.34 70.14 70.40 71.65 71.89 69.00
CF 7113 63.21 66.38 67.67 65.33 66.67 67.28 66.40 66.27 66.70
DRCC 77.29 74.57 75.14 72.26 72.86 73.42 73.89 70.38 69.40 73.25
LCCF 74.51 68.69 70.63 72.22 68.81 70.57 70.67 69.86 68.69 70.52
GCF 80.40 76.35 7743 78.56 74.89 75.31 76.45 72.71 70.63 75.86
DFSC 100.00 90.97 93.97 82.77 86.09 83.28 84.91 74.17 76.43 85.84
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Fig. 3. The self-representation coefficients matrix P.

simplicity, we set =100 for DFSC, we fixed 1 = 10°. pis chosen from
{10~1,1,10, 10?} and the number of selected features q is chosen from
set{20, 40,. , 200}. We evaluate the performances of these algorithms
in terms of ACC and NMI. For each given cluster number, 20 runs are
conducted on different randomly selected clusters, and we recode the
average results in Tables 7 and 8.

From the results shown in Tables 7 and 8, we can observe the
following. K-means, NMF and CF perform generally much inferior,
because they do not consider the geometric information of the
dataset. LCCF achieves better results than K-means, NMF and CF.
LCCF seeks to capture the local geometry. DRCC and GCF obtain
good results, because they consider the information of both data
space and feature space. The overall results of GCF and DRCC are
better than others, since the information of feature space is
considered to improve accuracy. DFSC achieves the best clustering
results. Both GCF and DFSC consider the information of the data
manifold and feature manifold. But DFSC has another selection
process that can select the most effective features and avoid
redundancy, thus it improves learning quality effectively. Com-
pared with KM, NMF, CF and LCCF, DFSC makes use of the
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information in feature space and self-representation property, and
it improves the clustering quality significantly. All these results
demonstrate that based on self-representation property, DFSC
preserves the geometrical structure of both data space and feature
space, and utilizes the self-representation coefficients matrix in
data space to select the most effective features, which is beneficial
to improve clustering power.

5. The effectiveness of the proposed algorithm

In this section, we first illustrate the effectiveness of the proposed
feature selection algorithm. We use “lonosphere” dataset as an
example to test whether DFSC can find the most representative
features. The original lonosphere dataset has 351 samples and 34
features, and we artificially generate 66 features as the liner combina-
tion of the original 34 features with randomly generated combination
coefficients, the sum of combination coefficients being 1. Now, we get
a synthetic data matrix with 351 samples and 100 features, the first 34
features are the original features.

By applying the proposed DFSC to the obtained synthetic
dataset, we get the coefficients matrix P, and we show the
coefficients matrix P in Fig. 3.

We can clearly see from Fig. 3 that the coefficients of the
original 34 features are much larger than those of the other
features. Note that the last 66 features are generated from the
original features. This experiment validates that DFSC can select
the most representative features.

6. Conclusions

This paper presents a novel feature selection clustering algo-
rithm named self-representation based dual-graph regularized
feature selection clustering (DFSC). Since recent studies have
shown that feature manifold also contains underlying information
of dataset, we construct data graph and feature graph, and utilize
self-representation property in data space and feature space, the
learned data space and the feature space of self-representation
coefficients matrix P and S are used for preservation of the local
geometrical structures of data space and feature space respec-
tively. We exert a sparse constraint on the self-representation
matrix P in data space, and we rank all the features based on P to
select the most representative features for clustering. DFSC con-
siders the information of feature space, while conventional feature
selection algorithms neglect. Information of feature space also
reflects the underlying structure of the dataset, which contributes
to improving the discriminative power. On the other hand, DFSC
and co-clustering algorithms have some relations, both of which
are conducted simultaneously on the rows and columns of data.
The difference is that DFSC exploits self-representation property,
and determines the importance of features according to P, thus it
has an additional selection process, where irrelevant or redundant
features are removed.

In Section 4, the results on some datasets are not sound, one
reason may be that the proposed DFSC optimizes the variables P
and S independently. It is expected to develop an optimization
mechanism that can update P and S simultaneously. On the other
hand, self-representation property is based on the nature fact that
redundancy exists in features. However, for a dataset which has
strong independence between the data or features, or the correla-
tion is weak, the self-representation property is not very suitable.
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