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Based on spectral graph theory, spectral clustering is an optimal graph partition problem. It has been
proven that the spectral clustering is equivalent to nonnegative matrix factorization (NMF) under certain
conditions. Based on the equivalence, some spectral clustering methods are proposed, but the global
discriminative information of the dataset is neglected. In this paper, based on the equivalence between
spectral clustering and NMF, we simultaneously maximize the between-class scatter matrix and mini-
mize the within-class scatter matrix to enhance the discriminating power. We integrate the geometrical
structure and discriminative structure in a joint framework. With a global discriminative regularization
term added into the nonnegative matrix factorization framework, we propose two novel spectral clus-
tering methods, named global discriminative-based nonnegative and spectral clustering (GDBNSC-Ncut
and GDBNSC-Rcut) These new spectral clustering algorithms can preserve both the global geometrical
structure and global discriminative structure. The intrinsic geometrical information of the dataset is
detected, and clustering quality is improved with enhanced discriminating power. In addition, the
proposed algorithms also have very good abilities of handling out-of-sample data. Experimental results
on real word data demonstrate that the proposed algorithms outperform some state-of-the-art methods
with good clustering qualities.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cluster analysis is an important part of data mining and pattern
recognition [1,2], which is the problem of portioning the dataset
into several categories according to certain similarity measure, so
that data points belonging to the same class share high similarity,
while the data points belonging to different classes have low
similarity [3]. Clustering algorithms have been widely applied in
many fields, such as image segmentation [4], genetic information
analysis [5], document analysis [6], image retrieval [7], image
compression [8], and so on.

Over the past decades, spectral clustering [9–14] has gained
considerable attention from both the academic and the industrial
communities. Compared with conventional clustering algorithms,
spectral clustering has obvious advantages. It can converge to
global optimum and that it performs well for the sample space of
arbitrary shape, especially suitable for non-convex dataset [15].
Spectral clustering is based on algebraic graph theory, which treats
data clustering problem as a graph partitioning problem [16]. It
constructs an undirected weighted graph with each node corre-
sponds to a data point, and the weight of the edge connecting the
two nodes being the similarity value between the two points [17].
ang).
Then, using certain graph cut method, we divide the graph into
connected components, which are called clusters. Typical graph
cut methods include normalized cut (Ncut) [18], ratio cut (Rcut)
[19], minimum cut (Mcut) [20] and min–max cut (MMcut) [21].
The optimal solution of graph partition can be obtained by mini-
mizing or maximizing the objective function of the graph cut
methods [22]. However, seeking the optimal solution of graph
partition criteria is often NP-hard. Spectral clustering seeks to get
the relaxation solution of graph cut objective function, which is an
approximate optimal solution for graph partition. The basic idea is
considering a continuous relaxation form of the original problem,
turning to solve the eigenvalues and eigenvectors of the graph
Laplacian matrix. In this paper, we only focus on spectral cluster-
ing approaches using Ncut and Rcut as objective functions.

Nonnegative matrix factorization (NMF) [23,24] is a typical
method for dimensionality reduction and matrix factorization.
NMF obtains a low-dimensional approximation of the original data
matrix and gets a part-based representation of the data. The big-
gest difference between NMF and other matrix decomposition
methods (such as SVD) is that the nonnegative constraints lead to
the iterative multiplicative updating rules. By biological knowl-
edge, we know that our brain has a part-based approach for
recognition and understanding. The idea of NMF is consistent with
our cognitive rules of the objective world [25,26]. Therefore, NMF
has a clear physical meaning and strong interpretability.
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NMF is closely related to some algorithms in machine learning
and pattern recognition communities. Probabilistic latent semantic
indexing (PLSI) and NMF have been proven to be equivalent [27],
although they are different methods, they optimize the same
objective function. Ding et al. proved that kernel k-means can be
treated as an NMF problem for symmetric matrix decomposition,
and that NMF equals to Ncut spectral clustering [28]. It has also
been pointed out that Laplace embedding is equivalent to Rcut
spectral clustering [29]. In [29], the nonnegativity constraint is
rigorously enforced, a nonnegative Laplacian embedding (NLE)
approach is proposed and its links with NMF algorithm are
demonstrated. In [28] and [29], symmetric NMF are involved.
Different from [28] and [29], the data matrix itself is considered in
[30]. Under proper conditions, Lu et al. demonstrate that a relaxed
Rcut spectral clustering algorithm is equivalent to nonnegative
factorization of the data matrix into the product a nonnegative
matrix and another nonnegative matrix with orthogonal columns.
Similarly, Ncut spectral clustering is also proven to be equivalent
to nonnegative factorization of the normalized data matrix [30].

Under this equivalence, four algorithms: NSC-Ncut, NSC-Rcut,
NSSC-Ncut and NSSC-Rcut are proposed in [30]. These four algo-
rithms all consider the global manifold structure of a dataset, but
they fail to consider the discriminative structure which reveals the
intrinsic structure of the data distribution. We know that both
manifold information and discriminant information are of great
importance for clustering. We expect to preserve the discriminant
information of a dataset in the learning process.

In order to capture the global discriminative information of the
dataset, an intuitive approach is taking the class labels as prior
knowledge in the learning process. However, in unsupervised
clustering, it is infeasible to get the class labels in advance. For-
tunately, in recent years, we have witnessed some progresses in
employing discriminative structural information under the unsu-
pervised learning paradigm [31–38].

Discriminative cluster analysis (DCA) [31] uses discriminative
features for clustering rather than generative ones. Thus, clustering in
the low dimensional discriminative space is more effective and
computationally efficient than clustering in principal components
space. In [32], the proposed discriminative k-means algorithm per-
forms linear discriminant analysis (LDA) subspace selection and
clustering simultaneously. In [33], both the local manifold structure
and the global discriminant information are preserved simultaneously
through manifold discriminant learning. In [34], the proposed local
discriminative and global integration clustering algorithm (LDMGI)
combines the local discriminative models and manifold structure for
clustering. In [35], the discriminative information and geometrical
information are characterized in a weighted feature space, which can
well estimate the clustering structure of the data. In [36], a new
Laplacian matrix was integrated into a spectral embedded clustering
framework to capture local and global discriminative information for
clustering. In [37], the global discriminative regularization term in is
introduced, which provides more discriminative information to
enhance clustering performance. In [38], an effective feature extrac-
tion method used discriminant analysis, which facilites the learning
power of the method.

These algorithms use the global discriminative information,
and make their performance to be improved. However, the general
global discriminative model is used in linear cases, so these algo-
rithms cannot effectively deal with the nonlinear data. Fortunately,
this problem can be solved with the development of kernel tricks
[39–44]. Kernel trick has been applied to many learning algo-
rithms, such as the kernel principal component analysis (KPCA)
[39], the kernel trick for support vector machines (SVMs) [40] and
the kernelized LDA [41–44]. In [41], a nonlinear method based on
Fisher’s discriminant was proposed, which called kernel fisher
discriminant (KFD). Fisher discriminant can be computed
efficiently in feature space by using the kernel trick. So KFD can be
used to handle nonlinear data, and also maintains the advantages
of Fisher’s discriminant analysis. The results show that KFD is
competitive to other state-of-the-art methods. In [42], a method to
deal with nonlinear discriminant analysis using kernel function
operator was proposed. It is effective for both simulated data and
alternate kernels. In [43], Liang et al. proposed a method to solve
kernel Fisher discriminant analysis. This method is effective and
feasible in dealing with handwritten numeral characters. In [44],
the method of KFD was analyzed and a more transparent KFD
algorithm was proposed, in which KPCA was first performed and
then LDA was used for a second feature extraction. Simulation
results on CENPARMI handwritten numeral database showed the
effectiveness of this algorithm. Therefore, the kernelized global
discriminative model can be used for nonlinear data effectively.

Inspired by these ideas, we integrate the global geometrical
structure and the global discrimination structure in a joint unsu-
pervised framework. We propose two novel spectral clustering
algorithms named global discriminative-based nonnegative spec-
tral clustering (GDBNSC-Ncut and GDBNSC-Rcut). The proposed
approaches are expected to keep the connection between spectral
clustering and NMF, and learn a compact data representation. This
compact data representation can preserve not only the global
geometric information but also has the global discriminant ability,
both of which are crucial for effective clustering. Different from
previous work [18,19,29,30], the proposed algorithms preserve
both discriminative information and the geometrical information
of the dataset, while still keeping the connection between NMF
and spectral clustering.

We know that some former algorithms [28–30] just perform
nonnegative matrix factorization of matrices to keep connection
between spectral clustering and NMF. We go a step further by
integrating discriminative information in the objective function to
detect the intrinsic structure of the dataset.

It is worthwhile to highlight the main contributions of the
proposed algorithms here:

1. The proposed methods do not only connect spectral clustering
algorithm with NMF, but also characterize both the underlying
global geometrical information and the global discriminative
information of the dataset, and the proposed algorithms have
good ability to handle out-of-sample data.

2. For the proposed algorithms, we give the objective functions,
develop iterative multiplicative updating schemes, and analyze
the convergence.

3. The remainder of this paper is organized as follows. In Section 2,
we introduce some related work. In Section 3, we present the
proposed algorithms, deduce iterative multiplicative updating
rules, and then provide the convergence proof of the optimiza-
tion scheme. Experimental part is presented in Section 4.
Finally, some concluding remarks and several issues of future’s
work are given in Section 5.
2. Related works

In this section, we briefly review some recent work closely
related to our algorithms.

2.1. Rcut spectral clustering

Let X ¼ ½x1; x2; :::; xN �AℝM�N denote the data matrix,
xiAℝMdenotes the i-th data point, M is the dimensionality of
original data, and N is the number of samples. The dataset is
expected to group into K classes. We construct an undirected
similarity graph G¼ V ; Eð Þ, where each node corresponds to a data
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point in set V ¼ x1; x2; :::; xNf g, and E denotes the edge set. We can
compute a similarity weight matrix WAℝN�N from the data
points. In this paper, we assume the pairwise similarity being
nonnegative, i.e., WijZ0, and W is symmetric.

The unnormalized graph Laplacian matrix is defined as follows:

L¼D�W ð1Þ
where D is a diagonal matrix whose entries are the column (or
row) sums of W, Dii ¼

P
jWij . L is a symmetric positive semi-

definite matrix.
Let the class indicator vector for the lth class Cl be hlAℝN ,

defined as

hl ið Þ ¼
1; xACl

0; otherwise

(
ð2Þ

We define cluster indicator matrix HAℝN�K as

H ¼ h1

‖h1‖
;
h2

‖h2‖
; :::

hK

‖hK‖

� �
ð3Þ

Obviously, HTH ¼ I.
Rcut spectral clustering solves the following problem:

min
H;HTH ¼ I

tr HTLH
� �

ð4Þ

where trð U Þ denotes the trace of a matrix.

2.2. Ncut spectral clustering

For Ncut spectral clustering, we define the cluster indicator
vector as

zl ¼D1=2hl=‖D1=2hl‖ ð5Þ
where, Z ¼ ðz1;z2; :::; zK Þ is the cluster indicator matrix. It is
obviously that ZTZ¼ I.

The symmetric normalized graph Laplacian matrix is defined as

Ls ¼D�1=2LD�1=2 ¼ I�D�1=2WD�1=2 ð6Þ
Ncut spectral clustering solves the following problem:

min
Z;ZTZ ¼ I

tr ZTLsZ
� �

ð7Þ

2.3. Nonnegative Laplacian Embedding (NLE)

In [29], it has been proven that nonnegative Laplacian
embedding is equivalent to the following symmetric NMF:

W�DþσI �QQ T s:t: Q TQ ¼ I; QZ0 ð8Þ
Consider this equivalence, nonnegative Laplacian embedding

(NLE) solves the following problem:

min
Q

tr Q T W�DþσIð ÞQ
� �

s:t: Q TQ ¼ I; QZ0 ð9Þ
where σ is the largest eigenvalue of L¼D�W .

2.4. Nonnegative and sparse spectral clustering

Given the dataset XZ0, the similarity matrix is measured by
inner product, i.e., the similarity matrix W ¼ XTX. In [30], the
intrinsic connection between spectral clustering and NMF has
been revealed. They also prove that spectral clustering can be
regarded as NMF of data matrix or scaled data matrix with
orthogonal constraints.

2.4.1. Nonnegative spectral clustering for Ncut (NSC-Ncut)
We first introduce a theorem demonstrated in [30].
Theorem 1. If the data matrix XZ0 and the similarity matrix
W ¼ XTX, Ncut spectral clustering (7) is equivalent to the non-
negative matrix factorization of the scaled data matrix D�1=2XT � ZY
subject toZTZ ¼ I.

Based on Theorem 1, nonnegative spectral clustering for Ncut
(NSC-Ncut) solves the following problem:

min
Z;Y

‖D�1=2XT �ZY‖2F

s:t: ZTZ ¼ I ð10Þ
where ‖ ∙ ‖F denotes the Frobenius norm, ZAℝN�K and
YAℝK�Mare two nonnegative matrices, the rows of Z serve as a
clustering indicator vector for each data point, and the columns of
Z are clustering indicator vector of each cluster.

2.4.2. Nonnegative spectral clustering for Rcut (NSC-Rcut)
Similarly, as for Rcut spectral clustering, the Rcut spectral

clustering is relaxed and then it can be casted into an NMF pro-
blem. There is also a theorem.

Theorem 2. If the data matrix XZ0 and the similarity matrix
W ¼ XTX, Rcut spectral clustering (4) can be relaxed such that it is
equivalent to the nonnegative matrix factorization of the data matrix
XT �HYsubject to HTH ¼ I.

Based on Theorem 2, nonnegative spectral clustering for Rcut
(NSC-Rcut) solves the following problem:

min
H;Y

‖XT � HY‖2F

s:t: HTH¼ I ð11Þ
Where, HAℝN�Kand YAℝK�M are two nonnegative matrices, the
rows of H serve as a clustering indicator vector for each data point,
and the columns of H are clustering indicator vector of each
cluster.

2.4.3. Nonnegative and sparse spectral clustering for Ncut (NSSC-
Ncut)

Sparse constraints are added to the cluster indicator matrices in
the nonnegative matrix factorization framework to increase
robustness of spectral clustering. l1-norm is used to measure
sparseness, the two corresponding nonnegative and sparse spec-
tral clustering (NSSC) algorithms are named NSSC-Ncut and NSSC-
Rcut.

The objective function of NSSC-Ncut is as follows:

min
Z;Y

1
2
‖D�1=2XT �ZY‖2F þ λ‖Z‖1

s:t: ZTZ ¼ I ð12Þ
where λ40 is the trade-off parameter that balances the recon-
struction item and sparse item, ‖ ∙ ‖1 denotes l1 � norm, and for a
matrix BAℝn�d, the l1 � norm of B is

‖B‖1 ¼
Xn
i ¼ 1

Xd
j ¼ 1

Bij
�� �� ð13Þ

2.4.4. Nonnegative and sparse spectral clustering for Rcut (NSSC-
Rcut)

Similarly, NSSC-Rcut solves the following problem:

min
H;Y

1
2
‖XT �HY‖2F þ λ‖H‖1

s:t: HTH¼ I ð14Þ
where λ40 is the trade-off parameter that balances the recon-
struction item and sparse item.
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3. Global discriminative-based nonnegative spectral clustering
algorithm (GDBNSC)

We know that NSC-Ncut, NSC-Rcut, NSSC-Ncut and NSSC-Rcut
factorize the data matrix or the normalized data matrix into the
product of a nonnegative matrix and another nonnegative matrix
with orthogonal columns. They just keep the equivalence between
spectral clustering and NMF. The global discriminative structure of
the dataset is not considered, and their clustering performance
needs to be improved. To compensate this drawback, we add
global discriminative regularization term into the nonnegative
matrix factorization framework. Both the global geometric infor-
mation and global discriminative information are preserved for
clustering. We propose two novel nonnegative spectral clustering:
GDBNSC-Ncut and GDBNSC-Rcut. Next, we will present their
objective functions, and deduce iterative updating rules. The
convergence proof of the algorithm is also given.

3.1. The global discriminative model

In order to obtain good clustering results, the discriminative
information should be considered. Here discriminative analysis
model is introduced. We first define a centering matrix
HN ¼ IN� 1

NiNi
T
N , iNAℝNis an N-dimensional vector with all-one,

INis an identity matrix. Let X � ¼ XHNbe the centered matrix.
We bring in the between-cluster matrix (SB) and the within-

cluster matrix (SW ) [32] as follows:

SB ¼ X
�
HHT X

� T
ð15Þ

SW ¼ X
�
X
� T

� X
�
HHT X

� T
ð16Þ

ST ¼ SBþSW ¼ X
�
X
� T

ð17Þ
Where, matrix ST denotes the total scatter.

As a modern nonlinear cluster method, spectral clustering can
capture the nonlinear manifold structure. However, the above
global discriminative model is a linear version of fisher dis-
criminative analysis (LFDA). Therefore, we need to kernelize the
above discriminative model.

Kernel trick has been widely applied to effective analysis of
nonlinear data. Using the idea of the kernel trick, the input data
are mapped into an implicit feature space by a nonlinear mapping
and these data are handled in the feature space [40–44].

The input space xiAℝMcan be mapped into the feature space F
by a nonlinear mapping function ϕ:

ϕ : ℝM-F; x↦ϕðxÞ ð18Þ
Then we get the following kernel discriminative model:

SB
4

¼ϕðXÞHNHHTHN
TϕðXÞT ð19Þ

ST
4

¼ϕðXÞHNHN
TϕðXÞT ð20Þ

Note that HNHN
T ¼HN , so (20) can be rewritten as follows:

ST
4

¼ϕðXÞHNϕðXÞT ð21Þ
The goal of clustering is to maximize the between-cluster

scatter matrix and minimize the within-cluster scatter matrix
simultaneously, i.e., to solve the following optimization problem.

max
H

tr ST
4
þμIN

� ��1

SB
4

 !
ð22Þ

where, μ40, μIN is added to make the matrix ST
4
þμIN

� �
inver-

tible. Here we fix μ¼ 10�12.
By maximizing the above equation, we can characterize the
discriminating power and get compact data representation.

Note that

trðHTHNHÞ ¼ tr HT IN�
1
N
iNiN

T
� �

H
� �

¼ K � 1 ð23Þ
It indicates that trðHTHNHÞ is a constant [45], then the above

optimization problem can be rewritten as follow:

min
H

trðHTHNH�ðST
4
þμINÞ�1SB

4
Þ

¼min
H

trðHTHNH�ðϕðXÞHNϕðXÞT þμINÞ�1

�ϕðXÞHNHHTHN
TϕðXÞT Þ

¼min
H

trðHTHNH�HTHN
TϕðXÞT ðϕðXÞHNϕðXÞT

þμINÞ�1ϕðXÞHNHÞ
¼min

H
trðHT ðHN�HN

TϕðXÞT ðϕðXÞHNϕðXÞT þμINÞ
�1

�ϕðXÞHNÞHÞ

¼min
H

trðHT ðHN�HN
T ðHNþμðϕðXÞTϕðXÞÞ�1Þ�1

HNÞH
�

ð24Þ

Let Κ1 ¼ϕðXÞTϕðXÞ be the kernel matrix, then (24) can be
rewritten as follows

min
H

trðHT ðHN�HN
T ðHNþμK1

�1Þ�1HNÞHÞ ð25Þ

There are various kernel functions, such as Linear kernel,
Gaussian kernel, Polynomial kernel, Cosine kernel and Hyperbolic
kernel [46]. We use the Gaussian kernel in this paper, and it is
defined as K1ðxi; xjÞ ¼ exp �‖xi �xj‖2

2σ2

� �
.

We define Q ¼HN�HN
T ðHNþμK1

�1Þ�1HN , so (25) can be
rewritten as follows

min
H

trðHTQHÞ ð26Þ

Now, we integrate this global discriminative item and the global
geometrical structure in a nonnegative matrix factorization framework.
We get two novel spectral clustering algorithms: GDBNSC-Ncut and
GDBNSC-Rcut. Next, wewill present their objective functions respectively.

3.1.1. The objective function of GDBNSC-Rcut
The objective function of GDBNSC-Rcut is

min
HTH ¼ I

1
2
‖XT �HY‖2F þαtrðHTQHÞ;

s:t: HZ0;YZ0;HTH ¼ I; ð27Þ
where, αZ0 is the regularization parameter that balances the
reconstruction error in the first term and the discriminative reg-
ularization in the second term. When letting α¼ 0, GDBNSC-Rcut
degenerates to NSC-Rcut.

3.1.2. The objective function of GDBNSC-Ncut
GDBNSC-Ncut solves the following problem:

min
Z;Y;ZTZ ¼ I

1
2
‖D�1=2XT �ZY‖2F þαtrðZTQZÞ

� �
ð28Þ

where the trade-off parameter αZ0 balances the error recon-
struction regularization in the first term and the global dis-
criminative regularization the second term item. Letting α¼ 0,
GDBNSC-Ncut degenerates to NSC-Ncut.

In traditional spectral clustering approaches, the eigenvectors
of the graph Laplacian matrices may involve negative components.
The existence of negative components may cause deviation of the
results from actual cluster labels [47]. Fortunately, cluster indicator
matrices H and Z are nonnegative in our NMF based spectral
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clustering frameworks. Therefore, the results of our proposed
algorithms are much closer to the real results. Additionally, the
proposed algorithms are equipped with discriminating power by
the utilization of the global discriminant information.

3.2. Iterative updating rules

Taken GDBNSC-Rcut as an example, we show the process of
developing the iterative updating rules for the algorithm. Let us
write the objective function:

L¼ 1
2
‖XT �HY‖2F þαtrðHTQHÞ ð29Þ

The updating rule for Y is as follows:

Y ij
T ¼ ðXHÞij ð30Þ

We have noticed that, GDBNSC-Rcut and NSSC-Rcut have the
same updating rule for Y. Next, we will concentrate on the
updating rules for H.

The objective function can be rewritten as follow:

LðH;Y Þ ¼ 1
2
‖XT �HY‖2F þαtrðHTQHÞ

¼ 1
2
trðXXT �2YTHTXT þYTHTHYÞþαtrðHTQHÞ ð31Þ

The partial derivative is

∂L
∂HT ¼ �YXþYYTHT þ2αHTQ ð32Þ

Let Q ¼Q þ �Q � , Q ij
þ ¼ ðjQ ij j þQ ijÞ=2, Q ij

� ¼ ðjQ ij j �Q ijÞ=2,
with application of the gradient descent method, we have the
following updating rule for HT :

Hij
T’Hij

T þηij½YXþ2αHTQ � �ðYYTHT þ2αHTQ þ Þ� ð33Þ

We set the step ηij similar with that in [24] as follows:

ηij ¼
Hij

T

YYTHT þ2αHTQ þ ð34Þ

With ηij substituted into the updating formula (33), we get

Hij
T ¼Hij

T YXþ2αHTQ �

YYTHT þ2αHTQ þ ð35Þ

For GDBNSC-Ncut algorithm, we have a similar iterative
updating rule

ZT
ij ¼ ZT

ij
YXD�1=2þ2αZTQ �

YYTZT þ2αZTQ þ ð36Þ

The process of the proposed algorithm is shown as follows in
Table 1.

In Table 1, as for handling the out-of-sample data, the cluster
indicator matrix Y is K*M. When a new data point x (M*1) comes,
its cluster indicator vector Yx is computed of size K*1. And its
cluster membership can be obtained by k-means clustering.
Table 1
The global discriminative-based nonnegative spectral clustering algorithms.

Input: dataset X, kernel matrix K1, the number of clusters K, the maximum
number of iterations t, and regularization parameter α.
Output: clustering labels

1. Random initialize of the two nonnegative matrixes H (Z for GDBNSC-Ncut) and
Y.

2. Updating Y and H (Z for GDBNSC-Ncut) iteratively using corresponding rules.
3. After reaching the number of iterations, output Y and H.
4. Clustering H (Z for GDBNSC-Ncut) into k classes using k-means algorithm.
5. Once a new data comes, its cluster indicator vector can be calculated by Yx, and

its cluster membership can be calculated by k-means clustering algorithm.
3.3. Convergence analysis of the proposed algorithms

In this section, we analyze the convergence of the iterative
updating rules in case of GDBNSC-Rcut. We will prove that the
iterative updating schemes state in Eqs. (30) and (35) lead to local
minima of the objective function in Eq. (29).

We have the following theorem:

Theorem 3. For given matrices XAℝM�N, HAℝN�K ; YAℝK�MZ0,
the objective function in formula (29) is non-increasing under the
alternative iterative updating rules in (30) and (35).

Next, we give a detailed proof of the theorem. Our proof follows
the ideas in the proof of NMF [24] and [48].

Lemma 1. When the following conditions are satisfied:

Gðu;u0ÞZFðuÞ ð37Þ

And

Gðu;uÞ ¼ FðuÞ ð38Þ

Gðu;u0Þ is an auxiliary function of FðuÞ. So under the updating
formula

uðtþ1Þ ¼ arg min
u

Gðu;uðtÞÞ ð39Þ

the function F is non-increasing.
Proof. Fðuðtþ1ÞÞrGðuðtþ1Þ;uðtÞÞrGðuðtÞ;uðtÞÞ ¼ FðuðtÞÞ.
Note that only when uðtÞ is the local minimum for Fðu;uðtÞÞ,

Hðuðtþ1ÞÞ ¼HðuðtÞÞ holds [24].
Since the updating rule for H contains global manifold dis-

crimination information, here we demonstrate a proof of con-
vergence of only the updating rule of H, the convergence proof of
the updating rule of Y is a similar case.

For notation convenience, we let V ¼HT .

Lemma 2. Let F 'be the first partial derivatives of L with respect to
HT ðV Þ, the function

Gðv; vtabÞ ¼ FabðvtabÞþF 0abðv�vtabÞþ
ðYYTHT þ2αHTQ þ þλÞab

vtab
ðv�vtabÞ2

ð40Þ
is an auxiliary function of Fab.

Proof By. the above equation, we have Gðv; vÞ ¼ FabðvÞ, so we only
need to prove that Gðv; vtabÞZFabðvÞ. To this end, we compare the
Taylor expansion of Gðv; vtabÞ with FabðvÞ

FtabðvÞ ¼ FabðvtabÞþF 0abðv�vtabÞþ
1
2
F″abðv�vtabÞ2 ð41Þ

where, Fab'' is the second order partial derivative of L with respect
to HT

F″ab ¼ YYT þ2αQ ð42Þ

ðYYTHT Þab ¼
XK
l ¼ 1

ðYYT ÞalvtlbZðYYT Þaavtab ð43Þ

ðHTQ þ Þab ¼
XN
l ¼ 1

vtalQ
þ
lb ZvtabQ

þ
bbZvtabðQ þ �Q � Þbb ð44Þ

In summary, we have the following inequality

ðYYTHT þ2αHTQ þ þλÞab
vtab

Z
1
2
F 00ab ð45Þ

Then the inequality Gðv; vtabÞZFabðvÞ is satisfied, and the lemma
is proven.
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From Lemma 2, we know that Gðv; vtabÞ is an auxiliary function
of FabðvabÞ. Then from Lemma 1, we solve the problem

vðtþ1Þ ¼ arg min
u

Fðv; vðtÞÞ ð46Þ

We get

vðtþ1Þ
ab ¼ vðtÞab

ðYXþ2αVQ � Þab
ðYYTVþ2αVQ þ Þab

ð47Þ

So the updating rule for HT is as follows

HT
ij ¼HT

ij
YXþ2αHTQ �

YYTHT þ2αHTQ þ ð48Þ

Similarly, we can get the updating rule for YT :

Y ij
T ¼ ðXHÞij ð49Þ
Table 2
Features of UCI and AT&T datasets.

Datasets #Sample #Dimension #Class

Dermatology 366 33 6
Glass 214 9 6
Soybean 47 35 4
Vehicle 846 18 4
Zoo 101 16 7
AT&T 400 10,304 40

Fig. 1. Real clustering result and clustering results of NLE, NSC-Rcut and GDBNSC-Rc
(d) GDBNSC-Rcut.
4. Experimental results and analysis

In this section, we carry out extensive experiments on some
datasets in comparison with some other spectral clustering methods.
4.1. Data sets

We will make comparisons of the clustering quality in term of
clustering accuracy with some spectral clustering algorithms. The
compared algorithms include traditional Ncut [18] and Rcut [19]
spectral clustering algorithms, NLE [29], NSC-Ncut, NSC-Rcut,
NSSC-Ncut and NSSC-Rcut [30]. Six datasets include five UCI
datasets and an AT&T face dataset [30].

The datasets we use are the same as in [30] and the features are
shown as follows in Table 2.
4.2. Evaluation metric

In the experiments, the number of cluster is set as the true
number of classes. We use a common clustering evaluation index,
namely clustering accuracy (ACC) [49–51] to evaluate the effec-
tiveness of the above clustering algorithms.

Given a data point xi, ci and gi are the labels of the clustering
algorithm and the ground truth label respectively. The accuracy
(ACC) of a clustering method is defined as

ACC ¼

Pn
i ¼ 1

δðgi;mapðciÞÞ

n
ð50Þ
ut on a two-dimensional synthetic dataset. (a) Real result (b) NLE (c) NSC-Rcut



Fig. 2. The clustering accuracy of NLE, Ncut, NSC-Ncut, NSSC-Ncut and GDBNSC-Ncut on five UCI datasets and AT&T dataset. (a) Dermatology, (b) Glass, (c) Soybean,
(d) Vehicle, (e) Zoo and (f) AT&T. (a) Dermatology (b) Glass (c) Soybean (d) Vehicle (e) Zoo (f) AT&T.
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where, n is the total number of data samples, δð:; :Þ is the delta
function as follows:

δ x; yð Þ ¼
1; x¼ y

0; otherwise

(
ð51Þ

mapð:Þ is the optimal mapping function, using the Hungarian
algorithm [52] to permute the clustering labels and the ground truth
labels. The higher the accuracy is, the better the performance is.

4.3. Toy experiment

We apply NLE, NSC-Rcut and GDBNSC-Rcut to a two-
dimensional synthetic dataset, shown in Fig. 1(a). The clustering
results of NLE, NSC-Rcut and GDBNSC-Rcut on this dataset are
given in Fig. 1(b), (c), and (d) respectively. In Fig. 1, different shapes
indicate different classes.

From Fig. 1(b), (c), and (d), we can see that NLE and NSC-Rcut
are much inferior to the proposed GDBNSC-Rcut. It can be seen
from Fig. 1(d) that GDBNSC-Rcut can differentiate the two classes
successfully, which shows the effectiveness of GDBNSC-Rcut. This
is due to that the proposed GDBNSC-Rcut uses the kernelized
global discriminative model which makes it effective for
nonlinear case.

4.4. Experimental setup

With the same experimental setting in [30], for each clustering
algorithm, we independently run 256 times. For each run, we first
randomly initialize matrices, and then iterate 300 times to achieve
convergence and obtain the cluster indicator matrix H (or Z). k-
means algorithm is applied to the rows of H (or Z, Q) to obtain the
clustering results finally. We fix the parameter μ in matrix Q ¼HN

�HN
T ðHNþμK1

�1Þ�1HN as μ¼ 10�12. We tune the regularization
parameter α from 10�7;10�5;10�4;10�3;10�2;10�1;1;101;

n
102;103g. And for the sake of simplify, we fix the parameter of the
Gaussian kernel σ ¼ 1. For each dataset, we choose the value of α
so that the algorithm has the highest accuracy.
4.5. Experimental results and analysis

For each clustering algorithm, we iterate 300 times, run 256
times independently and continuously. We choose the best results
among the first 2N , N¼1, 2, …, 8 runs to plot figures. The hor-
izontal axis is the logarithm of the number of runs, and the vertical
axis is the clustering accuracy of the algorithm. The accuracy of
NLE, Ncut, NSC-Ncut, NSSC-Ncut and GDBNSC-Ncut algorithms on
six data sets is shown in Fig. 2.

From Fig. 2, for Ncut group spectral clustering algorithms, the
proposed GDBNSC-Ncut can achieve good results within only a
few runs. The proposed GDBNSC-Ncut always outperforms NLE,
NSC-Ncut and NSSC-Ncut. However, NLE performs the worst. On
“Glass” and “AT&T” datasets, Ncut achieves the best results. On
other four datasets, GDBNSC-Ncut gets the best results. It is worth
mentioning that, of clustering the 400�10304 “AT&T” dataset into
40 classes, GDBNSC-Ncut achieves an accuracy of about 0.4, while



Fig. 3. The clustering accuracy of NLE, Rcut, NSC-Rcut, NSSC-Rcut and GDBNSC-Rcut on five UCI datasets and AT&T dataset. (a) Dermatology, (b) Glass, (c) Soybean,
(d) Vehicle, (e) Zoo and (f) AT&T. (a) Dermatology (b) Glass (c) Soybean (d)Vehicle (e) Zoo (f) AT&T.

Table 3
The clustering results of NLE and Ncut group spectral clustering algorithms on
6 datasets.

Mthods Dermatology Glass Soybean Zoo Vehicle AT&T

NLE Ave 0.3489 0.2505 0.4771 0.4932 0.2824 0.2072
Best 0.6011 0.3738 0.8085 0.7624 0.4113 0.2625

Ncut Ave 0.7547 0.4653 0.7046 0.6317 0.3776 0.6224
Best 0.888 0.5654 0.7447 0.8614 0.3806 0.715

NSC-Ncut Ave 0.7129 0.2522 0.7143 0.6159 0.3957 0.3518
Best 0.9809 0.3598 1 0.8911 0.4504 0.415

NSSC-Ncut Ave 0.7185 0.3477 0.7167 0.661 0.4196 0.025
Best 0.9809 0.4486 1 0.9109 0.4704 0.2325

GDBNSC-
Ncut

Ave 0.8260 0.4126 0.7977 0.6504 0.4605 0.3854
Best 0.9781 0.4486 1 0.8812 0.4775 0.435
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the result of NSSC-Ncut is about 0.22, and the improvement of
GDBNSC-Ncut is obvious.

The accuracy results of NLE, Rcut, NSC-Rcut, NSSC-Rcut,
GDBNSC-Rcut algorithms on six datasets are shown in Fig. 3.

From Fig. 3, for Rcut group spectral clustering algorithms, the
proposed GDBNSC-Rcut can achieve good results within only a few
runs. The proposed GDBNSC-Rcut algorithm outperforms all the
other algorithms on the six datasets. Both NLE and Rcut are much
inferior to the other methods. NSC-Rcut and NSSC-Rcut perform
the second best on all datasets except for the “Glass” dataset. On
the “Glass” dataset, NSC-Rcut has clustering result of about 0.32, a
relatively poor result. The GDBNSC-Rcut achieves an accuracy of
about 0.42 on the ‘Glass’ dataset, an apparent improvement.
For each clustering algorithm, we independently run 256 times,
we record the best results from the optimal parameter and the
average results are reported. All the results are shown in Tables 3
and 4. The best results for each dataset are highlighted in bold.

From the data in Tables 3 and 4, we can get the following
conclusions:

1. Ncut group spectral clustering algorithms usually perform bet-
ter than Rcut group spectral clustering algorithms. NLE per-
forms the worst among all the nine algorithms.

2. GDBNSC-Ncut outperforms or has competitive clustering results
compared with NSC-Ncut and NSSC-Ncut. GDBNSC-Ncut out-
performs Ncut except for “Glass” and “AT&T” datasets. GDBNSC-
Rcut outperforms or has competitive clustering results com-
pared with NSC-Rcut and NSSC-Rcut. The results of GDBNSC-
Rcut are much better than that of Rcut overall. This demon-
strates that it is crucial to exploit the discriminative information
in unsupervised clustering.

3. Although the results of GDBNSC-Ncut on “Glass” and “AT&T”
datasets are worse than that of Ncut, On “Glass” and “AT&T”
datasets, the results of GDBNSC-Ncut are much better than
those of NSC-Ncut and NSSC-Ncut on “Glass” and “AT&T”
datasets.

4. Almost all the best results are acquired by GDBNSC-Ncut and
GDBNSC-Rcut which illustrates the effectiveness of the pro-
posed algorithms.

5. The results have shown that the clustering performance can be
significantly enhanced with the global geometrical structure
exploited and the global discriminative structure considered.



Table 4
The clustering results of NLE and Rcut group spectral clustering algorithms on 6 datasets.

Methods Dermatology Glass Soybean Zoo Vehicle AT&T

NLE Ave 0.3489 0.2505 0.4771 0.4932 0.2824 0.2072
Best 0.6011 0.3738 0.8085 0.7624 0.4113 0.2625

Ncut Ave 0.4725 0.4155 0.6397 0.6096 0.3391 0.3136
Best 0.5574 0.4346 0.7234 0.7228 0.3735 0.3575

NSC-Rcut Ave 0.6602 0.2516 0.6986 0.6197 0.3863 0.3533
Best 0.9672 0.3692 1 0.8812 0.4314 0.415

NSSC-Rcut Ave 0.67 0.2616 0.6976 0.6185 0.3865 0.3513
Best 0.9699 0.3832 1 0.8812 0.4551 0.435

GDBNSC-Rcut Ave 0.7324 0.3640 0.8004 0.6477 0.3886 0.3695
Best 0.9699 0.486 1 0.901 0.448 0.4575

Fig. 4. Thirty images of three persons from AT&T face database.

Fig. 5. Clustering effects of (a) NLE, (b) GDBNSC-Rcut and (c) NSC-Rcut. (a) NLE (b) GDBNSC-Rcut (c) NSC-Rcut.
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4.6. An illustrative example

Fig. 4 shows the images of three persons from AT&T database,
each person has 10 images with different expressions and poses.
For each image, we reshape the image to a single vector to
represent the image, and then the dataset for clustering is of the
size 10,304�30. Experiments are also conducted on NSC-Rcut,
NLE and GDBNSC-Rcut as comparison to illustrate the effective-
ness of the proposed algorithms.

As the cluster indicator matrix H of GDBNSC-Rcut is 30�3, we
can plot each row of H after 50 iterations as a point in a 3D plot
shown in Fig. 5(b), where different clusters are represented by
different colors and signs. Fig. 5(a) shows the image of Q matrix in
NLE, and Fig. 5(c) shows the image of H matrix in NSC-Rcut [30].
From Fig. 5, we have the observation that the three clusters cannot
be separated using NLE method (see Fig. 5(a)), and that the proposed
method GDBNSC-Rcut and NSC-Rcut can separate the three clusters
even in an iteration of 30. This experiment illustrates that the pro-
posed algorithm GDBNSC-Rcut has better clustering discriminative
ability than NLE.
4.7. Sensitivity to the selection of the parameter α

In this section, we will investigate the sensitivity with respect to
the regularization parameter α on the 6 datasets. The iteration for
the algorithms is 300. Fig. 6 shows how the average performance
with 20 independent and continuous runs of GDBNSC-Ncut and
GDBNSC-Rcut vary with α.



Fig. 6. The performances of GDBNSC-Ncut and GDBNSC-Rcut vary with the regularization parameterα (a) Dermatology (b) Glass (c) Soybean (d) Vehicle (e) Zoo (f) AT&T.
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From the results shown in Fig. 6, we can observe that when the
value of the regularization parameter α increases, the clustering
results of GDBNSC-Ncut will first increase and then decrease but
remain stable finally. The proposed GDBNSC-Rcut is robust to the
value of the regularization parameter α.
5. Conclusions

In this paper, we proposed two novel global discriminative-
based nonnegative spectral algorithms for clustering, named
GDBNSC-Ncut and DBNSC-Rcut. Based on the equivalence between
spectral clustering and NMF, we incorporate the global dis-
criminative regularization terms into a nonnegative matrix fac-
torization framework. The proposed algorithms preserve both the
global geometrical and global discriminative structure of datasets.
They have strong discriminative power and good clustering
results. Experiments on real world datasets demonstrate the
effectiveness of the proposed algorithms. However, not all algo-
rithms including the proposed algorithms can achieve good
enough results on some datasets such as “AT&T”, where the
accuracy is below fifty percent. Therefore, the future work is to
integrate feature selection into the framework for clustering,
especially for high dimensional dataset such as “AT&T” to further
improve the clustering accuracy.
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