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ABSTRACT

In real-world applications, data instances are not only related to high-dimensional features, but also in-
terconnected with each other. However, the interconnection information has not been fully exploited for
feature selection. To address this issue, we propose a novel feature selection algorithm, called dual space
latent representation learning for unsupervised feature selection (DSLRL), which exploits the internal as-
sociation information of data space and feature space to guide feature selection. Firstly, based on latent
representation learning in data space, DSLRL produces dual space latent representation learning, which
characterizes the inherent structure of data space and feature space, respectively. Secondly, in order to
overcome the problem of the lack of label information, DSLRL optimizes the low-dimensional latent rep-
resentation matrix of data space as a pseudo-label matrix to provide clustering indicators. Moreover, the
latent representation matrix of feature space is unified with the transformation matrix to benefit the
matching of the data matrix and the clustering indicator matrix. In addition, DSLRL uses non-negative
and orthogonal conditions to constrain the sparse transform matrix, making it more accurate for evalu-
ating features. Finally, an alternating method is employed to optimize the objective function. Compared
with seven state-of-the-art algorithms, experimental results on twelve datasets show the effectiveness of

DSLRL.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

With the development of science and technology, the era of big
data has arrived. A large amount of data is generated every day,
and the dimension of data is increasing [1]. Processing these high-
dimensional data directly not only greatly increases the computa-
tion time and storage space, but also results in poor performance
due to the existence of noise, irrelevant features, and redundant
features [2]. Therefore, it is necessary to overcome the "dimen-
sional disaster" caused by large-scale high-dimensional data. Ex-
periments show that effective dimensionality reduction methods
can not only reduce the cost of data processing, but also effectively
improve the performance of clustering algorithm [3,4]. Feature se-
lection is one of the common dimensionality reduction methods,
which is designed to select a representative subset to represent the
original data [5].

According to the availability of sample labels, previous feature
selection methods are usually divided into three categories: su-
pervised methods [2,6], semi-supervised methods [7,8], and unsu-
pervised methods [9,10]. In the supervised feature selection meth-
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ods, all training sample labels are known in advance. These meth-
ods evaluate the importance of each feature based on the corre-
lation between labels and features, and select discriminative fea-
tures. When there are only a few data labels, the semi-supervised
feature selection methods can effectively improve the accuracy of
feature selection [7], which mine the relationship between the data
and build a similarity matrix. In supervised and semi-supervised
feature selection methods, all or part of the data labels need to
be known. However, in most practical applications, it is labori-
ous to obtain data labels. In this case, the advantages of unsuper-
vised feature selection methods are obvious compared to the first
two methods. These methods can determine the importance of fea-
tures through the underlying attributes of the original data with-
out the label information [9]. Therefore, the unsupervised feature
selection method is more suitable for dimension reduction of high-
dimensional data. In this paper, we focus on unsupervised feature
selection.

According to different search strategy, unsupervised feature se-
lection methods can generally be classified into three types, includ-
ing filter methods [11-13], wrapper methods [14,15], and embed-
ded methods [16-18]. Filter methods evaluate the importance of
features based on the statistical characteristics of data, and then
select top-ranked features [11]. Commonly used metrics include
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variance, Laplace score, similarity of features, and more. Due to the
low cost and high efficiency, filter methods are widely applied in
engineering field. But the subset selected by these methods often
contains noise. Wrapper methods usually select features based on
learning tasks such as clustering [14]. In general, wrapper-based
methods outperform filter methods. However, because of the high
computational cost, wrapper methods are not suitable for process-
ing dimensionality reduction of large-scale data. Embedded meth-
ods combine feature selection and model optimization. Thus, they
can quickly select proper subset during the learning process. Com-
pared with filter methods and wrapper methods, embedded meth-
ods are not only efficient but also have better performance. And
how to construct a suitable model is the most critical issue in the
embedded methods [17].

In the past few decades, many different types of unsupervised
feature selection algorithms have been proposed, and the processes
of them are roughly similar. The importance of each feature is
evaluated according to a certain evaluation criterion, and then a
small number of representative and discriminative features are se-
lected as a subset to complete the clustering or classification task
[19]. For example, He et al. [12] proposed Laplacian score (Lap-
Scor), which calculates the weight of feature based on data mani-
fold information. Higher scores indicate that features are more im-
portant. Under the same principle, spectral feature selection (SPEC)
[11] adopts another criterion to calculate feature weight. Both of
them are the classical feature selection algorithms which construct
an affinity graph to model the local geometric structure, and SPEC
is an extension of Laplacian score. Cai et al. [20] proposed multi-
cluster feature selection (MCFS), which first obtains data geomet-
ric structure information via spectral analysis techniques, and then
uses a sparse transformation matrix to embed the data into low-
dimensional space. Minimum redundancy spectral feature selection
(MRSF) is similar to MCFS, the main difference is that the for-
mer utilizes the [;-norm to constrain sparse transformation matrix,
while the latter uses the I, {-norm constraint [21]. They both adopt
a two-step strategy to perform embedding learning and regression
separately. Unlike MCFS and MRFS, Hou et al. [22] proposed joint
embedding learning and sparse regression (JELSR), which adopts
a single step strategy to optimize embedding matrix and sparse
transformation matrix simultaneously, thus better performing fea-
ture selection. Subsequently, Nie et al. proposed an unsupervised
feature selection approach, called structured optimal graph fea-
ture selection (SOGFS), which performs feature selection and lo-
cal structure learning simultaneously. Thus, it can adaptively de-
termine the similarity matrix [23]. Li et al. proposed generalized
uncorrelated regression with adaptive graph for unsupervised fea-
ture selection (URAFS) [24]. Meanwhile, Shang et al. [25] pro-
posed unsupervised feature selection based on self-representation
sparse regression and local similarity preserving (UFSRL), which
is sparse reconstruction of the original data itself. UFSRL has im-
posed the I,;j,-matrix norm on the coefficient matrix, making
the proposed model sparse and robust to noise. In recent years,
some unsupervised feature selection algorithms based on repre-
sentation learning have been proposed. He et al. [26] proposed
feature self-representation based hypergraph unsupervised feature
selection via low-rank representation (SHLFS), which could effi-
ciently select a subset of informative features from unlabeled data.
SHLFS integrates the low-rank constraint, hypergraph theory, and
the self-representation property of features in a unified framework.
In particular, SHLFS represents each feature by other features to
conduct unsupervised feature selection via the feature-level self-
representation property. Tang et al. [27] proposed robust unsu-
pervised feature selection via dual self-representation and mani-
fold regularization (DSRMR). DSRMR constructs both feature self-
representation and sample self-representation terms, which are
used to respectively learn the feature representation coefficient
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matrix and sample similarity graph to guide feature selection. Fan
et al. also [28] considered the distribution information of feature
space, and they proposed latent space embedding for unsupervised
feature selection via joint dictionary learning (LSEUFS), which cap-
ture the common distribution of feature space and pseudo label
space. LSEUFS integrates joint dictionary learning, spectral analysis
and feature selection into a unified model.

The traditional unsupervised feature selection method usually
assumes that the data instances are ideally independently dis-
tributed. However, in the real world, due to the influence of ex-
ternal conditions, data instances are not only related to high-
dimensional features, but also inherently associated with each
other. For addressing this issue, Tang et al. [29] proposed unsuper-
vised feature selection by latent representation learning and man-
ifold regularization (LRLMR), which exploits the link information
between data instances to select relevant features. Meanwhile, the
local structure of original data is preserved by a graph regular-
ization term in a low-dimensional feature space. However, LRLMR
only utilizes the internal information of data space, and ignores the
internal interconnection information of feature space. The relation-
ship between features becomes more complicated as the number
increases, such as similarity and redundancy. Redundant feature
means that the information it contains can be derived from other
features. Therefore, the internal information in the feature space is
worth exploring.

The latent representation model from the link information
could capture the clustering structure through symmetric non-
negative matrix factorization [30]. In recent years, several re-
lated algorithms based on the information of both data space
and feature space have been proposed and show good perfor-
mance. Luo et al. [31] proposed dual-regularized multi-view non-
negative matrix factorization (DMvNMF), which is developed for
multi-view data clustering. DMvVNMF is able to preserve the geo-
metric information of multi-view data in both the data space and
the feature space. Based on concept factorization(CF),Ye and Jin
[32] proposed dual-graph regularized concept factorization cluster-
ing (GCF), which simultaneously construct data graph and feature
graph to model the geometric structures of both spaces. Compared
with traditional one-sided clustering algorithms, GCF shows better
performance. Then Ye and Jin [33] also proposed adaptive dual-
graph regularized CF with Feature selection (ADGCFgs), which uni-
fied feature selections and dual-graph regularized CF into a joint
objective function. The above algorithms that exploit the informa-
tion of dual space have better performance than algorithms that
only uses the information of data space.

Based on the above considerations, dual space latent represen-
tation learning for unsupervised feature selection (DSLRL) is pro-
posed in this work, which utilizes the intrinsic association infor-
mation of data space and feature space to improve the perfor-
mance of feature selection. The clustering structure of data cluster-
ing is obtained by latent representation learning in data space, and
the clustering structure of feature clustering is obtained through
latent representation learning in feature space. Specifically, the
proposed algorithm constructs affinity matrices in both data space
and feature space, respectively, which are used to characterize the
internal relationships of the samples and the internal relation-
ships of the features. Through the affinity matrices, latent repre-
sentation learning is performed in dual space to separately obtain
the low-dimensional representations of data and feature. The for-
mer reveals the relevant information between instances and clus-
ters, while the latter records the relationship between features and
clusters. In both, the larger value, the more relevant. In the previ-
ous work [23,24], a good projection transformation matrix should
match the data matrix to the cluster indicator matrix as accurate
as possible [34]. In the latent representation matrix of features, the
correlation information between features and clusters is beneficial
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to perform the projection process more accurately. Therefore, the
low-dimensional latent representation of feature is unified with
the projection transformation matrix, and the low-dimensional la-
tent representation of data is equal to the pseudo label matrix. In
this way, the internal information of dual space is fully used to
guide feature selection. Some previous methods measured the fea-
ture importance in the original data space, and the performance
of these methods is usually influenced by the noisy features [29].
Rather than those methods, DSLRL performs feature selection in
the low-dimensional latent representation space to reduce the im-
pact of noisy information. Our main contributions are highlighted
as follows.

1) Latent representation learning based on dual space is proposed,
which characterizes the inherent structure of data space and
feature space, respectively, to reduce the negative influence of
noise and redundant information.

2) The latent representation matrix of data space is regarded as

a pseudo label matrix to provide discriminative information.

Moreover, the latent representation matrix of feature space is

unified with the transformation matrix to benefit the matching

of the data matrix and the clustering indicator matrix, thereby
making full use of the internal information of dual space in fea-
ture selection.

In order to avoid the emergence of trivial solutions, non-

negative constraints and orthogonal constraints are imposed on

the sparse transformation matrix, so that the importance of
each feature can be better reflected.

w
—

The rest of the paper is organized as follows. Some re-
lated feature selection methods are introduced in Section 2.
Section 3 presents the proposed algorithm, optimization method,
convergence analysis and complexity analysis. In Section 4, the ex-
perimental results and analysis of DSLRL and seven comparison al-
gorithms are shown. The conclusions and future work are summa-
rized in Section 5.

2. Related work

This section introduces the concept of latent representation
learning and its application in unsupervised feature selection. In
addition, several related unsupervised feature selection methods
are briefly explained.

Before introducing the following content, a notation table is
listed to more clearly explain the notations which are used in this
paper. Table 1 is a notation comparison table.

2.1. Latent representation

In recent years, latent representation has been found to ben-
efit for many data mining and machine learning tasks, especially
for network data [34]. As a result, it has attracted increasingly at-
tention [36,37]. In the network, there are connections between in-
stances due to various factors, and these hidden factors are often
referred as latent representations [38]. Latent representations of
different instances interact with each other and form link informa-
tion. In general, instances with similar latent representations are
more likely to be interconnected than instances with dissimilar la-
tent representations [39]. Therefore, the adjacency matrix Z ¢ R™"
is used to describe the association between data instances, and
the latent representations is obtained from it. Usually, the latent
representations from link information can be generated through a
symmetric non-negative matrix factorization model [30,40], which
decomposes Zinto the product form of the non-negative matrix U
and its transpose UT as follows:

argmin ||Z — UUT |2 (1)
stU>0
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Table 1
The notation comparison table

Notation ~ Notation description

data matrix

the ith data sample

the ith data feature

adjacency matrix

latent representation matrix

the number of samples

the number of features

the number of latent factors

the number of categories

the dimension of low-dimensional space
the number of selected features
maximum iteration number
low-dimensional embedding matrix
projection transformation matrix
similarity matrix

graph Laplacian matrix

total scatter matrix

latent representation of data space
affinity matrix of data space
affinity matrix of feature space

WESLEUgSMZTIOT RS CNX XX
s
s

where U € R™frepresents the latent representation matrix of n in-
stances, and f denotes the number of latent factors. In [30], sym-
metric non-negative matrix factorization model is used to capture
the clustering structure for data clustering. In other words, latent
representation learning clusters n instances into f classes according
to the connection information between the instances. Tang et al.
borrowed this idea and learned the latent representation from the
affinity matrix of data space for feature selection [29]. However,
they only considered the internal information of data space, but
ignored the application of latent representation learning in feature
space.

2.2. Unsupervised feature selection

2.2.1. MCFS

MCFS proposed by Cai et al. [20] mainly consists of two steps.
First, the low-dimensional embedding matrix F € R™™ is obtained
from data X € R"™4through manifold analysis, where n denotes the
number of samples, d indicates the number of feature, m rep-
resents the dimension of the low-dimensional embedding space,
and m<d. Then the regression coefficient matrixW e R4*™is con-
strained by [;-norm to more accurately reflect the importance of
each feature. Its objective function is formulated as follows:

arg min Tr(F'LF)

FF=I, (2)
min || XW — F| [ + o] W]y

where Tr(-) denotes the trace of a matrix, [[W||;=
Zle Z'};] |W;;| represents [; — norm for sparse constraints.

MCEFS performs embedding learning and sparse regression sep-
arately, and the two interact with each other.

2.2.2. JELSR

Different from MCFS, JELSR [22] adopts a single-step strategy,
which performs low-dimensional embedding learning and sparse
regression simultaneously. And the matrix W is constrained by I -
norm with better robustness. Its objective function is formulated as
follow:

argmin Tr(F'LF) + || XW — F||% + «||W||2 (3)
W.FTF=I,,

JELSR integrates the merits of embedding learning and sparse
regression to perform feature selection, and further improves its
effect.
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2.2.3. SOGFS

Different from conventional embedded unsupervised methods,
which always need to construct the similarity matrix, SOGFS per-
forms feature selection and local structure learning simultaneously,
thus the similarity matrix can be determined adaptively [23]. Given
the ith sample x; of the data matrix X R"<d SOGFS defines that
sample x; can be connected by others with probability s;;. And the
probability of two samples becoming neighbor can be considered
as the similarity between them, so s; is an element of similarity
matrix S. The similarity matrix is optimized to obtain the ideal
state of neighbor assignment, which is beneficial for feature selec-
tion. Its objective function is formulated as follows:

argmin }" (||WTx; — WTx;||2s;; + ocsizj) + v ||W||2.1 + 2ATr(F'LF)
WES i)
s.t.Vi, S,T‘l =1,0<s;;<1,FeR™™, FFF=LWW=1

(4)

SOGFS constrains the similarity matrix S to make it contain
more accurate information of data structure, so this method can
select more valuable features.

2.2.4. URAFS

Taking into account the redundancy of features, Li et al. im-
proved the sparse regression model for feature selection, and pro-
posed a generalized uncorrelated regression model (GURM) for
seeking uncorrelated yet discriminative features [24]. In addition,
the graph regularization term based on the principle of maximum
entropy is also incorporated into the GURM model, there by URAFS
is proposed. Its objective function is expressed as:

argmin ||G(X"W—F)|[f + A||W]2,1
W.F.S

+2o <Tr(FTLF) +B Xn: Xn: (sij logs,-j)> (5)

i=1 j=1
n
stWI(S; + AD)W=LFF=1I73s;=1,5;>0
j=1

where G =1- (1/n)117 is referred as the centering matrix. F de-
notes the indicator matrix, and s;; is an element of similarity ma-
trix S. WT(S; + AD)W =1 is a generalized uncorrelated constraint,
where D is defined as a d x d diagonal matrix and d;; is derived
from||W||, 1, S;=XGXT is the total scatter matrix.

2.2.5. LRLMR

Conventional unsupervised feature selection methods are un-
der the assumption that the data is independently distributed, and
ignore the connections in data instances. The connections exist
in real world and can be used to explore the internal structure
of the data. LRLMR [29] embeds the latent representation learn-
ing into feature selection to exploit interconnection information in
data space. Meanwhile, the local geometric structure of original
data is preserved through manifold learning. The objective func-
tion of LRLMR is formulated as follows:

ar“gNH‘}iHIIXW—VII%+Ot||W||z.1+ﬁIIA—WTII§

: (6)
+yTr(WTXTLXW) s.t.V=>0

Data labels have contributed to the selection of discriminative
and representative features. But in reality, due to the inconve-
nience of obtaining labels, unsupervised feature selection is con-
sidered as a difficult problem. LRLMR models the inherent link in-
formation of data space as a pseudo-label matrix to provide clus-
tering indicators, thereby improving the effect of feature selection,
but it ignores the intrinsic information from the feature space.
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3. The proposed method

In this section, we will give a detailed introduction of DSLRL.
In addition, the optimization method and convergence analysis of
DSLRL are also described. In our work, the data set is represented
by a matrix X € R"*4, the remaining notations that will be used
are listed in Table 1.

3.1. Dual space latent representation learning

Traditional unsupervised feature selection methods always sup-
pose that the distribution state of the data is independent and uni-
form under ideal conditions. However, this distribution is under
ideal conditions, not in the real world. Similar to the homophile
effect, under the influence of various external conditions, data in-
stances generated from homologous or heterogeneous sources of-
ten rely on each other [35]. Hence, it is very necessary to charac-
terize the intrinsic data structure via link information. LRLMR im-
plements this idea by latent representation learning, and applies
it to unsupervised feature selection. Inspired by LRLMR, this algo-
rithm proposes latent representation learning based on dual space,
which mines the interconnection information of both data space
and feature space, simultaneously, in order to characterize their in-
trinsic structure, thereby better performing feature selection.

Firstly, we choose Gaussian function [41] as weight measures,
and then construct an affinity matrix A in data space to represent
the correlation information between instances. The Gaussian func-
tion of A is defined as follows:

||X:'—Xj||2

A;j = exp( 952
1

) (7)
where i, j =1,2,---,n, X; means the ith row of the data matrix X,
which indicates the ith sample, and o7 is a bandwidth parameter.
According to the practical meaning, 0 < A;; < 1.

Similar to the construction of matrix A, we also construct an
affinity matrix B in feature space to represent the interconnection
information between features. The Gaussian function of B is de-
fined as follows:

|[x'—x||?
2
—203

B;; = exp( ) (8)
where i, j=1,2,---,d, x' means the ith column of the data matrix
X, which indicates the ith feature. And o5 is a bandwidth parame-
ter corresponding to matrix B. According to the practical meaning,
0< BU < 1.

Next, we will carry out dual space latent representation learn-
ing. To learn the latent representation of data space from the affin-
ity matrix A, the following objective function needs to be solved:

argmin ||A — VVT||2
\'

9
stV=>0 ®)

where V € R™™ js the data latent representation matrix, m<n and
m<d. Since V can in turn be regarded as a pseudo-label matrix to
provide discriminative information for feature selection, we make
m equal to sample category number c in the datasets.

Similarly, in the feature space, in order to learn the low-
dimensional latent representation from the affinity matrix B, the

following objective function is formulated as follows:
argmin ||B — WWT||2

w f (10)
stW=>0

where W € R4*™ represents the feature latent representation ma-
trix. Since W is unified with the transformation matrix, m is equal
to c.



R. Shang, L. Wang, F. Shang et al.

3.2. Objective function

DSLRL utilizes sparse transformation matrix to project the orig-
inal data samples into low-dimensional space. Different from the
conventional sparse regression method, our method uses both the
low-dimensional latent representation matrices V and W. In the
optimization process, the pseudo-class matrix V is regarded as the
data in the low-dimensional space. At the same time, the low-
dimensional latent representation W of feature space is related to
the learning of transformation matrix. So, the transformation ma-
trix can be denoted by W. Therefore, we obtain the following ob-
jective function:

argmin || XW — V|2 (11)
WV

By optimizing the objective function, an appropriate transfor-
mation matrix W is obtained. Since W is used to calculate the
weight of each feature, it is necessary to impose I, ;-norm on the
matrix W to ensure the row sparsity. Moreover, in order to avoid
the emergence of trivial solutions, we apply the orthogonal con-
straint to matrix W. Therefore, the new objective function is ex-
pressed as:

argmin |[XW — V|2 + o ||W]||2
w\yv
stWIW =1,

where [|W]] 1 = ZL ||w;|| = ZL ‘/ZT=1 W,~j2, and the parame-

ter > 0, which is used to control the sparseness of the model.

DSLRL embeds the latent representation learning based on data
space and feature space into feature selection framework. Combin-
ing (9), (10), and (12), we obtain the final objective function of
DSLRL:

(12)

arg min ||XW — V7 + | |WI|2.1+B]|A = WT[7 + y||B— WWT |2
’ StV>0,W>0,WW-=1I,
(13)

where the parameters 8 > 0,y > 0. They are used to balance la-
tent representation learning in data space and feature space, re-
spectively.

By optimizing the objective function of DSLRL, the matrices W
and V can be obtained. w; represents each row of W, and ||w;||,
is used to evaluate the importance of each feature. The larger the
evaluation value, the more important the i-th feature. The evalua-
tion values of each feature are sorted in descending order and the
top | features are selected to form a new data matrix X.

3.3. Optimization

Next the optimization process of the objective function (13) will
be introduced in detail. Since the objective function (13) is non-
convex in both W and V at the same time, it becomes difficult to
solve. However, it is pleasing that it is convex for a single variable
when fixing others, so we utilize an alternating iterative method
[41] to optimize the objective function (13), which decomposes the
whole optimization problem into small subproblems. In each sub-
problem, the new objective function is convex for one variable, so
we can easily find the solution of the problem.

We construct the Lagrange function of (13) as follows:

L(W,V) = [[XW — V||2 + a||W[|5,1+8]|A - W |7 + y||B (14)
— WWT | 244 [WTW—Ln |} + Tr(®VT) + Tr(¥WT)

where the parameters A > 0, ® and V¥ are Lagrange multipliers for
non-negative constraints V> 0 and W > 0, respectively.
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Before solving this problem, we need to introduce a diagonal
matrix H € R44, with the ith diagonal element as:
1

H-—
C 20wl

(15)

In order to avoid overflow, a small constant ¢ is usually intro-

duced in the definition of the matrix H as follows:
_ 1
- 2max(||wil[2. €)

Thus, ||W]|,,; = Tr(WTHW). For an arbitrary matrix M, ||M||2 =
Tr(MMT). We rewrite all norm-bound terms into the form of
traces, and obtain the following Lagrange function:

LW, V) = Tr((XW —V)(XW — V)T + a«Tr(WTHW)
+BTr((A—VVT)(A—VVI)T) + yTr((B— WWT)(B - WWT)T)
+ATr((WTW-I;,)) ( WTW-IL,;)T) + Tr(®VT) + Tr(¥YWT)

(16)

ii

(17)

The alternating and iterative method to solve the problem (15)
contains two subproblems: we first fix the variable V to calculate
the optimal, and then fix the variable W to calculate the optimal
V.

A. Update W

When V is fixed, we take the partial derivative of the Lagrange
function (17) with respect to W, and then have:

;—‘,vaxwa — X'V + oHW + 2y WW'W — 2y BW
+ 2AWWTW — 20W + ¥ (18)
According to the Karush-Kuhn-Tucker (KKT) condition [33],
‘I’UWU = 0, we obtain

[X"XW — X"V + «HW + 2y WW'W — 2 BW + 22 WW'W

—2AW];W;; =0 (19)
Then the updating formula for W is as follows:
[XTV +2yBW + 2aW]
Wij = Wi [RXW + o HW + 2 WWTW + 2AWWTW;; (20)
B. Update V

When W is fixed, we take the partial derivative of the Lagrange
function (17) with respect to V, and then have:
oL

v =V - XW+28VV'V_-2BAV + @

According to the Karush-Kuhn-Tucker (KKT) condition [42],
®;;V;; = 0, we have
[V—XW +28WV'V - 2AV];V;; = 0 (22)
Therefore, the updating formula for V is denoted as follows:
) [XW + 2 8AV];;
IV + 2BVVIV];

Algorithm 1 summarizes the procedure of DSLRL.

(21)

3.4. Convergence analysis

The optimization of the objective function (13) involves two
variables: Wand V. Therefore, we need to prove that the objective
function (13) is convergent under the updating rules (20) and (23),
respectively.

Firstly, we prove that the objective function (13) is monotoni-
cally decreasing under the updating rules (23) for V.

Definition 1: In [43], if there is a function J(r, r’)making L(r) sat-
isfies:

J(r.) = L. Jr.r) = L(r) (24)
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where, J(r, 1) is an auxiliary function of L(r). Then L(r) is monoton-
ically decreasing under the updating formula:

1 = argminj(r, 1) (25)
r

When W is fixed, we only retain the terms containing V in the
objective function (13), then obtain the following function:

L(V) = || XW — V||2+B]|A — WT||?

=Tr((XW - V)(XW —V))+BTr((A— VVT)(A - WT)T) (26)

The first-order and second-order partial derivatives of L(V) with
respect to V are

Lj = [E)L;“]’)} =[2v- 2XW—4,3AV+4ﬂWTV]U (27)
ij
Ly = [21, — 4BA + 4,3WT]“_ (28)

Lemma 1. The following function:
BV Vi) = L (Vi) + L (Vi) (Vi = VD)
[vm ) ,vavmrv(f)]

ij
+ (V;; —
() J
V; i

vi? o (29)

is the auxiliary function of L;;(V;;).
Proof: The Taylor expansion of L;;(V;;) is

Ly (Vi) = Ly (V)L (V) (V) + 2L (V) Uy~ VD)2

(30)
According to (29) and (30), J(V,

l],Vi(;)) > L(V;) is equivalent to

|V(t) + Zﬂv(t)v(t) V(t)
i > —| 21
-3 n

_4BA+ 4ﬁv<t>v<f>T] (31)

i

()
V; i
Due to B = 0,A;; = 0, it is obvious that

T n T
[v(t) +2BVOYO v(t)]ij: k; []n +2BVOVO ]ikv’g)
n
- [In _2BA+ 2,3v<r>v<r>r] v (32)
k=1 ik
> [In —2B8A+ 2ﬂv<f>v(f>T]“vg>
un

Therefore, (31) holds, and ](VU,V(”)>L(VU) holds. When

V,]_V(t) according to (29), J(V;;, V;j)=L(V;;) also holds. Thus, the

function ](V,J,Vl.(;)) in Lemma 1 satisfies (24).

Next, we prove that the variable V conforms to the updating
formula (25) that makes L monotonically non-increasing.
aJ(V;;.V

Proof: Replace j(vu,v(”) in (29) into (25), and let #_O,
then we obtain:
L (V)
(t+1) (t) (t) 1 i
Vit = v -Vj; .
z[vm +2BVOVO vm]
ij
XW + 28AV®O
—vo [xw+25 ]"f (33)

v [\/(r) +2 5v<t>v<r>Tv<r>]
ij
Obviously, formula (33) is equivalent to the updating rule (23)
for V. Therefore, it can be proved that L; is monotonically non-
increasing under (23).
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The proof of the convergence of the objective function under
the updating rule of W is similar to that of V. When V is fixed, the
terms containing W in the objective function (13) are

L(W) = [[XW - V|[Z + o[|W]]2,1 + ¥ |[B — WWT|[Z+A[|W"
WLy | =Tr((XW — V) (XW — V)T) -+ Tr(WTHW)
+yTr((B—WWT)(B - WWD)T) 4 ATr((WT
W—I) (WW-I;)T)

The first-order and second-order partial derivatives of L(W)
with respect to W are

L. [M(W) ]u:[ZXT (XW — V) + 2aHW-4y (B

(34)

ij = oW
~WWHW-HAW(WTW — 1) ]
= [2XTXW - 2X"V + 20HW — 4y BW
+AyWWIW + AWW'W — 43W]

(35)

Lij" = [2X"X + 2aH — 4y B + 4y WWT + 40WWT — 41,]; (36)

Lemma 2. The following function:
Jij (Wi, WD)
= Lij(W ‘>)+L (W) (Wi - WD)

37
[XTXW“’+aHW“)+2VW(”W<" w“>+2)\w“>w<f)Tw(f>] (37)

+

w7 £ - W)
is the auxiliary function of L;;(W;;).
Proof: The Taylor expansion of L;;(W;;) is

Lij(Wij) = Lij(WD) + L (WD) (Wy; — W)
+= L,,”(W(”)(W W) (38)

According to (37) and (38), ](W,],Wg)) > L(Wj;) is equivalent

to
[XTXW(”JraHW(“+2yW“)W‘”TW(”+2AW([)W([)TW(”]v_
ij
W”) (39)
> 3[2X"X + 2aH — 4yB +4yWWT + 40WW' — 421, ]

Due to y > 0,1 > 0,B;; > 0,1;; > 0, it is obvious that

| |

XTXWO 4+ gHW® + 2y WOWO WO 4 2xw<f>w<f>Tw<f>]
i

= i [xTx +aH 4+ 2yWOowo™ 4 2Aw<f>w<f>T] w‘s‘]?
s=1 is
d
=D [xTx +aH - 2yB+2y WOWO 1 20WOWO" 21 ] “;
s=1 is

| |

XTX + aH — 2y B + 2y WOWO! 4 20WOWOT _ 231 ] W
ii

(40)
Therefore, (39) holds, and ](W,-j,Wlf;)) > L(W;;) holds. When
W,]_W(t) according to (37), J(W;;, W;;)=L(W;;) also holds. Thus,
the function J(W; Wi(;)) in Lemma 2 satisﬁes (24).
AW, ,]

ij»

Combine (37) and (25), and let _0, then we obtain

(t)
WD WO _w® by W)
i ij ij 2[xrxw<r>+an<r>+zywmw<r w<r>+z,\w<z>mew<r>]

® [X'Vi2yBWO+22WO ]

ij

ij [XTXW(f)+aHW(f)+2yW(f)W“)TW(f>+2AW(UW“>TW“)]

ij

(41)

Obviously, the formula (41) is equivalent to the updating rule

(20) for W. Thus, it can also be proved that L; is monotonically

non-increasing under (20). In summary, the objective function of
DSLRL is convergent under the updating rules (20) and (23).
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Table 2
Characteristics of twelve datasets

Datasets Instance Feature  Class  Type

Yale 165 1024 15 Face images
warpPIE10P 210 2420 10 Face images

AT&T 400 10304 40 Face images

COIL20 1440 1024 20 Object images

Isolet 1560 617 26 Speech Signal
CLL_SUB_111 111 11340 3 Biological microarray
Mnist 5000 784 10 Digital image
PIE_pose27 2856 1024 68 Face images

Optdigit 3823 64 10 Digital image

Yale64 165 4096 15 Face images

GLIOMA 50 4434 4 Biological microarray
TOX-171 171 5748 4 Biological microarray

4. Simulation results and the analyses

In this section, we will compare DSLRL and seven state-of-the-
art algorithms on the same datasets, and utilize the k-means clus-
tering method [44] to test the performance of all the algorithms.
Then, we illustrate the parameter sensitivity analysis of DSLRL.

4.1. Compared algorithms and Datasets

In order to illustrate the effectiveness of DSLRL, we compare
DSLRL with several state-of-the-art unsupervised feature selection
algorithms, including LapScor [12], MCFS [20], JELSR [22], SOGFS
[23], ADGCFgs [33], URAFS [24] and LRLMR [29].

Our experiment uses twelve datasets, including image datasets
(i.e., Yale, warpPIE10P, AT&T, COIL20, Mnist, PIE_pose27, Optdigit,
Yale64) [38,45,46], speech signal dataset (i.e., Isolet) [47], and bi-
ology datasets (i.e., CLL_SUB_111, GLIOMA, TOX-171) [29]. Table 2
shows the details of these datasets.

4.2. Evaluation metrics

In order to evaluate the clustering results of all algorithms, we
choose two popular metrics: clustering accuracy (ACC) [32] and
normalized mutual information (NMI) [48]. The higher the values
of ACC and NMI are, the better the clustering result. Therefore, ACC
and NMI can reflect the feature selection effectiveness of all algo-
rithms.

ACC is defined as:

.l n
ACC = > 8(ci, map(g:) (42)
i=1
where ¢; and g;respectively denote the clustering label and the true
label of x;.map(-) is an optimal mapping function, which utilizes
Hungarian method [49] to match clustering labels with true la-
bels. §(c;, g;) is an indicator function, if c¢;=g;, 6(c;, g)=1, other-
wise, §(c;, &)= 0.
NMI is defined as:
MI(C,C
M= MCEO (43)
max(H(C),H(C))
where C and C respectively represent the clustering labels and the
true labels. H(C) is the entropy of C, and H(C) is the entropy of C.
MI(C, C) is the information entropy between C and C
~ - C‘, E
MICOH= Y ple.clog L) (44)
~ p(c)p(c))

cieC.cjeC
where p(c;) and p(Ej) respectively indicate the probabilities that a
sample belongs to the clusters ¢; and Ej p(ci, Ej) is the joint prob-
ability that a sample simultaneously belongs to the clusters c¢; and
Cj.

Pattern Recognition 114 (2021) 107873

It is worth noting that ACC and NMI are two different evalua-
tion metrics for clustering results. ACC reflects the accuracy of the
clustering results, while NMI reflects the consistency between the
clustering results and the true labels. For the clustering results on
the same dataset, ACC and NMI may not reach the highest at the
same time.

4.3. Experimental settings

The range of some parameters in our experiment needs to be
set. For LapScor, MCFS, JELSR, URAFS, ADGCFgs, SOGFS and LRLMR,
we fix the neighborhood size to 5. As for DSLRL, we optimize the
low-dimensional latent representation matrix V infinitely close to
the ideal label matrix to provide discriminative information for
feature selection, so that it can better provide discriminative in-
formation for feature selection. Therefore, m is equal to ¢ that is
the number of clusters. The parameter Niter representing the max-
imum number of iterations is 50. The parameters «, 8, y,A are
searched from {103, 10-2, 101, 1, 10!, 102, 103}. For the Optdigit
dataset, we tune the feature selection parameter [ in the range of
{20, 30, 40}, and for the remaining datasets, [ varies in {20, 30, 40,
50, 60, 70, 80, 90, 100}. Because the results of the k-means clus-
tering method are dependent on initialization, we repeat the clus-
tering for 20 runs independently and take the average of ACC and
NMI, respectively.

4.4. Clustering results and analysis

Table 3 shows the average and standard deviation of the clus-
tering accuracy (ACC) of all algorithms for feature selection on dif-
ferent datasets. Table 4 summarizes the average and standard devi-
ation of the normalized mutual information (NMI) for the same ex-
periments. In both tables, the best results are highlighted in bold,
and the number of selected features is labeled.

From Table 3, we can see that the ACC results of DSLRL on the
12 datasets are better than others. As can be seen from Table 4,
the NMI results of DSLRL are better than 7 comparison algorithms
on different datasets. It should be noted that the clustering results
of DSLRL on CLL_SUB_111 dataset are superior. In CLL_SUB_111
dataset, the number of features is much larger than the number
of samples, and the number of clusters is relatively small. Such
datasets usually have many features that are redundant, or even
represent noise, they will affect the effect of feature selection. Dif-
ferent from other methods, DSLRL introduces dual space latent rep-
resentation learning, where the data latent representation matrix
describes the assignment information between instances and clus-
ters, and the feature latent representation matrix records the cor-
relation between features and clusters. Both of them are applied to
the regression function, which improved the effectiveness of fea-
ture selection and facilitate subsequent data processing.

In order to better illustrate that the improvement of the clus-
tering results of DSLRL in Tables 3 and 4 is obvious, we perform
a statistical analysis on the results of DSLRL and comparison algo-
rithms. Specifically, the paired t-test is used. Each algorithm needs
to repeat clustering 20 times independently to obtain the average
results in Tables 3 and 4. These 20 results are used as samples
for paired t-test, and the significance level parameter alpha=0.05.
Observing h and p which obtained from the statistical experiment,
h=0 indicates that the null hypothesis cannot be rejected at the
5% significance level. On the contrary, h=1 indicates that the null
hypothesis can be rejected at the 5% level. And p represents the p-
value, which shows the significance level. When h=1 and the value
of p is small, it is generally considered that there is a difference
between the two samples, which indicates that the result of DSLRL
is significantly improved. Tables 5-6 are the paired t-test of DSLRL
and each comparison algorithm on all datasets.
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Table 3
Best clustering results (ACCESTD%) of different algorithms on twelve datasets.
Datasets LapScor MCEFS JELSR SOGFS ADGCFgg URAFS LRLMR DSLRL
Yale 42.534+1.83(30) 43.23+2.27(40) 41.10+£2.94(60) 44.29+3.28(20) 37.244+1.65(20) 37.474+2.26(50) 43.67+2.89(20) 46.94+3.57(50)
warpPIE10P  29.524+0.85(20) 36.10+£2.74(20) 46.36+£2.89(20) 51.43+£2.36(20) 45.16+£2.21(60) 31.80+1.88(20) 47.15+2.46(20) 55.06+2.89(20)
AT&T 47.16+1.91(50)  55.534+2.44(90) 56.584+2.71(100) 54.4642.15(30) 45.96+1.88(100) 58.39+2.89(90) 57.07+2.26(100) 62.17+2.72(70)
COIL20 59.95+2.74(100) 65.08+2.58(70) 63.30+£2.87(90) 48.70+£1.79(70) 51.81+2.41(80) 62.08+2.85(100) 64.10+2.61(100) 66.86+3.07(100)
Isolet 55.694+2.17(100) 57.07+£1.96(100) 58.15+£1.93(100) 49.19+2.11(100) 53.38+1.11(90) 58.83+2.14(100) 62.37+2.95(100) 65.10+£2.19(100)
CLL_SUB_111 55.66+1.67(70) 54.05+1.12(30) 54.49+1.34(20) 58.55+0.67(50) 57.83+0.97(100) 58.55+2.57(20) 51.15+2.51(40) 63.36+1.56(100)
Mnist 45.14+0.85(80)  47.564+1.34(100) 50.074+1.46(100) 47.44+1.30(100) 43.95+0.28(100) 50.68+0.84(100) 51.55+2.02(100) 51.98+1.01(100)
PIE_pose27  30.26+0.84(40) 20.05+0.77(50) 30.82+0.83(50) 19.08+0.69(100) 35.52+0.77(30) 30.68+0.81(20) 30.75+0.84(30) 37.92+1.32(80)
Optdigit 81.284+1.72(40)  78.35+0.68(40) 81.59+2.98(40) 78.62+£0.81(40) 81.87+0.62(40) 80.13+£2.05(40) 81.28+0.33(30) 82.62+3.16(40)
Yale64 51.10£2.77(70)  50.01+£3.06(30)  51.45+3.18(100) 45.34+3.27(100) 49.51+£3.15(90) 44.00+3.03(50) 46.41+2.68(90) 52.30+3.67(100)
GLIOMA 56.46+1.58(100) 57.18+7.79(80) 56.40+3.53(100) 59.56+2.29(90) 65.30+3.38(100) 55.20+4.28(100) 61.00+5.40(90) 70.50+4.62(100)
TOX-171 42.67+0.12(20)  41.05+4.18(90) 44.234+1.56(100) 40.094+2.18(100) 39.23+0.73(80) 46.14+3.77(100) 47.54+1.71(100) 48.48+1.55(90)
Table 4
Best clustering results (NMI£STD%) of different algorithms on twelve datasets.
Datasets LapScor MCFS JELSR SOGFS ADGCFgs URAFS LRLMR DSLRL
Yale 48.64+1.55(30) 47.62i2426(100) 47.864+2.27(60) 49.674+2.53(20) 42.98+1.87(50) 42.64+2.02(50) 49.34+1.82(20) 53.11+2.53(50)
warpPIE10P  25.94+1.19(20)  40.20+3.19(20 49.68+2.40(20)  53.624+1.77(20)  49.79+1.93(60)  30.18+2.61(20) 56.23+2.29(20) 56.36+2.68(20)
AT&T 71.13+1.04(60) 72.4411.19(90) 74.19+£1.67(90) 73.62+£1.11(30) 67.91+£1.01(100) 76.92+1.23(90)  75.46+1.09(100) 79.90+1.43(80)
COIL20 69.59+1.24(100) 74.53+£1.39(70)  73.46+£1.32(90) 61.24£1.19(70) 59.56+1.20(80)  73.00+1.58(100) 75.76+1.31(100) 77.21+1.69(100)
Isolet 69.63+0.86(100) 70.20+0.86(100) 71.33+£0.75(100) 65.68+1.01(100) 67.38+£0.80(90)  73.13+£1.07(100) 74.15+2.58(100) 74.92+1.17(100)
CLL_SUB_111 17.55+£1.59(80) 26.21+1.46(30) 26.3142.23(20) 26.25+0.68(50)  25.70+0.68(100) 19.65+1.12(20) 16.28+1.82(40) 31.07+1.06(30)
Mnist 39.85+0.31(100) 42.90+0.47(100) 42.70+0.68(100) 37.88+£0.61(100) 35.97+0.14(100) 39.64+0.42(80) 42.79+0.77(100) 43.35+0.38(100)
PIE_pose27  54.05+0.52(40) 41.78+0.52(5 ) 58.35+£0.59(50)  42.76+0.49(100) 58.01+£0.49(30) 56.90+0.55(20)  55.65+0.58(30) 64.10+0.69(80)
Optdigit 75.69+0.85(40)  73.75+0.36(40 74.93+1.96(40) 72.50+0.71(40) 72.06+0.48(40) 74.76+4.06(40) 74.31+0.26(30)  75.99+0.51(40)
Yale64 58.34+1.87(70) 55.9711.89(30) 55.11+£2.18(100) 52.30+£2.29(100) 54.12+£1.81(90) 49.43+1.66(50) 52.30+£1.95(90) 59.78+2.61(100)
GLIOMA 49.944+1.37(100) 36.90+6.66(80)  40.714+5.48(100) 51.644+4.28(60) 50.11£2.11(100) 37.59+6.25(100) 50.41+£2.69(90) 52.73+6.15(100)
TOX-171 14.38+0.24(20)  12.974+4.71(90)  15.164+2.36(100) 11.91+0.99(100) 13.18+0.38(90) 21.09+6.22(100) 15.92+1.51(100) 26.06+1.15(90)
Table 5
The paired t-test result of ACC of DSLRL and comparison algorithm on all datasets
LapScor MCFS JELSR SOGFS ADGCFgs URAFS LRLMR
Datasets
p h p h p hp hp hp h p h
Yale 1.5977e-05 1 0.0025 1 6.6494e-08 1 3.7687e-07 1  2.5486e-02 1 0.0076 1  4.6980e-04 1
warpPIE10P 6.2283e-43 1 5.6499e-28 1 2.1852e-15 1  0.0063 1 4.3561e-31 1 1.1631e-23 1 2.7032e-11 1
AT&T 1.0888e-32 1 3.8543e-15 1 2.3548e-16 1 7.9700e-14 1  6.2541e-40 1  4.1373e-18 1 1.2564e-10 1
COIL20 5.785%-14 1 0.5698 0 1.7728e-05 1 1.6530e-35 1 3.4645e-29 1 1.3724e-07 1 0.0519 0
Isolet 1.0734e-26 1 1.0310e-13 1 2.9988e-19 1  59270e-39 1  4.1523e-28 1  4.0867e-15 1  3.4358e-05 1
CLL_SUB_111 1.1169e-31 1 6.6579e-21 1 7.4568e-19 1  6.1147e-10 1 5.2156e-15 1 5.4621e-10 1 2.1543e-18 1
Mnist 7.5350e-38 1 6.4562e-12 1 2.4816e-08 1 3.7998e-25 1 1.2487e-40 1  0.3839 0 0.6653 0
PIE_pose27 4.2718e-21 1 2.7644e-42 1 3.6556e-37 1 1.3429e-41 1 3.7845e-09 1 4.2136e-32 1 9.1111e-29 1
Optdigit 0.4069 0 1.1549e-12 1 0.2248 0 1.3265e-23 1 0.0016 1 2.4235e-21 1 1.1391e-09 1
Yale64 0.6510 0 3.7278e-24 1 0.1849 0 6.7104e-14 1 5.6594e-11 1 7.4499e-18 1 5.5685e-10 1
GLIOMA 4.3265e-32 1 2.6542e-30 1  4.3684e-35 1 3.3941e-25 1 3.2145e-05 1 4.3521e-41 1 2.1545e-08 1
TOX-171 3.5487e-16 1  4.6584e-23 1 5.6842e-10 1  2.6548e-29 1 1.5487e-34 1 1.2645e-03 1 0.0039 1
Table 6
The paired t-test result of NMI of DSLRL and comparison algorithm on all datasets
LapScor MCFS JELSR SOGFS ADGCFgs URAFS LRLMR
Datasets » hop nop hop hop b » b » h
Yale 3.0673e-10 1 1.1216e-10 1 3.0801e-11 1 4.3344e-05 1 6.3254e-35 1 2.9570e-28 1 5.0405e-11 1
warpPIE10P 1.4477e-43 1  4.5204e-31 1 6.6930e-16 1  8.7164e-06 1  3.2456e-15 1 1.7454e-20 1 0.0287 1
AT&T 2.9279e-37 1 6.8989e-25 1 5.3264e-21 1 1.3358e-27 1 1.3256e-40 1  4.3251e-06 1 6.3254e-09 1
COIL20 52313e-35 1 3.7378e-05 1 2.1435e-14 1 4.4759e-36 1  2.3564e-42 1 7.4121e-16 1 5.0157e-06 1
Isolet 1.0908e-36 1 8.2349e-39 1  6.1528e-21 1 24990e-23 1  2.1564e-19 1  2.4949%-10 1 0.0220 1
CLL_SUB_111  2.8837e-15 1 5.5705e-06 1  4.3251e-06 1 6.8170e-06 1  3.8461e-06 1  2.3564e-12 1 5.1254e-16 1
Mnist 1.9863e-39 1 1.1458e-03 1 1.0511e-09 1 2.2851e-40 1  4.2356e-43 1 7.5211e-37 1  3.3585e-04 1
PIE_pose27 3.1037e-25 1 9.3674e-40 1 1.0266e-39 1  2.4650e-43 1 5.4525e-38 1 1.1723e-44 1 1.8323e-31 1
Optdigit 0.3874 0 1.3091e-20 1 0.0011 1 1.2543e-07 1 1.3380e-40 1 5.5413e-14 1 8.8391e-29 1
Yale64 0.4627 0 1.1591e-04 1 9.3160e-04 1 2.1254e-24 1 2.5741e-15 1  3.7642e-35 1  4.8803e-25 1
GLIOMA 6.9584e-10 1  4.3518e-40 1 2.6978e-30 1 0.6738 0 4.6514e-06 1 6.9572e-38 1 2.7594e-07 1
TOX-171 4.6579e-37 1 5.9847e-42 1  4.6259e-34 1 5.6245e-45 1  3.6847e-40 1  2.6589%e-13 1  4.8476e-40 1
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Fig. 1. The ACC of all the algorithms for selecting different numbers of features on the twelve datasets.

It can be seen from Table 5 that in the paired t-test of SOGFS,
h=1 and all p-values are small, indicating that the ACC values of
DSLRL and SOGEFS are quite different. In other paired t-tests, h=1
and p-value is small on most datasets. And h=0 on a few datasets,
which indicates that the ACC values of DSLRL are not obviously im-
proved compared to other algorithms. In general, the ACC of DSLRL
is significantly improved in most cases.

From Table 6, except for the results of the Optdigit and Yale64
datasets in the LapScor paired t-test and the results of the GLIOMA
datasets in the SOGFS paired t-test, the rest h=1 and the p-value
is small. It shows that the NMI of DSLRL and the comparison al-
gorithms are obviously different, which means that the NMI ob-
tained by DSLRL has a significant improvement. Tables 5-6 display
that the clustering results of DSLRL are significantly improved com-
pared with other algorithms, which verify the superiority of DSLRL.

In order to study the effect of the number of selected fea-
tures on the proposed algorithm, this experiment shows the per-
formance of DSLRL and seven comparison algorithms when differ-
ent numbers of features are selected. Fig. 1 displays the clustering
accuracy (ACC) of all algorithms for selecting different numbers of
features on twelve datasets. In Figs. 1 and 2, the abscissa repre-
sents the number of selected features, the ordinate denotes ACC
and NMI, respectively.

In Fig. 1, we use eight curves with different colors and shapes
to express the eight feature selection algorithms, respectively,
where the black curve represents DSLRL. From Fig. 1, we can see
that on the warpPIE10P dataset, the black curve of DSLRL is always

above other curves. It indicates that the ACC of DSLRL is much
higher than the comparison algorithms on this dataset. On Yale,
AT&T, COIL20, Isolet, GLIOMA and TOX-171 datasets, most points of
the black curve are at the top. On the remaining four data sets, the
black curve of DSLRL is located above most of the curves, and the
highest point of the black curve is above the other curves. In short,
the results of DSLRL for feature selection are better than other al-
gorithms. The main reason is that, we embed latent representa-
tion learning and sparse learning in the framework of unsuper-
vised feature selection. During the optimization process, the low-
dimensional latent representation matrix of data space provides
clustering information for sparse learning, and the sparse transfor-
mation matrix is unified with the latent representation matrix of
feature space. The two courses interact with each other and im-
prove the performance of DSLRL.

Fig. 2 demonstrates the normalized mutual information (NMI)
for the same experiments.

As we can see from Fig. 2, on the warpPIE10P dataset, the
black curves of DSLRL are above other curves. On the Yale, AT&T,
PIE_pose27, Yale64 and TOX-171 datasets, most points of the black
curve are higher than the points of the other curves. On the
COIL20, Isolet, Minist, Optdigit and GLIOMA datasets, the black
curve of DSLRL is located above most curves as a whole, and the
best NMI of DSLRL is better than comparison algorithms. Overall,
our proposed DSLRL improves the effect of clustering experiments.
In summary, it can be proven that DSLRL has better performance
than the other algorithms.
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In order to understand the overall performance of DSLRL, we
calculate Score as used in [50,51]. In [51], Sharmin et al. proposed
a new metric namely Score and defined it as the weighted aver-
age of stability [50] and accuracy. In this paper, we employ equal
weight for stability and accuracy. Since there is no iterative pro-
cess in LapScor and MCFS, we only compare the remaining meth-
ods based on Score. Fig. 3 highlights the performance of the re-
maining feature selection methods based on Score. In Fig. 3, the

10

fea10

feal

fea2 fea3 fead4 fea5 fea6 fea7 fea8 fea9 feall

Fig. 4. The heat map of the Pearson correlation coefficient matrix

abscissa represents the feature selection method, and the ordinate
indicates the number of dataset.

Fig. 3 compares the performance of feature selection methods
based on Score. The “Win” indicates the number of datasets for
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Table 7
The ACC of LRLMR and DSLRL on three datasets with different variance noises (ACC£STD%)
Variance 1 10 20
Dataset LRLMR DSLRL LRLMR DSLRL LRLMR DSLRL
Yale 38.88+3.06 44.91+3.05 38.27+2.71 42.97+2.10 38.08+2.52 40.85+3.13
AT&T 56.66+2.10  62.02+1.88  5584+1.44 62.414+2.87 56.35+1.98  59.85+1.81
PIE_pose27 29.79+1.18 37.24+0.80 29.69+1.00 37.48+1.17 29.79+1.13 36.50+1.19

which a method performs best compared to other methods. The
“Tie” means the number of datasets for which a method does not
completely win, but is one of the best performing methods [51]. It
can be seen that among all the feature selection methods in Fig. 3,
the value of “Win” of DSLRL is the largest. At the same time, con-
sidering the sum of “Win” and “Tie”, the value of DSLRL is also
the largest. Finally, it can be concluded that compared with other
methods, DSLRL performs comparatively better based on Score,
which shows that the overall performance of DSLRL is good.

4.5. Noise test and low redundancy test

In order to verify that DSLRL can reduce the negative impact of
noise and redundant information, we designed some small tests,
such as noise test and redundancy test. In the noise test, Yale, AT&T
and PIE_pose27 datasets are used. Gaussian noises with variances
of 1, 10, and 20 are added into these datasets respectively, and nine
datasets with noise are obtained. The clustering results of LRLMR

12

and DSLRL on nine datasets are recorded in Tables 7 and 8, respec-
tively.

It can be seen from the Tables 7 and 8 that the ACC and NMI
of DSLRL are higher than LRLMR, indicating the effectiveness of
DSLRL. Meanwhile, the better clustering results of DSLRL on the
noise-added datasets also prove that the algorithm is robust to
noise.

In the low redundancy test, we choose the page-blocks dataset
as the test dataset, which contains 5473 samples and 10 features.
The Pearson correlation coefficient is used to evaluate the correla-
tion between features, and the heat map of the correlation coeffi-
cient matrix is shown in the Fig. 4.

DSLRL performs feature selection on the page-blocks dataset,
and the evaluation values of all the features are shown in the
Fig. 5(a). As a comparison, we remove the latent representa-
tion learning of the feature space and re-select the features,
and the obtained feature evaluation values are shown in the
Fig. 5(b).
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Fig. 8. The NMI of DSLRL on twelve datasets under values of & and y(f=1and A =1)
Table 8
The NMI of LRLMR and DSLRL on three datasets with different variance noises (NMI£STD%)
Variance 1 10 20
Dataset LRLMR DSLRL LRLMR DSLRL LRLMR DSLRL
Yale 46.27+1.96 51.40+2.12 45.99+2.31 49.09+2.58 45.25+2.25 47.38+2.80
AT&T 74.76+1.29 78.85+1.22 73.77+1.02 79.08+1.39 74.55+1.30 76.61+1.03
PIE_pose27  53.92+0.70  64.05+0.50  53.23+0.65  63.33+0.68  53.77+0.69  62.97+0.56
We can see from the Fig. 5(a) that DSLRL considers features 4, Table 9

1 and 7 to be the most representative, and after removing the
latent representation learning of the feature space, the selected
three features are 5, 6 and 4 from the Fig. 5(b). In Fig. 4, the cor-
relation coefficients of features selected by the former are 0.094,
0.029 and 0.135 with the average value 0.086, while the latter are
0.128, 0.066 and 0.515 with the average value 0.236. The correla-
tion of the three features selected by DSLRL is lower than the lat-
ter. It can be concluded that the feature selected by DSLRL without
feature latent representation learning is high-redundant, while the
features selected by DSLRL have low redundancy.

4.6. Computational complexity analysis

The computational complexity of the seven comparison algo-
rithms and the proposed algorithm has been shown in Table 9,
where n is the number of samples, d is the number of features,
m represents the dimension of the low-dimensional space, | repre-
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Computational complexity analysis

Algorithms  Computational complexity
LapScor 0(dn?)

MCFS 0(dn?)

JELSR 0(dn?+t(n*+mdn))
SOGFS o(t(d*>+mn?))

ADGCFgs O(n?d+nd?+t(n’m))
URAFS O(t(d3+dn?))

LRLMR o(dn?+t(d?))

DSLRL 0(dn?-+d?n+t(d?n))

sents the number of the selected features, and t is the number of
iterations.

Next, the computational complexity of DSLRL will be analyzed.
According to the procedure of DSLRL, the running time is mainly
used to construct the affinity matrices and iteratively optimize W
and V. The computational complexity of constructing the affinity
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Fig. 9. The NMI of DSLRL on the twelve datasets under values of 8 and A(w=1 and y=1)

Algorithm 1
The procedure of DSLRL.

Input: Data matrix X € R™¢; Maximum iteration number Niter; Balance parameters «, 8, y, A; Selected feature number ;

Step 1. Construct the affinity matrices A € R™", B € R%*¢;

Step 2. Initialize iter=0, H= I, W = rand(d, c), V = rand(n, c);

Step 3. Update W and V according to the iterative updating formulas (18) and (21), until the convergence conditions are satisfied;

Step 4. Calculate the weight of all the features according to ||[W;||, and sort them in descending order, then select the top I ranked features as a new data matrix
Xnew-

Output: Index of selected features index; New data matrix Xpew.

matrices A and B is 0(dn?) and O(d?n), respectively. Next the com- when =1 and A = 1. Figs. 7 and 9 illustrate the changes of ACC

putational complexity of each iteration is O(d?n). Therefore, the to- and NMI on twelve datasets under different values of 8 and A

tal computational complexity of DSLRL is O(dn?+d?n-+t(d?n)). From when a=1 and y=1.

Table 7, the computational complexity relationship between DSLRL Fig. 6 shows that when the parameters o« and y vary, the ACC

and others is determined by the relationship between d and n. of DSLRL does not change obviously on most datasets. In particular,
the performance of DSLRL is very stable on the COIL20 and Opt-

4.7. Parameters sensitivity analysis digit dataset. On the Yale, AT&T, warpPIE10P, Isolet, Minist, Yale64,

GLIOMA and TOX-171 datasets, the ACC shows a steady upward
The parameters of DSLRL include balance parameters «, 8.y, A trend, and the range of fluctuations relatively small. On the re-
and Gaussian kernel bandwidth parameters oq,05. In this pa- maining datasets, the ACC occasionally fluctuates, but in general,
per, we only discuss the sensitivity of the balance parameters most of the ACC values are in a stable state. It can be concluded
a,B,y, A Because 0 < Ajj <1 and 0 < B;; < 1, both 07 and o, will from Fig. 6 that the ACC of DSLRL is relatively stable with the
have a fixed value on each dataset. Fixing other parameters, we change of parameters o and y.
record the changes of ACC and NMI as balance parameters vary. Fig. 7 displays that when « and y are fixed, with the changes of
The search ranges of parameters o, 8,y and A are both {1073, B and A, the trend of ACC is relatively stable on most datasets, es-
102, 101, 1, 10, 10%, 103}. Figs. 6 and 8 illustrate the changes of  pecially on the Yale, AT&T and COIL20 datasets. Overall, compared
ACC and NMI on twelve datasets under different values of « and y

14
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Fig. 10. The convergence curves of DSLRL on twelve datasets (¢=1000, =0.001 and y = 0.001)

to Fig. 6, we find that the ACC of DSLRL is less sensitive to param-
eters B and A.

In Fig. 8, the NMI rises slightly, and the performance is sta-
ble on the Yale, AT&T, COIL20, and Optdigit datasets. While on the
warpPIE10P, Isolet, Mnist, PIEpose27, Yale64, GLIOMA and TOX-171
datasets, the NMI slowly rises in steps and it is a little bit sensitive
to the parameters « and y.

Fig. 9 demonstrates that the value of NMI given by DSLRL
when parameters =1 and y=1. From these pictures, we can see
that when A is large, the NMI of DSLRL rapidly increases to a
peak, and when 10! < 8 < 10!, the NMI shows a better value on
CLL_SUB_111 dataset. For other datasets, the NMI of DSLRL is rela-
tively stable.

Combined with Figs. 6-9, the performance of ACC and NMI
on the CLL_SUB_111 dataset is not as stable as their performance
on other datasets. This is due to the properties of CLL_SUB_111
dataset. The large number of feature and high similarity among
features make it is more difficult for feature selection. It can be
seen from Figs. 6-9 that the results of DSLRL are gradually in-
creasing. Although DSLRL performs better than others, the results
are still not very stable due to the characteristics of CLL_SUB_111
dataset. Therefore, it is our future research work to improve the
stability of DSLRL for such datasets.

4.8. Convergence study

The convergence analysis of the proposed algorithm has been
given in the previous section. Here, we show the convergence
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curves of DSLRL on different datasets to intuitively illustrate the
convergence properties of the designed algorithm.

The convergence curves of DSLRL for different iterations on
twelve datasets are shown in Fig. 10.

The vertical axis represents the value of the objective function,
and the horizontal axis is the number of iterations. It can be seen
that as the number of iterations increases, the value of the ob-
jective function decreases rapidly and converges on each dataset.
Fig. 10 verifies the convergence of DSLRL.

5. Conclusions

This paper proposes an unsupervised feature selection algo-
rithm called DSLRL, which exploits the inherent association in-
formation in data space and feature space to improve the effect
of feature selection. The proposed algorithm combines the advan-
tages of latent representation learning and sparse learning, hence
the performance of feature selection is improved. We propose la-
tent representation learning based on dual space, which charac-
terizes the intrinsic structure of data space and feature space, re-
spectively. We make the latent representation matrix of data space
close to the ideal label matrix, and unify the sparse transformation
matrix with the latent representation matrix of feature space, so
that the internal information of dual space is fully utilized to op-
timize the feature selection. Then, the I;-norm constraint is used
to ensure the row sparseness of the matrix. In the optimization
process, we employ the alternating method to obtain the updating
rules of W and V. Finally, this paper compares DSLRL with seven
comparison algorithms on several datasets. The results of cluster-
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ing experiments show that DSLRL has good clustering results on
most datasets, while the results of parameter sensitivity experi-
ments verify the robustness of DSLRL. Overall, the experimental
results show that DSLRL outperforms the other comparison algo-
rithms.

The disadvantage of DSLRL is that it has many parameters that
need to be adjusted, which leads to a large search range. In the
future research, we will further explore the method of parameter
adaptation to reduce the cost of the algorithm and find the most
suitable parameter combination. In addition, we hope to study a
novel optimization method that can simultaneously optimize the
variables W and V.
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