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a b s t r a c t 

In real-world applications, data instances are not only related to high-dimensional features, but also in- 

terconnected with each other. However, the interconnection information has not been fully exploited for 

feature selection. To address this issue, we propose a novel feature selection algorithm, called dual space 

latent representation learning for unsupervised feature selection (DSLRL), which exploits the internal as- 

sociation information of data space and feature space to guide feature selection. Firstly, based on latent 

representation learning in data space, DSLRL produces dual space latent representation learning, which 

characterizes the inherent structure of data space and feature space, respectively. Secondly, in order to 

overcome the problem of the lack of label information, DSLRL optimizes the low-dimensional latent rep- 

resentation matrix of data space as a pseudo-label matrix to provide clustering indicators. Moreover, the 

latent representation matrix of feature space is unified with the transformation matrix to benefit the 

matching of the data matrix and the clustering indicator matrix. In addition, DSLRL uses non-negative 

and orthogonal conditions to constrain the sparse transform matrix, making it more accurate for evalu- 

ating features. Finally, an alternating method is employed to optimize the objective function. Compared 

with seven state-of-the-art algorithms, experimental results on twelve datasets show the effectiveness of 

DSLRL. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the development of science and technology, the era of big 

ata has arrived. A large amount of data is generated every day, 

nd the dimension of data is increasing [1] . Processing these high- 

imensional data directly not only greatly increases the computa- 

ion time and storage space, but also results in poor performance 

ue to the existence of noise, irrelevant features, and redundant 

eatures [2] . Therefore, it is necessary to overcome the "dimen- 

ional disaster" caused by large-scale high-dimensional data. Ex- 

eriments show that effective dimensionality reduction methods 

an not only reduce the cost of data processing, but also effectively 

mprove the performance of clustering algorithm [ 3 , 4 ]. Feature se- 

ection is one of the common dimensionality reduction methods, 

hich is designed to select a representative subset to represent the 

riginal data [5] . 

According to the availability of sample labels, previous feature 

election methods are usually divided into three categories: su- 

ervised methods [ 2 , 6 ], semi-supervised methods [ 7 , 8 ], and unsu-

ervised methods [ 9 , 10 ]. In the supervised feature selection meth- 
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ds, all training sample labels are known in advance. These meth- 

ds evaluate the importance of each feature based on the corre- 

ation between labels and features, and select discriminative fea- 

ures. When there are only a few data labels, the semi-supervised 

eature selection methods can effectively improve the accuracy of 

eature selection [7] , which mine the relationship between the data 

nd build a similarity matrix. In supervised and semi-supervised 

eature selection methods, all or part of the data labels need to 

e known. However, in most practical applications, it is labori- 

us to obtain data labels. In this case, the advantages of unsuper- 

ised feature selection methods are obvious compared to the first 

wo methods. These methods can determine the importance of fea- 

ures through the underlying attributes of the original data with- 

ut the label information [9] . Therefore, the unsupervised feature 

election method is more suitable for dimension reduction of high- 

imensional data. In this paper, we focus on unsupervised feature 

election. 

According to different search strategy, unsupervised feature se- 

ection methods can generally be classified into three types, includ- 

ng filter methods [11-13] , wrapper methods [ 14 , 15 ], and embed-

ed methods [16-18] . Filter methods evaluate the importance of 

eatures based on the statistical characteristics of data, and then 

elect top-ranked features [11] . Commonly used metrics include 

https://doi.org/10.1016/j.patcog.2021.107873
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.107873&domain=pdf
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ariance, Laplace score, similarity of features, and more. Due to the 

ow cost and high efficiency, filter methods are widely applied in 

ngineering field. But the subset selected by these methods often 

ontains noise. Wrapper methods usually select features based on 

earning tasks such as clustering [14] . In general, wrapper-based 

ethods outperform filter methods. However, because of the high 

omputational cost, wrapper methods are not suitable for process- 

ng dimensionality reduction of large-scale data. Embedded meth- 

ds combine feature selection and model optimization. Thus, they 

an quickly select proper subset during the learning process. Com- 

ared with filter methods and wrapper methods, embedded meth- 

ds are not only efficient but also have better performance. And 

ow to construct a suitable model is the most critical issue in the 

mbedded methods [17] . 

In the past few decades, many different types of unsupervised 

eature selection algorithms have been proposed, and the processes 

f them are roughly similar. The importance of each feature is 

valuated according to a certain evaluation criterion, and then a 

mall number of representative and discriminative features are se- 

ected as a subset to complete the clustering or classification task 

19] . For example, He et al. [12] proposed Laplacian score (Lap- 

cor), which calculates the weight of feature based on data mani- 

old information. Higher scores indicate that features are more im- 

ortant. Under the same principle, spectral feature selection (SPEC) 

11] adopts another criterion to calculate feature weight. Both of 

hem are the classical feature selection algorithms which construct 

n affinity graph to model the local geometric structure, and SPEC 

s an extension of Laplacian score. Cai et al. [20] proposed multi- 

luster feature selection (MCFS), which first obtains data geomet- 

ic structure information via spectral analysis techniques, and then 

ses a sparse transformation matrix to embed the data into low- 

imensional space. Minimum redundancy spectral feature selection 

MRSF) is similar to MCFS, the main difference is that the for- 

er utilizes the l 1 -norm to constrain sparse transformation matrix, 

hile the latter uses the l 2 , 1 -norm constraint [ 21 ]. They both adopt

 two-step strategy to perform embedding learning and regression 

eparately. Unlike MCFS and MRFS, Hou et al. [22] proposed joint 

mbedding learning and sparse regression (JELSR), which adopts 

 single step strategy to optimize embedding matrix and sparse 

ransformation matrix simultaneously, thus better performing fea- 

ure selection. Subsequently, Nie et al. proposed an unsupervised 

eature selection approach, called structured optimal graph fea- 

ure selection (SOGFS), which performs feature selection and lo- 

al structure learning simultaneously. Thus, it can adaptively de- 

ermine the similarity matrix [23] . Li et al. proposed generalized 

ncorrelated regression with adaptive graph for unsupervised fea- 

ure selection (URAFS) [24] . Meanwhile, Shang et al. [25] pro- 

osed unsupervised feature selection based on self-representation 

parse regression and local similarity preserving (UFSRL), which 

s sparse reconstruction of the original data itself. UFSRL has im- 

osed the l 2,1/2 -matrix norm on the coefficient matrix, making 

he proposed model sparse and robust to noise. In recent years, 

ome unsupervised feature selection algorithms based on repre- 

entation learning have been proposed. He et al. [26] proposed 

eature self-representation based hypergraph unsupervised feature 

election via low-rank representation (SHLFS), which could effi- 

iently select a subset of informative features from unlabeled data. 

HLFS integrates the low-rank constraint, hypergraph theory, and 

he self-representation property of features in a unified framework. 

n particular, SHLFS represents each feature by other features to 

onduct unsupervised feature selection via the feature-level self- 

epresentation property. Tang et al. [27] proposed robust unsu- 

ervised feature selection via dual self-representation and mani- 

old regularization (DSRMR). DSRMR constructs both feature self- 

epresentation and sample self-representation terms, which are 

sed to respectively learn the feature representation coefficient 
2 
atrix and sample similarity graph to guide feature selection. Fan 

t al. also [28] considered the distribution information of feature 

pace, and they proposed latent space embedding for unsupervised 

eature selection via joint dictionary learning (LSEUFS), which cap- 

ure the common distribution of feature space and pseudo label 

pace. LSEUFS integrates joint dictionary learning, spectral analysis 

nd feature selection into a unified model. 

The traditional unsupervised feature selection method usually 

ssumes that the data instances are ideally independently dis- 

ributed. However, in the real world, due to the influence of ex- 

ernal conditions, data instances are not only related to high- 

imensional features, but also inherently associated with each 

ther. For addressing this issue, Tang et al. [29] proposed unsuper- 

ised feature selection by latent representation learning and man- 

fold regularization (LRLMR), which exploits the link information 

etween data instances to select relevant features. Meanwhile, the 

ocal structure of original data is preserved by a graph regular- 

zation term in a low-dimensional feature space. However, LRLMR 

nly utilizes the internal information of data space, and ignores the 

nternal interconnection information of feature space. The relation- 

hip between features becomes more complicated as the number 

ncreases, such as similarity and redundancy. Redundant feature 

eans that the information it contains can be derived from other 

eatures. Therefore, the internal information in the feature space is 

orth exploring. 

The latent representation model from the link information 

ould capture the clustering structure through symmetric non- 

egative matrix factorization [30] . In recent years, several re- 

ated algorithms based on the information of both data space 

nd feature space have been proposed and show good perfor- 

ance. Luo et al. [31] proposed dual-regularized multi-view non- 

egative matrix factorization (DMvNMF), which is developed for 

ulti-view data clustering. DMvNMF is able to preserve the geo- 

etric information of multi-view data in both the data space and 

he feature space. Based on concept factorization(CF),Ye and Jin 

32] proposed dual-graph regularized concept factorization cluster- 

ng (GCF), which simultaneously construct data graph and feature 

raph to model the geometric structures of both spaces. Compared 

ith traditional one-sided clustering algorithms, GCF shows better 

erformance. Then Ye and Jin [33] also proposed adaptive dual- 

raph regularized CF with Feature selection (ADGCF FS ), which uni- 

ed feature selections and dual-graph regularized CF into a joint 

bjective function. The above algorithms that exploit the informa- 

ion of dual space have better performance than algorithms that 

nly uses the information of data space. 

Based on the above considerations, dual space latent represen- 

ation learning for unsupervised feature selection (DSLRL) is pro- 

osed in this work, which utilizes the intrinsic association infor- 

ation of data space and feature space to improve the perfor- 

ance of feature selection. The clustering structure of data cluster- 

ng is obtained by latent representation learning in data space, and 

he clustering structure of feature clustering is obtained through 

atent representation learning in feature space. Specifically, the 

roposed algorithm constructs affinity matrices in both data space 

nd feature space, respectively, which are used to characterize the 

nternal relationships of the samples and the internal relation- 

hips of the features. Through the affinity matrices, latent repre- 

entation learning is performed in dual space to separately obtain 

he low-dimensional representations of data and feature. The for- 

er reveals the relevant information between instances and clus- 

ers, while the latter records the relationship between features and 

lusters. In both, the larger value, the more relevant. In the previ- 

us work [ 23 , 24 ], a good projection transformation matrix should 

atch the data matrix to the cluster indicator matrix as accurate 

s possible [34] . In the latent representation matrix of features, the 

orrelation information between features and clusters is beneficial 
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Table 1 

The notation comparison table 

Notation Notation description 

X data matrix 

x i the i th data sample 

x i the i th data feature 

Z adjacency matrix 

U latent representation matrix 

n the number of samples 

d the number of features 

f the number of latent factors 

c the number of categories 

m the dimension of low-dimensional space 

l the number of selected features 

Niter maximum iteration number 

F low-dimensional embedding matrix 

W projection transformation matrix 

S similarity matrix 

L graph Laplacian matrix 

S t total scatter matrix 

V latent representation of data space 

A affinity matrix of data space 

B affinity matrix of feature space 

w

s

m

t

r

t

b

a

t

i

s
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f

n
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o perform the projection process more accurately. Therefore, the 

ow-dimensional latent representation of feature is unified with 

he projection transformation matrix, and the low-dimensional la- 

ent representation of data is equal to the pseudo label matrix. In 

his way, the internal information of dual space is fully used to 

uide feature selection. Some previous methods measured the fea- 

ure importance in the original data space, and the performance 

f these methods is usually influenced by the noisy features [29] . 

ather than those methods, DSLRL performs feature selection in 

he low-dimensional latent representation space to reduce the im- 

act of noisy information. Our main contributions are highlighted 

s follows. 

1) Latent representation learning based on dual space is proposed, 

which characterizes the inherent structure of data space and 

feature space, respectively, to reduce the negative influence of 

noise and redundant information. 

2) The latent representation matrix of data space is regarded as 

a pseudo label matrix to provide discriminative information. 

Moreover, the latent representation matrix of feature space is 

unified with the transformation matrix to benefit the matching 

of the data matrix and the clustering indicator matrix, thereby 

making full use of the internal information of dual space in fea- 

ture selection. 

3) In order to avoid the emergence of trivial solutions, non- 

negative constraints and orthogonal constraints are imposed on 

the sparse transformation matrix, so that the importance of 

each feature can be better reflected. 

The rest of the paper is organized as follows. Some re- 

ated feature selection methods are introduced in Section 2 . 

ection 3 presents the proposed algorithm, optimization method, 

onvergence analysis and complexity analysis. In Section 4 , the ex- 

erimental results and analysis of DSLRL and seven comparison al- 

orithms are shown. The conclusions and future work are summa- 

ized in Section 5. 

. Related work 

This section introduces the concept of latent representation 

earning and its application in unsupervised feature selection. In 

ddition, several related unsupervised feature selection methods 

re briefly explained. 

Before introducing the following content, a notation table is 

isted to more clearly explain the notations which are used in this 

aper. Table 1 is a notation comparison table. 

.1. Latent representation 

In recent years, latent representation has been found to ben- 

fit for many data mining and machine learning tasks, especially 

or network data [34] . As a result, it has attracted increasingly at- 

ention [ 36 , 37 ]. In the network, there are connections between in-

tances due to various factors, and these hidden factors are often 

eferred as latent representations [38] . Latent representations of 

ifferent instances interact with each other and form link informa- 

ion. In general, instances with similar latent representations are 

ore likely to be interconnected than instances with dissimilar la- 

ent representations [39] . Therefore, the adjacency matrix Z ∈ R 

n ×n 

s used to describe the association between data instances, and 

he latent representations is obtained from it. Usually, the latent 

epresentations from link information can be generated through a 

ymmetric non-negative matrix factorization model [ 30 , 40 ], which 

ecomposes Z into the product form of the non-negative matrix U 

nd its transpose U 

T as follows: 

rg min || Z − U U 

T || 2 F 

.t. U ≥ 0 

(1) 
3 
here U ∈ R 

n × f represents the latent representation matrix of n in- 

tances, and f denotes the number of latent factors. In [30] , sym- 

etric non-negative matrix factorization model is used to capture 

he clustering structure for data clustering. In other words, latent 

epresentation learning clusters n instances into f classes according 

o the connection information between the instances. Tang et al. 

orrowed this idea and learned the latent representation from the 

ffinity matrix of data space for feature selection [29] . However, 

hey only considered the internal information of data space, but 

gnored the application of latent representation learning in feature 

pace. 

.2. Unsupervised feature selection 

.2.1. MCFS 

MCFS proposed by Cai et al. [20] mainly consists of two steps. 

irst, the low-dimensional embedding matrix F ∈ R 

n ×m is obtained 

rom data X ∈ R 

n ×d through manifold analysis, where n denotes the 

umber of samples, d indicates the number of feature, m rep- 

esents the dimension of the low-dimensional embedding space, 

nd m < d . Then the regression coefficient matrix W ∈ R 

d×m is con-

trained by l 1 -norm to more accurately reflect the importance of 

ach feature. Its objective function is formulated as follows: 

rg min 

F T F = I m 
T r( F T LF ) 

in 

W 

|| XW − F || 2 F + α|| W | | 1 (2) 

here T r(·) denotes the trace of a matrix, || W | | 1 = 

 d 
i =1 

∑ m 

j=1 | W i j | represents l 1 − norm for sparse constraints. 

MCFS performs embedding learning and sparse regression sep- 

rately, and the two interact with each other. 

.2.2. JELSR 

Different from MCFS, JELSR [22] adopts a single-step strategy, 

hich performs low-dimensional embedding learning and sparse 

egression simultaneously. And the matrix W is constrained by l 2 , 1 - 

orm with better robustness. Its objective function is formulated as 

ollow: 

rg min 

W , F T F = I m 
T r( F T LF ) + || XW − F || 2 F + α|| W | | 2 , 1 (3) 

JELSR integrates the merits of embedding learning and sparse 

egression to perform feature selection, and further improves its 

ffect. 
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.2.3. SOGFS 

Different from conventional embedded unsupervised methods, 

hich always need to construct the similarity matrix, SOGFS per- 

orms feature selection and local structure learning simultaneously, 

hus the similarity matrix can be determined adaptively [23] . Given 

he i th sample x i of the data matrix X ∈ R 

n ×d , SOGFS defines that

ample x i can be connected by others with probability s ij . And the 

robability of two samples becoming neighbor can be considered 

s the similarity between them, so s ij is an element of similarity 

atrix S . The similarity matrix is optimized to obtain the ideal 

tate of neighbor assignment, which is beneficial for feature selec- 

ion. Its objective function is formulated as follows: 

rg min 

W , F , S 

∑ 

i, j 

(|| W 

T x i − W 

T x j || 2 2 s i j + αs 2 
i j 
) + γ || W | | 2 , 1 + 2 λT r( F T LF ) 

.t. ∀ i, s T 
i 

1 = 1 , 0 ≤ s i j ≤ 1 , F ∈ R 

n ×m , F T F = I , W 

T W = I 

(4) 

SOGFS constrains the similarity matrix S to make it contain 

ore accurate information of data structure, so this method can 

elect more valuable features. 

.2.4. URAFS 

Taking into account the redundancy of features, Li et al. im- 

roved the sparse regression model for feature selection, and pro- 

osed a generalized uncorrelated regression model (GURM) for 

eeking uncorrelated yet discriminative features [24] . In addition, 

he graph regularization term based on the principle of maximum 

ntropy is also incorporated into the GURM model, there by URAFS 

s proposed. Its objective function is expressed as: 

rg min 

W , F , S 

|| G ( X 

T W −F ) || 2 F + λ|| W | | 2 , 1 

2 α

(
T r( F T LF ) + β

n ∑ 

i =1 

n ∑ 

j=1 

( s i j log s i j ) 

)
.t. W 

T ( S t + λD ) W = I , F T F = I , 
n ∑ 

j=1 

s i j = 1 , s i j ≥ 0 

(5) 

here G = I − (1 /n ) 1 1 T is referred as the centering matrix. F de-

otes the indicator matrix, and s ij is an element of similarity ma- 

rix S . W 

T ( S t + λD ) W = I is a generalized uncorrelated constraint,

here D is defined as a d × d diagonal matrix and d ii is derived

rom || W | | 2 , 1 , S t = XG X 

T is the total scatter matrix. 

.2.5. LRLMR 

Conventional unsupervised feature selection methods are un- 

er the assumption that the data is independently distributed, and 

gnore the connections in data instances. The connections exist 

n real world and can be used to explore the internal structure 

f the data. LRLMR [29] embeds the latent representation learn- 

ng into feature selection to exploit interconnection information in 

ata space. Meanwhile, the local geometric structure of original 

ata is preserved through manifold learning. The objective func- 

ion of LRLMR is formulated as follows: 

rg min 

W , V 

|| XW − V || 2 F + α|| W | | 2 , 1 + β|| A − V V 

T || 2 F 

 γ T r( W 

T X 

T LXW ) s.t. V ≥ 0 

(6) 

Data labels have contributed to the selection of discriminative 

nd representative features. But in reality, due to the inconve- 

ience of obtaining labels, unsupervised feature selection is con- 

idered as a difficult problem. LRLMR models the inherent link in- 

ormation of data space as a pseudo-label matrix to provide clus- 

ering indicators, thereby improving the effect of feature selection, 

ut it ignores the intrinsic information from the feature space. 
4 
. The proposed method 

In this section, we will give a detailed introduction of DSLRL. 

n addition, the optimization method and convergence analysis of 

SLRL are also described. In our work, the data set is represented 

y a matrix X ∈ R 

n ×d , the remaining notations that will be used 

re listed in Table 1 . 

.1. Dual space latent representation learning 

Traditional unsupervised feature selection methods always sup- 

ose that the distribution state of the data is independent and uni- 

orm under ideal conditions. However, this distribution is under 

deal conditions, not in the real world. Similar to the homophile 

ffect, under the influence of various external conditions, data in- 

tances generated from homologous or heterogeneous sources of- 

en rely on each other [35] . Hence, it is very necessary to charac-

erize the intrinsic data structure via link information. LRLMR im- 

lements this idea by latent representation learning, and applies 

t to unsupervised feature selection. Inspired by LRLMR, this algo- 

ithm proposes latent representation learning based on dual space, 

hich mines the interconnection information of both data space 

nd feature space, simultaneously, in order to characterize their in- 

rinsic structure, thereby better performing feature selection. 

Firstly, we choose Gaussian function [41] as weight measures, 

nd then construct an affinity matrix A in data space to represent 

he correlation information between instances. The Gaussian func- 

ion of A is defined as follows: 

 i j = exp ( 
|| x i − x j | | 2 

−2 σ 2 
1 

) (7) 

here i, j = 1 , 2 , · · · , n , x i means the i th row of the data matrix X ,

hich indicates the i th sample, and σ1 is a bandwidth parameter. 

ccording to the practical meaning, 0 < A i j ≤ 1 . 

Similar to the construction of matrix A , we also construct an 

ffinity matrix B in feature space to represent the interconnection 

nformation between features. The Gaussian function of B is de- 

ned as follows: 

 i j = exp ( 
|| x 

i − x 

j | | 2 
−2 σ 2 

2 

) (8) 

here i, j = 1 , 2 , · · · , d, x i means the i th column of the data matrix

 , which indicates the i th feature. And σ2 is a bandwidth parame- 

er corresponding to matrix B . According to the practical meaning, 

 < B i j ≤ 1 . 

Next, we will carry out dual space latent representation learn- 

ng. To learn the latent representation of data space from the affin- 

ty matrix A , the following objective function needs to be solved: 

rg min 

V 

|| A − V V 

T || 2 F 

.t. V ≥ 0 

(9) 

here V ∈ R 

n ×m is the data latent representation matrix, m < n and 

 < d . Since V can in turn be regarded as a pseudo-label matrix to

rovide discriminative information for feature selection, we make 

 equal to sample category number c in the datasets. 

Similarly, in the feature space, in order to learn the low- 

imensional latent representation from the affinity matrix B , the 

ollowing objective function is formulated as follows: 

rg min 

W 

|| B − W W 

T || 2 F 

.t. W ≥ 0 

(10) 

here W ∈ R 

d×m represents the feature latent representation ma- 

rix. Since W is unified with the transformation matrix, m is equal 

o c . 
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.2. Objective function 

DSLRL utilizes sparse transformation matrix to project the orig- 

nal data samples into low-dimensional space. Different from the 

onventional sparse regression method, our method uses both the 

ow-dimensional latent representation matrices V and W . In the 

ptimization process, the pseudo-class matrix V is regarded as the 

ata in the low-dimensional space. At the same time, the low- 

imensional latent representation W of feature space is related to 

he learning of transformation matrix. So, the transformation ma- 

rix can be denoted by W . Therefore, we obtain the following ob- 

ective function: 

rg min 

W , V 

|| XW − V || 2 F (11) 

By optimizing the objective function, an appropriate transfor- 

ation matrix W is obtained. Since W is used to calculate the 

eight of each feature, it is necessary to impose l 2 , 1 -norm on the 

atrix W to ensure the row sparsity. Moreover, in order to avoid 

he emergence of trivial solutions, we apply the orthogonal con- 

traint to matrix W . Therefore, the new objective function is ex- 

ressed as: 

rg min 

W , V 

|| XW − V || 2 F + α|| W | | 2 , 1 
.t. W 

T W = I m 

(12) 

here || W | | 2 , 1 = 

∑ d 
i =1 || w i || = 

∑ d 
i =1 

√ ∑ m 

j=1 W i j 
2 , and the parame- 

er α > 0 , which is used to control the sparseness of the model. 

DSLRL embeds the latent representation learning based on data 

pace and feature space into feature selection framework. Combin- 

ng (9), (10), and (12), we obtain the final objective function of 

SLRL: 

rg min 

W , V 

|| XW − V || 2 F + α|| W | | 2 , 1 + β|| A − V V 

T || 2 F + γ || B − W W 

T || 2F
s.t. V ≥ 0 , W ≥ 0 , W 

T W = I m 

(13) 

here the parameters β > 0 , γ > 0 . They are used to balance la-

ent representation learning in data space and feature space, re- 

pectively. 

By optimizing the objective function of DSLRL, the matrices W 

nd V can be obtained. w i represents each row of W , and || w i || 2 
s used to evaluate the importance of each feature. The larger the 

valuation value, the more important the i- th feature. The evalua- 

ion values of each feature are sorted in descending order and the 

op l features are selected to form a new data matrix X . 

.3. Optimization 

Next the optimization process of the objective function (13) will 

e introduced in detail. Since the objective function (13) is non- 

onvex in both W and V at the same time, it becomes difficult to 

olve. However, it is pleasing that it is convex for a single variable 

hen fixing others, so we utilize an alternating iterative method 

41] to optimize the objective function (13), which decomposes the 

hole optimization problem into small subproblems. In each sub- 

roblem, the new objective function is convex for one variable, so 

e can easily find the solution of the problem. 

We construct the Lagrange function of (13) as follows: 

 (W , V ) = || XW − V || 2 F + α|| W | | 2 , 1 + β|| A − V V 

T || 2 F + γ || B 

W W 

T || 2 F + λ|| W 

T W −I m 

|| 2 F + T r(�V 

T ) + T r(�W 

T ) 
(14) 

here the parameters λ > 0 , � and � are Lagrange multipliers for 

on-negative constraints V ≥ 0 and W ≥ 0 , respectively. 
5 
Before solving this problem, we need to introduce a diagonal 

atrix H ∈ R 

d×d , with the i th diagonal element as: 

 ii = 

1 

2 || w i | | 2 (15) 

In order to avoid overflow, a small constant ε is usually intro- 

uced in the definition of the matrix H as follows: 

 ii = 

1 

2 max (|| w i | | 2 , ε) 
(16) 

Thus, || W | | 2 , 1 = T r( W 

T HW ) . For an arbitrary matrix M , || M || 2 
F 

=
 r(M M 

T ) . We rewrite all norm-bound terms into the form of 

races, and obtain the following Lagrange function: 

 (W , V ) = T r(( XW − V ) ( XW − V ) T ) + αT r( W 

T HW ) 

 βT r((A − V V 

T ) (A − V V 

T ) T ) + γ T r((B − W W 

T ) (B − W W 

T ) T ) 

 λT r(( W 

T W −I m 

) ( W 

T W −I m 

) T ) + T r(�V 

T ) + T r(�W 

T ) 

(17) 

The alternating and iterative method to solve the problem (15) 

ontains two subproblems: we first fix the variable V to calculate 

he optimal, and then fix the variable W to calculate the optimal 

. 

A. Update W 

When V is fixed, we take the partial derivative of the Lagrange 

unction (17) with respect to W , and then have: 

∂L 

∂W 

= X 

T XW − X 

T V + αHW + 2 γ W W 

T W − 2 γ BW 

+ 2 λW W 

T W − 2 λW + � (18) 

According to the Karush–Kuhn–Tucker (KKT) condition [33] , 

i j W i j = 0 , we obtain [
X 

T XW − X 

T V + αHW + 2 γ W W 

T W − 2 γ BW + 2 λW W 

T W 

− 2 λW ] i j W i j = 0 (19) 

Then the updating formula for W is as follows: 

 i j ← W i j 

[
X 

T V + 2 γ BW + 2 λW 

]
i j 

[ X 

T XW + αHW + 2 γ W W 

T W + 2 λW W 

T W ] i j 

(20) 

B. Update V 

When W is fixed, we take the partial derivative of the Lagrange 

unction (17) with respect to V , and then have: 

∂L 

∂V 

= V − XW + 2 βV V 

T V − 2 βAV + � (21) 

According to the Karush–Kuhn–Tucker (KKT) condition [42] , 

i j V i j = 0 , we have 

V − XW + 2 βV V 

T V − 2 βAV 

]
i j V i j = 0 (22) 

Therefore, the updating formula for V is denoted as follows: 

 i j ← V i j 

[ XW + 2 βAV ] i j 

[ V + 2 βV V 

T V ] i j 

(23) 

Algorithm 1 summarizes the procedure of DSLRL. 

.4. Convergence analysis 

The optimization of the objective function (13) involves two 

ariables: W and V . Therefore, we need to prove that the objective 

unction (13) is convergent under the updating rules (20) and (23), 

espectively. 

Firstly, we prove that the objective function (13) is monotoni- 

ally decreasing under the updating rules (23) for V . 

Definition 1 : In [43] , if there is a function J( r, r ′ ) making L ( r ) sat-

sfies: 

 

(
r, r ′ 

)
≥ L (r) , J ( r, r ) = L (r) (24) 
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here, J( r, r ′ ) is an auxiliary function of L ( r ). Then L ( r ) is monoton-

cally decreasing under the updating formula: 

 

t+1 = arg min 

r 
J 
(
r, r t 

)
(25) 

When W is fixed, we only retain the terms containing V in the 

bjective function (13), then obtain the following function: 

 (V ) = || XW − V || 2 F + β|| A − V V 

T || 2 F 

 T r(( XW − V ) ( XW − V ) T ) + βT r((A − V V 

T ) (A − V V 

T ) T ) 
(26) 

The first-order and second-order partial derivatives of L ( V ) with 

espect to V are 

 i j 
′ = 

[
∂L (V ) 

∂V 

]
i j 

= 

[
2 V − 2 XW − 4 βAV + 4 βV V 

T V 

]
i j 

(27) 

 i j 
′′ = 

[
2 I n − 4 βA + 4 βV V 

T 
]

ii 
(28) 

emma 1. The following function: 

 i j ( V i j , V 

(t) 
i j 

) = L i j (V 

(t) 
i j 

) + L i j 
′ (V 

(t) 
i j 

)( V i j − V 

(t) 
i j 

) 

+ 

[ 
V 

(t) + 2 βV 

(t) V 

(t) T V 

(t) 

] 
i j 

V 

(t) 
i j 

( V i j − V 

(t) 
i j 

) 2 (29) 

is the auxiliary function of L i j ( V i j ) . 

Proof : The Taylor expansion of L i j ( V i j ) is 

 i j ( V i j ) = L i j (V 

(t) 
i j 

) + L i j 
′ (V 

(t) 
i j 

)( V i j −V 

(t) 
i j 

) + 

1 

2 

L i j 
′′ (V 

(t) 
i j 

) ( V i j − V 

(t) 
i j 

) 2 

(30) 

According to (29) and (30), J( V i j , V 

(t) 
i j 

) ≥ L ( V i j ) is equivalent to [ 
V 

(t) + 2 βV 

(t) V 

(t) T V 

(t) 

] 
i j 

V 

(t) 
i j 

≥ 1 

2 

[ 
2 I n − 4 βA + 4 βV 

(t) V 

(t) T 
] 

ii 
(31) 

Due to β ≥ 0 , A i j ≥ 0 , it is obvious that 

 

V 

(t) + 2 βV 

(t) V 

(t) T V 

(t) 

] 
i j 
= 

n ∑ 

k =1 

[ 
I n + 2 βV 

(t) V 

(t) T 
] 

ik 
V 

(t) 
k j 

n ∑ 

k =1 

[ 
I n − 2 βA + 2 βV 

(t) V 

(t) T 
] 

ik 
V 

(t) 
k j [ 

I n − 2 βA + 2 βV 

(t) V 

(t) T 
] 

ii 
V 

(t) 
i j 

(32) 

Therefore, (31) holds, and J( V i j , V 

(t) 
i j 

) ≥ L ( V i j ) holds. When 

 i j = V 

(t) 
i j 

, according to (29), J( V i j , V i j ) = L ( V i j ) also holds. Thus, the

unction J( V i j , V 

(t) 
i j 

) in Lemma 1 satisfies (24). 

Next, we prove that the variable V conforms to the updating 

ormula (25) that makes L monotonically non-increasing. 

Proof : Replace J( V i j , V 

(t) 
i j 

) in (29) into (25), and let 
∂ J( V i j , V 

(t) 
i j 

) 

∂ V i j 
= 0 , 

hen we obtain: 

 

(t + 1) 
i j 

= V 

(t) 
i j 

−V 

(t) 
i j 

L i j 
′ (V 

(t) 
i j 

) 

2 

[ 
V 

(t) + 2 βV 

(t) V 

(t) T V 

(t) 

] 
i j 

= V 

(t) 
i j 

[
XW + 2 βA V 

(t) 
]

i j [ 
V 

(t) + 2 βV 

(t) V 

(t) T V 

(t) 

] 
i j 

(33) 

Obviously, formula (33) is equivalent to the updating rule (23) 

or V . Therefore, it can be proved that L ij is monotonically non- 

ncreasing under (23). 
6 
The proof of the convergence of the objective function under 

he updating rule of W is similar to that of V . When V is fixed, the

erms containing W in the objective function (13) are 

 (W ) = || XW − V || 2 F + α|| W | | 2 , 1 + γ || B − W W 

T || 2 F + λ|| W 

T 

 −I m 

|| 2 F = T r(( XW − V ) ( XW − V ) T ) + αT r( W 

T HW ) 
 γ T r((B − W W 

T ) (B − W W 

T ) T ) + λT r(( W 

T 

 −I m 

) ( W 

T W −I m 

) T ) 

(34) 

The first-order and second-order partial derivatives of L ( W ) 

ith respect to W are 

 i j 
′ = 

[
∂L (W ) 
∂W 

]
i j 
= 

[
2 X 

T ( XW − V ) + 2 αHW −4 γ (B 

−W W 

T ) W + 4 λW ( W 

T W − I m 

) 
]

i j 

 

[
2 X 

T XW − 2 X 

T V + 2 αHW − 4 γ BW 

+4 γ W W 

T W + 4 λW W 

T W − 4 λW 

]
i j 

(35) 

L i j 
′′ = [2 X 

T X + 2 αH − 4 γ B + 4 γ W W 

T + 4 λW W 

T − 4 λI d ] ii (36) 

emma 2. The following function: 

 i j ( W i j , W 

(t) 
i j 

) 

 L i j (W 

(t) 
i j 

) + L i j 
′ (W 

(t) 
i j 

)( W i j − W 

(t) 
i j 

) 

 

[ 
X T X W 

(t) + αH W 

(t) +2 γ W 

(t) W 

(t) T W 

(t) +2 λW 

(t) W 

(t) T W 

(t) 
] 

i j 

W 

(t) 
i j 

( W i j − W 

(t) 
i j 

) 2 

(37) 

is the auxiliary function of L i j ( W i j ) . 

Proof : The Taylor expansion of L i j ( W i j ) is 

 i j ( W i j ) = L i j (W 

(t) 
i j 

) + L i j 
′ (W 

(t) 
i j 

)( W i j − W 

(t) 
i j 

) 

+ 

1 

2 

L i j 
′′ (W 

(t) 
i j 

) ( W i j − W 

(t) 
i j 

) 2 (38) 

According to (37) and (38), J( W i j , W 

(t) 
i j 

) ≥ L ( W i j ) is equivalent 

o [ 
X T X W 

(t) + αH W 

(t) +2 γ W 

(t) W 

(t) T W 

(t) +2 λW 

(t) W 

(t) T W 

(t) 
] 

i j 

W 

(t) 
i j 

1 
2 

[
2 X 

T X + 2 αH − 4 γ B + 4 γ W W 

T + 4 λW W 

T − 4 λI d 
]

ii 

(39) 

Due to γ ≥ 0 , λ ≥ 0 , B i j ≥ 0 , I i j ≥ 0 , it is obvious that 

 

X 

T X W 

(t) + αH W 

(t) + 2 γ W 

(t) W 

(t) T W 

(t) + 2 λW 

(t) W 

(t) T W 

(t) 

] 
i j 

 

d ∑ 

s =1 

[ 
X 

T X + αH + 2 γ W 

(t) W 

(t) T + 2 λW 

(t) W 

(t) T 
] 

is 
W 

(t) 

s j 

d ∑ 

s =1 

[ 
X 

T X + αH − 2 γ B + 2 γ W 

(t) W 

(t) T + 2 λW 

(t) W 

(t) T −2 λI d 

] 
is 

W 

(t)

s j [ 
X 

T X + αH − 2 γ B + 2 γ W 

(t) W 

(t) T + 2 λW 

(t) W 

(t) T − 2 λI d 

] 
ii 
W 

(t) 

i j 

(40) 

Therefore, (39) holds, and J( W i j , W 

(t) 
i j 

) ≥ L ( W i j ) holds. When 

 i j = W 

(t) 
i j 

, according to (37), J( W i j , W i j ) = L ( W i j ) also holds. Thus, 

he function J( W i j , W 

(t) 
i j 

) in Lemma 2 satisfies (24). 

Combine (37) and (25), and let 
∂ J( W i j , W 

(t) 
i j 

) 

∂ W i j 
= 0 , then we obtain 

 

(t + 1) 
i j 

= W 

(t) 
i j 

−W 

(t) 
i j 

L i j 
′ (W 

(t) 
i j 

) 

2 

[ 
X T X W 

(t) + αH W 

(t) +2 γ W 

(t) W 

(t) T W 

(t) +2 λW 

(t) W 

(t) T W 

(t) 

] 
i j 

= W 

(t) 
i j 

[ X T V +2 γ B W 

(t) +2 λW 

(t) ] i j [ 
X T X W 

(t) + αH W 

(t) +2 γ W 

(t) W 

(t) T W 

(t) +2 λW 

(t) W 

(t) T W 

(t) 

] 
i j 

(41) 

Obviously, the formula (41) is equivalent to the updating rule 

20) for W . Thus, it can also be proved that L ij is monotonically

on-increasing under (20). In summary, the objective function of 

SLRL is convergent under the updating rules (20) and (23). 
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Table 2 

Characteristics of twelve datasets 

Datasets Instance Feature Class Type 

Yale 165 1024 15 Face images 

warpPIE10P 210 2420 10 Face images 

AT&T 400 10304 40 Face images 

COIL20 1440 1024 20 Object images 

Isolet 1560 617 26 Speech Signal 

CLL_SUB_111 111 11340 3 Biological microarray 

Mnist 5000 784 10 Digital image 

PIE _ pose27 2856 1024 68 Face images 

Optdigit 3823 64 10 Digital image 

Yale64 165 4096 15 Face images 

GLIOMA 50 4434 4 Biological microarray 

TOX-171 171 5748 4 Biological microarray 
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. Simulation results and the analyses 

In this section, we will compare DSLRL and seven state-of-the- 

rt algorithms on the same datasets, and utilize the k-means clus- 

ering method [44] to test the performance of all the algorithms. 

hen, we illustrate the parameter sensitivity analysis of DSLRL. 

.1. Compared algorithms and Datasets 

In order to illustrate the effectiveness of DSLRL, we compare 

SLRL with several state-of-the-art unsupervised feature selection 

lgorithms, including LapScor [12] , MCFS [20] , JELSR [22] , SOGFS 

23] , ADGCF FS [33] , URAFS [24] and LRLMR [29] . 

Our experiment uses twelve datasets, including image datasets 

i.e., Yale, warpPIE10P, AT&T, COIL20, Mnist, PIE_pose27, Optdigit, 

ale64) [ 38 , 45 , 46 ], speech signal dataset (i.e., Isolet) [47] , and bi-

logy datasets (i.e., CLL_SUB_111, GLIOMA, TOX-171) [29] . Table 2 

hows the details of these datasets. 

.2. Evaluation metrics 

In order to evaluate the clustering results of all algorithms, we 

hoose two popular metrics: clustering accuracy (ACC) [32] and 

ormalized mutual information (NMI) [48] . The higher the values 

f ACC and NMI are, the better the clustering result. Therefore, ACC 

nd NMI can reflect the feature selection effectiveness of all algo- 

ithms. 

ACC is defined as: 

CC = 

1 

n 

n ∑ 

i =1 

δ( c i , map( g i )) (42) 

here c i and g i respectively denote the clustering label and the true 

abel of x i . map(·) is an optimal mapping function, which utilizes 

ungarian method [49] to match clustering labels with true la- 

els. δ( c i , g i ) is an indicator function, if c i = g i , δ( c i , g i ) = 1 , other-

ise, δ( c i , g i ) = 0 . 

NMI is defined as: 

MI = 

MI(C, ̃  C ) 

max (H(C) , H( ̃  C )) 
(43) 

here C and 

˜ C respectively represent the clustering labels and the 

rue labels. H(C ) is the entropy of C , and H( ̃  C ) is the entropy of ˜ C .

I(C, ̃  C ) is the information entropy between C and 

˜ C 

I(C, ̃  C ) = 

∑ 

c i ∈ C, ̃ c j ∈ ̃  C 

p( c i , ̃  c j ) log 
p( c i , ̃  c j ) 

p( c i ) p( ̃  c j ) 
(44) 

here p( c i ) and p( ̃  c j ) respectively indicate the probabilities that a 

ample belongs to the clusters c i and ̃

 c j . p( c i , ̃  c j ) is the joint prob-

bility that a sample simultaneously belongs to the clusters c i and 

 

 j . 
7 
It is worth noting that ACC and NMI are two different evalua- 

ion metrics for clustering results. ACC reflects the accuracy of the 

lustering results, while NMI reflects the consistency between the 

lustering results and the true labels. For the clustering results on 

he same dataset, ACC and NMI may not reach the highest at the 

ame time. 

.3. Experimental settings 

The range of some parameters in our experiment needs to be 

et. For LapScor, MCFS, JELSR, URAFS, ADGCF FS , SOGFS and LRLMR, 

e fix the neighborhood size to 5. As for DSLRL, we optimize the 

ow-dimensional latent representation matrix V infinitely close to 

he ideal label matrix to provide discriminative information for 

eature selection, so that it can better provide discriminative in- 

ormation for feature selection. Therefore, m is equal to c that is 

he number of clusters. The parameter Niter representing the max- 

mum number of iterations is 50. The parameters α, β, γ , λ are 

earched from {10 −3 , 10 −2 , 10 −1 , 1, 10 1 , 10 2 , 10 3 }. For the Optdigit

ataset, we tune the feature selection parameter l in the range of 

20, 30, 40}, and for the remaining datasets, l varies in {20, 30, 40, 

0, 60, 70, 80, 90, 100}. Because the results of the k-means clus- 

ering method are dependent on initialization, we repeat the clus- 

ering for 20 runs independently and take the average of ACC and 

MI, respectively. 

.4. Clustering results and analysis 

Table 3 shows the average and standard deviation of the clus- 

ering accuracy (ACC) of all algorithms for feature selection on dif- 

erent datasets. Table 4 summarizes the average and standard devi- 

tion of the normalized mutual information (NMI) for the same ex- 

eriments. In both tables, the best results are highlighted in bold, 

nd the number of selected features is labeled. 

From Table 3 , we can see that the ACC results of DSLRL on the

2 datasets are better than others. As can be seen from Table 4 ,

he NMI results of DSLRL are better than 7 comparison algorithms 

n different datasets. It should be noted that the clustering results 

f DSLRL on CLL_SUB_111 dataset are superior. In CLL_SUB_111 

ataset, the number of features is much larger than the number 

f samples, and the number of clusters is relatively small. Such 

atasets usually have many features that are redundant, or even 

epresent noise, they will affect the effect of feature selection. Dif- 

erent from other methods, DSLRL introduces dual space latent rep- 

esentation learning, where the data latent representation matrix 

escribes the assignment information between instances and clus- 

ers, and the feature latent representation matrix records the cor- 

elation between features and clusters. Both of them are applied to 

he regression function, which improved the effectiveness of fea- 

ure selection and facilitate subsequent data processing. 

In order to better illustrate that the improvement of the clus- 

ering results of DSLRL in Tables 3 and 4 is obvious, we perform 

 statistical analysis on the results of DSLRL and comparison algo- 

ithms. Specifically, the paired t-test is used. Each algorithm needs 

o repeat clustering 20 times independently to obtain the average 

esults in Tables 3 and 4 . These 20 results are used as samples

or paired t-test, and the significance level parameter alpha = 0.05. 

bserving h and p which obtained from the statistical experiment, 

 = 0 indicates that the null hypothesis cannot be rejected at the 

% significance level. On the contrary, h = 1 indicates that the null 

ypothesis can be rejected at the 5% level. And p represents the p - 

alue, which shows the significance level. When h = 1 and the value 

f p is small, it is generally considered that there is a difference 

etween the two samples, which indicates that the result of DSLRL 

s significantly improved. Tables 5-6 are the paired t-test of DSLRL 

nd each comparison algorithm on all datasets. 
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Table 3 

Best clustering results (ACC ±STD%) of different algorithms on twelve datasets. 

Datasets LapScor MCFS JELSR SOGFS ADGCF FS URAFS LRLMR DSLRL 

Yale 42.53 ±1.83(30) 43.23 ±2.27(40) 41.10 ±2.94(60) 44.29 ±3.28(20) 37.24 ±1.65(20) 37.47 ±2.26(50) 43.67 ±2.89(20) 46.94 ±3.57 (50) 

warpPIE10P 29.52 ±0.85(20) 36.10 ±2.74(20) 46.36 ±2.89(20) 51.43 ±2.36(20) 45.16 ±2.21(60) 31.80 ±1.88(20) 47.15 ±2.46(20) 55.06 ±2.89 (20) 

AT&T 47.16 ±1.91(50) 55.53 ±2.44(90) 56.58 ±2.71(100) 54.46 ±2.15(30) 45.96 ±1.88(100) 58.39 ±2.89(90) 57.07 ±2.26(100) 62.17 ±2.72 (70) 

COIL20 59.95 ±2.74(100) 65.08 ±2.58(70) 63.30 ±2.87(90) 48.70 ±1.79(70) 51.81 ±2.41(80) 62.08 ±2.85(100) 64.10 ±2.61(100) 66.86 ±3.07 (100) 

Isolet 55.69 ±2.17(100) 57.07 ±1.96(100) 58.15 ±1.93(100) 49.19 ±2.11(100) 53.38 ±1.11(90) 58.83 ±2.14(100) 62.37 ±2.95(100) 65.10 ±2.19 (100) 

CLL _ SUB _ 111 55.66 ±1.67(70) 54.05 ±1.12(30) 54.49 ±1.34(20) 58.55 ±0.67(50) 57.83 ±0.97(100) 58.55 ±2.57(20) 51.15 ±2.51(40) 63.36 ±1.56 (100) 

Mnist 45.14 ±0.85(80) 47.56 ±1.34(100) 50.07 ±1.46(100) 47.44 ±1.30(100) 43.95 ±0.28(100) 50.68 ±0.84(100) 51.55 ±2.02(100) 51.98 ±1.01 (100) 

PIE_pose27 30.26 ±0.84(40) 20.05 ±0.77(50) 30.82 ±0.83(50) 19.08 ±0.69(100) 35.52 ±0.77(30) 30.68 ±0.81(20) 30.75 ±0.84(30) 37.92 ±1.32 (80) 

Optdigit 81.28 ±1.72(40) 78.35 ±0.68(40) 81.59 ±2.98(40) 78.62 ±0.81(40) 81.87 ±0.62(40) 80.13 ±2.05(40) 81.28 ±0.33(30) 82.62 ±3.16 (40) 

Yale64 51.10 ±2.77(70) 50.01 ±3.06(30) 51.45 ±3.18(100) 45.34 ±3.27(100) 49.51 ±3.15(90) 44.00 ±3.03(50) 46.41 ±2.68(90) 52.30 ±3.67 (100) 

GLIOMA 56.46 ±1.58(100) 57.18 ±7.79(80) 56.40 ±3.53(100) 59.56 ±2.29(90) 65.30 ±3.38(100) 55.20 ±4.28(100) 61.00 ±5.40(90) 70.50 ±4.62 (100) 

TOX-171 42.67 ±0.12(20) 41.05 ±4.18(90) 44.23 ±1.56(100) 40.09 ±2.18(100) 39.23 ±0.73(80) 46.14 ±3.77(100) 47.54 ±1.71(100) 48.48 ±1.55 (90) 

Table 4 

Best clustering results (NMI ±STD%) of different algorithms on twelve datasets. 

Datasets LapScor MCFS JELSR SOGFS ADGCF FS URAFS LRLMR DSLRL 

Yale 48.64 ±1.55(30) 47.62 ±2.26(100) 47.86 ±2.27(60) 49.67 ±2.53(20) 42.98 ±1.87(50) 42.64 ±2.02(50) 49.34 ±1.82(20) 53.11 ±2.53 (50) 

warpPIE10P 25.94 ±1.19(20) 40.20 ±3.19(20) 49.68 ±2.40(20) 53.62 ±1.77(20) 49.79 ±1.93(60) 30.18 ±2.61(20) 56.23 ±2.29(20) 56.36 ±2.68 (20) 

AT&T 71.13 ±1.04(60) 72.44 ±1.19(90) 74.19 ±1.67(90) 73.62 ±1.11(30) 67.91 ±1.01(100) 76.92 ±1.23(90) 75.46 ±1.09(100) 79.90 ±1.43 (80) 

COIL20 69.59 ±1.24(100) 74.53 ±1.39(70) 73.46 ±1.32(90) 61.24 ±1.19(70) 59.56 ±1.20(80) 73.00 ±1.58(100) 75.76 ±1.31(100) 77.21 ±1.69 (100) 

Isolet 69.63 ±0.86(100) 70.20 ±0.86(100) 71.33 ±0.75(100) 65.68 ±1.01(100) 67.38 ±0.80(90) 73.13 ±1.07(100) 74.15 ±2.58(100) 74.92 ±1.17 (100) 

CLL _ SUB _ 111 17.55 ±1.59(80) 26.21 ±1.46(30) 26.31 ±2.23(20) 26.25 ±0.68(50) 25.70 ±0.68(100) 19.65 ±1.12(20) 16.28 ±1.82(40) 31.07 ±1.06 (30) 

Mnist 39.85 ±0.31(100) 42.90 ±0.47(100) 42.70 ±0.68(100) 37.88 ±0.61(100) 35.97 ±0.14(100) 39.64 ±0.42(80) 42.79 ±0.77(100) 43.35 ±0.38 (100) 

PIE_pose27 54.05 ±0.52(40) 41.78 ±0.52(50) 58.35 ±0.59(50) 42.76 ±0.49(100) 58.01 ±0.49(30) 56.90 ±0.55(20) 55.65 ±0.58(30) 64.10 ±0.69 (80) 

Optdigit 75.69 ±0.85(40) 73.75 ±0.36(40) 74.93 ±1.96(40) 72.50 ±0.71(40) 72.06 ±0.48(40) 74.76 ±4.06(40) 74.31 ±0.26(30) 75.99 ±0.51 (40) 

Yale64 58.34 ±1.87(70) 55.97 ±1.89(30) 55.11 ±2.18(100) 52.30 ±2.29(100) 54.12 ±1.81(90) 49.43 ±1.66(50) 52.30 ±1.95(90) 59.78 ±2.61 (100) 

GLIOMA 49.94 ±1.37(100) 36.90 ±6.66(80) 40.71 ±5.48(100) 51.64 ±4.28(60) 50.11 ±2.11(100) 37.59 ±6.25(100) 50.41 ±2.69(90) 52.73 ±6.15 (100) 

TOX-171 14.38 ±0.24(20) 12.97 ±4.71(90) 15.16 ±2.36(100) 11.91 ±0.99(100) 13.18 ±0.38(90) 21.09 ±6.22(100) 15.92 ±1.51(100) 26.06 ±1.15 (90) 

Table 5 

The paired t-test result of ACC of DSLRL and comparison algorithm on all datasets 

Datasets 

LapScor MCFS JELSR SOGFS ADGCF FS URAFS LRLMR 

p h p h p h p h p h p h p h 

Yale 1.5977e-05 1 0.0025 1 6.6494e-08 1 3.7687e-07 1 2.5486e-02 1 0.0076 1 4.6980e-04 1 

warpPIE10P 6.2283e-43 1 5.6499e-28 1 2.1852e-15 1 0.0063 1 4.3561e-31 1 1.1631e-23 1 2.7032e-11 1 

AT&T 1.0888e-32 1 3.8543e-15 1 2.3548e-16 1 7.9700e-14 1 6.2541e-40 1 4.1373e-18 1 1.2564e-10 1 

COIL20 5.7859e-14 1 0.5698 0 1.7728e-05 1 1.6530e-35 1 3.4645e-29 1 1.3724e-07 1 0.0519 0 

Isolet 1.0734e-26 1 1.0310e-13 1 2.9988e-19 1 5.9270e-39 1 4.1523e-28 1 4.0867e-15 1 3.4358e-05 1 

CLL _ SUB _ 111 1.1169e-31 1 6.6579e-21 1 7.4568e-19 1 6.1147e-10 1 5.2156e-15 1 5.4621e-10 1 2.1543e-18 1 

Mnist 7.5350e-38 1 6.4562e-12 1 2.4816e-08 1 3.7998e-25 1 1.2487e-40 1 0.3839 0 0.6653 0 

PIE_pose27 4.2718e-21 1 2.7644e-42 1 3.6556e-37 1 1.3429e-41 1 3.7845e-09 1 4.2136e-32 1 9.1111e-29 1 

Optdigit 0.4069 0 1.1549e-12 1 0.2248 0 1.3265e-23 1 0.0016 1 2.4235e-21 1 1.1391e-09 1 

Yale64 0.6510 0 3.7278e-24 1 0.1849 0 6.7104e-14 1 5.6594e-11 1 7.4499e-18 1 5.5685e-10 1 

GLIOMA 4.3265e-32 1 2.6542e-30 1 4.3684e-35 1 3.3941e-25 1 3.2145e-05 1 4.3521e-41 1 2.1545e-08 1 

TOX-171 3.5487e-16 1 4.6584e-23 1 5.6842e-10 1 2.6548e-29 1 1.5487e-34 1 1.2645e-03 1 0.0039 1 

Table 6 

The paired t-test result of NMI of DSLRL and comparison algorithm on all datasets 

Datasets 

LapScor MCFS JELSR SOGFS ADGCF FS URAFS LRLMR 

p h p h p h p h p h p h p h 

Yale 3.0673e-10 1 1.1216e-10 1 3.0801e-11 1 4.3344e-05 1 6.3254e-35 1 2.9570e-28 1 5.0405e-11 1 

warpPIE10P 1.4477e-43 1 4.5204e-31 1 6.6930e-16 1 8.7164e-06 1 3.2456e-15 1 1.7454e-20 1 0.0287 1 

AT&T 2.9279e-37 1 6.8989e-25 1 5.3264e-21 1 1.3358e-27 1 1.3256e-40 1 4.3251e-06 1 6.3254e-09 1 

COIL20 5.2313e-35 1 3.7378e-05 1 2.1435e-14 1 4.4759e-36 1 2.3564e-42 1 7.4121e-16 1 5.0157e-06 1 

Isolet 1.0908e-36 1 8.2349e-39 1 6.1528e-21 1 2.4990e-23 1 2.1564e-19 1 2.4949e-10 1 0.0220 1 

CLL _ SUB _ 111 2.8837e-15 1 5.5705e-06 1 4.3251e-06 1 6.8170e-06 1 3.8461e-06 1 2.3564e-12 1 5.1254e-16 1 

Mnist 1.9863e-39 1 1.1458e-03 1 1.0511e-09 1 2.2851e-40 1 4.2356e-43 1 7.5211e-37 1 3.3585e-04 1 

PIE_pose27 3.1037e-25 1 9.3674e-40 1 1.0266e-39 1 2.4650e-43 1 5.4525e-38 1 1.1723e-44 1 1.8323e-31 1 

Optdigit 0.3874 0 1.3091e-20 1 0.0011 1 1.2543e-07 1 1.3380e-40 1 5.5413e-14 1 8.8391e-29 1 

Yale64 0.4627 0 1.1591e-04 1 9.3160e-04 1 2.1254e-24 1 2.5741e-15 1 3.7642e-35 1 4.8803e-25 1 

GLIOMA 6.9584e-10 1 4.3518e-40 1 2.6978e-30 1 0.6738 0 4.6514e-06 1 6.9572e-38 1 2.7594e-07 1 

TOX-171 4.6579e-37 1 5.9847e-42 1 4.6259e-34 1 5.6245e-45 1 3.6847e-40 1 2.6589e-13 1 4.8476e-40 1 

8 
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Fig. 1. The ACC of all the algorithms for selecting different numbers of features on the twelve datasets. 
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It can be seen from Table 5 that in the paired t-test of SOGFS,

 = 1 and all p -values are small, indicating that the ACC values of

SLRL and SOGFS are quite different. In other paired t-tests, h = 1 

nd p -value is small on most datasets. And h = 0 on a few datasets,

hich indicates that the ACC values of DSLRL are not obviously im- 

roved compared to other algorithms. In general, the ACC of DSLRL 

s significantly improved in most cases. 

From Table 6 , except for the results of the Optdigit and Yale64 

atasets in the LapScor paired t-test and the results of the GLIOMA 

atasets in the SOGFS paired t-test, the rest h = 1 and the p -value

s small. It shows that the NMI of DSLRL and the comparison al- 

orithms are obviously different, which means that the NMI ob- 

ained by DSLRL has a significant improvement. Tables 5-6 display 

hat the clustering results of DSLRL are significantly improved com- 

ared with other algorithms, which verify the superiority of DSLRL. 

In order to study the effect of the number of selected fea- 

ures on the proposed algorithm, this experiment shows the per- 

ormance of DSLRL and seven comparison algorithms when differ- 

nt numbers of features are selected. Fig. 1 displays the clustering 

ccuracy (ACC) of all algorithms for selecting different numbers of 

eatures on twelve datasets. In Figs. 1 and 2 , the abscissa repre- 

ents the number of selected features, the ordinate denotes ACC 

nd NMI, respectively. 

In Fig. 1 , we use eight curves with different colors and shapes 

o express the eight feature selection algorithms, respectively, 

here the black curve represents DSLRL. From Fig. 1 , we can see 

hat on the warpPIE10P dataset, the black curve of DSLRL is always 
9 
bove other curves. It indicates that the ACC of DSLRL is much 

igher than the comparison algorithms on this dataset. On Yale, 

T&T, COIL20, Isolet, GLIOMA and TOX-171 datasets, most points of 

he black curve are at the top. On the remaining four data sets, the 

lack curve of DSLRL is located above most of the curves, and the 

ighest point of the black curve is above the other curves. In short, 

he results of DSLRL for feature selection are better than other al- 

orithms. The main reason is that, we embed latent representa- 

ion learning and sparse learning in the framework of unsuper- 

ised feature selection. During the optimization process, the low- 

imensional latent representation matrix of data space provides 

lustering information for sparse learning, and the sparse transfor- 

ation matrix is unified with the latent representation matrix of 

eature space. The two courses interact with each other and im- 

rove the performance of DSLRL. 

Fig. 2 demonstrates the normalized mutual information (NMI) 

or the same experiments. 

As we can see from Fig. 2 , on the warpPIE10P dataset, the 

lack curves of DSLRL are above other curves. On the Yale, AT&T, 

IE_pose27, Yale64 and TOX-171 datasets, most points of the black 

urve are higher than the points of the other curves. On the 

OIL20, Isolet, Minist, Optdigit and GLIOMA datasets, the black 

urve of DSLRL is located above most curves as a whole, and the 

est NMI of DSLRL is better than comparison algorithms. Overall, 

ur proposed DSLRL improves the effect of clustering experiments. 

n summary, it can be proven that DSLRL has better performance 

han the other algorithms. 
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Fig. 2. The NMI of all the algorithms for selecting different numbers of features on the twelve datasets. 

Fig. 3. Performance of feature selection methods based on Score 
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Fig. 4. The heat map of the Pearson correlation coefficient matrix 
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In order to understand the overall performance of DSLRL, we 

alculate Score as used in [ 50 , 51 ]. In [51] , Sharmin et al. proposed

 new metric namely Score and defined it as the weighted aver- 

ge of stability [50] and accuracy. In this paper, we employ equal 

eight for stability and accuracy. Since there is no iterative pro- 

ess in LapScor and MCFS, we only compare the remaining meth- 

ds based on Score. Fig. 3 highlights the performance of the re- 

aining feature selection methods based on Score. In Fig. 3 , the 
10 
bscissa represents the feature selection method, and the ordinate 

ndicates the number of dataset. 

Fig. 3 compares the performance of feature selection methods 

ased on Score. The “Win” indicates the number of datasets for 
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Fig. 5. Feature evaluation value comparison: (a) DSLRL (b) DSLRL without feature latent representation learning 

Fig. 6. The ACC of DSLRL on the twelve datasets under values of αand γ ( β= 1 and λ = 1 ) 

11 
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Fig. 7. The ACC of DSLRL on twelve datasets under values of β and λ( α= 1 and γ = 1 ) 

Table 7 

The ACC of LRLMR and DSLRL on three datasets with different variance noises (ACC ±STD%) 

Variance 1 10 20 

Dataset LRLMR DSLRL LRLMR DSLRL LRLMR DSLRL 

Yale 38.88 ±3.06 44.91 ±3.05 38.27 ±2.71 42.97 ±2.10 38.08 ±2.52 40.85 ±3.13 

AT&T 56.66 ±2.10 62.02 ±1.88 5584 ±1.44 62.41 ±2.87 56.35 ±1.98 59.85 ±1.81 

PIE _ pose27 29.79 ±1.18 37.24 ±0.80 29.69 ±1.00 37.48 ±1.17 29.79 ±1.13 36.50 ±1.19 
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hich a method performs best compared to other methods. The 

Tie” means the number of datasets for which a method does not 

ompletely win, but is one of the best performing methods [51] . It 

an be seen that among all the feature selection methods in Fig. 3 ,

he value of “Win” of DSLRL is the largest. At the same time, con- 

idering the sum of “Win” and “Tie”, the value of DSLRL is also 

he largest. Finally, it can be concluded that compared with other 

ethods, DSLRL performs comparatively better based on Score, 

hich shows that the overall performance of DSLRL is good. 

.5. Noise test and low redundancy test 

In order to verify that DSLRL can reduce the negative impact of 

oise and redundant information, we designed some small tests, 

uch as noise test and redundancy test. In the noise test, Yale, AT&T 

nd PIE_pose27 datasets are used. Gaussian noises with variances 

f 1, 10, and 20 are added into these datasets respectively, and nine 

atasets with noise are obtained. The clustering results of LRLMR 
12 
nd DSLRL on nine datasets are recorded in Tables 7 and 8 , respec-

ively. 

It can be seen from the Tables 7 and 8 that the ACC and NMI

f DSLRL are higher than LRLMR, indicating the effectiveness of 

SLRL. Meanwhile, the better clustering results of DSLRL on the 

oise-added datasets also prove that the algorithm is robust to 

oise. 

In the low redundancy test, we choose the page-blocks dataset 

s the test dataset, which contains 5473 samples and 10 features. 

he Pearson correlation coefficient is used to evaluate the correla- 

ion between features, and the heat map of the correlation coeffi- 

ient matrix is shown in the Fig. 4 . 

DSLRL performs feature selection on the page-blocks dataset, 

nd the evaluation values of all the features are shown in the 

ig. 5 (a). As a comparison, we remove the latent representa- 

ion learning of the feature space and re-select the features, 

nd the obtained feature evaluation values are shown in the 

ig. 5 (b). 
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Fig. 8. The NMI of DSLRL on twelve datasets under values of α and γ ( β= 1 and λ = 1 ) 

Table 8 

The NMI of LRLMR and DSLRL on three datasets with different variance noises (NMI ±STD%) 

Variance 1 10 20 

Dataset LRLMR DSLRL LRLMR DSLRL LRLMR DSLRL 

Yale 46.27 ±1.96 51.40 ±2.12 45.99 ±2.31 49.09 ±2.58 45.25 ±2.25 47.38 ±2.80 

AT&T 74.76 ±1.29 78.85 ±1.22 73.77 ±1.02 79.08 ±1.39 74.55 ±1.30 76.61 ±1.03 

PIE _ pose27 53.92 ±0.70 64.05 ±0.50 53.23 ±0.65 63.33 ±0.68 53.77 ±0.69 62.97 ±0.56 
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Table 9 

Computational complexity analysis 

Algorithms Computational complexity 

LapScor O ( dn 2 ) 

MCFS O ( dn 2 ) 

JELSR O ( dn 2 + t ( n 3 + mdn )) 

SOGFS O (t( d 3 + mn 2 )) 

ADGCF FS O ( n 2 d + nd 2 + t ( n 2 m )) 

URAFS O (t( d 3 + dn 2 )) 

LRLMR O ( dn 2 + t ( d 3 )) 

DSLRL O ( dn 2 + d 2 n + t ( d 2 n )) 

s

i

A

u

a

We can see from the Fig. 5 (a) that DSLRL considers features 4, 

 and 7 to be the most representative, and after removing the 

atent representation learning of the feature space, the selected 

hree features are 5, 6 and 4 from the Fig. 5 (b). In Fig. 4 , the cor-

elation coefficients of features selected by the former are 0.094, 

.029 and 0.135 with the average value 0.086, while the latter are 

.128, 0.0 6 6 and 0.515 with the average value 0.236. The correla- 

ion of the three features selected by DSLRL is lower than the lat- 

er. It can be concluded that the feature selected by DSLRL without 

eature latent representation learning is high-redundant, while the 

eatures selected by DSLRL have low redundancy. 

.6. Computational complexity analysis 

The computational complexity of the seven comparison algo- 

ithms and the proposed algorithm has been shown in Table 9 , 

here n is the number of samples, d is the number of features, 

 represents the dimension of the low-dimensional space, l repre- 
13 
ents the number of the selected features, and t is the number of 

terations. 

Next, the computational complexity of DSLRL will be analyzed. 

ccording to the procedure of DSLRL, the running time is mainly 

sed to construct the affinity matrices and iteratively optimize W 

nd V . The computational complexity of constructing the affinity 



R. Shang, L. Wang, F. Shang et al. Pattern Recognition 114 (2021) 107873 

Fig. 9. The NMI of DSLRL on the twelve datasets under values of β and λ( α= 1 and γ = 1 ) 

Algorithm 1 

The procedure of DSLRL. 

Input : Data matrix X ∈ R n ×d ; Maximum iteration number Niter ; Balance parameters α, β, γ , λ; Selected feature number l ; 

Step 1. Construct the affinity matrices A ∈ R n ×n , B ∈ R d×d ; 

Step 2. Initialize iter = 0, H = I, W = rand ( d, c ), V = rand ( n, c ); 

Step 3. Update W and V according to the iterative updating formulas (18) and (21), until the convergence conditions are satisfied; 

Step 4. Calculate the weight of all the features according to || W i || 2 , and sort them in descending order, then select the top l ranked features as a new data matrix 

X new . 

Output : Index of selected features index ; New data matrix X new . 
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atrices A and B is O ( dn 2 ) and O ( d 2 n ), respectively. Next the com-

utational complexity of each iteration is O ( d 2 n ). Therefore, the to-

al computational complexity of DSLRL is O ( dn 2 + d 2 n + t ( d 2 n )). From

able 7 , the computational complexity relationship between DSLRL 

nd others is determined by the relationship between d and n . 

.7. Parameters sensitivity analysis 

The parameters of DSLRL include balance parameters α, β, γ , λ
nd Gaussian kernel bandwidth parameters σ1 , σ2 . In this pa- 

er, we only discuss the sensitivity of the balance parameters 

, β, γ , λ. Because 0 < A i j ≤ 1 and 0 < B i j ≤ 1 , both σ1 and σ2 will

ave a fixed value on each dataset. Fixing other parameters, we 

ecord the changes of ACC and NMI as balance parameters vary. 

he search ranges of parameters α, β, γ and λ are both {10 −3 , 

0 −2 , 10 −1 , 1, 10 1 , 10 2 , 10 3 }. Figs. 6 and 8 illustrate the changes of

CC and NMI on twelve datasets under different values of α and γ
14 
hen β= 1 and λ = 1 . Figs. 7 and 9 illustrate the changes of ACC 

nd NMI on twelve datasets under different values of β and λ
hen α= 1 and γ = 1 . 

Fig. 6 shows that when the parameters α and γ vary, the ACC 

f DSLRL does not change obviously on most datasets. In particular, 

he performance of DSLRL is very stable on the COIL20 and Opt- 

igit dataset. On the Yale, AT&T, warpPIE10P, Isolet, Minist, Yale64, 

LIOMA and TOX-171 datasets, the ACC shows a steady upward 

rend, and the range of fluctuations relatively small. On the re- 

aining datasets, the ACC occasionally fluctuates, but in general, 

ost of the ACC values are in a stable state. It can be concluded 

rom Fig. 6 that the ACC of DSLRL is relatively stable with the 

hange of parameters α and γ . 

Fig. 7 displays that when α and γ are fixed, with the changes of 

and λ, the trend of ACC is relatively stable on most datasets, es- 

ecially on the Yale, AT&T and COIL20 datasets. Overall, compared 
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Fig. 10. The convergence curves of DSLRL on twelve datasets (α= 10 0 0 , β= 0 . 0 01 and γ = 0 . 0 0 1) 
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o Fig. 6 , we find that the ACC of DSLRL is less sensitive to param-

ters β and λ. 

In Fig. 8 , the NMI rises slightly, and the performance is sta- 

le on the Yale, AT&T, COIL20, and Optdigit datasets. While on the 

arpPIE10P, Isolet, Mnist, PIEpose27, Yale64, GLIOMA and TOX-171 

atasets, the NMI slowly rises in steps and it is a little bit sensitive

o the parameters α and γ . 

Fig. 9 demonstrates that the value of NMI given by DSLRL 

hen parameters α= 1 and γ = 1 . From these pictures, we can see 

hat when λ is large, the NMI of DSLRL rapidly increases to a 

eak, and when 10 −1 ≤ β ≤ 10 1 , the NMI shows a better value on 

LL _ SUB _ 111 dataset. For other datasets, the NMI of DSLRL is rela- 

ively stable. 

Combined with Figs. 6-9 , the performance of ACC and NMI 

n the CLL _ SUB _ 111 dataset is not as stable as their performance 

n other datasets. This is due to the properties of CLL _ SUB _ 111 

ataset. The large number of feature and high similarity among 

eatures make it is more difficult for feature selection. It can be 

een from Figs. 6-9 that the results of DSLRL are gradually in- 

reasing. Although DSLRL performs better than others, the results 

re still not very stable due to the characteristics of CLL _ SUB _ 111 

ataset. Therefore, it is our future research work to improve the 

tability of DSLRL for such datasets. 

.8. Convergence study 

The convergence analysis of the proposed algorithm has been 

iven in the previous section. Here, we show the convergence 
15 
urves of DSLRL on different datasets to intuitively illustrate the 

onvergence properties of the designed algorithm. 

The convergence curves of DSLRL for different iterations on 

welve datasets are shown in Fig. 10 . 

The vertical axis represents the value of the objective function, 

nd the horizontal axis is the number of iterations. It can be seen 

hat as the number of iterations increases, the value of the ob- 

ective function decreases rapidly and converges on each dataset. 

ig. 10 verifies the convergence of DSLRL. 

. Conclusions 

This paper proposes an unsupervised feature selection algo- 

ithm called DSLRL, which exploits the inherent association in- 

ormation in data space and feature space to improve the effect 

f feature selection. The proposed algorithm combines the advan- 

ages of latent representation learning and sparse learning, hence 

he performance of feature selection is improved. We propose la- 

ent representation learning based on dual space, which charac- 

erizes the intrinsic structure of data space and feature space, re- 

pectively. We make the latent representation matrix of data space 

lose to the ideal label matrix, and unify the sparse transformation 

atrix with the latent representation matrix of feature space, so 

hat the internal information of dual space is fully utilized to op- 

imize the feature selection. Then, the l 2,1 -norm constraint is used 

o ensure the row sparseness of the matrix. In the optimization 

rocess, we employ the alternating method to obtain the updating 

ules of W and V . Finally, this paper compares DSLRL with seven 

omparison algorithms on several datasets. The results of cluster- 
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ng experiments show that DSLRL has good clustering results on 

ost datasets, while the results of parameter sensitivity experi- 

ents verify the robustness of DSLRL. Overall, the experimental 

esults show that DSLRL outperforms the other comparison algo- 

ithms. 

The disadvantage of DSLRL is that it has many parameters that 

eed to be adjusted, which leads to a large search range. In the 

uture research, we will further explore the method of parameter 

daptation to reduce the cost of the algorithm and find the most 

uitable parameter combination. In addition, we hope to study a 

ovel optimization method that can simultaneously optimize the 

ariables W and V . 
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