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a b s t r a c t 

Modern unsupervised feature selection methods predominantly obtain the cluster structure and pseudo- 

labels information through spectral clustering. However, the pseudo-labels obtained by spectral clustering 

are usually mixed between positive and negative. Moreover, the Laplacian matrix in spectral clustering 

typically affects f eature selection. Additionally, spectral clustering does not consider the interconnection 

information between data. To address these problems, this paper proposes uncorrelated feature selec- 

tion via sparse latent representation and extended orthogonal least square discriminant analysis (OLSDA), 

which we term SLREO). Firstly, SLREO retains the interconnection between data by latent representa- 

tion learning, and preserves the internal information between the data. In order to remove redundant 

interconnection information, an l 2,1 -norm constraint is applied to the residual matrix of potential repre- 

sentation learning. Secondly, SLREO obtains non-negative pseudo-labels through orthogonal least square 

discriminant analysis (OLSDA) of embedded non-negative manifold structure. It not only avoids the ap- 

pearance of negative pseudo-labels, but also eliminates the effect of the Laplacian matrix on feature se- 

lection. The manifold information of the data is also preserved. Furthermore, the matrix of the learned 

latent representation and OLSDA is used as pseudo-labels information. It not only ensures that the gen- 

erated pseudo-labels are non-negative, but also makes the pseudo-labels closer to the true class labels. 

Finally, in order to avoid trivial solutions, an uncorrelated constraint and l 2,1 -norm constraint are imposed 

on the feature transformation matrix. These constraints ensure row sparsity of the feature transformation 

matrix, select low-redundant and discriminative features, and improve the effect of feature selection. Ex- 

perimental results show that the Clustering Accuracy (ACC) and Normalized Mutual Information (NMI) of 

SLREO are significantly improved, as compared with six other published algorithms, tested on 11 bench- 

mark datasets. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

With the rapid development of information technology, many 

ifferent fields of research, and industrial applications, are han- 

ling increasingly large amounts of high-dimensional data. This is 

ncreasingly apparent in fields such as computer vision and pattern 

ecognition [1] . However, the learning performance of classifica- 

ion and clustering algorithms is easily affected by redundant fea- 

ures and noise in high-dimensional data [2] . Moreover, demands 

n both computer memory, and also computational complexity, 

ill also be affected by high-dimensional data. Therefore, before 

irectly processing high-dimensional data, dimensionality reduc- 

ion is generally performed [3] . Dimensionality reduction methods 
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an remove redundant features and noise, reduce time complex- 

ty [4] and improve algorithm performance [5] . Commonly used 

imensionality reduction methods include feature extraction and 

eature selection [6] . Feature extraction forms new features from 

he original data through a series of conversion methods, thereby 

btaining a new feature space [7] . Feature selection attempts to 

elect the most representative features from the original feature 

et as the optimal feature subset, which can retain the informa- 

ion content, and physical meaning, of the original features [8] , 

hile minimizing the required number of dimensions. Moreover, 

eature selection can remove redundant features and noise, so it 

an also improve the performance of the algorithm. Therefore, fea- 

ure selection is widely used in image processing, text processing 

nd other fields [6] . 

Feature selection methods can be broadly divided into su- 

ervised feature selection [2] , semi-supervised feature selection 

https://doi.org/10.1016/j.patcog.2022.108966
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7] and unsupervised feature selection [3] , according to the de- 

ree to which class labelled training data is used. Supervised fea- 

ure selection provides label information, and uses the correlation 

etween samples and labels to select discriminative features [9] . 

emi-supervised feature selection provides partial labels, and com- 

ines some labeled samples with unlabeled samples to perform 

eature selection. Unsupervised feature selection is based on in- 

ormation within the data, and does not require labels. In real- 

orld, industrial applications, or new applications which lack pub- 

ic benchmark datasets, labeling enough data to enable fully su- 

ervised learning methods may be prohibitively time and resource 

onsuming. Therefore, unsupervised feature selection algorithms 

ave are attracting increasing attention from the research commu- 

ity [10] . 

An alternative way to view feature selection methods, is to di- 

ide them according to different strategies such as filter [11] , wrap- 

er [12] and embedded [13] . Filter feature selection methods work 

y filtering the initial feature set through setting methods, and 

hen use the filter features for feature selection [11] . For example, 

he LapScor algorithm [11] assesses the importance of features by 

alculating their Laplacian score through the local geometric struc- 

ure of the data. Wrapper feature selection evaluates the feature 

ubset according to the performance of a learning method such as 

VM [14] , and finally selects the optimal feature subset [12] . Em- 

edded feature selection is a combination of filter and wrapper, 

hich performs feature selection in the process of classifier learn- 

ng. Compared with wrapper feature selection, embedded feature 

election can reduce the computational cost. Compared with fil- 

ered feature selection, the classifier in embedded feature selection 

an select more accurate feature subsets. Due to these advantages, 

hese methods are attracting increasing attention [15] . 

The question of how to obtain the label information of data 

amples in unsupervised feature selection remains an open re- 

earch challenge. Most unsupervised feature selection algorithms 

enerate pseudo-label information through spectral clustering [4] . 

or example, Zhao and Liu used the frequency spectrum of the 

raph to measure feature correlation, and proposed a feature selec- 

ion framework named spectral feature selection algorithm (SPEC) 

16] . Cai et al. proposed multi-cluster feature selection (MCFS) by 

electing the features of multi cluster structure of data can be 

eserved through spectral analysis [17] . MCFS adopts a two-step 

trategy. The first step preserves the manifold structure, and the 

econd step performs sparse regression with l 1 -norm regulariza- 

ion. Hou et al. adopted a single-step strategy to unify embedded 

earning and sparse regression for feature selection, and proposed 

oint embedding learning and sparse regression (JELSR) [13] . The 

ifference between JELSR and MCFS is that JELSR uses a single- 

tep strategy, while MCFS uses a two-step strategy. Based on the 

ELSR feature selection framework, non-negative spectral learn- 

ng and sparse regression-based dual-graph regularized (NSSRD) is 

roposed by Shang et al. [18] . NSSRD introduced the idea of the 

eature graph to provide discriminative information for feature se- 

ection, and imposed non-negative and l 2,1 -norm constraint on the 

eature selection matrix. In Ref. [19] , the concept of graph reg- 

larization is introduced into matrix factorization, and [19] pro- 

oses subspace learning-based graph regularized feature selection 

SGFS). SGFS used the spectral embedding method to preserve the 

ocal geometric structure and imposed l 2,1 -norm constraint on the 

eature selection matrix to select sparse discriminative features. Li 

t al. used the generalized uncorrelated regression model to select 

ncorrelated but discriminative features, and proposed generalized 

ncorrelated regression with adaptive graph unsupervised feature 

election (URAFS) [20] . Tang et al. proposed robust unsupervised 

eature selection via dual self-representation and manifold regular- 

zation (DSRMR), which used feature self-representation and data 

elf-representation to learn a sparse feature matrix and similarity 
2

atrix respectively to retain the manifold information more accu- 

ately [21] . Shang et al. proposed sparse and low-redundant sub- 

pace learning-based dual-graph regularized (SLSDR) [22] . SLSDR 

ntroduced data graph into SGFS framework, using the local ge- 

metric information of the data manifold and feature manifold 

o guide subspace learning. Additionally, SLSDR imposed l 2,1 -norm 

parsity constraint on the subspace learning residual matrix to en- 

ure robustness to outlier samples. In order to retain the local 

tructure information more accurately [23] , embedded the adap- 

ive similarity matrix into the subspace learning framework and 

roposed subspace learning for unsupervised feature selection via 

daptive structure learning and rank approximation (SLASR). Com- 

ared with SLSDR, SLASR can adaptively learn manifold structure. 

he pseudo-labels obtained by spectral clustering are used to guide 

eature selection, and good results have been obtained. 

Generally speaking, spectral clustering uses the method of con- 

tructing an adjacency matrix to provide pseudo-label informa- 

ion, which improves the result of feature selection algorithms to 

 certain extent. However, for large datasets, constructing an ad- 

acency matrix is very time-consuming. Furthermore, the quality 

f the constructed Laplacian matrix also affects the performance 

f the algorithm. Zhang et al. proposed unsupervised feature se- 

ection with extended OLSDA via embedding nonnegative mani- 

old structure (NMSFS) to solve this problem [24] . This method ap- 

lied orthogonal least square discriminant analysis (OLSDA) [25] to 

nsupervised feature selection method, and embedded the mani- 

old structure retained by the discrete clustering indicator matrix, 

hich did not involve the Laplace matrix. While preserving the 

anifold structure, although NMSFS eliminated the impact of the 

aplacian matrix on performance, it also ignored the internal con- 

ections between data. 

More recently, methods are emerging that also consider the in- 

erconnection of data, yielding good feature selection results. Tang 

t al. proposed unsupervised feature selection via latent represen- 

ation learning and manifold regularization (LRLMR) [26] . LRLMR 

mbedded latent representation learning into the feature selection 

atrix to preserve the interconnection between data. And LRLMR 

reserved the manifold structure of the data space to select fea- 

ures in the latent representation space. Shang et al. proposed dual 

pace latent representation learning for unsupervised feature se- 

ection (DSLRL) [27] . DSLRL mined the correlation between data 

rom data space and feature space, respectively. The non-negative 

nd orthogonal constraints are applied to the sparse transforma- 

ion matrix to avoid trivial solutions, and the correlation between 

ata space and feature space is used to guide feature selection. 

Yuan et al. proposed convex non-negative matrix factorization 

ith adaptive graph for unsupervised feature selection (CNAFS) 

28] . CNAFS used the convex matrix factorization with adaptive 

raph constraints to mine the correlation between the data, and in- 

egrated the pseudo-label matrix learning into the self-expression 

odule for feature selection. Among the three methods, LRLMR 

nd DSLRL both preserved the interconnection between data by 

mbedding latent representation learning into the feature selection 

ramework, and CNAFS used self-adaptation to mine more internal 

nformation between data. Although the correlation between data 

s preserved to a certain extent, multiple Laplacian matrices need 

o be calculated. The Laplacian matrices have a certain impact on 

he efficiency of the algorithm, and it affects the performance of 

eature selection. 

In feature selection, sparse constraints are usually used, and 

any scholars have proposed different constraint methods. Ye 

t al. proposed an NPDA algorithm that adopts the cut l 1 -norm as 

 distance metric, which can handle even a small value well and 

an better eliminate outliers [29] . Ye et al. Proposed Lp- and Ls- 

orm Distance Based Robust Linear Discriminant Analysis (FLDA- 

sp), which achieved robustness by using the Lp and Ls norms 
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30] . Li et al. proposed the GZA-PNMCC algorithm and can be used 

o estimate sparse recognition problems [31] . Albu et al. proposed 

Fx-LPPNLMS for ANC systems and adapted to more sparse cases 

32] . Li et al. proposed discriminative and uncorrelated feature se- 

ection with constrained spectral analysis in unsupervised learning 

DUCFS) [33] , using a regularized regression model with general- 

zed uncorrelated constraint to explore low-redundancy and dis- 

riminative features. 

In summary, we consider the influence of the Laplacian ma- 

rix on feature selection, the relationship between some features of 

ata and hidden attributes, and the internal relationship between 

he data. In order to preserve the manifold structure of the data, 

iming at the deficiencies of the two types of algorithms, this pa- 

er proposes uncorrelated feature selection via sparse latent repre- 

entation and extended OLSDA in unsupervised learning (SLREO). 

LREO embeds the non-negative manifold structure into OLSDA, 

hich not only relaxes discrete cluster labels into continuous clus- 

er labels, but also ensures the non-negativity of pseudo-labels. In 

ontrast to the conventional manifold structure preservation ap- 

roaches, SLREO does not use the Laplacian matrix. Hence, it can 

educe the influence of the Laplacian matrix on feature selection. 

n addition, SLREO guarantees the non-negativity of the pseudo- 

abels, and the generated pseudo-labels are more accurate than 

ther methods without restrictions. Some features of data are re- 

ated to hidden attributes. In order to preserve the internal connec- 

ion between data, SLREO introduces a latent representation ma- 

rix, and uses latent representation to preserve the interconnec- 

ion between data. In order to make the pseudo-labels closer to 

he real class labels, in this paper we unify the latent representa- 

ion matrix and the non-negative indication matrix with manifold 

tructure. Furthermore, SLREO constrains the non-negativity of the 

seudo-label and the interconnection of data through OLSDA and 

atent representation methods. To avoid the appearance of trivial 

olutions and excessive suppression of non-zero rows, SLREO im- 

oses an uncorrelated constraint and l 2,1 -norm constraint on the 

eature selection matrix. These constraints guarantee the row spar- 

ity of the feature transformation matrix, select low-redundant fea- 

ures, and improve the feature selection performance. 

The contributions of this paper are as follows: 

(1) SLREO performs feature selection in the latent representa- 

tion space, uses latent representation learning to mine the 

hidden information between data, and retains the intercon- 

nection between data. The latent representation matrix is 

used as a pseudo-label matrix. By considering the intercon- 

nection between data, the pseudo-labels more closely match 

physically meaningful labels in the real application. 

(2) SLREO generates pseudo-label information through the 

OLSDA method embedded in a non-negative manifold struc- 

ture. Compared with the spectral clustering methods com- 

monly used, this algorithm can not only preserve the 

manifold structure, but also ensure the non-negativity of 

pseudo-labels. Additionally, compared with spectral cluster- 

ing, SLREO also reduces the influence of the Laplacian matrix 

on the feature selection due to the use of the scaled discrete 

clustering indicator matrix. 

(3) The l 2,1 -norm constraint is imposed on the residual matrix 

of latent representation learning to ensure the effectiveness 

and robustness of the clustering indicator. The unified la- 

tent representation matrix and the clustering indicator ma- 

trix obtained by scaling the discrete clustering indicator ma- 

trix are compared with only latent representation learning 

or only OLSDA, the pseudo-labels are not only non-negative, 

but also contains the dependence between data. 

(4) Applying uncorrelated constraint and l 2,1 -norm constraint 

on the feature transformation matrix can avoid excessive 
s

3 
suppression of non-zero rows and the appearance of redun- 

dant solutions. Therefore, the importance of each feature can 

be better reflected, so that more discriminative features can 

be selected. 

The remainder of this paper is organized as follows. 

ection 2 presents the SLREO algorithm, optimization method, 

onvergence analysis and computational complexity analysis. In 

ection 3 , the experimental results and analysis of SLREO and 

ompared algorithms are provided. Section 4 summarizes the 

aper and provides concluding remarks. 

. The proposed SLREO algorithm 

This section introduces details of our proposed algorithm, 

LREO, for uncorrelated feature selection via sparse latent repre- 

entation and extended OLSDA in unsupervised learning. SLREO is 

esigned to address two key problems: (i) spectral clustering can- 

ot ensure the non-negativity of pseudo-labels; and (ii) spectral 

lustering ignores certain kinds of internal connections between 

ata. The proposed SLREO methods, as well as the update rules of 

LREO, computational complexity analysis and convergence analy- 

is are provided in this section. 

.1. Uncorrelated feature selection via sparse latent representation 

.1.1. Sparse latent representation 

A common assumption in unsupervised feature selection is that 

ach data sample is independent of each other and has the same 

istribution as a prerequisite. However, in practical applications, 

amples may not be fully statistically independent of each other 

nd may thus provide link information which can play a useful 

ole in feature selection. In order to consider the dependency in- 

ormation between samples, the adjacency matrix A is constructed 

y Gaussian function [21] to represent the interconnection infor- 

ation between data. The adjacency matrix A is defined as Eq. (1) . 

 = exp 

( 

−
∥∥x i − x j 

∥∥2 

2 

σ 2 

) 

(1) 

here, i, j = 1, 2, …, n . x i represents the i th instance. σ is the Gaus-

ian scale parameter. 

The latent representation can be obtained through the adja- 

ency matrix of the samples, because the more similar two sam- 

les are, the more likely the two samples affect each other. Gener- 

lly, the information of latent representation is generated through 

on-negative factorization [34] . The adjacency matrix A is decom- 

osed into the product of non-negative matrix Q and its trans- 

osed Q 

T . The specific form of the model is as Eq. (2) . 

in 

Q 

∥∥A − Q Q 

T 
∥∥2 

F 

.t. Q ≥ 0 

(2) 

here Q ∈ � 

n ×c is the latent representation of n data instances, that 

s, the latent representation matrix. c is the number of categories, 

o Q is also the clustering structure of the data, which can guide 

eature selection. 

However, there will also be repeated interconnection informa- 

ion between the data. This repeated interconnection information 

etween data will increase the time complexity of the algorithm. 

n order to remove this redundant link information, we impose l 2,1 - 

orm constraint on the residual matrix of the latent representation 

earning, to ensure the sparsity of the latent representation. There- 

ore, the sparse latent representation can be obtained as Eq. (3) . 

in 

Q 

∥∥A − Q Q 

T 
∥∥

2 , 1 

.t. Q ≥ 0 

(3) 



R. Shang, J. Kong, W. Zhang et al. Pattern Recognition 132 (2022) 108966 

2

t

l

m

s

w  

t

fl

w  

d  

t

m

s

w

t

i

l

t  

p

c

l

m

s

w  

X  

c

l

s

m

s

w

t

0

2

c

t

t

n

c

c

t

o

n

r

a

c

a

m

s

w

e

H  

m

t

o

t

t

Q

s

A

i

m

w  

t

m

n

i

2

O

t

e

i

t

a

f

O

t

w

o

t

t

a

d

2

o

s

L

a  

p

a

a

Q

t

t

0

f

L

+

.1.2. Uncorrelated feature selection 

According to the above content, in order to select discrimina- 

ive features and give full play to the role of latent representation 

earning, a regression model can be obtained as Eq. (4) . 

in 

W 

∥∥X 

T W − Q 

∥∥2 

F 

.t. W ≥ 0 

(4) 

here X ∈ � 

d×n is the data matrix and W ∈ � 

d×c is the projection

ransformation matrix. The importance of the i th feature is re- 

ected by the 2-norm ‖ W (i, :) ‖ 2 which is regarded as the feature 

eight. And ‖ W (i, :) ‖ 2 is the i th row vector of W . In general, in or-

er to ensure the sparsity of W , l 2,1 -norm is used to constrain W

o select the sparse feature. The form is as Eq. (5) . 

in 

W 

∥∥X 

T W − Q 

∥∥2 

F 
+ β‖ 

W ‖ 2 , 1 

.t. W ≥ 0 

(5) 

here, ‖ W ‖ 2 , 1 = 

n ∑ 

i =1 

( 
d ∑ 

j=1 

| W i j | 2 ) 
1 / 2 

. β > 0 is the balance parameter 

o control the sparsity of the model. 

In order to improve the effect of feature selection, this paper 

mposes a simple uncorrelated constraint on the matrix W to se- 

ect more discriminative and non-redundant features. Specifically, 

he matrix W is constrained by a data scatter matrix S . Shang et al.

roved that this constraint performs better than the orthogonal 

onstraint in terms of uncorrelated and discriminative feature se- 

ection [23] . 

in 

W 

∥∥X 

T W − Q 

∥∥2 

F 
+ β‖ 

W ‖ 2 , 1 

.t. W ≥ 0 , W 

T SW = I 
(6) 

here, S ∈ � 

d×d is the common scatter matrix of data, and S =
H X 

T . H ∈ � 

n ×n is the centering matrix and H = I − (1 /n ) 11 T . Ac-

ording to the value of S , highly uncorrelated features can be se- 

ected. 

Combining latent representation learning and uncorrelated con- 

traint, we can get Eq. (7) . 

in 

W, Q 

∥∥X 

T W − Q 

∥∥2 

F 
+ α

∥∥A − Q Q 

T 
∥∥

2 , 1 
+ β‖ 

W ‖ 2 , 1 

.t. W ≥ 0 , W 

T SW = I 
(7) 

here α, βare the balanced parameters which are used to control 

he weight of latent representation learning in the model, and α > 

 , β > 0 . 

.1.3. Extended OLSDA extended OLSDA 

Through sparse latent representation learning, the data space 

ontaining interconnection information between data can be ob- 

ained. The pseudo-labels generated in data space are closer to 

he true class labels, but these pseudo-labels are not necessarily 

on-negative. There are methods of constraint through the Lapla- 

ian matrix, which have a certain impact on the clustering indi- 

ator matrix. Therefore, our approach combines latent representa- 

ion with extended OLSDA. Extended OLSDA refers to the method 

f least square discriminant analysis (OLSDA) embedded in a non- 

egative manifold structure. A non-negative constraint can be di- 

ectly imposed on the clustering indicator through this method, 

nd the influence of the Laplacian matrix on the clustering index 

an be reduced. According to [25] , the form of extended OLSDA 

pplication in unsupervised feature selection is as Eq. (8) . 

in 

W 

T r(W 

T X H X 

T W ) − T r(L T HX 

T W W 

T X HL ) 

.t. W ≥ 0 

(8) 

here X ∈ � 

d×n is the data matrix which contains n samples, and 

ach sample has d features. H ∈ � 

n ×n is the centering matrix and 
4 
 = I − (1 /n ) 11 T . L ∈ � 

n ×c is a scaled discrete clustering indicator

atrix. 

Considering that the applicable scenario is unsupervised fea- 

ure selection, only OLSDA is not enough. Moreover, the efficiency 

f unsupervised feature selection by OLSDA is low, so we use la- 

ent representation learning to make supplementary feature selec- 

ion. L can be relaxed into a continuous clustering indicator matrix 

 . Since the true class labels are non-negative, non-negative con- 

traint is imposed on the clustering indicator matrix Q to interact. 

t this time, a non-negative clustering indicator matrix with man- 

fold structure can be obtained as Eq. (9) . 

in 

W, Q 
T r(W 

T X H X 

T W ) − T r(Q 

T HX 

T W W 

T X HQ ) 

s.t. W ≥ 0 , Q ≥ 0 (9) 

here Q ∈ � 

n ×c is clustering indicator matrix. The Q in Eq. (9) is

he latent representation matrix, that is, the clustering indicator 

atrix obtained through latent representation learning. Then, non- 

egative and more accurate pseudo-labels can be obtained by us- 

ng extended OLSDA for non-negative constraint. 

.2. The objective function of SLREO 

SLREO combines sparse latent representation learning and 

LSDA, and the feature selection of SLREO is performed in the la- 

ent representation space. The clustering indicator matrix is gen- 

rated by latent representation learning, and the feature selection 

s carried out under the constraint of OLSDA. This can ensure that 

he dependency relationship between the data is included, and it 

lso ensures the non-negativity of the clustering indicators. There- 

ore, a balance parameter needs to be introduced to balance the 

LSDA and the latent representation. Combining Eqs. (7) and (9) , 

he objective function of SLREO can be obtained as Eq. (10) . 

min 

W, Q 
T r(W 

T X H X 

T W ) − T r(Q 

T HX 

T W W 

T X HQ ) 

+ λ
[ ∥∥X 

T W − Q 

∥∥2 

F 
+ α

∥∥A − Q Q 

T 
∥∥

2 , 1 
+ β‖ 

W ‖ 2 , 1 

] 
s.t. W ≥ 0 , Q ≥ 0 , W 

T SW = I (10) 

here λis the balance parameter, and λ > 0 . 

In feature selection, matrix W and matrix Q can be obtained by 

ptimizing the objective function of SLREO. As mentioned earlier, 

he importance of each feature is measured by ‖ w i ‖ 2 . The larger 

he value of ‖ w i ‖ 2 , the more important the i th feature. We sort 

ll ‖ w i ‖ 2 in descending order, select the first l features, form a new 

ata matrix X new 

∈ � 

n ×l , and complete feature selection. 

.3. Optimization procedure of SLREO 

This section explains the process of updates and optimization 

f the objective function (10) . To incorporate the uncorrelated con- 

traints fully in the update process, we add this constraint to the 

agrangian function and solve it using the KKT condition [35] . For 

 single matrix W or matrix Q , when the other variable is fixed, the

roblem is convex. Therefore, this paper adopts the alternate iter- 

tive update method [36] to optimize the objective function. There 

re two variables in the objective function, matrix W and matrix 

 . By fixing one of the variables and updating the other variable, 

he objective function can be decomposed into two sub-problems 

o update and optimize, respectively. 

By introducing Lagrangian multipliers �and �to constrain W > 

 and Q > 0 , respectively, the Lagrangian function of the objective 

unction (10) is as Eq. (11) . 

 (W , Q ) = λ
[ ∥∥X 

T W − Q 

∥∥2 

F 
+ α

∥∥A − QQ 

T 
∥∥

2 , 1 
+ β‖ 

W ‖ 2 , 1 

] 
 T r(W 

T X H X 

T W ) − T r(Q 

T HX 

T W W 

T X HQ ) 

+ γ
∥∥W 

T SW − I 
∥∥2 + T r(�W 

T ) + T r(�Q 

T ) 

(11) 
2 
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Algorithm 1 

The procedure of SLREO. 

Input: Data matrix X ∈ � n ×d , the balance parameter α, β , λ and γ , the 

maximum number of iterations N iter , the number of feature selection l . 

Initialize the matrix W = ones ( d, c ), Q = rand ( n, c ); 

Initialize the matrix H = I − (1 /n ) 11 T ; 

Initialize the matrix S = XH X T ; 

Compute the adjacency matrix A ∈ � n ×n ; 

Update W and Q according to Eqs. (18) and (21) until convergence; 

The || W i || 2 of the i th feature is arranged in descending order, and the first l 

corresponding features are selected to construct a new data matrix X new . 

Output: Select the feature index set index , the new data matrix X new ∈ � n ×l . 

Table 1 

Computational complexity analysis of SLREO 

compared with five other well-known algo- 

rithms. 

Algorithms Computational complexity 

MCFS O ( dn 2 ) 

JELSR O ( dn 2 + N iter ( n 
3 + mdn )) 

URAFS O ( N iter ( d 
3 + dn 2 )) 

LRLMR O ( dn 2 + N iter ( d 
3 )) 

CNAFS O ( d 2 n + n 2 d + n 3 ) 

SLREO O ( N iter ( n 
2 d + d 2 n )) 
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Table 2 

Details of the datasets. 

Dataset Instance Feature Class Type 

COIL20 1440 1024 20 Digital image 

Isolet1 1560 617 26 Speech signal 

warpPIE10P 210 2420 10 Face image 

AR10P 130 2400 10 Face image 

Mnist 5000 784 10 Digital image 

JAFFE 213 676 10 Face image 

AT&T 400 10304 40 Face image 

orlraws10P 100 10304 40 Face image 

Optdigit 3823 64 10 Digital image 

CLL-SUB-111 111 11340 10 Biological microarray 

PIE32 11554 1024 32 Face image 
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here γ > 0 and γ is used to control the effect of unrelated con- 

traints on the update formula. 

The objective function of SLREO is solved by an alternating it- 

rative method, that is, the objective function is decomposed into 

wo sub-problems: fixed Q optimization W and fixed W optimiza- 

ion Q . 

The update rule of W can be obtained as Eq. (12) 

 i j ← W i j 

[
X HQ Q 

T HX 

T W + λXQ +2 γ SW I 
]

i j [
X H X 

T W + λ
(
X X 

T W + βDW 

)
+2 γ SW W 

T S T W 

]
i j 

(12) 

Therefore, the update rule of Q can be obtained as Eq. (13) . 

 i j ← Q i j 

[
λ
(
X 

T W + αA 

T U Q 

)
+ HX 

T W W 

T X HQ 

]
i j [

λ
(
Q +2 αQ Q 

T U Q 

)]
i j 

(13) 

The specific update process is described in detail in Supplemen- 

ary materials. The convergence of the objective function is proved 

n Supplementary materials. The optimization process of SLREO is 

ummarized in Algorithm 1 . 

.4. Computational and space complexity analysis 

First, notation is introduced. n is the total number of sam- 

les and d is the number of features for each sample. c is 

he number of categories, l is the number of features selected, 

 represents the dimension of the low-dimensional space and 

 iter is the number of iterations. Next, computational complex- 

ty analysis is performed. When the adjacency matrix A and the 

ata scatter matrix S are constructed, the computational com- 

lexity is O ( dn 2 + d 2 n ). In each iteration, the computational com-

lexity of updating the matrix W is O ( d 2 + n 2 d + d 2 n + d 2 c + ndc ),

nd the computational complexity of updating the matrix Q is 

 ( n 2 + n 2 c + n 2 c + nc ). Therefore, the computational complexity of

LREO is O ( N iter ( n 
2 + d 2 + n 2 d + d 2 n + d 2 c + n 2 c + c 2 n )). Since in practical

pplications, c << d and c << n , and n > d or n < d , the total complex-

ty of SLREO is O ( N iter ( n 
2 d + d 2 n )). 

It can be found from Table 1 that, except for MCFS, the highest 

rder of computational complexity among the other four compari- 

on algorithms is 3. And the highest order of SLREO is 2. It can be

een from the order of magnitude that SLREO has certain advan- 

ages in computational complexity. 
5 
When updating the objective function of SLREO, the required 

pace complexity for matrices is O ( n 2 + d 2 + nd + dc + nc ), and the

pace complexity for defining variables is O ( n 2 + c 2 ). And the total

pace complexity is O ( n 2 + d 

2 ). 

. Experiments 

In order to evaluate the effectiveness of SLREO is compared 

gainst six other unsupervised feature selection algorithms, in- 

luding well known classical methods, and recent state-of-the- 

rt methods. Eleven datasets are used in the comparative exper- 

ment. This section first introduces the datasets and algorithms. 

ext, a parameter sensitivity experiment is presented, to verify 

hat changes of key parameters do not substantially degrade the 

erformance of SLREO. Finally, a convergence experiment is used 

o verify the convergence of SLREO. 

.1. Datasets and the compared algorithms 

The SLREO algorithm is tested on eleven datasets, including face 

mage datasets (warpPIE10P, AR10P, JAFFE [33] , AT&T, orlraws10P 

nd PIE32 [37] ), digital image datasets (COIL20, Mnist and Opt- 

igit) [28] , a voice signal dataset (Isolet1) and a Biological microar- 

ay dataset (CLL-SUB-111) [28] . Table 2 shows these datasets. 

In order to verify the effectiveness of the SLREO algorithm 

n feature selection, this experiment selects a baseline algorithm 

nd six unsupervised feature selection algorithms for comparison. 

hese algorithms are described as follows. 

1) Baseline: feature selection is not performed during clustering, 

and all original features are retained. 

2) MCFS [18] : multi-cluster feature selection selects features 

through spectral analysis and l 1 -norm regularization regression 

model, and retains the manifold structure. 

3) JEL SR [13] : JEL SR is an unsupervised feature selection frame- 

work that adopts a one-step strategy. And JELSR unifies embed- 

ded learning and sparse regression for feature selection. 

4) URAFS [20] : URAFS uses preserved manifold structure and gen- 

eralized irrelevant regression model to select irrelevant but dis- 

criminant features. 

5) LRLMR [27] : use the data space which retains the local geomet- 

ric structure to learn latent representations, and perform fea- 

ture selection in the latent representation space. 

6) CNAFS [28] : convex matrix factorization with adaptive graph 

constraint is used to mine the correlation between data, and 

the pseudo-label matrix learning is integrated into the self- 

expression module for feature selection. 

.2. Evaluation metrics 

To evaluate the effectiveness of an unsupervised feature selec- 

ion algorithm, one of the most direct methods is clustering. The 
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Fig. 1. The results of selecting different numbers of features for two test samples in the AT&T dataset. 
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elected features are clustered, and the effectiveness of the algo- 

ithm is judged by the clustering effect. The Clustering Accuracy 

ACC) [37] and Normalized Mutual Information (NMI) [38] are the 

easurement standards of clustering effect. If the values of ACC 

nd NMI are larger, the clustering effect is better, and the effect 

f feature selection algorithm is better. Given that p i and c i are the 

luster label and true label of sample x i , respectively, the definition 

f ACC is as Eq. (14) . 

CC = 

1 

n 

n ∑ 

i =1 

δ(c i , map(p i )) (14) 

here, n is the total number of samples. map(·) is the optimal 

apping function. Kuhn-Munkres [38] algorithm is used to arrange 

he clustering labels to match the real labels. δ(p i , c i ) is an indicator

unction with a value of 0-1. When p i = c i δ(p i , c i ) = 1 otherwise it is

. The ACC reflects the same proportion of the cluster label and the 

rue label. The larger the ACC value, the more accurate the cluster 

abels are 

Given two variables P and C , the definition of NMI is as Eq. (15) .

MI = 

I(P, C) √ 

H(P ) H(C) 
(15) 

here H( P ) and H( C ) are the entropy and I( P, C ) is the mutual in-

ormation of P and C . Corresponding to the clustering problem, P 

nd C represent the cluster label and the true label of the sample, 

espectively. NMI can reflect the consistency between the cluster- 

ng results and the true labels, and the larger the NMI value is, the 

igher the consistency. 

.3. Experimental settings 

This experiment performs feature selection on 7 algorithms on 

1 datasets. k - means [39] performs cluster analysis on selected fea- 

ures. In the clustering process, the k-means algorithm is sensitive 

o the initial values, so this experiment performs clustering for 

ach algorithm 20 times. Finally, the average of 20 results is se- 

ected as the final clustering result. For MCFS, JELSR, URAFS, LRLMR 

lgorithms, the nearest neighbor parameter k is set to 5. The search 

ange of the balance parameters α, β, λand γ in this experiment is 

et to {10 −8 , 10 −7 , …, 10 + 7 , 10 + 8 }. For all datasets, the adjustment

ange of the feature number l is {20, 30, 40, 50, 60, 70, 80, 90,

00}. The parameter maximum number of iterations N iter is set to 

0. On each dataset, the values of ACC and NMI are maximized 

y adjusting the value of the balance parameter α, β, λ, γ and the 

umber of feature selection l . For the compared algorithms of 

CFS, JELSR, URAFS, LRLMR, CNAFS, the parameters are adjusted 

ccording to the method proposed in the paper to select the best 

lustering result. 
6 
.4. Experimental results and analysis 

.4.1. Feature selection on face images 

In this experiment, two samples are randomly selected from 

he AT&T face dataset, which are the sixth sample of the third 

lass and the second sample of the sixth class. Features are se- 

ected from the range of feature numbers {1280, 2560, 3840, 5120, 

400, 7680, 8960, 10240} by SLREO, and experiments are per- 

ormed on test samples. The experimental results are shown in 

ig. 1 . 

It can be found from Fig. 1 that with the increase of the number

f features selected by the SLREO algorithm, the facial features in 

he two test samples become progressively clearer. This shows that 

LREO can effectively select the more important features such as 

yes, nose, mouth, ears and chin in the face. This also illustrates 

hat SLREO can select representative features. 

.4.2. Comparison of experimental results and analysis 

Tables 3 and 4 show the ACC, NMI and standard deviation 

STD) of eight algorithms for feature selection on different datasets. 

mong them, the black boldface indicates the best value, and the 

nderline indicates the second best value. 

Table 3 mainly reflects the ACC values of SLREO and the com- 

ared algorithms on different datasets. From the perspective of 

CC value, SLREO achieves the best value on most datasets. Es- 

ecially on the dataset JAFFE, SLREO performs 12% better than 

he next best algorithms. On the dataset AR10P, SLREO is also 8% 

igher than the next best. This reflects the advantages of SLREO 

ompared with the compared algorithms. On other datasets, SLREO 

s also more than 2% higher than the compared algorithms on av- 

rage. On the dataset AT&T, due to the large amount of data, the 

ompared algorithms do not exceed Baseline. Only the value of 

LREO exceeds the compared algorithms, and it is much higher 

han the compared algorithms. It can be seen from Table 3 that 

LREO performs strongly in comparison to other methods. 

Table 4 shows the NMI values of SLREO and the compared 

lgorithms on different datasets. In Table 4 , SLREO consistently 

chieves the best NMI scores. Especially on the very large dataset 

T&T, SLREO can still achieve the best score. Because the dataset 

T&T is large and has many features, the NMI values of the com- 

arison algorithms are not as good as that of Baseline. Only SLREO 

utperforms baseline on this large dataset Compared with MCFS, 

ELSR, URAFS, LRLMR and CNAFS, SLREO is 4% higher on average. 

n the dataset Mnist, SLREO is nearly 12% higher than the next 

est value. On the dataset JAFFE, SLREO is about 6% higher than 

he next best value. On other datasets, SLREO is significantly higher 

han the compared algorithms, demonstrating its significant advan- 

ages and benefits. 
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Table 3 

The best clustering results of different algorithms on 11 datasets (ACC ±STD%). 

Datasets Baseline MCFS JELSR URAFS LRLMR CNAFS SLREO 

COIL20 65.75 ± 4.16 64.26 ± 3.91 63.16 ± 2.84 62.37 ± 3.10 64.44 ± 1.89 66.82 ± 2.92 68.14 ± 0.33 

Isolet1 61.73 ± 2.77 56.15 ± 1.55 62.93 ± 1.91 58.13 ± 3.13 63.26 ± 1.65 65.71 ± 2.76 67.23 ± 2.32 

warpPIE10P 26.60 ± 0.97 36.57 ± 1.71 28.95 ± 1.69 30.17 ± 2.11 47.15 ± 1.93 57.21 ± 3.89 57.74 ± 4.58 

AR10P 21.50 ± 2.93 23.69 ± 1.96 44.58 ± 3.15 29.12 ± 1.80 27.73 ± 2.59 43.23 ± 2.64 52.81 ± 2.78 

Mnist 53.84 ± 1.51 48.08 ± 1.65 50.01 ± 1.05 53.21 ± 0.51 51.55 ± 2.02 52.45 ± 1.59 55.47 ± 1.75 

JAFFE 86.13 ± 5.66 87.23 ± 5.24 74.92 ± 2.69 79.79 ± 5.17 80.09 ± 4.20 80.84 ± 4.64 95.65 ± 5.75 

AT&T 60.96 ± 3.30 56.30 ± 2.78 61.25 ± 2.04 57.21 ± 2.24 58.10 ± 2.48 55.15 ± 2.21 63.05 ± 2.51 

orlraws10P 76.60 ± 6.17 78.40 ± 5.47 74.90 ± 4.24 75.95 ± 4.45 77.25 ± 4.19 80.30 ± 4.27 81.85 ± 4.36 

Optdigit 80.35 ± 0.15 78.47 ± 0.60 81.53 ± 0.64 79.89 ± 0.27 80.35 ± 0.78 80.09 ± 1.31 84.62 ± 0.08 

CLL-SUB-111 53.15 ± 0.00 53.66 ± 1.67 53.15 ± 0.00 53.15 ± 0.00 52.25 ± 2.51 53.15 ± 0.00 60.18 ± 0.37 

PIE32 7.54 ± 0.23 7.74 ± 0.22 7.40 ± 0.22 8.08 ± 0.23 8.65 ± 0.33 8.56 ± 0.20 10.05 ± 0.31 

Table 4 

The best clustering results of different algorithms on 11 datasets (NMI ± STD%). 

Datasets Baseline MCFS JELSR URAFS LRLMR CNAFS SLREO 

COIL20 76.69 ± 1.99 74.50 ± 1.50 73.85 ± 1.48 73.12 ±1.73 75.80 ± 1.09 76.93 ± 1.62 77.10 ± 1.79 

Isolet1 76.06 ± 1.26 69.47 ± 0.85 73.74 ± 0.67 73.16 ± 1.08 75.61 ± 0.64 75.60 ± 1.09 76.61 ± 0.98 

warpPIE10P 26.38 ± 2.69 40.80 ± 2.13 28.02 ± 2.33 27.44 ± 2.15 56.23 ± 2.2 58.19 ± 2.91 59.44 ± 2.99 

AR10P 18.62 ± 2.98 22.24 ± 2.80 41.06 ± 3.49 25.87 ± 1.87 24.76 ± 2.78 41.31 ± 2.71 56.00 ± 2.11 

Mnist 46.72 ± 0.71 43.05 ± 0.62 42.76 ± 0.39 42.71 ± 0.44 42.79 ± 0.77 43.05 ± 0.78 58.55 ± 2.88 

JAFFE 87.57 ± 3.93 89.42 ± 2.99 75.86 ± 1.48 80.42 ± 2.96 82.30 ± 3.00 84.64 ± 2.95 95.30 ± 3.15 

AT&T 78.96 ± 1.37 74.08 ± 1.35 79.22 ± 1.41 76.84 ± 1.87 77.85 ± 1.37 72.5 ± 1.05 80.57 ± 1.27 

orlraws10P 81.67 ± 4.70 82.76 ± 3.65 80.24 ± 2.65 80.97 ± 3.61 86.40 ± 2.60 80.42 ± 2.10 87.10 ± 2.81 

Optdigit 75.84 ± 0.21 73.78 ± 0.33 74.49 ± 0.34 73.69 ± 0.09 74.91 ± 0.41 70.73 ± 0.47 75.90 ± 1.06 

CLL-SUB-111 18.07 ± 0.00 15.38 ± 1.59 17.87 ± 0.00 18.06 ± 0.00 15.37 ± 0.00 18.07 ± 0.35 34.74 ± 0.09 

PIE32 18.90 ± 0.29 20.67 ± 0.20 20.51 ± 0.24 20.42 ± 0.28 21.07 ± 0.27 18.97 ± 0.17 22.90 ± 0.31 
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The superior performance of SLREO is because SLREO conducts 

atent representation learning initially, when generating the clus- 

ering indicator matrix and the interconnection information be- 

ween the data is no longer ignored. Moreover, SLREO imposes 

 2,1 -norm constraint on the residual matrix of latent representation 

earning to ensure that the interconnection information is low- 

edundant. Then, SLREO uses extended OLSDA to ensure the non- 

egativity of clustering labels. Finally, when selecting features, the 

eatures selected by uncorrelated constraint and non-negative con- 

traint are more discriminative and non-redundant. 

Fig. 2 gives the ACC results of SLREO and the compared algo- 

ithms using different numbers of features. 

It can be seen from Fig. 2 that SLREO can maintain the best 

cores, out of all compared algorithms, in most cases under differ- 

nt number of features over each dataset. Especially prominently 

n the dataset AR10P, for example, SLREO clearly maintains the 

ighest performance value over all numbers of features. With the 

ncrease of the number of features, the feature selection effect of 

LREO gradually improves. Fig. 2 can also reflect that SLREO has a 

trong feature selection performance. 

Fig. 3 gives the NMI results of SLREO and the compared al- 

orithms using different numbers of features. The abscissa indi- 

ates the selected feature number l , and the ordinate indicates 

MI. 

In Fig. 3 , especially on the datasets Mnist and AR10P, SLREO 

lgorithm clearly demonstrates superior feature selection perfor- 

ance. On the dataset AT&T, the compared algorithms are under 

he Baseline, but SLREO outperforms the Baseline. From the over- 

ll point of view of other datasets, SLREO has a small number of 

oints, in a few cases, where performance dips below that of some 

f the compared algorithms; however, SLREO clearly demonstrates 

uperior performance in most cases. 

From Figs. 2 and 3 , the feature clustering effect selected by 

LREO is clearly superior to the compared algorithms. The main 

eason is that SLREO not only considers the interconnection infor- 

ation, but also filters the interconnection information, and the 

etained data information is more complete and less redundant. 
f

7 
hen providing clustering indicators, extended OLSDA can ensure 

he non-negativity of pseudo-labels. Therefore, the pseudo-labels 

f SLREO are closer to the real class labels, and the feature selec- 

ion has better performance. 

.4.3. Parameter sensitivity analysis 

This section fixes other parameters and adjusts the values of 

alance parameters βand γ within the range of {0, 10 −3 , 10 −2 , 10 −1 ,

0 + 0 , 10 + 1 , 10 + 2 , 10 + 3 } to show the sensitivity of SLREO to balance

arameters βand γ .From the experiment, the ACC and NMI values 

f each group βand γ were plotted with a three-dimensional his- 

ogram. Figs. 4 and 5 are the 3D histograms of ACC and NMI, re- 

pectively. 

In Fig. 4 , the value of ACC changes very little on the datasets

OIL20, AR10P and JAFFE. With the change of βand γ , the value 

f ACC of SLREO fluctuates, however, this fluctuation is not large. 

LREO also tends to be stable under each parameter value in Fig. 4 .

his shows that ACC is not sensitive to the changes of parameters 

and γ , and the changes do not significantly affect the ACC value. 

In Fig. 5 , on the dataset Mnist, as βand γ increase, the NMI value

lso increases. Due to the large amount of data in Mnist, the 

elected features appear redundant. On the datasets Isolet1 and 

AFFE, the changes are very small. Especially on the dataset JAFFE, 

he change tends to be stable. On other datasets, the values of NMI 

o not change greatly with the change of parameters βand γ . 

.4.4. Ablation experiment 

To verify the contribution of extended OLSDA and uncorrelated 

onstraint to the algorithm, an ablation experiment is performed. 

his experiment is conducted on five datasets to obtain ACC and 

MI values. The results are in Tables 5 and 6 , where ’ × ’ indi-

ate that no uncorrelated constraint is used or no extended OLSDA 

s used, and ’ 
√ 

’ indicates that uncorrelated constraint is used or 

xtended OLSDA is used. 

From Tables 5 and 6 , it can be found that the effect when using

ncorrelated constraint and extended OLSDA is superior to the per- 

ormance without these components. When only one of them was 
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Fig. 2. The ACC of eight algorithms for selecting different number of features on eleven datasets. 

Table 5 

The effect of individual constraints on ACC. 

Extended OLSDA Uncorrelated constraint COIL20 Isolet1 warpPIE10P AR10P JAFFE Optdigit 

× × 47.66 ± 2.07 64.95 ± 1.38 43.55 ± 2.08 50.88 ± 2.19 78.31 ± 4.22 82.78 ± 0.11 √ × 4 7.73 ± 1.13 66.91 ± 1.89 55.38 ± 2.09 50.88 ± 2.11 78.31 ± 4.22 82.78 ± 0.11 

× √ 

47.66 ± 2.07 66.89 ± 1.35 47.19 ± 2.55 44.42 ± 2.45 90.33 ± 5.98 80.80 ±0.10 √ √ 

68.14 ± 0.33 67.23 ± 2.32 57.74 ± 4.58 52.81 ± 2.78 95.65 ± 5.75 82.80 ± 0.09 

Table 6 

The effect of individual constraints on NMI. 

Extended OLSDA Uncorrelated constraint COIL20 Isolet1 warpPIE10P AR10P JAFFE Optdigit 

× × 57.24 ± 0.94 73.99 ± 0.99 43.21 ± 2.94 53.27 ± 2.71 78.40 ± 2.55 74.84 ± 0.11 √ × 5 8.62 ± 0.93 76.04 ± 1.15 56.87 ± 2.18 53.48 ± 2.00 78.40 ± 2.55 74.84 ± 0.11 

× √ 

57.24 ± 0.94 75.12 ± 0.74 46.35 ± 3.83 43.21 ± 2.42 93.02 ± 3.62 72.89 ± 0.12 √ √ 

77.10 ± 1.79 76.61 ± 0.98 57.74 ± 4.58 56.00 ± 2.11 95.30 ± 3.15 75.90 ± 1.06 
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sed, the clustering results do not change much. On the datasets 

solet and Optdigit, the results are not much different. But on the 

atasets COIL20 and JAFFE, it is clear that using uncorrelated con- 

traint greatly improves performance. This shows that extended 

LSDA and uncorrelated constraint in SLREO is effective and can 

mprove the accuracy of the algorithm. 
8 
.4.5. Convergence test 

In the previous section, the theoretical convergence of SLREO 

as analyzed. Fig. 6 plots the change of the SLREO objective func- 

ion value during the experiment to show the convergence of the 

LREO algorithm as empirically measured. The objective function 

alue and the number of iterations of SLREO are represented by 
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Fig. 3. The NMI of eight algorithms for selecting different number of features on eleven datasets. 

9
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Fig. 4. The ACC of SLREO with different βand γ on eleven datasets. 

10 
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Fig. 5. The NMI of SLREO with different βand γ on eleven datasets. 

11
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Fig. 6. Convergence curve of SLREO on eleven datasets. 
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bscissa and ordinate respectively. The maximum number of itera- 

ions is uniformly specified as 50. 

In Fig. 6 , on the 11 datasets, the value of the objective func- 

ion reduces rapidly and converges as the number of iterations in- 

reases. In other words, SLREO is demonstrably convergent on 10 

atasets. Fig. 6 also verifies that a maximum number of iterations 

f 50 is appropriate to ensure sufficient convergence. 

. Conclusions 

This paper proposes uncorrelated feature selection via sparse 

atent representation and extended OLSDA in unsupervised learn- 

ng (SLREO). Since there are connections between data samples in 

ractical applications, SLREO preserves the interconnection infor- 

ation between data through latent representation learning. In or- 

er to ensure the low redundancy of this interconnection informa- 

ion, SLREO imposes an l 2,1 -norm constraint on the residual ma- 

rix latent representation learning. Considering that the real la- 

els are non-negative, SLREO introduces the extended OLSDA to 

nsure the non-negativeness of the pseudo-labels. The combina- 

ion of latent representation learning and extended OLSDA makes 

he generated pseudo-labels closer to the real class labels. In order 

o select low-redundancy and discriminative features, uncorrelated 

onstraint and non-negative constraint are imposed on the feature 

ransformation matrix. Therefore, the performance of SLREO on 

eature selection has been significantly improved. Extensive exper- 
12 
ments, on multiple benchmark datasets, demonstrate that SLREO 

utperforms seven compared feature selection algorithms. SLREO 

xploits the interaction between extended OLSDA and latent rep- 

esentation learning, which makes the cluster labels closer to the 

eal class labels. SLREO can show better performance in feature se- 

ection, but the final clustering labels are still continuous. Since the 

eal class labels are all discrete, we hope to constrain the pseudo- 

abels and generate discrete cluster labels in the future work. 
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