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A B S T R A C T

This paper presents a multi-objective artificial immune algorithm for fuzzy clustering based on multiple kernels
(MAFC). MAFC extends the classical Fuzzy C-Means (FCM) algorithm and improves some of its important limi-
tations, such as vulnerability to local optima convergence, which can lead to poor clustering quality. MAFC unifies
multi-kernel learning and multi-objective optimization in a joint clustering framework, which preserves the
geometric information of the dataset. The multi-kernel method maps data from the feature space to kernel space
by using kernel functions. Additionally, the introduction of multi-objective optimization helps to optimize
between-cluster separation and within-cluster compactness simultaneously via two different clustering validity
criteria. These properties help the proposed algorithm to avoid becoming stuck at local optima. Furthermore, this
paper utilizes an artificial immune algorithm to address the multi-objective clustering problem and acquire a
Pareto optimal solution set. The solution set is obtained through the process of antibody population initialization,
clone proliferation, non-uniform mutation and uniformity maintaining strategy, which avoids the problems of
degradation and prematurity which can occur with conventional genetic algorithms. Finally, we choose the best
solution from the Pareto optimal solution set. We use a semi-supervised method to achieve the final clustering
results. We compare our method against state-of-the-art methods from the literature by performing experiments
with both UCI datasets and face datasets. The results suggest that MAFC is significantly more efficient for clus-
tering and has a wider scope of application.
1. Introduction

Clustering analysis is an important problem in data analysis, in which
diverse data must be divided into different classes or clusters [1]. Objects
in the same cluster should exhibit significant similarities, while objects in
different clusters should exhibit significant dissimilarities [2]. Clustering
technology is widely used in different fields, such as pattern recognition,
image segmentation, text clustering, etc [2–6]. Over the past several
decades, a variety of clustering algorithms have been proposed, like
k-means clustering [3], hard c-means clustering (HCM) [4], fuzzy
c-means (FCM) clustering [5], and others. In many real world problems,
clusters may exhibit a significant degree of overlap, and an object may
belong to multiple clusters simultaneously [4]. This kind of data can be
handled by replacing hard clustering methods with Fuzzy clustering.

Fuzzy c-means (FCM) [5] is a typical algorithm of fuzzy clustering,
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which enables a single object to belong to two or more clusters by
introducing the concept of membership. The FCM algorithm has been
widely used and achieves good clustering results. However, K-means and
FCM are sensitive to the initialization of their cluster centers. Addition-
ally, Euclidean distance is typically used in these algorithms, which
makes such algorithms only effective for spherical clusters and
well-separated data [7], performing much less well for more general
clusters. Kernel learning methods have been proposed to address these
problems.

In recent decades, kernel learning methods have received increasing
attention in the literature, due to their abilities to improve the applica-
bility of FCM algorithms, and handle non-linear relationships between
data. Camstra and Verri presented kernel-based clustering algorithm by
combining k-means and kernel learning methods [8]. Experimental re-
sults on UCI data show the effectiveness of the algorithm. By assigning
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each data point different weights, Dhillon and Guan proposed the
weight-based k-means and spectral clustering algorithm [9]. Kim et al.
compared the kernel-based K-means and kernel-based FCM algorithms
and concluded that these two algorithms exhibit equal clustering per-
formance when using a Gaussian kernel, but both of them produce better
clustering results than non–kernel methods [10]. There are two main
forms of kernel-based fuzzy clustering [11]: in the first form, prototypes
remain in the feature space and are mapped to the kernel space by using
kernel functions (KFCM-F) [12,13], while in the second form, prototypes
are built in the kernel space [14]. The second form can be problematic, in
that we must use the mapping from kernel space to feature space to
obtain prototypes in the feature space. Zhang et al. proposed a
kernel-based FCM algorithm in which prototypes resided in the feature
space [13]. The aforementioned kernel-based clustering algorithms all
require a kernel function, and selection of a suitable kernel function is
key to improving the effectiveness of an algorithm. However, the
appropriate selection of a kernel function remains an open problem [11].
Zhao et al. handled the selection of kernel functions effectively by pro-
posing a kernel-based maximum edge clustering algorithm, which ex-
tends single kernel clustering to multiple kernel clustering [15]. Huang
et al. further improved the algorithm of Zhao et al. and presented mul-
tiple kernel fuzzy clustering (MKFC), which transforms multiple hard
clustering into multiple fuzzy clustering [7].

The clustering algorithms mentioned above only consider one
objective function during the clustering process, which causes the clus-
tering results to deteriorate significantly as the number of clusters in-
creases, and can also increase the likelihood of local optima convergence,
resulting in poor clustering quality. Multi-objective optimization prob-
lems take into account multiple objective functions simultaneously, and
can consider overall geometry information of data distribution and
improve the quality of the clustering. For this reason, a variety of multi-
objective clustering algorithms have been proposed. In multi-objective
clustering algorithms, frequently used validity indices are Jm [16], XB
[17], OS [18], fuzzy cluster separation S [19], the number of clusters C
and total within-cluster variance [20]. Handl and Knowles proposed a
multi-objective evolutionary algorithm that optimizes overall cluster
deviation and cluster connectedness simultaneously [21]. In Ref. [22],
Demir et al. did some experiments with several multi-objective evolu-
tionary algorithms, and determined a suitable approach for clustering
Web user sessions. In Ref. [23], the conceptual advantages of the
multi-objective formulation were discussed. Mukhopadhyay and Maulik
utilized a multi-objective fuzzy clustering algorithm on satellite image
pixel classification by minimizing Jm and XB [24]. In Refs. [25,26], total
within-cluster variance and the number of clusters C are minimized to
optimal clustering. Mukhopadhyay and Maulik also made use of a
multi-objective fuzzy clustering on cancer classification in Ref. [27] and
optimized three indices: τ [28], Jm and XB simultaneously. Zhu et al.
combined soft subspace clustering with a multi-objective clustering al-
gorithm and minimized Jm and XB simultaneously. Experimental results
showed that Zhu's multi-objective algorithm significantly improved over
all compared single-objective algorithms [29]. In multi-objective clus-
tering algorithms, two indices: Jm and XB are usually used. The XB index
is defined as the ratio of the sum of pixel fuzzy mean square distance to
the minimum separation of clustering center. The smaller the value of XB
index is, the better the division is. The Jm index is the sum of the global
fuzzy mean square distance of pixels. It can be seen that Jm is the index to
measure the global partition of pixels, while the XB index is the product
of separability between Jm index and nearest neighbor class. Bandyo-
padhyay and Maulik proved that this index combination can obtain a set
of mutually exclusive non-dominant antibodies [30]. Since they are
simple and have strong interpretation, the work described in our paper
also employs these two indices.

A multi-objective optimization problem is less tractable than a single-
objective problem, because it does not have a unique determined solution
[31–33]. In recent decades, people have tried to use knowledge of
biology to solve multi-objective optimization problems [34–36]. Fonseca
2

and Fleming proposed a method which utilized a genetic algorithm (GA)
to solve a multi-objective optimization problem [37]. However, this
conventional GA lacks elite solutions, which leads to the loss of good
solutions. Deb et al. put forward NSGA-II [38], an effective solution to
handle the above problems and improve the efficiency of the algorithm.
Owing to the randomness of mutation and crossover in GA algorithms, it
is sometimes difficult to find optimal solutions, which can increase the
number of iterations of the algorithms [39]. Algorithms based on artifi-
cial immune system can be a good solution to this problem. When an
antibody can better identify the invading antigen and eliminate the an-
tigen, the antibody is selected to be de-cloned and propagated through
the cloning selection process. Then, the super-mutation can produce
better affinity through the change of antibody itself to cater to the change
of antigen in the body, so that the antibody can produce more mature
population effectively. Finally, some antibodies with better affinity will
be retained to prevent the same antigen from invading again. In the
multi-objective immune algorithm, the optimization problem and the
corresponding constraints can be regarded as antigens, while a possible
solution vector can be regarded as an antibody. The process of processing
information can increase the rate of convergence and preserve the di-
versity of antibody populations. Numerical optimization is one of the
early applications of artificial immune system, which includes single
objective optimization and multi-objective optimization. Yoo and Hajela
first introduced some concepts of immunity to multi-objective optimi-
zation in 1999 [40]. Coello Coello and other scholars have proposed a
more complete immune multi-objective algorithm at the first Interna-
tional Conference on human immune system, held at the University of
Kent in 2002 [41]. Campelo and other scholars designed a multi-target
clonal selection algorithm by combining the non dominated sorting
and clonal selection [42]. Shang et al. solved multi-objective problems
using an artificial immune algorithm in Ref. [43]. The algorithm per-
forms well in convergence, diversity and breadth of the solution distri-
bution. Yang et al. made use of an artificial immune algorithm for
multi-objective SAR image segmentation [44]. We also employed an
artificial immune algorithm in SAR image change detection, and exper-
imental results show that the algorithm improves the optimal solution's
local search capability [39]. In general, the research and application of
artificial immune multi-objective optimization need to be further
studied.

� In order to widen the scope of the FCM algorithm and avoid local
optima convergence, this paper proposes a multi-objective artificial
immune algorithm for fuzzy clustering based on multiple kernels. The
main contributions of this work are as follows: The proposed algo-
rithm takes into account between-cluster separation and within-
cluster compactness simultaneously. Thus So it can consider overall
geometry information of the data distribution and which enables
effective avoidance of local optima convergence. Since the original
FCM algorithm only applies to spherical distribution data, we intro-
duce a multiple kernel learning method which uses kernel function
mapping to generate significant linear relationships from data which
are non-linear in the input space, enabling improved classification
accuracy. In our proposed algorithm, prototypes reside in the feature
space. This not only avoids the mapping (ϕ�1) from the kernel space
to the feature space, but also assists the encoding process and reduces
the time complexity of the artificial immune algorithm.

� We utilize an artificial immune algorithm to handle the multi-
objective clustering problem. Since the weights of kernel functions
in the MKFC algorithm can easily become trapped at local optima, we
encode kernel weights and cluster centers simultaneously in the
encoding process. Non-uniform mutation is used in the mutation
process. This method of mutation makes relates mutation range relate
with to the evolution generation. This mutation method is able to
avoid the degradation phenomenon of conventional genetic algo-
rithms. In the clone selection process, we take into account degree of
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affinity and crowding of the solutions simultaneously to ensure the
diversity and competitiveness of the populations.

The remainder of this paper is organized as follows. We describe the
related algorithms and concepts in the second section. We introduce the
multi-objective artificial immune algorithm for fuzzy clustering based on
multiple kernels in detail in the third section. The experimental results
and analyses are presented in the forth section. Finally we summarize the
paper and provide concluding remarks in the fifth section.

2. Related algorithm and concepts

For easy understanding, in this section, we briefly review relevant
knowledge of FCM and multi-objective optimization.

2.1. Fuzzy C-means

Fuzzy C-means (FCM) is a well known fuzzy clustering algorithm.
Firstly, we review the process of the operation briefly. Given a dataset
consisting of N samples, X ¼ ½x1; x2; :::; xN �, xi 2 Rl. The number of
clusters is C. FCM obtains the membership uikð1 � i � N;1 � k � CÞ i.e.
the possibility that sample xi belongs to the k-th cluster by minimizing
the objective function Jm [45]:

JmðU;VÞ ¼
XN
i¼1

XC
k¼1

umik
����xi � vk

��j2

s:t:
XC
k¼1

uik ¼ 1 8 i

uik � 0 8 i; kXN
i¼1

uik > 0 8 k

(1)

where V ¼ ½v1; v2; :::; vC �, vk denotes the k-th cluster center;
U ¼ ½uik�i¼1:::N;k¼1:::C is the membership matrix; m is the fuzzification de-
gree, which generally takesm¼ 2; jj �jj represents the Euclidean distance.

FCM obtains the final clustering results by updating the membership
matrix U and cluster centers V constantly. The two updated formulas are
as follows:

uik ¼ 1
PC
k'¼1

�
jjxi�vk jj
jjxi�vk' jj

� 2
m�1

(2)

vk ¼
PN
i¼1

umikxi

PN
i¼1

umik

(3)

At the time jjU ' � Ujj < ε, i.e. the iterative update condition is not
satisfied, we can get the final membership U and cluster centers V.

2.2. Related concepts of multi-objective problem

To facilitate understanding of the proposed work, we first briefly
review the related concepts of a multi-objective problem [46].

(1) Multi-objective optimization problem can be described as:

T
min FðxÞ ¼ ½f1ðxÞ; f2ðxÞ; :::; fnðxÞ� (4)

� �

s:t: g1ðxÞ; g2ðxÞ; :::; gpðxÞ � 0 (5)

� �

h1ðxÞ; h2ðxÞ; :::; hqðxÞ ¼ 0 (6)

where FðxÞ ¼ ½f1ðxÞ; f2ðxÞ; :::; fnðxÞ�T denotes n objective functions;
3

x ¼ ½x1; x2; :::; xm�T is an m-dimensional decision vector, which sat-
isfies p inequality constraints ½g1ðxÞ; g2ðxÞ; :::; gpðxÞ� � 0 and q
equality constraints ½h1ðxÞ;h2ðxÞ;…hqðxÞ� ¼ 0.
(2) Pareto optimal solution:

Decision vector x is called Pareto optimal solution in a multi-
objective minimization problem if and only if there is no other
decision vector x' , which can dominate x, i.e. ð8i 2 f1; 2; :::; ng;
fiðx'Þ � fiðxÞÞ &ð9 j fjðx'Þ < fjðxÞÞ.

(3) Pareto optimal solution set:
All Pareto optimal solutions compose the Pareto optimal set.

Multi-objective optimization problem always exists in people's life,
production and scientific research. Typical algorithms for solving multi-
objective problems are as follows: (1) Multi-objective optimization al-
gorithm based on particle swarm optimization [47–50]. The particle
swarm optimization algorithm is easy to implement, and the parameters
of the algorithm are simple. There is also no complex adjustment
required. (2) Multi-objective optimization algorithm based on artificial
immune system [51–53]. In which the non-dominated neighborhood
immune algorithm (NNIA) is a very effective evolutionary
multi-objective algorithm. This method has relatively large advantages in
solving high-dimensional multi-objective optimization problem. (3)
Multi-objective optimization algorithm based on distribution estimation
algorithm [54,55]. This kind of algorithms had no traditional crossover
and mutation operation but a new evolutionary model. The superior
performance of the distribution estimation algorithm in solving some
problems has promoted more relevant algorithms. (4) Multi-objective
evolutionary algorithm based on decomposition [56,57]. A decomposi-
tion based multi objective evolutionary algorithm (MOEA/D) is used to
decompose the problem of the whole Pareto Front into a certain number
of single objective optimization problems. The decomposition method
commonly used in mathematical programming is successfully introduced
into the domain of evolutionary multi-objective, and the fitness score of
the single objective optimization problem can be directly applied to the
evolutionary algorithm. At present, how to introduce a new dominant
mechanism and how to efficiently solve the multi-objective optimization
problem remain topical and challenging problems in the field of
multi-objective optimization. This paper focuses on the application of a
multi-objective artificial immune algorithm to the clustering problem.

3. Multi-objective artificial immune algorithm for fuzzy
clustering based on multiple kernels

In this paper, an artificial immune algorithm is utilized to solve this
multi-objective clustering problem which is based on multiple kernels.
Firstly, MAFC initializes the population via encoding chromosomes. In
the encoding process, initial cluster centers and weights of kernel func-
tions are encoded simultaneously, so that the weights and the cluster
centers update together. After obtaining an initial antibody population,
we employ a clone proliferation operator to increase the number of an-
tibodies. Then a non-uniformmutation operator is utilized to increase the
diversity of the antibody population, followed by a clone selection
operator for mutated antibodies to select non-dominated antibodies.
Finally the non-dominated antibodies are further updated according to a
uniformity maintaining strategy, which can maintain the uniformity of
the solutions and increase the diversity of antibody populations. We next
explain the objective function of the multi-objective clustering problem.

3.1. Objective function of multi-objective clustering based on multiple
kernels

The multi-objective clustering algorithm in this paper optimizes two
different clustering validity criteria, which are Jm(w,U,V) and MKXB. So
the multi-objective clustering problem can be described as:
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min f ðvÞ ¼ ½f1ðvÞ; f2ðvÞ� (7)
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Fig. 1. Feature space and kernel space of (a) MAFC and (b) MKFC.
where,

f1ðvÞ ¼ Jmðw;U;VÞ ¼
XN
i¼1

XC
j¼1

umij D
�
xi; vj

�
(8)

f2ðvÞ ¼ MKXB ¼

PN
i¼1

PC
j¼1

umij D
�
xi; vj

�
N � disðvÞ (9)

disðvÞ ¼ 1
C
�
XC
s¼1

XC
l¼1;l 6¼s

umslDðvs; vlÞ (10)

D
�
xi; vj

� ¼ �
ϕðxiÞ � ϕ

�
vj
��T�

ϕðxiÞ � ϕ
�
vj
��

(11)

Dðvs; vlÞ ¼ ðϕðvsÞ � ϕðvlÞÞT ðϕðvsÞ � ϕðvlÞÞ (12)

ϕðxÞ ¼ w1ϕ1ðxÞ þ w2ϕ2ðxÞ þ � � � þwMϕMðxÞ (13)

uij ¼ 1

PC
j'¼1

	
Dðxi ;vjÞ
Dðxi ;vj' Þ


 1
m�1

(14)

usl ¼ 1
PC

l'¼1;l' 6¼s

	
Dðvs ;vlÞ
Dðvs ;vl' Þ

1
m�1


 s 6¼ l (15)

where v ¼ ½w;v1;v2; :::;vC�, vk (k¼ 1,2, …,C) is the k-th cluster center of
antibody v;w¼ [w1,w2,…,wM], wt(t¼ 1,2,…,M) is the weight of a kernel
function, satisfying w1 þ w2 þ � � � þ wM ¼ 1, wt 2 ½0;1� 8 t 2 f1;2; :::;
Mg; N is the number of data simples in a dataset; C is the number of
cluster centers; uij represents the possibility that data sample xi belongs to
the j-th cluster, which can be calculated by Eq. (14);m is the fuzzification
degree, which generally takes m¼ 2; Dð�Þ denotes the distance between
two vector; xi ¼ ½xi1; xi2; :::; xil� denotes the i-th data sample, and xi 2 Rl;
disðvÞ represents the mean distance of cluster centers corresponding to
antibody v; usl represents the possibility that cluster center vs belongs to
the l-th cluster center, and it can be calculated by Eq. (15); ϕ ¼ fϕ1;ϕ2;

:::;ϕMg areM kinds of kernel mappings. By mapping ϕt , the l-dimensional
vector x in its feature space becomes an L-dimensional vector ϕtðxÞ in a
new space. fK1;K2; :::;KMg are Mercer kernels corresponding to M kinds
of kernel mappings respectively:

κt
�
xi; xj

� ¼ ϕtðxiÞTϕt

�
xj

�
; t ¼ 1; 2; :::;M (16)

f1ðvÞ is proposed by improving the multiple kernel fuzzy clustering al-
gorithm (MKFC) presented by Huang et al. [7]. In MKFC:

Jmðw;U;VÞ ¼
XN
i¼1

XC
j¼1

umij D
�
xi; vj

�
(17)

where Dðxi; vjÞ ¼ ðϕðxiÞ � vjÞTðϕðxiÞ� vjÞ.
This paper introduces a multiple kernel learning method, which can

improve the application of the FCM algorithm and make non-linear re-
lationships among data easier to be discovered. It can improve the
clustering quality and also make performance less dependent on the
particular choice of kernels. We reside prototypes in the feature space, in
contrast with MKFC, where prototypes are established in the kernel
space. Two different models are shown in Fig. 1 [58].

It can be seen from Fig. 1(b) that, if we want to obtain the cluster
center v'k in the feature space, we need to employ the inverse mapping
(ϕ�1) from the kernel space to the feature space. However this operation
4

is often difficult to carry out [11]. For the encoding problem in the
artificial immune algorithm described in this paper, this inverse problem
would undoubtedly increase the complexity of the proposed algorithm.
Therefore, our algorithm uses the approach shown in Fig. 1(a) to estab-
lish prototypes so that the operations, such as antibody population
initialization, are simple and have strong interpretability.

MKFC is a single-objective clustering algorithm. In the clustering
process, it only takes into account the objective function Jm. Although
optimizing this function can improve clustering to some extent, it is
unable to take into account the overall data distribution, causing the
clustering performance to significantly deteriorate with increasing
numbers of clusters. To avoid this situation, on the basis of f1(v), another
objective function f2(v) is introduced in this paper. f2(v) is an improved
XB indicator. The XB indicator [17] is defined as:

XB ¼

PN
i¼1

PC
j¼1

umij d
�
xi; vj

�

N �
	
min
i6¼j

�
d
�
vi; vj

��
 (18)

where dðxi;vjÞ ¼
������xi � vj

���j2, jj �jj denotes Euclidean distance between two

vectors.
By Eq. (18), it can be seen that XB indicator takes the form of a ratio. It

takes into account the separation and compactness of clusters, which can
effectively avoid local optima and improve the clustering performance.
This paper introduces a multiple kernel learning method based on XB,
and the Euclidean distance between any two vectors is instead repre-
sented by kernel distance, yielding the objective function f2(v). Rules
related with kernel functions in f1(v) are equally applicable to f2(v).

Through the above analysis, D(xi,vj) and D(vi,vj) can be further
denoted as:

D
�
xi; vj

� ¼ �
ϕðxiÞ � ϕ

�
vj
��T�

ϕðxiÞ � ϕ
�
vj
��

¼ ϕðxiÞTϕðxiÞ � 2ϕðxiÞTϕ
�
vj
�þ ϕ

�
vj
�T
ϕ
�
vj
�

¼
XM
k¼1

w2
kκkðxi;xiÞ � 2

XM
k¼1

w2
kκk

�
xi; vj

�þXM
k¼1

w2
kκk

�
vj; vj

�

(19)

D
�
vi; vj

� ¼ �
ϕðviÞ � ϕ

�
vj
��T�

ϕðviÞ � ϕ
�
vj
��

¼ ϕðviÞTϕðxiÞ � 2ϕðviÞTϕ
�
vj
�þ ϕ

�
vj
�T
ϕ
�
vj
�

¼
XM
k¼1

w2
kκkðvi;viÞ � 2

XM
k¼1

w2
kκk

�
vi; vj

�þXM
k¼1

w2
kκk

�
vj; vj

� (20)

In Eq. (8), f1(v) denotes the sum of overall data fuzzy mean square
distances, which measures the within-cluster compactness. Therefore, a
small value of f1(v) indicates a good clustering result. From Eq. (9), it can
be seen that f2(v) is a ratio function, which is equal to the ratio between
the sum of fuzzy mean square distances (f1(v)) and the minimum square
distance between cluster centers. Similarly, a smaller value of f2(v) in-
dicates a better clustering result. Since the value of f2(v) depends on the
value of f1(v) and the square distance between the nearest clusters, the
between-cluster separation and within-cluster compactness must be
considered simultaneously. This method significantly improves the ac-
curacy of clustering, but it also increases the difficulty of solving the
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clustering problem. The following section describes the process of solving
these two objective functions.

3.2. Antibody population initialization and clone proliferation

In this paper, an antibody refers to a candidate solution of the clus-
tering problem, and the antigen refers to the constraints and the problem,
i.e. the objective function. In this artificial immune algorithm, real
numbers are utilized to encode chromosomes. The size of the initial
antibody population is n. Population P(t)¼ [v(1);v(2); …;v(n)], where t
denotes the current generation; v(i) represents the i-th antibody, i.e. a
solution to the clustering problem. The encoding method of antibody v(i)

is as follows: randomly select C data samples from the dataset as initial
cluster centers V¼ [v1;v2; …;vC]; then randomly initialize weight wi 2
½0; 1�ð1 � i � MÞ which satisfies w1 þ w2 þ � � � þ wM ¼ 1 ; then the

antibody vðiÞ ¼ ½wðiÞ;vðiÞ1 ;vðiÞ2 ;� � �;vðiÞC �, wherewðiÞ ¼ ½wðiÞ
1 ;wðiÞ

2 ;� � �;wðiÞ
M �, vðiÞk ¼

½vðiÞk1; vðiÞk2; � � �; vðiÞkl � denotes the k-th cluster center of antibody v(i). Fig. 2
shows the encoding form of antibody v(i).

Algorithm 1 describes the initialization steps of the antibody
population.

Algorithm 1
The initialization of antibody population for MAFC.

N ← total number of data in the dataset
C ← number of clusters
n ← size of initial antibody population
l ← data dimension
data← dataset
M← the number of kernels
for(i¼ 1, …,n) do
sum←0
for (j¼ 1, …, M) do

yij ← GenerateRandomNumber(0,1)/* Generate a random number between 0 and 1
*/
sum ← sum þ yij

end for
for(j¼ 1, …,M)

v(i)(j) ← yij/sum/* normalize yij */
end for
for (j¼ 1, …,C) do

Index ← GenerateRandomNumber(1, N)/* Generate random integer between 1 to N
*/

for(k¼ 1 … l) do
v (i)(M þ j*l þ k) ← dataindex k

end for
end for

end for

After initializing antibody population P(t), the clone proliferation
operation is done to increase the size of the antibody population. Then
antibody population P(t) becomes P(1)(t):

Pð1ÞðtÞ ¼ �
vð1Þ1; vð1Þ2; :::; vð1Þq; vð2Þ1; vð2Þ2; :::; vð2Þq; :::; vðnÞ1; vðnÞ2; :::; vðnÞq

�
(21)

where q denotes the multiples of cloning and our experiments take q¼ 5.
Each antibody in P(t) has the same clonal rate in this paper.
( )
1

iw ( )
2
iw

…

( )i
Mw 11

( )iv
12

( )iv
…

1

( )

l

iv
……

M weights of kernel functions      cluster center 1                  

Fig. 2. The specific encodin
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3.3. Non-uniform mutation

After clone proliferation, we obtain antibody population P(1)(t). Then
each antibody in P(1)(t) undergoes non-uniform mutation [43], which
makes the mutation combine with evolution generation. The
non-uniform mutation operator relates the mutation range relate to the
evolution generation. This enables searching the space globally in the
early stages and very locally at later stages [59]. This avoids the degra-
dation phenomenon of conventional genetic algorithms. Therefore, the
non-uniform mutation operator is especially useful in bounded optimi-
zation problems [60]. Mutation range is large in the early evolution of
the population to ensure the algorithm searches in the global scope, and
the mutation range in last stage of the evolution of the population de-
creases, which increases the algorithm's ability to perform local search.
The mutation operator is as follows:

yðt; hÞ ¼ h ��1� rð1�t=TÞσ � (22)

where, r is a random number, belonging to [0, 1]; t represents the current
evolution generation; T denotes the maximum evolution generation, and
this paper takes T¼ 50; 1� t=T is the mutation rate which changed with
the number of iterations; σ is a parameter, which determines the extent of
non-uniformity and it plays a role in adjusting the local search area, and
this paper takes σ ¼ 2. From Eq. (20), we can see that when t is small, i.e.,
in the early evolution of the population, the function value y is large,
which ensures a large range of mutation; with the increase of evolution
generation, i.e. as t increases, y(t,h) decreases, and then the range of
mutation narrows.

Assume vðiÞ ¼ ½vðiÞð1Þ; vðiÞð2Þ; :::; vðiÞðmÞ� (m denotes the length of
chromosome, m ¼ Mþ l� C) is an antibody in P(1)(t). We randomly
select the k-th position v(i)(k) in v(i) to make it mutate, then the mutated
antibody becomes:

vðiÞ' ¼ �
vðiÞð1Þ; vðiÞð2Þ; :::; vðiÞðk � 1Þ; vðiÞ'ðkÞ; :::; vðiÞðmÞ� (23)

where vðiÞ'ðkÞ ¼


vðiÞðkÞ þ yðt; hÞ
vðiÞðkÞ � yðt; h'Þ

kmod2 ¼ 0
kmod2 ¼ 1 ; h ¼ bk � vðiÞðkÞ, bk is the

maximum value in the k-th position of v(i); h' ¼ vðiÞðkÞ� ak, ak is the
minimum value in the k-th position of v(i). Data are normalized first
in the algorithm, so here bk¼ 1 and ak¼ 0. Algorithm 2 describes
the process of the non-uniform mutation.

Algorithm 2
The non-uniform mutation of antibody population Pð1ÞðtÞ.

v(i) ← an antibody in P(1)(t)
m ← the length of chromosome
t ← the current evolution generation
T ← the maximum evolution generation
NQ ← the size of P(1)(t)
for (i¼ 1, …, NQ) do
k ← GenerateRandomNumber(1, m)/* Generate random number between 1 to m */
r ← GenerateRandomNumber(0,1)/* Generate random number between 0 and 1*/
if mod(k,2) ¼ 0/*k mod 2 equals 0*/

vðiÞ'ðkÞ ← vðiÞðkÞ þ ð1� vðiÞðkÞÞ*ð1� rð1�t=TÞσ Þ
end if
else if

(continued on next page)
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Algorithm 2 (continued )

vðiÞ'ðkÞ ← vðiÞðkÞ� vðiÞðkÞ*ð1� rð1�t=TÞσ Þ
end

end for

After the above non-uniform mutation, antibody population P(1)(t)
becomes:

Pð2ÞðtÞ ¼ �
vð1Þ'1; vð1Þ'2; :::; vð1Þ'q; vð2Þ'1; vð2Þ'2; :::; vð2Þ'q; :::; vðnÞ'1; vðnÞ'2; :::; vðnÞ'q

�
(24)

3.4. Clone selection

The purpose of clone selection is to select outstanding antibodies from
the antibody population to form a new population. To avoid losing
population information and ensure the diversity of population, the pro-
posed algorithm reserves parent population P(1)(t), and combines it with
population P(2)(t) together to form a new population P(3)(t)¼ [P(2)(t);
P(1)(t)], which is the antibody population to be selected. Here, we take
the two objective functions in 3.1 as the antibody-antigen affinity func-
tion. Firstly, antibodies are divided into dominated antibodies and non-
dominated antibodies according to the value of antibody-antigen affin-
ity f(v)¼ [ f1(v); f2(v)]. Affinity of a dominated antibody is set to 1, and a
non-dominated antibody's affinity is 0. During the cloning process only
the non-dominated antibodies are cloned, thus this ensures the compet-
itiveness and diversity of antibodies. Assume v(j) is a non-dominated
antibody, which must satisfy:

8vðiÞ 6¼ vðjÞ 2 Pð3ÞðtÞ :
��
f1
�
vðjÞ

� � f1
�
vðiÞ

��
&

�9 i satisfies f2
�
vðjÞ

�
< f2

�
vðiÞ

���
or
��
f2
�
vðjÞ

�
� f2

�
vðiÞ

��
&

�9 i satisfies f1
�
vðjÞ

�
< f1

�
vðiÞ

���
After clone selection, we obtain non-dominated antibody population

Pð4ÞðtÞ ¼ ½vð1Þ''; vð2Þ''; :::; vðNÞ''� utilized to solve the multi-objective clustering
problem based on multiple kernels, where N denotes the size of non-
dominated antibody population. Algorithm 3 describes the process of
clone selection.
Algorithm 3
Clone selection for MAFC.

P(3)(t) ← antibody population to be selected
for each v(j) 2 Pð3ÞðtÞ
Aff(v(j)) ← 1/* set affinity of each antibody to 1 */
for each v(i) 2 Pð3ÞðtÞ (i 6¼ j)

if ððf1ðvðjÞÞ � f1ðvðiÞÞÞ& ð9 i satisfies f2ðvðjÞÞ < f2ðvðiÞÞÞÞorððf2ðvðjÞÞ � f2ðvðiÞÞÞ & ð9 i satisfies f1ðvðjÞÞ < f1ðvðiÞÞÞÞ
Aff(v(j)) ← 0/* set affinity of each non-dominated antibody to 0 */

end if
end for
if Aff(v(j))¼¼ 0 then/* affinity of antibody is 0 constantly */

Pð4ÞðtÞ ← v(j)/* select non-dominated antibody v(j) to compose antibody population Pð4ÞðtÞ*/
end if

end for
3.5. Uniformity maintaining strategy

After obtaining non-dominated antibody population P(4)(t), in order
to ensure uniformity of the solutions and diversity of the population, we
propose the incorporation of a uniformity maintenance strategy. If the
size of the non-dominated antibody population P(4)(t) is N, which sat-
isfies N>N*(N* is the maximum size of non-dominated antibody pop-
ulation), then non-dominated antibody population P(4)(t) undergoes a
congestion degree analysis. The most crowded antibodies are removed
until the population size satisfies N¼N*. Otherwise, non-dominated
antibody population P(4)(t) obtained from Algorithm 3 is regarded as
the new population to be cloned directly. Algorithm 4 describes the steps
6

to maintain uniformity of the population. Unlike NSGA-Ⅱ which prefers
the point with the lower non-domination rank between two solutions
with differing non-domination ranks, we remove the most crowded
antibody in the uniformity maintaining strategy.

After performing the uniformity maintenance strategy, we obtain the

final antibody population Pð5ÞðtÞ ¼ ½vð1Þ'''; vð2Þ'''; :::; vðN*Þ'''� used for cloning
for solving the multi-objective clustering problem.

Algorithm 4
Uniformity maintaining strategy for MAFC.

P(4)(t) ← non-dominant antibody population
f ← the value of objective functions of non-dominant antibodies in P(4)(t)
N ← the number of non-dominated antibodies in P(4)(t)
N* ← the maximum number of non-dominated population
While (N>N*)
for each vðiÞ 2 Pð4ÞðtÞ

d i ← 0/* initialize the crowded distance */
end
for (j¼ 1,2) do

F ← sort(f,j)/*sort f according to the value of the j-th objective function*/
P'ð4ÞðtÞ ← sort(P(4)(t),Fj)/* sort population P(4)(t) according to the value of the j-th

objective function */
d1 ¼ dN ¼ ∞
for (i¼ 2, …, N-1) do
di ¼ di þ ðFjðvðiþ1ÞÞ � Fjðvði�1ÞÞÞ=ðFmax

j � Fmin
j Þ

end for
end for
i ← min(d)/* calculate the index of the minimum value of d*/
delete v(i)/* remove the most crowded antibody */
N ← N-1

end while

3.6. Select the final solution

Through the above artificial immune algorithm, we obtain a Pareto
optimal solution set in the final generation, where each antibody repre-
sents one possible clustering result. It is difficult to say whether one so-
lution is better than another, because of the multiple competing objective
functions.

The proposed algorithm is applicable to clustering problems with
datasets for which we know the true class labels for part of the data
samples. Therefore, we employ a semi-supervised method to select the
final solution. We select the final solution based on clustering accuracy
rate of those data samples for which we know the true class labels a
priori. Clustering accuracy (ACC) is defined as follows [61]:

ACC ¼
Pn
i¼1

δðgi;mapðpiÞÞ
n

(25)

where gi denotes the true class label of data sample xi; pi is the obtained
cluster index of data sample xi; n is the number of data samples; mapð�Þ
denotes the matching function, which matches the true class label and
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obtained cluster index; δð�; �Þ is a Boolean function, if x1 ¼ x2, δðx1;x2Þ ¼
1, otherwise, δðx1; x2Þ ¼ 0; The larger the ACC value, the better the
clustering results. The solution that has the largest ACC in Pareto optimal
solution set is selected as the optimal solution in our method.

Above all, the flowchart for MAFC algorithm as shown in Fig. 3:

3.7. Complexity analysis

In this section, we analyze the time complexity of the proposed and
other algorithms.

The time complexity of MAFC algorithm is mainly composed of three
parts: The computational complexity of the inconsistency mutation
operation; the computational complexity of clone selection operation;
and the computational complexity of non-uniform mutation. Given: a size
of the antibody group n; the dimension of the target vector 2; the size of
the non-dominant antibody group N; the expected size of the non-
dominant antibody group Na; the clone ratio q: the time complexity of
initializing the antibody group is o(n); the time complexity of calculating
the objective function value of each antibody in the antibody group is
o(2n); the time complexity of clone operation is o(Nq); the time
Start

Initialize antibody population P

Iteration t=0

Clone proliferation

Non-uniform mutation

Clone selection

N<=N*?

The final non-dominated antibody population

Y
es Uniformity maintaining strategy

t=t+1

No

t<T ?

Pareto optimal solution set

N
o

Yes

Select the solution with the maximum value of ACC

Output clustering results

End

Fig. 3. Flowchart for MAFC algorithm.
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complexity of nonuniform mutation operation is o(Nq); the time
complexity of clone selection operation is o(Nq); and the time complexity
of antibody group updating operation is o(NaN2q). In each iteration, the
total worst time complexity is: o(3nþ3Nq þ NaN2q).

Given the number of clusters C, a set of data X containing N l-
dimensional vectors and a set of M such mappings that map features of
the data to new feature spaces, the time complexity of MKFC algorithm is
o(N2CM) per iteration. Given the total number of data points N, the
number of clusters C and the number of dimensions of the feature vector
P: since kernel-based clustering algorithms need to evaluate the kernel
values between all possible pairs of two data points, the computational
complexity of KFCM-F algorithm is o(N2CP) per iteration. Given the
function number M, and a particle swarm size N, the time complexity of
the FMOPSO algorithm is o((MN)2log(N)) per iteration. Given the total
number of elements n, the number of cluster centers C, the number of
objective functions 2, the number of individuals in a population N, the
time complexity of the CGA algorithm is o(nC þ N2þ2N3).

It can be seen that the complexity of MAFC algorithm is only related
to antibody group size and clone ratio. The complexity of MAFC algo-
rithm is lower than that of the other algorithms.

4. Experiments and analysis

4.1. Dataset

The datasets utilized in this paper include 20 UCI real datasets and
two face datasets (ORL and Yale). Detailed information is shown in
Table 1.

4.2. Evaluation measures

MAFC and the compared algorithms used here are FCM-related, so
each algorithm will generate an N � C membership degree matrix
U¼ [uik]i¼1, …,N, k¼1, …,C, where uik indicates the possibility that data
sample xi belongs to the k-th cluster. In this paper, we make data sample
Table 1
Datasets used in the experiments.

Datasets Instances Features Classes Comment

Iris(D1) 150 4 3
seeds(D2) 210 7 3
Glass identification(D3) 214 9 6
Heart(D4) 270 13 2
Ecoli(D5) 336 7 8
Liver(D6) 345 6 2
Ionosphere(D7) 351 34 2
vote(D8) 435 16 2
Breast Cancer Wisconsin(D9) 569 30 2
Balance Scale(D10) 625 4 3
Optical Recognition of
Handwritten Digits(2, 7)(D11)

356 64 2 Digit(2,7)

Optical Recognition of
Handwritten Digits(0, 6, 8,
9)(D12)

713 64 4 Digit(0, 6, 8
and 9)

Optical Recognition of
Handwritten Digits(1, 2, 7,
9)(D13)

718 64 4 Digit(1, 2, 7
and 9)

Pima Indians Diabetes(D14) 768 8 2
Connectionist Bench(Vowel
Recognition-Deterding
data)(D15)

990 10 11 letter A and
B

Yeast(D16) 1484 8 10 letter A, B, C,
D

Letter Recognition(A, B)(D17) 1555 16 2
Letter Recognition(A, B, C,
D)(D18)

3096 16 4

Statlog(Landsat Satellite)(D19) 2236 36 2
wave(D20) 5000 21 3

ORL 400 7744 40
Yale 165 7744 15
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xi belong to the cluster corresponding to its maximum membership de-
gree. So we can use the hard clustering evaluation indexes to measure the
performance of each clustering algorithm [7].

The normalized mutual information (NMI) [62], the adjusted Rand
index (ARI) [63] and clustering accuracy (ACC) are employed to evaluate
the clustering performance in this paper. The definition of ACC has been
given in section 3.7. The definitions of the other two indicators are as
follows.

The NMI is defined as follows [62]:

NMI ¼ MIðG;PÞ
maxðHðGÞ;HðpÞÞ (26)

where G denotes the real label set of a dataset; P represents the label set
obtained by a clustering algorithm; MI (G, P) is the mutual information
between G and P; H (G) and H (P) denote the information entropy of G
and P respectively.

HðGÞ ¼ �
XC
i¼1

ni
N
log

ni
N

(27)

where C denotes the number of classification in G; ni is the number of
samples belonging to class i in G; N represents the total number of
samples in a dataset.

HðPÞ ¼ �
XC'

j¼1

nj
N
log

nj
N

(28)

where C' is the number of clusters in P; nj denotes the number of samples
belonging to cluster j in P; N represents the total number of samples in a
dataset.

The NMI can be obtained approximately by the following equation:
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PC PC'
nij
N log

�
N � nij
ni � nj

�

NMI ¼ i¼1 j¼1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

HðGÞHðPÞp (29)

where, nij is the number of data samples belonging to class i in G and
cluster j in P; NMI 2 ½0; 1�, the larger of NMI, the better clustering result
is.

The ARI is defined as [63]:

ARI ¼ a� TE
TD� TE

(30)

where TE ¼ ðaþbÞðaþcÞ
aþbþcþd , TD ¼ aþbþcþd

2 . The definitions of G and P are the
same as for NMI. The definitions of a, b, c and d are shown as follows:

a is the number of pairs of data objects that belong to the same class in
G and to the same cluster in P;
b is the number of pairs of data objects that belong to the same class in
G and to different clusters in P;
c is the number of pairs of data objects that belong to different classes
in G and to the same cluster in P;
d is the number of pairs of data objects that belong to different classes
in G and to different clusters in P.
Larger ARI values indicate the better clustering quality of the clus-
tering algorithm.
4.3. Parameter selection

This section describes experiments conducted to choose appropriate
values for parameters that are employed in the proposed algorithm.
Appropriate parameter choices are important for achieving good results.
These parameter values are tested on the seeds and Glass identification
datasets. There are some parameters in this paper: the cloning number q,
maximum evolution generation T and antibody population N.

For the multiple of clone q, the maximum evolution generation
4 6 8
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T¼ 50, the antibody population N¼ 50, the result of MAFC algorithm on
the seeds dataset is shown in Fig. 4, where q is taken from 1 to 8. The
result of MAFC algorithm on the Glass identification dataset is shown in
Fig. 5.

It can be seen from Figs. 4 and 5 that when the maximum evolution
generation and the antibody population is invariant, better clustering
results can be obtained for different datasets when N¼ 50.

For the maximum evolution generation T, the multiple of clone q¼ 5,
the antibody population N¼ 50, the result of MAFC algorithm on seeds
dataset are shown in Fig. 6, where T ranges from 10 to 80.

The result of MAFC algorithm on Glass identification dataset are
shown in Fig. 7, where T ranges from 10 to 80.

It can be seen from Figs. 6 and 7 that, with the increasing of T from 10
to 80, the clustering accuracy of this algorithm is constantly changing,
but it can usually be optimized when T is 50. Although the results of ACC
are not the maximum at T¼ 50 when the two networks are clustered, this
paper sets T to 50 by synthesizing the other two indexes and the ratio-
nality of the parameters.
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For the antibody population N, the maximum evolution generation
T¼ 50, the multiple of clone q¼ 5, the result of MAFC algorithm on seeds
dataset is shown in Fig. 8, where N is taken from 10 to 80.

The result of MAFC algorithm on Glass identification dataset is shown
in Fig. 9, where N is taken from 10 to 80.

It can be seen from Figs. 8 and 9 that, with the increasing ofN from 10
to 80. The clustering accuracy of this algorithm is constantly changing,
but it can be optimized at N¼ 50. Synthesizing the situation of three
indexes and its influence on the complexity of the algorithm, we set N to
50.
4.4. Data clustering

We test MAFC on 20 real datasets of UCI. Data vectors of each dataset
initially undergo min-max normalization. Optimal kernel choice is still
an open-research topic. Following the strategy of other multiple kernel-
learning approaches, we select a set of reasonable kernels that are
frequently used by kernel methods. In this experiment, in order to
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Table 3
The best clustering centers of D18.

Dataset Center 1 Center 2 Center 3 Center 4

D18 0.000000 0.000000 0.298746 0.000000
0.303887 0.354646 0.636364 0.454545
0.474877 0.458518 0.733333 0.600000
0.400000 0.500000 0.800000 0.325942
0.883767 0.666667 0.876198 0.666667
0.266059 0.410537 0.583333 0.333333
0.666667 0.416667 0.416667 0.416667
0.288268 0.636364 0.636364 0.636364
0.272727 0.636364 0.155270 0.604761
0.174440 0.500000 0.500000 0.500000
0.678545 0.611290 0.377636 0.300000
0.209962 0.459515 0.545455 0.563906
0.550506 0.230769 0.461538 0.692308
0.407351 0.300000 0.680852 0.159440
0.507399 0.636364 0.923832 0.636364
0.333333 0.250000 0.773292 0.333333

Table 4
The best clustering centers of D1and D10.

Datasets Center 1 Center 2 Center 3

D1 0.186096 0.443120 0.722222
0.624904 0.276863 0.458618
0.077379 0.591871 0.848789
0.041456 0.500000 0.916473

D10 0.991104 0.751412 0.024426
1.000000 0.603004 0.076027
1.000000 0.000337 0.734377
1.000000 0.063147 0.885828
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compare with MKFC, we choose the same kernel functions and set the
same parameters. We select a polynomial kernel and seven Gaussian
kernels [7]. The polynomial kernel is:

κk
�
xi;xj

� ¼ �
pþ xT

i xj

�q
p ¼ 1; q ¼ 2 (31)

Gaussian kernel is:

κk
�
yi; yj

� ¼ expð � �
yi � yj

�T�yi � yj

��
δ
�

(32)

Assume that η is the minimum value of the Gaussian kernel over the
dataset. Then we can obtain the corresponding δ as:

δ ¼ mini;jð �
�
yi � yj

�T�yi � yj

��
logðηÞ

�
(33)

We let η take each value of {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005,
0.0001} to obtain seven Gaussian kernels. And the value of each kernel
function is normalized to the range of [0.0001, 1]. For KFC algorithm, we
utilize a polynomial kernel and seven Gaussian kernels as the kernel
function respectively.

In this experiment, we compareMAFC against FCM [5], KFCM-F [13],
CGA [64] and MKFC [7]. ACC, NMI, and ARI are employed to measure
the performances of the clustering algorithms. Initial antibody popula-
tion size n is 50; Number of iterations T is 50; Maximum number of
non-dominated antibody population N* is 50; The multiple of clone
q¼ 5; fuzzification degreem is 2. Results in Tables 2, 7 and 9 are the best
results over 50 independent runs. And results in Table 6, 8 and 10 are the
mean results over 50 runs. The best value of ACC, NMI or ARI of each
dataset is marked in bold.

Table 2 shows the best results in terms of ACC of different algorithms
Table 2
Comparisons about the best results of different algorithms on UCI datasets in terms of ACC.

Datasets FCM [5] KFC1 KFC2 KFC3 KFC4 KFC5 KFC6 KFC7 KFCM-F [13] MKFC [7] CGA [64] MAFC

D1 0.893 0.900 0.893 0.895 0.900 0.900 0.900 0.900 0.900 0.900 0.447 0.907
D2 0.900 0.861 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.612 0.929
D3 0.467 0.491 0.355 0.477 0.472 0.472 0.467 0.467 0.477 0.500 0.234 0.547
D4 0.800 0.819 0.804 0.804 0.804 0.811 0.793 0.807 0.804 0.815 0.704 0.837
D5 0.569 0.723 0.626 0.664 0.726 0.687 0.690 0.667 0.687 0.735 0.542 0.839
D6 0.554 0.559 0.519 0.512 0.528 0.528 0.516 0.528 0.525 0.522 0.261 0.586
D7 0.709 0.724 0.712 0.709 0.732 0.692 0.729 0.718 0.675 0.732 0.587 0.724
D8 0.874 0.871 0.864 0.867 0.880 0.871 0.876 0.878 0.875 0.878 0.632 0.887
D9 0.917 0.931 0.930 0.917 0.921 0.909 0.893 0.879 0.849 0.927 0.634 0.956
D10 0.698 0.548 0.555 0.523 0.734 0.558 0.530 0.534 0.558 0.704 0.533 0.794
D11 0.964 0.975 0.975 0.975 0.961 0.963 0.958 0.958 0.944 0.975 0.287 0.983
D12 0.912 0.964 0.964 0.974 0.924 0.917 0.937 0.811 0.802 0.964 0.508 0.889
D13 0.868 0.878 0.880 0.863 0.855 0.845 0.697 0.686 0.612 0.878 0.214 0.855
D14 0.659 0.679 0.651 0.667 0.667 0.659 0.667 0.667 0.663 0.667 0.537 0.706
D15 0.312 0.312 0.313 0.312 0.327 0.326 0.326 0.333 0.278 0.333 0.358 0.342
D16 0.398 0.431 0.377 0.398 0.416 0.427 0.409 0.435 0.389 0.457 0.133 0.484
D17 0.927 0.942 0.943 0.942 0.939 0.939 0.933 0.929 0.911 0.942 0.403 0.941
D18 0.596 0.612 0.607 0.612 0.628 0.629 0.668 0.654 0.633 0.653 0.759 0.690
D19 0.942 0.822 0.852 0.936 0.863 0.894 0.801 0.767 0.767 0.945 0.735 0.969
D20 0.645 0.638 0.638 0.609 0.597 0.576 0.480 0.512 0.455 0.635 0.661 0.739
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Table 5
The best clustering centers of D5.

Dataset Center 1 Center 2 Center 3 Center 4 Center 5 Center 6 Center 7 Center 8

D5 0.356214 0.404494 0.867599 0.831529 0.606742 0.719101 0.109296 0.743395
0.421377 0.203141 0.312465 0.687584 0.447409 0.714286 0.289725 0.392857
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.973563
0.000000 0.000000 0.000000 0.168954 0.000000 0.000000 0.000000 0.000000
0.477273 0.544885 0.522727 0.814964 0.684851 0.505928 0.655378 0.666320
0.402062 0.195876 0.814433 0.515464 0.790744 0.329897 0.783505 0.546392
0.433354 0.349690 0.753530 0.290135 0.838384 0.383838 0.828283 0.261402

Table 6
Comparisons about mean results of different algorithms on UCI datasets in terms of ACC.

Datasets FCM [5] KFC1 KFC2 KFC3 KFC4 KFC5 KFC6 KFC7 KFCM-F [13] MKFC [7] CGA [64] MAFC

D1 0.892 0.889 0.889 0.895 0.893 0.893 0.894 0.895 0.893 0.894 0.361 0.885
D2 0.893 0.859 0.895 0.892 0.894 0.894 0.893 0.895 0.886 0.893 0.548 0.895
D3 0.433 0.419 0.355 0.400 0.403 0.446 0.395 0.407 0.404 0.425 0.183 0.459
D4 0.767 0.781 0.728 0.725 0.731 0.722 0.704 0.675 0.695 0.736 0.586 0.804
D5 0.510 0.572 0.526 0.543 0.539 0.549 0.539 0.544 0.551 0.585 0.443 0.696
D6 0.516 0.559 0.519 0.512 0.528 0.528 0.516 0.528 0.525 0.522 0.181 0.573
D7 0.689 0.712 0.698 0.647 0.692 0.644 0.718 0.698 0.652 0.729 0.496 0.703
D8 0.857 0.837 0.860 0.861 0.863 0.847 0.845 0.864 0.846 0.858 0.492 0.870
D9 0.854 0.895 0.903 0.887 0.887 0.882 0.835 0.823 0.802 0.897 0.264 0.914
D10 0.518 0.502 0.534 0.516 0.524 0.517 0.500 0.513 0.533 0.517 0.342 0.617
D11 0.964 0.961 0.961 0.961 0.934 0.930 0.921 0.900 0.894 0.964 0.174 0.933
D12 0.806 0.947 0.949 0.964 0.908 0.900 0.889 0.734 0.736 0.964 0.336 0.806
D13 0.868 0.850 0.867 0.845 0.839 0.825 0.641 0.643 0.597 0.850 0.158 0.759
D14 0.659 0.679 0.651 0.667 0.667 0.659 0.667 0.667 0.663 0.667 0.369 0.670
D15 0.275 0.278 0.278 0.275 0.281 0.281 0.285 0.285 0.240 0.285 0.275 0.298
D16 0.338 0.329 0.312 0.324 0.333 0.338 0.338 0.327 0.328 0.339 0.099 0.405
D17 0.927 0.939 0.939 0.939 0.934 0.932 0.927 0.911 0.898 0.935 0.296 0.905
D18 0.557 0.589 0.585 0.586 0.580 0.596 0.655 0.633 0.618 0.635 0.614 0.670
D19 0.900 0.772 0.801 0.887 0.811 0.842 0.753 0.715 0.715 0.896 0.657 0.960
D20 0.515 0.570 0.567 0.572 0.530 0.515 0.455 0.423 0.416 0.537 0.573 0.606

Table 7
Comparisons about the best results of different algorithms on UCI datasets on NMI.

Datasets FCM [5] KFC1 KFC2 KFC3 KFC4 KFC5 KFC6 KFC7 KFCM-F [13] MKFC [7] CGA [64] MAFC

D1 0.737 0.768 0.736 0.737 0.742 0.747 0.752 0.752 0.752 0.749 0.962 0.803
D2 0.690 0.679 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.690 0.896 0.761
D3 0.353 0.345 0.335 0.360 0.353 0.364 0.363 0.364 0.348 0.366 0.654 0.370
D4 0.278 0.312 0.290 0.290 0.292 0.306 0.282 0.299 0.286 0.312 0.186 0.400
D5 0.594 0.583 0.582 0.584 0.619 0.573 0.576 0.574 0.568 0.561 0.421 0.699
D6 0.009 0.000 0.003 0.003 0.000 0.000 0.001 0.000 0.000 0.001 0.212 0.003
D7 0.126 0.123 0.121 0.155 0.223 0.215 0.253 0.244 0.223 0.223 0.457 0.150
D8 0.475 0.458 0.465 0.464 0.479 0.469 0.472 0.474 0.489 0.490 0.319 0.503
D9 0.598 0.653 0.678 0.641 0.586 0.583 0.545 0.526 0.468 0.632 0.516 0.731
D10 0.301 0.173 0.139 0.141 0.382 0.146 0.153 0.132 0.153 0.351 0.405 0.439
D11 0.806 0.830 0.830 0.830 0.815 0.807 0.765 0.759 0.687 0.830 0.126 0.878
D12 0.807 0.807 0.807 0.830 0.812 0.774 0.774 0.598 0.629 0.830 0.172 0.728
D13 0.707 0.688 0.688 0.688 0.673 0.639 0.465 0.448 0.467 0.688 0.175 0.558
D14 0.114 0.130 0.130 0.127 0.140 0.144 0.146 0.145 0.143 0.140 0.106 0.125
D15 0.384 0.391 0.391 0.385 0.392 0.398 0.403 0.403 0.298 0.403 0.362 0.357
D16 0.260 0.255 0.258 0.260 0.261 0.258 0.254 0.252 0.250 0.265 0.781 0.318
D17 0.707 0.734 0.738 0.734 0.720 0.715 0.693 0.682 0.685 0.734 0.271 0.720
D18 0.389 0.395 0.418 0.441 0.464 0.465 0.552 0.523 0.523 0.545 0.567 0.605
D19 0.461 0.424 0.438 0.512 0.452 0.487 0.451 0.396 0.387 0.493 0.401 0.810
D20 0.397 0.381 0.381 0.373 0.368 0.367 0.335 0.324 0.271 0.381 0.237 0.435
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on UCI datasets, analyzing data in the table we can see: over 20 UCI
datasets, MAFC produces better clustering results on 14 datasets,
compared with other algorithms. And the improvement is obvious, for
dataset D5, D10 and D20, all improvement rate of ACC is about 10%. In
MKFC, there is only one dataset, that is, D7 whose ACC is better than that
in MAFC. In eight compared algorithms using one kernel function, only
four datasets whose ACC is higher than that in MAFC. In CGA, there is
only 2 datasets, whose ACC is better than that in MAFC. The above fully
illustrates that combining multi-objective optimization with multiple
kernel is effective for data clustering and the optimization ability of
11
MAFC for data clustering is better than that of compared algorithms.
Tables 3–5 show the best clustering centers (normalized into [0, 1]) of

part of UCI datasets achieved by MAFC.
Table 6 shows the mean results on ACC of different algorithms on UCI

datasets. We can see that in the mean results of 50 independent runs,
MAFC produces better clustering results on 12 datasets compared with
other algorithms. And ACC of D2 in MAFC equals to that in KFC2 and
KFC7. All of them get the best result. In MKFC, only three datasets, that is,
D7, D11, D12 whose ACC are not worse than other algorithms. The above
explains that the clustering effect of MAFC has been significantly



Table 8
Comparisons about mean results of different algorithms on UCI datasets on NMI.

Datasets FCM [5] KFC1 KFC2 KFC3 KFC4 KFC5 KFC6 KFC7 KFCM-F [13] MKFC [7] CGA [64] MAFC

D1 0.735 0.775 0.731 0.737 0.735 0.741 0.746 0.747 0.749 0.737 0.804 0.777
D2 0.678 0.675 0.682 0.678 0.684 0.681 0.687 0.682 0.680 0.677 0.768 0.690
D3 0.333 0.333 0.335 0.342 0.349 0.356 0.356 0.354 0.335 0.355 0.421 0.303
D4 0.228 0.256 0.185 0.181 0.189 0.182 0.164 0.132 0.156 0.196 0.129 0.293
D5 0.574 0.574 0.573 0.574 0.556 0.563 0.564 0.561 0.556 0.543 0.317 0.580
D6 0.002 0.000 0.003 0.003 0.000 0.000 0.001 0.000 0.000 0.001 0.153 0.003
D7 0.120 0.120 0.115 0.122 0.198 0.197 0.244 0.231 0.211 0.202 0.313 0.104
D8 0.437 0.416 0.455 0.454 0.455 0.431 0.425 0.450 0.419 0.445 0.119 0.457
D9 0.571 0.584 0.584 0.578 0.546 0.527 0.501 0.474 0.409 0.578 0.343 0.593
D10 0.118 0.119 0.119 0.118 0.121 0.114 0.116 0.116 0.116 0.120 0.166 0.241
D11 0.806 0.806 0.806 0.806 0.759 0.784 0.743 0.700 0.607 0.806 0.102 0.675
D12 0.800 0.801 0.804 0.816 0.788 0.755 0.728 0.555 0.573 0.812 0.066 0.637
D13 0.707 0.686 0.683 0.683 0.653 0.616 0.425 0.417 0.403 0.686 0.063 0.528
D14 0.114 0.130 0.130 0.127 0.140 0.144 0.146 0.145 0.143 0.140 0.093 0.089
D15 0.369 0.371 0.371 0.370 0.373 0.372 0.377 0.378 0.234 0.378 0.322 0.306
D16 0.250 0.253 0.254 0.252 0.253 0.250 0.253 0.246 0.238 0.253 0.602 0.261
D17 0.707 0.718 0.717 0.717 0.712 0.702 0.677 0.657 0.635 0.716 0.203 0.576
D18 0.372 0.389 0.401 0.411 0.421 0.441 0.521 0.516 0.509 0.493 0.123 0.562
D19 0.411 0.359 0.361 0.374 0.350 0.347 0.320 0.322 0.302 0.373 0.218 0.768
D20 0.374 0.372 0.371 0.369 0.352 0.338 0.271 0.259 0.243 0.369 0.168 0.380

Table 9
Comparisons about the best results of different algorithms on UCI datasets on ARI.

Datasets FCM [5] KFC1 KFC2 KFC3 KFC4 KFC5 KFC6 KFC7 KFCM-F [13] MKFC [7] CGA [64] MAFC

D1 0.728 0.747 0.731 0.735 0.745 0.745 0.750 0.748 0.752 0.745 0.396 0.759
D2 0.727 0.652 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.729 0.562 0.798
D3 0.194 0.204 0.176 0.175 0.184 0.187 0.182 0.174 0.169 0.185 0.031 0.264
D4 0.357 0.405 0.369 0.369 0.369 0.387 0.342 0.308 0.369 0.396 0.166 0.452
D5 0.393 0.401 0.395 0.393 0.495 0.375 0.376 0.365 0.367 0.423 0.403 0.768
D6 0.009 0.001 �0.006 �0.006 �0.001 �0.001 �0.002 0.000 0.000 �0.001 0.061 0.010
D7 0.173 0.168 0.178 0.175 0.111 0.102 0.089 0.102 0.098 0.151 0.193 0.187
D8 0.557 0.551 0.531 0.538 0.578 0.551 0.565 0.572 0.565 0.572 0.203 0.599
D9 0.712 0.742 0.736 0.724 0.707 0.707 0.645 0.589 0.476 0.738 0.034 0.831
D10 0.351 0.179 0.180 0.155 0.455 0.175 0.169 0.162 0.175 0.384 0.341 0.525
D11 0.869 0.901 0.901 0.901 0.873 0.863 0.857 0.848 0.794 0.901 0.021 0.934
D12 0.783 0.858 0.858 0.878 0.824 0.838 0.757 0.703 0.668 0.878 0.026 0.740
D13 0.663 0.681 0.708 0.644 0.627 0.644 0.521 0.514 0.419 0.681 0.009 0.660
D14 0.081 0.135 0.116 0.109 0.099 0.096 0.086 0.081 0.083 0.116 0.102 0.168
D15 0.185 0.201 0.201 0.212 0.208 0.201 0.199 0.207 0.195 0.210 0.215 0.186
D16 0.150 0.151 0.135 0.156 0.169 0.164 0.145 0.151 0.142 0.169 0.033 0.218
D17 0.759 0.782 0.786 0.782 0.770 0.772 0.750 0.737 0.674 0.782 0.206 0.777
D18 0.338 0.353 0.353 0.345 0.396 0.396 0.365 0.365 0.354 0.372 0.081 0.472
D19 0.467 0.403 0.388 0.365 0.400 0.392 0.354 0.308 0.274 0.415 0.435 0.875
D20 0.334 0.304 0.304 0.284 0.281 0.266 0.294 0.235 0.189 0.304 0.442 0.416

Table 10
Comparisons about mean results of different algorithms on UCI datasets on ARI.

Datasets FCM [5] KFC1 KFC2 KFC3 KFC4 KFC5 KFC6 KFC7 KFCM-F [13] MKFC [7] CGA [64] MAFC

D1 0.725 0.740 0.725 0.735 0.735 0.742 0.748 0.741 0.749 0.734 0.268 0.717
D2 0.710 0.646 0.719 0.713 0.722 0.717 0.726 0.719 0.713 0.713 0.503 0.705
D3 0.181 0.182 0.176 0.175 0.179 0.177 0.172 0.161 0.136 0.179 0.015 0.183
D4 0.294 0.335 0.238 0.230 0.237 0.229 0.200 0.156 0.186 0.250 0.137 0.368
D5 0.387 0.379 0.380 0.380 0.375 0.361 0.349 0.342 0.329 0.377 0.304 0.550
D6 �0.002 0.001 �0.006 �0.006 �0.001 �0.001 �0.002 0.000 0.000 �0.001 0.033 0.002
D7 0.141 0.133 0.124 0.108 0.098 0.074 0.056 0.033 0.010 0.123 0.166 0.156
D8 0.513 0.478 0.524 0.522 0.524 0.498 0.494 0.520 0.496 0.515 0.173 0.531
D9 0.690 0.701 0.701 0.701 0.695 0.672 0.621 0.573 0.379 0.695 0.004 0.686
D10 0.138 0.136 0.136 0.132 0.142 0.133 0.130 0.127 0.131 0.135 0.108 0.272
D11 0.869 0.869 0.869 0.869 0.859 0.859 0.848 0.838 0.787 0.869 0.012 0.885
D12 0.779 0.785 0.802 0.804 0.794 0.773 0.700 0.674 0.644 0.824 0.012 0.600
D13 0.663 0.652 0.662 0.639 0.619 0.583 0.507 0.480 0.262 0.651 0.008 0.522
D14 0.081 0.135 0.116 0.109 0.099 0.096 0.086 0.081 0.083 0.116 0.081 0.118
D15 0.166 0.173 0.174 0.175 0.174 0.174 0.175 0.175 0.171 0.175 0.152 0.139
D16 0.130 0.130 0.130 0.130 0.129 0.128 0.126 0.122 0.111 0.130 0.018 0.143
D17 0.759 0.761 0.761 0.761 0.755 0.752 0.726 0.693 0.643 0.761 0.114 0.660
D18 0.324 0.334 0.338 0.339 0.345 0.350 0.346 0.356 0.335 0.339 0.051 0.452
D19 0.409 0.333 0.308 0.307 0.320 0.305 0.278 0.245 0.208 0.332 0.314 0.844
D20 0.258 0.258 0.257 0.256 0.250 0.244 0.190 0.169 0.142 0.256 0.249 0.283
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Table 11
The Wilcoxon signed rank test between the MAFC and the FCM algorithms.

MAFC/FCM ACC NMI ARI

p h p h p h

D1 0.000067 1 0 1 0.113724 0
D2 0.008336 1 0.000062 1 0.237465 0
D3 0.000123 1 0.000001 1 0.285216 0
D4 0 1 0 1 0 1
D5 0 1 0.442450 0 0 1
D6 0 1 0 1 0 1
D7 0 1 0.959893 0 0 1
D8 0.003984 1 0.087814 0 0.000923 1
D9 0 1 0.759597 0 0.008994 1
D10 0.000017 1 0 1 0.000005 1
D11 0 1 0.000002 1 0.065473 0
D12 0.029214 1 0 1 0.364756 0
D13 0.000201 1 0 1 0.529778 0
D14 0.058448 0 0.009503 1 0.042124 1
D15 0.114806 0 0.003514 1 0.886001 0
D16 0.191023 0 0.185207 0 0.178356 0
D17 0.000001 1 0.000003 1 0.728246 0
D18 0.364792 0 0.626592 0 0.042904 1
D19 0.150714 0 0.782025 0 0.001018 1
D20 0.146805 0 0.086706 0 0.283197 0

Table 12
The Wilcoxon signed rank test between the MAFC and the KFC3 algorithms.

MAFC/KFC3 ACC NMI ARI

p h p h p h

D1 0.000010 1 0 1 0 1
D2 0.026997 1 0.000702 1 0.237465 0
D3 0 1 0 1 0.715095 0
D4 0 1 0 1 0 1
D5 0 1 0.668570 0 0 1
D6 0 1 0 1 0 1
D7 0 1 0.598596 0 0 1
D8 0.000666 1 0.386468 0 0.034109 1
D9 0.000456 1 0.524518 0 0.000231 1
D10 0 1 0 1 0 1
D11 0 1 0.000003 1 0.067703 0
D12 0 1 0 1 0.234208 0
D13 0.002030 1 0 1 0.531950 0
D14 0.125453 0 0.001040 1 0.184566 0
D15 0.222383 0 0.002129 1 0.729933 0
D16 0.408081 0 0.187324 0 0.181765 0
D17 0 1 0 1 0.708299 0
D18 0.580130 0 0.628479 0 0.043375 1
D19 0.826649 0 0.794093 0 0.000979 1
D20 0.133873 0 0.119926 0 0.263049 0

R. Shang et al. Swarm and Evolutionary Computation 50 (2019) 100485
improved with respect to MKFC.
Table 7 shows the best results on NMI of different algorithms on UCI

datasets.
From Table 7 we can see that: over 20 UCI datasets, MAFC produces

better NMI on 9 datasets compared with other algorithms. MKFC pro-
duces better NMI only on two datasets, that is, D12 and D15 compared
with MAFC. More importantly, the improvement of NMI produced by
MAFC is clear. For example, the improvement rate of NMI on D4, D5 and
D10 is about 10%. This fully illustrates that the introduction of multi-
objective optimization based on MKFC improves optimization ability of
the algorithm. Table 8 shows the mean results on NMI of different al-
gorithms on UCI datasets.

From Table 8, we can obtain the following conclusions. In terms of
specific datasets, for D4 dataset,NMI of FCM algorithm is 0.228, andNMI
of KFC1 is 0.256. This suggests that it is effective to introduce the kernel
learning method for improving clustering performance. The worstNMI of
KFC algorithms is 0.132. NMI of MKFC is 0.196. Although MKFC is not
the highest scoring technique, it is still competitive. MKFC is robust
against improper kernel function selection. Therefore, on the whole, the
introduction of multiple kernels can achieve more effective and more
stable clustering results than that of single kernel. NMI of MAFC is 0.293,
which is a significant improvement compared with MKFC and CGA. This
suggests that the multi-objective optimization based on MKFC is very
effective for improving the clustering quality. This situation also exists in
D9 dataset. Additionally, for dataset D10, D18 and D19, NMI has a much
larger improvement, which also demonstrates the superiority of the
MAFC algorithm for clustering problems. On the whole, over 20 UCI
datasets, MAFC produces better clustering results on 8 datasets,
comparedwith other algorithms. The improvements on some datasets are
very significant.

In Table 9, we present the best results of different algorithms on ARI.
From data in Table 9 we can see that in the best results of 50 independent
runs, MAFC produces large ARI on 13 datasets over 20 UCI datasets,
compared with other algorithms. MKFC produces large ARI only on 2
datasets compared with other algorithms. All the rest of the algorithms
produce better clustering results on one dataset. More importantly, the
improvement of ARI is significant. For example, for dataset D5, the ARI of
MKFC is 0.423, the ARI of CGA is 0.403 and ARI of MAFC is 0.768. The
improvement rate is more than 30%. For datasets D9 and D10, the
improvement of ARI is both obvious. These results suggest that MAFC can
produce better clustering results and it is more suitable for data clus-
tering. Table 10 gives the mean results of different algorithms on ARI.

The results of Table 10 suggest that, although the introduction of
multi-kernel learning methods alone can make up for the deficiencies in
FCM to some extent, the improvement of clustering quality is not sig-
nificant. As for D10 dataset, ARI of FCM is 0.138, ARI of MKFC is 0.135
and ARI of CGA is 0.108. The clustering quality has no significant
improvement, and even a slight decline. In contrast, the ARI of our
proposed MAFC algorithm is 0.272, which is more than twice that of the
other compared algorithms. Similar results are observed for datasets D4
and D5. Especially notable is the D19 dataset, where the ARI of MKFC is
only 0.332, while the ARI of MAFC is 0.844, which is more than 2 times
larger. The above results suggest that the proposed MAFC algorithm has
an obvious and significant effect on improving the clustering quality.
Overall, MAFC generates better clustering results on 10 datasets
compared to all other tested algorithms in terms of ARI.

To provide overall evaluation and summarization of these results, we
now provide a statistical analysis of our experiment to compare the
MAFC and FCM, KFC and MKFC algorithms. Table 11 presents the Wil-
coxon signed rank test between the MAFC and the FCM algorithms. p
represents the probability of the median of two samples being equal, and
the null hypothesis should be questioned when p is close to 0. h is the test
result where h¼ 0 indicates that the difference between the median of
the two samples is not significant whereas h¼ 1 means the difference
between the median of the two samples is significant. We can see from
the Wilcoxon signed rank test between the MAFC and the FCM
13
algorithms, there are 14 “h¼ 1” in 20 test instances on ACC, 12 “h¼ 1” in
20 test instances on NMI and 10 “h¼ 1” in 20 test instances on ARI.

Table 12 is the Wilcoxon signed rank test between the MAFC and the
KFC3 algorithms. From the Wilcoxon signed rank test between the MAFC
and the KFC3 algorithms, there are 14 “h¼ 1” in 20 test instances on
ACC, 12 “h¼ 1” in 20 test instances on NMI and 10 “h¼ 1” in 20 test
instances on ARI.

Table 13 presents the Wilcoxon signed rank test between the MAFC
and the MKFC algorithms. There are 13 “h¼ 1” in 20 test instances on
ACC, 14 “h¼ 1” in 20 test instances on NMI and 11 “h¼ 1” in 20 test
instances on ARI. These results further support the usefulness of our
proposed algorithm.

In summary, the proposed MAFC algorithm shows a statistically sig-
nificant improvement in clustering quality compared with other state of
the art algorithms from the literature. It shows better cluster validity on
20 UCI datasets, which supports the ideas of this paper, that combining
multi-kernel learning methods and multi-objective optimizationmethods
within a unified clustering framework is a useful and powerful approach.

To further illustrate our method, we plot Pareto fronts of some
datasets produced by a single run of MAFC in Figs. 10 and 11, and



Table 13
The Wilcoxon signed rank test between the MAFC and the MKFC algorithms.

MAFC/MKFC ACC NMI ARI

p h p h p h

D1 0.000357 1 0 1 0.000211 1
D2 0.008336 1 0.000062 1 0.237465 0
D3 0 1 0.000001 1 0.019652 1
D4 0 1 0 1 0 1
D5 0 1 0 1 0 1
D6 0 1 0 1 0 1
D7 0 1 0 1 0 1
D8 0.004698 1 0.751740 0 0.023085 1
D9 0.000001 1 0.688728 0 0.925677 0
D10 0.000015 1 0.000001 1 0.000124 1
D11 0.003358 1 0.001183 1 0.033416 1
D12 0 1 0 1 0.150778 0
D13 0.057444 0 0.000002 1 0.483229 0
D14 0.692556 0 0.004924 1 0.593410 0
D15 0.798227 0 0.014593 1 0.873772 0
D16 0.892839 0 0.384632 0 0.208796 0
D17 0.000720 1 0.000013 1 0.709152 0
D18 0.917453 0 0.719753 0 0.040230 1
D19 0.072449 0 0.171932 0 0.001228 1
D20 0.890124 0 0.330575 0 0.257378 0
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Fig. 11. Pareto front of seeds (D2).
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highlight the optimal solution which is selected. The clustering accuracy
is also given.

From Figs. 10 and 11, it can be seen that each Pareto front is smooth.
Any solution in the Pareto front can be selected as the final solution. For
example, if some particular real problem requires a smaller Jm value, then
solutions in the upper left part of the Pareto front can be selected. In
contrast, solutions in the lower right part of the Pareto front could be
selected for problems requiring smallerMKXB. In this paper, we focus on
obtaining the best clustering accuracy, so we select the final solution by
the method described in Section 3.7 and mark it with a square box. The
clustering accuracies of two datasets are 95.8% and 92.9% respectively.

In order to analyze statistical characteristics of MAFC and other
compared algorithms on data sets, we choose several data sets for car-
rying out box plot analysis. Because KFC1, …, KFC7 are clustering algo-
rithms based on single kernels, they have some similarity. Therefore we
select KFC4, for which the performance is in the middle of the KFC al-
gorithms, as a representative method, and directly denote it as KFC.
Fig. 12 shows box plots of partial data sets in terms of ACC. Fig. 13 shows
box plots of partial data sets in terms of NMI. Fig. 14 shows box plots of
partial data sets in terms of ARI.
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Fig. 10. Pareto front of Optical Recognition of Handwritten Digits (2,7) (D11).
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From Fig. 12, we can see that the positions of maximum values and
median lines for MAFC are significantly higher than the compared al-
gorithms. This suggests that the clustering accuracy of MAFC is greater
than the compared algorithms, and the number of outliers is less than for
the compared algorithms.

From Fig. 13, we can observe that MAFC generates superior clustering
performance on Heart, Ecoli and Balance Scale from the maximum value
and median line of the box plots. On Heart, the stability of MAFC is better
than that of MKFC. And on Ecoli and Balance Scale, the number of outliers
with MAFC is significantly less than for the compared algorithms.

Fig. 14 suggests that, although MAFC does not demonstrate superior
stability over the compared algorithms, its maximum performance is
significantly greater than the compared algorithms in terms of ARI. The
location of the median line is also higher than for the compared algo-
rithms. This suggests that the MAFC algorithm is more suitable for
clustering than the compared algorithms.

To provide an intuitive illustration of the premature convergence of
other algorithms, and demonstrate how MAFC is more likely to obtain a
global optimal solution, we now provide some convergence graphs of the
two objectives to show the convergence characteristics of our proposed
algorithm. Since each iterative algorithm preserves a portion of the so-
lution, we will take the minimal results of objectives for each generation.
Fig. 15 is the convergence graph of Jm objective on the Iris dataset over
50 iterations. Fig. 16 is the convergence graph of XB objective on the Iris
dataset over 50 iterations.

Fig. 17 is the convergence graph of Jm objective on the seeds dataset
over 50 iterations. Fig. 18 is the convergence graph of XB objective on the
seeds dataset over 50 iterations.

It can be seen from the Figs. 17 and 18 that for two different objective
functions, Jm and XB, our proposed algorithm remains stable when the
number of iterations T is close to 50 generations.

In addition, in order to further prove the effectiveness of the proposed
algorithm, we compare the proposed algorithm with a fuzzy multi-
objective particle swarm optimization algorithm [65], which optimizes
Jm and XB simultaneously. Tables 14 and 15 are the clustering results of
the proposed algorithm and FMOPSO [65] algorithm on twenty UCI
networks.

It can be seen from Table 14, our proposed algorithm can obtain
better clustering results than the FMOPSO algorithm on most datasets
according to the three index values. It can be seen from Table 15,
although FMOPSO has achieved better results on a few datasets, MAFC
still obtains better clustering results than the FMOPSO algorithm on most
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Fig. 12. Box plots of partial data sets in terms of ACC. (a) Heart. (b) Ecoli. (c) Balance Scale.
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Fig. 14. Box plots of partial data sets in terms of ARI. (a) Heart. (b) Ecoli. (c) Balance Scale.

R. Shang et al. Swarm and Evolutionary Computation 50 (2019) 100485
datasets.
4.5. Face clustering

We have also evaluated the proposed MAFC algorithm on face clus-
tering data. Two face datasets employed in this paper are ORL and Yale.
ORL includes 400 face images of 40 individuals with 10 different ex-
pressions. Yale includes 165 face images with different expressions,
captured in different lighting conditions. The images are captured from
15 individuals and each individual has 11 different images. Figs. 19 and
20 show some face images of a person from ORL and Yale respectively. In
contrast to the other UCI datasets, these two face datasets cannot be
directly utilized for face clustering. Before clustering, we must extract
features from the image data.

We first normalize the face images and crop them to 88� 88 pixels.
Three features are extracted: eigenface, gabor texture and local binary
15
pattern (LBP). The extraction methods that we have used in our experi-
ments are as follows.

Eigenface [66]: principal component analysis (PCA) is utilized to
extract eigenface feature. After obtaining the eigenspace Φ, eigenvectors
are arranged in descending order according to their corresponding ei-
genvalues. Because the vast majority of face information is included in
the first 5%–10% of the eigenvectors, we only select the top 10% of ei-
genvectors to make up the eigenspace Φ' . Then each face image is pro-
jected into the eigenspace Φ' to obtain a new image vector. The new face
image achieves the effect of dimensionality reduction while retaining
most of the original image information.

Gabor texture [67]: each face image is filtered with 40 filters, which
are generated with 5 different scales and 8 different orientations. All the
filtered images undergo globally uniform sampling to get the preliminary
dimensionality reduction images. Then we utilize regularized orthogonal
fuzzy linear discriminant analysis (ROFLDA) [68] for further
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Fig. 15. Convergence graph of Jm objective on the Iris dataset over 50 iterations.
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dimensionality reduction to obtain the final image vectors for clustering.
LBP [69]: in order to take into account the features of the location
16
information, each face image is divided into several small regions. We
generate a histogram of statistics in each small region, and then connect
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Table 14
Comparisons about the best results of MAFC and FMOPSO algorithms on UCI
datasets.

best ACC NMI ARI

FMOPSO MAFC FMOPSO MAFC FMOPSO MAFC

D1 0.852 0.907 0.762 0.803 0.746 0.759
D2 0.916 0.929 0.719 0.761 0.752 0.798
D3 0.612 0.547 0.281 0.370 0.282 0.264
D4 0.763 0.837 0.221 0.400 0.436 0.452
D5 0.729 0.839 0.581 0.699 0.574 0.768
D6 0.516 0.586 0.002 0.003 0.003 0.010
D7 0.698 0.724 0.121 0.150 0.103 0.187
D8 0.829 0.887 0.492 0.503 0.432 0.599
D9 0.862 0.956 0.520 0.731 0.729 0.831
D10 0.735 0.794 0.312 0.439 0.497 0.525
D11 0.716 0.983 0.719 0.878 0.628 0.934
D12 0.524 0.889 0.456 0.728 0.482 0.740
D13 0.878 0.855 0.514 0.558 0.591 0.660
D14 0.593 0.706 0.118 0.125 0.124 0.168
D15 0.218 0.342 0.423 0.357 0.197 0.186
D16 0.427 0.484 0.292 0.318 0.203 0.218
D17 0.835 0.941 0.523 0.720 0.623 0.777
D18 0.706 0.690 0.592 0.605 0.433 0.472
D19 0.721 0.969 0.591 0.810 0.783 0.875
D20 0.462 0.739 0.421 0.435 0.118 0.416

Table 15
Comparisons about the mean results of MAFC and FMOPSO algorithms on UCI
datasets.

mean ACC NMI ARI
FMOPSO MAFC FMOPSO MAFC FMOPSO MAFC

D1 0.804 0.885 0.749 0.777 0.724 0.717
D2 0.903 0.895 0.703 0.690 0.723 0.705
D3 0.415 0.459 0.229 0.303 0.190 0.183
D4 0.701 0.804 0.137 0.293 0.297 0.368
D5 0.682 0.696 0.547 0.580 0.527 0.550
D6 0.485 0.573 0.001 0.003 0.001 0.002
D7 0.621 0.703 0.112 0.104 0.082 0.156
D8 0.713 0.870 0.381 0.457 0.408 0.531
D9 0.791 0.914 0.512 0.593 0.641 0.686
D10 0.683 0.617 0.254 0.241 0.227 0.272
D11 0.512 0.933 0.604 0.675 0.503 0.885
D12 0.498 0.806 0.342 0.637 0.364 0.600
D13 0.800 0.759 0.429 0.528 0.472 0.522
D14 0.525 0.670 0.068 0.089 0.092 0.118
D15 0.190 0.298 0.365 0.306 0.102 0.139
D16 0.416 0.405 0.239 0.261 0.149 0.143
D17 0.701 0.905 0.487 0.576 0.520 0.660
D18 0.683 0.670 0.504 0.562 0.398 0.452
D19 0.624 0.960 0.482 0.768 0.683 0.844
D20 0.327 0.606 0.307 0.380 0.094 0.283

Fig. 19. Some face images of a person in ORL.

Fig. 20. Some face images of a person in Yale dataset.
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the histograms of all the small regions together to form an LBP feature for
the image. A uniform LBP with eight neighbors and radius 1 is employed
in these experiments, and the obtained LBP feature undergoes dimen-
sionality reduction by ROFLDA to get the final LBP feature.

After feature extraction, each feature is represented as a vector. Then
it is used for face clustering via a Gaussian kernel mapping. Here η is set
to 0.005, and clustering algorithms with three different features
(Eigenface, Gabor texture, LBP) are denoted as KFCe, KFCg, and KFCl
respectively. And three different feature vectors are combined together
for multi-kernel clustering.

In the following experiments, MAFC is compared with MKFC, KFCe,
KFCg, KFCl [7]. The parameter settings in these experiments are the same
as for the previously described data clustering experiments. In Tables 16
and 17, mean denotes the mean results of 50 independent runs. best de-
notes the best results in 50 independent runs. The bold data represents
the best result under the evaluation index.

From Table 16, we can conclude that for the ORL face dataset, clus-
tering with three features (eigenface, gabor texture, LBP) obtains a better
clustering performance than that of a single feature, suggesting that
multi-kernel clustering is more effective than single-kernel clustering.
17
Although ARI produced by MAFC in mean results equals to that produced
by MKFC, the best result on ARI produced by MAFC is better. The
improvement of ACC in mean result is not significant compared with



Table 16
Comparisons of different algorithms on face dataset ORL.

Evaluation index KFCe KFCg KFCl MKFC MAFC

best mean best mean best mean best mean best mean

ACC 0.345 0.308 0.368 0.340 0.530 0.500 0.550 0.528 0.623 0.549
NMI 0.553 0.546 0.618 0.602 0.705 0.670 0.711 0.681 0.743 0.712
ARI 0.190 0.172 0.208 0.183 0.374 0.322 0.411 0.374 0.452 0.374

Table 17
Comparisons of different algorithms on face dataset Yale.

Evaluation index KFCe KFCg KFCl MKFC MAFC

best mean best mean best mean best mean best mean

ACC 0.503 0.425 0.576 0.514 0.593 0.486 0.527 0.428 0.612 0.573
NMI 0.558 0.498 0.637 0.581 0.616 0.554 0.573 0.533 0.712 0.610
ARI 0.363 0.291 0.471 0.320 0.473 0.352 0.351 0.308 0.488 0.388
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MKFC. However, improvement of the best result is obvious. The above
suggests that the optimization ability of MAFC is better than MKFC.

Table 17 shows that, for the Yale face dataset, the clustering perfor-
mance has been significantly improved after the introduction of multi-
objective optimization. Whether it is in the best results or in the mean
results, MAFC has achieved better clustering results. Especially in mean
results, the improvements on ACC produced by MAFC increase by nearly
15% with respect to MKFC, which shows that MAFC algorithm has ad-
vantages over single-objective clustering algorithms.

In summary, MAFC has greater applicability and better clustering
discrimination ability than other compared algorithms on a variety of
difficult clustering problems.

5. Conclusions

For clustering optimization problems, datasets collected from nature
are of wide variety with significantly different distribution and dimen-
sion. Perfect clusters are also not well defined for many problems.
Therefore, the problem of optimal clustering is challenging. For example,
determining optimal parameters for the desired clusters is difficult, and
ideally we would like to obtain generic clustering algorithms which
require minimum domain-specific a-priori knowledge. The time
complexity of clustering algorithms should be low enough to run high
dimensional data on large databases easily. Datasets may contain noise/
outliers. Desired clusters may have varied degree of overlap. These are
problems that need to be considered and solved in clustering optimiza-
tion problems.

In this paper, we proposed a multi-objective artificial immune algo-
rithm for fuzzy clustering based on multiple kernels. It extends single-
objective clustering to multi-objective clustering and can effectively
overcome the limitations of other state-of-the-art clustering algorithms
which result in poor clustering quality. The MAFC algorithm improves
the scope of application of FCM and makes the algorithm suitable for
general distribution data. Since single-objective clustering algorithms
ignore the geometric distribution information of a dataset, they are more
prone to local optima convergence. In contrast, the MAFC algorithm can
search for a solution more globally and avoid local optima. For some
datasets, the non-linear relationships between data can be especially
difficult to discover, making it difficult to cluster them accurately. The
MAFC algorithm makes these data linearly separable in the new feature
space via kernel function mapping, which improves the quality of clus-
tering. We utilize an artificial immune algorithm to address this multi-
objective optimization problem. By antibody population initialization,
clone proliferation, non-uniform mutation and a uniformity maintenance
strategy, the artificial immune algorithm can maintain the competitive-
ness and diversity of the population simultaneously. This helps avoid the
degradation and prematurity problems of conventional genetic
18
algorithms, and makes the proposed algorithm more likely to converge
on globally optimal solutions. Although MAFC has no advantage over
other single-objective algorithms in terms of time complexity, the
experimental results on real datasets show that MAFC is effective and
practical. In future work, we will make further efforts in terms of
reducing the time complexity of the proposed algorithm.
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