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Abstract—Feature selection is an important approach for
reducing the dimension of high-dimensional data. In recent years,
many feature selection algorithms have been proposed, but most
of them only exploit information from the data space. They often
neglect useful information contained in the feature space, and do
not make full use of the characteristics of the data. To over-
come this problem, this paper proposes a new unsupervised
feature selection algorithm, called non-negative spectral learn-
ing and sparse regression-based dual-graph regularized feature
selection (NSSRD). NSSRD is based on the feature selection
framework of joint embedding learning and sparse regression,
but extends this framework by introducing the feature graph. By
using low dimensional embedding learning in both data space
and feature space, NSSRD simultaneously exploits the geometric
information of both spaces. Second, the algorithm uses non-
negative constraints to constrain the low-dimensional embedding
matrix of both feature space and data space, ensuring that the
elements in the matrix are non-negative. Third, NSSRD unifies
the embedding matrix of the feature space and the sparse trans-
formation matrix. To ensure the sparsity of the feature array, the
sparse transformation matrix is constrained using the L2,1-norm.
Thus feature selection can obtain accurate discriminative infor-
mation from these matrices. Finally, NSSRD uses an iterative
and alternative updating rule to optimize the objective function,
enabling it to select the representative features more quickly and
efficiently. This paper explains the objective function, the iter-
ative updating rules and a proof of convergence. Experimental
results show that NSSRD is significantly more effective than sev-
eral other feature selection algorithms from the literature, on
a variety of test data.

Index Terms—Dual-graph, feature selection, non-negative spec-
tral learning, sparse regression.
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I. INTRODUCTION

DEALING with high-dimensional data is a difficult
problem in data mining, pattern recognition, machine

learning, and other fields [1]. Often, only a small subset of the
features are important or useful in dealing with these data [2],
while the vast majority of features are often redundant or arti-
facts of noise [3] which can interfere with processing of the
data. Therefore, it is often necessary to reduce the dimen-
sion of high-dimensional data. Feature selection and feature
extraction are two main dimension reduction methods [2]–[6].
Feature selection chooses a subset of original features that are
representative of the original data. In contrast, feature extrac-
tion transforms the original data from a high-dimensional
space to a low-dimensional space, by merging the original
features into some new types of features to represent the orig-
inal data. Compared to feature extraction, feature selection
preserves the physical meaning of the original data, which is
often more convenient during subsequent data analysis [2].

According to the extent to which data label information
is utilized, feature selection methods can be broadly cate-
gorized into supervised [3], [7], semisupervised [8], [9], and
unsupervised [10]–[12]. Supervised feature selection exploits
known data labels to obtain discriminant information, and
then examines the correlation between the features of each
data class, so as to determine the importance of each fea-
ture. However, obtaining such label information requires more
resources (e.g., human annotation) and class labels may not be
available in many problems. Semisupervised feature selection
can improve the accuracy of the selection by using only a few
data labels. Unsupervised feature selection is performed in the
absence of any label information, and determines the impor-
tance of each feature only by using the intrinsic information
of the dataset.

In many practical applications, the label information of
the data is unknown, which makes it important to develop
unsupervised feature selection methods. This paper focuses
on the problem of unsupervised feature selection. According
to the search strategies used, unsupervised feature selec-
tion includes three main categories: 1) filter [10], [13], [14];
2) wrapper [15], [16]; and 3) embedded [17], [18] methods.

In recent years, a variety of new algorithms have been
proposed to overcome the shortcomings of conventional fea-
ture selection algorithms, that typically ignore the information
of the data manifold structure and lack learning mechanisms.
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He et al. [13] proposed Laplacian score (LapScor) and
Cai et al. [19] proposed unsupervised feature selec-
tion for multicluster data (MCFS). Zhao and Liu [10] and
Zhao et al. [20] proposed spectral feature selection (SPEC)
and minimum redundancy spectral feature selection (MRSF).
Although LapScor exploits data manifold information, it lacks
a learning mechanism, while SPEC suffers similar draw-
backs. In contrast, MCFS and MRSF employ a good learning
mechanism, which uses manifold regression and the geo-
metric structure information of the data space. However,
MCFS and MRSF both adopt a two-step strategy, which
can have difficulties in maximally optimizing the objective
function. For this problem, Hou et al. [11] proposed joint
embedding learning and sparse regression (JELSR). JELSR
adopts a single step strategy and integrates manifold learn-
ing and sparse regression. It simultaneously optimizes the
embedding matrix and sparse transformation matrix, and
it demonstrates better performance than previous methods.
Yang et al. [21] proposed unsupervised maximum margin
feature selection via L2,1-norm minimization (UMMFSSC).
UMMFSSC integrates k-means clustering and feature selection
into a coherent framework to select the most discrimina-
tive subspace. Nie et al. [22] proposed improved minmax
cut graph clustering with non-negative relaxation (MinMax
Cut). Non-negative MinMax Cut relaxes the constraints of the
embedding matrix to non-negative and orthogonal constraints,
which makes the embedding matrix more appropriate for the
ideal label matrix. Li et al. [12] proposed clustering-guided
sparse structural learning (CGSSL) for unsupervised feature
selection. CGSSL also uses non-negative and orthogonal con-
straints to constrain the embedding matrix. Therefore, the
embedding matrix can be regarded as a scaled cluster indicator
matrix, which can provide accurate discriminant information
for feature selection. Wang et al. [23] proposed unsupervised
feature selection via unified trace ratio formulation and k-
means clustering (TRACK). TRACK uses an unsupervised
trace ratio formulation, which can harness the discriminant
power of trace ratio latent dirichlet allocation [24] and select
discriminative features. Nie et al. [25] proposed unsupervised
feature selection with structured graph optimization, which
performs local structure learning and feature selection simul-
taneously. The adaptive learning similarity matrix can provide
accurate information for feature selection.

However, the above algorithms only use the geometric
and discrimination information of the data space, while
ignoring the manifold information of the feature space.
Therefore, some potentially useful information is not fully
exploited.

In clustering, Cai et al. [26] proposed locally consis-
tent concept factorization (LCCF), which uses the mani-
fold information of the data space, and demonstrates better
performance than concept factorization [27]. Based on LCCF,
Ye and Jin [28] proposed dual-graph regularized concept fac-
torization clustering (GCF). GCF uses the geometric informa-
tion of both data and feature spaces simultaneously, giving
significantly improved performance compared to previous
methods. In recent years, a variety of new matrix factorization
algorithms have been proposed [29]–[33]. Wang and Gao [34]

proposed max–min distance non-negative matrix factoriza-
tion (NMF), which improves the discriminative ability of NMF
by maximizing the distance of between-class pairs while min-
imizing the distance of within-class pairs. By using the mani-
fold structure information of the data, Cai et al. [35] proposed
graph regularized NMF (GNMF). Wang et al. [36] proposed
adaptive GNMF via feature selection (AdapGrNMFFS), and
later proposed feature selection and multikernel learning for
adaptive GNMF (AGNMFFS) and (AGNMFMK) [37]. These
methods construct an adaptive graph by using the results
of feature selection or multikernel learning, which avoid
the effects of noise or redundant features caused by using
a fixed graph. Wang et al. [38] proposed multiple GNMF,
which uses a linear combination of several graphs with dif-
ferent models and parameters to approximate the intrinsic
manifold. This strategy overcomes the difficulties of model
selection and parameter adjustment. However, the above NMF-
based methods can yield a trivial solution, in which the
regular terms go to zero. To guarantee the uniqueness of
the solution, Huang et al. [39] introduced an orthogonality
constraint in the objective function and proposed robust man-
ifold NMF (RMNMF). Based on GNMF, Shang et al. [40]
introduced the feature graph, and proposed graph dual regu-
larization NMF for co-clustering algorithm (DNMF), which
demonstrated better performance than GNMF. The enhanced
performance suggests that algorithms which simultaneously
use the geometry information of both data and feature spaces
perform better than those which only exploit the geometry
information of the data space.

Building on the advantages and ideas of the above algo-
rithms, this paper proposes non-negative spectral learning and
sparse regression-based dual-graph regularized feature selec-
tion (NSSRD). The proposed algorithm uses a JELSR feature
selection framework [11]. Similar to CGSSL [12], NSSRD
also uses non-negative and orthogonality constraints to con-
strain the embedding matrix of the data space, which makes
the embedding matrix more appropriate for the ideal label
matrix, providing accurate discrimination information for fea-
ture selection. In contrast to JELSR and CGSSL, NSSRD
introduces the feature graph, and uses the geometry informa-
tion of both data space and feature space simultaneously. In
order to use the geometry information of the feature space,
NSSRD unifies the embedding matrix of the feature space
and the sparse transformation matrix. Via an iterative process,
this guides the learning of the sparse transformation matrix.
To ensure the non-negative and sparsity of the feature array,
NSSRD also adopts non-negative constraint and the L2,1-norm
to constrain the sparse transformation matrix. In addition, the
algorithm uses a single step strategy and combines these terms
into an objective function for minimization. We abandon the
optimization method of JELSR. Instead, we use the alternating
iterative update rule to solve this minimization problem.

Our key contributions are highlighted as follows.
1) In the process of learning, the low-dimensional spec-

tral embedding matrix of data space is constrained by
non-negative and orthogonal constraints, which makes it
much closer to the ideal label matrix, and provides more
accurate information for feature selection.
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2) On the basis of the existing data graph, the feature graph
is introduced, and the feature space is embedded in
a low-dimension space. In the sparse regression stage,
the sparse transformation matrix is directly related to the
low-dimensional spectral embedding matrix of the fea-
ture space. Therefore, in the process of feature selection,
our method makes full use of the geometry information
of both data space and feature space to guide feature
selection.

3) In the proposed algorithm, minimization of the objective
function is achieved by using the alternating itera-
tive updating rule, which greatly improves computa-
tion speed.

The remainder of this paper is organized as follows. In
Section II, we introduce the related work. Our algorithm
framework, optimization scheme, and convergence analysis
are presented in Section III. In Section IV, we present the
results and analysis of experiments comparing NSSRD against
five other state-of-the-art algorithms on benchmark datasets.
Section V provides concluding remarks.

II. RELATED WORKS

In this section, we first summarize some notation and
theory related to the proposed algorithm. Next, we provide
a brief introduction to several unsupervised feature selec-
tion algorithms: LapScor, SPEC, MCFS, MRSF, JELSR, and
CGSSL. Finally, we also introduce some NMF algorithms,
including NMF, DNMF, GNMF, RMNMF, AGNMFFS, and
DNMTF. This related material will facilitate understanding of
our proposed algorithm, presented later in this paper.

A. Related Notations

Denote X = {xi ∈ �d|i = 1, 2, . . . , n} as the original data,
in which xi ∈ �d is the ith sample, where d is the dimension-
ality of original data, and n is the number of samples. We use
l to represent the number of the selected features, where l ≤ d.
For an arbitrary matrix A ∈ �e×f , the Lr,s-norm is defined as

‖A‖r,s =
⎛
⎜⎝

e∑
i=1

⎛
⎝

f∑
j=1

∣∣Aij
∣∣r

⎞
⎠

s/r
⎞
⎟⎠

1/s

. (1)

When r = s = 2, this becomes the Frobenius-norm or
L2-norm. We denote it as ‖·‖22 in the remainder of this paper.

B. Unsupervised Feature Selection

1) LapScor [13] and SPEC [10]: First, we introduce
the LapScor [13] algorithm. LapScor is a classical unsu-
pervised feature selection algorithm, which is based on
Eigengraphs [41] and preserving projection [42]. The main
purpose of LapScor is to compute the weight of each feature
by using the local geometric information of the data space.
The higher the weight of the feature, the more important
it is. Given sample data matrix X = [x1, x2, . . . , xn]. Let
f j = [xj1, xj2, . . . , xjn] represents the jth feature, where
j = 1, 2, . . . , d. The main steps of the algorithm are as follows.

Step 1: Construct a k-nearest neighborhood graph G in
the data space, where k is the number of near-
est neighbors. And calculate the similarity matrix
W ∈ �n×n.

Step 2: Define diagonal matrix D as Dii = ∑n
j=1 Wij.

Define 1 = [1, 1, . . . , 1] as a vector of all ones.
Denote L = D − W, which is known as the
graph Laplacian [40]. We use f̂ j to represent the
coefficient of the jth feature, which is defined as

f̂ j = f j −
f T

j D1

1TD1
1. (2)

Step 3: The Laplacian score of the jth feature is computed
as follows:

bj =
f̂

T
j Lf̂ j

f̂
T
j Df̂ j

. (3)

Step 4: According to the value of bj, select the corre-
sponding l maximum features. This completes the
LapScor feature selection process.

The SPEC [10] algorithm is similar to LapScor, and it also
needs to construct the nearest neighbor graph and compute
the similarity matrix. The difference is that they use different
evaluation methods to calculate the feature weight, so SPEC
can be considered as an extension of LapScor.

Both SPEC and LapScor use the manifold information of
the data space, but these two algorithms lack any learning
mechanism, which adversely affects the accuracy with which
they can choose the most important features.

2) MCFS [19] and MRSF [20]: Both MCFS [19] and
MRSF [20] are the classical feature selection algorithms
which incorporate a learning mechanism. These two algo-
rithms use a two-step strategy. At the first step, the Laplacian
Eigengraphs [41] method is used to embed the data X ∈ �d×n

into a low-dimensional space, and generate S ∈ �m×n, where
m is the dimension of the embedding space, and m < d. At
the second step, the sparse regression method is used to cal-
culate the regression coefficient, which is used to obtain the
weight of each feature. MCFS uses the L1-norm to constrain
the sparse transformation matrix, and its objective function is
as follows:

arg min
SST=Im

Tr
(
SLST)

arg min
P

∥∥PTX − S
∥∥2

2 + α‖P‖1 (4)

where Tr(·) is used to denote the trace of a matrix.
For MRSF, the objective function is similar to that of

MCFS. The difference is that it uses the L2,1-norm to constrain
the sparse transformation matrix. Therefore, MRSF solves the
following problem:

arg min
SST=Im

Tr
(
SLST)

arg min
P

∥∥PTX − S
∥∥2

2 + α‖P‖2,1. (5)
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A disadvantage of these methods is that the low-dimensional
embedding learning and sparse regression steps happen sep-
arately, and so are unable to properly interact to achieve an
improved feature selection learning effect.

3) JELSR and CGSSL: Both JELSR [11] and CGSSL [12]
adopt a single step strategy, which avoids the disadvantages
of the two-step strategy of MRSF and MCFS, by combining
the objective functions of low-dimensional embedding learn-
ing and sparse regression. However, the objective function of
JELSR is different to that of CGSSL, and the constraints are
not the same. The objective function of JELSR is as follows:

arg min
P,SST=Im

Tr
(
SLST)+ β

(∥∥PTX − S
∥∥2

2 + α‖P‖2,1
)
. (6)

In contrast, the objective function of CGSSL is defined as

arg min
P,S,Q,Z

Tr
(
SLST)+ α∥∥PTX − S

∥∥2
2 + β‖P‖2,1

+ λ‖QZ− P‖22
s.t. SST = Im,S ≥ 0,QTQ = Ir (7)

where Z ∈ �r×m is weight vector matrix and Q ∈ �d×r is
a linear transformation matrix of low-dimensional subspace.
JELSR only uses the orthogonal constraint to constrain the
low-dimensional embedding matrix, while CGSSL uses both
orthogonal and non-negative constraints. CGSSL uses both
original feature and feature in a low-dimensional subspace to
predict the clustering indicator matrix, which is used to guide
the feature selection. Although CGSSL and JELSR use a joint
embedding learning and sparse regression approach, these two
algorithms only make use of the data space, and they neglect
information from the feature space manifold.

C. Non-Negative Matrix Factorization

1) NMF: NMF is a matrix factorization
algorithm [43], [44]. Its main purpose is to factorize
the original data matrix into two non-negative matrices U and
V. Given a data matrix X ∈ �d×n, it can be factorized into
U ∈ �d×k and V ∈ �n×k, where U is the dictionary matrix,
VT is the representation matrix, and k ≤ d, k ≤ n,X ≈ UVT .
The objective function of NMF is as follows:

arg min
U,V

∥∥X − UVT
∥∥2

2

s.t. U ≥ 0,V ≥ 0. (8)

2) GNMF, RMNMF, and AGNMFFS: GNMF [35],
RMNMF [39], and AGNMFFS [37] are extensions of
the original NMF algorithm. According to the Laplacian
Eigengraphs [41] method, GNMF, RMNMF, and AGNMFFS
construct the data graph and use the geometry information of
the data space. GNMF solves the following problem:

arg min
U,V

∥∥X − UVT
∥∥2

2 + αTr
(
VTLV

)

s.t. U ≥ 0,V ≥ 0. (9)

The objective function of RMNMF is defined as

arg min
U,V

∥∥X − UVT
∥∥

21 + αTr
(
VTLV

)

s.t. V ≥ 0,VTV = I. (10)

AGNMFFS solves the following problem:

arg min
U,V

∥∥diag(μ)
(
X − UVT)∥∥2

2 + αTr
(
VTLμV

)

s.t. U ≥ 0,V ≥ 0,
d∑

i=1

μi = 1, μi ≥ 0 (11)

where μ is the feature weight vector, and diag(·) is used to
denote a diagonal matrix.

3) DNMF and DNMTF: DNMF [40] is an extension of
GNMF [35], which uses the idea of the dual-graph, and intro-
duces the feature graph. It makes full use of the geometric
information of both data space and feature space to improve
the effect of the matrix factorization. The objective function
of DNMF is denoted as

arg min
U,V

∥∥X − UVT
∥∥2

2 + αTr
(
VTLVV

)+ βTr
(
UTLUU

)

s.t. U ≥ 0,V ≥ 0 (12)

where α and β are two balance parameters. At the same time,
the idea of the dual-graph was also used for NMTF, giving the
DNMTF [40] algorithm. The objective function of DNMTF is
as follows:

arg min
U,V

∥∥X − USVT
∥∥2

2 + αTr
(
VTLVV

)+ βTr
(
UTLUU

)

s.t. U ≥ 0,S ≥ 0,V ≥ 0. (13)

III. ALGORITHM DESCRIPTION

In this section, we introduce our proposed NSSRD algo-
rithm in detail. The framework of NSSRD comprises three
main parts: 1) dual-graph non-negative spectral learning;
2) dual-graph sparse regression; and 3) feature selection.

A. Dual-Graph Non-Negative Spectral Learning

Spectral theory has been successfully applied in a num-
ber of fields [45]–[49]. Among these, the spectral clustering
method uses graph theory to describe the potential data man-
ifold structure, to achieve effective clustering. Using spectral
graph theory, high-dimensional data can be embedded into
a low-dimensional space, which effectively eliminates redun-
dant features or noise, and facilitates the subsequent analysis.
Therefore, this advantage can also be applied to feature selec-
tion. In recent years, several researchers have suggested that
the manifold information of data is not only distributed in
the data space but also in the feature space [40], [50], [51].
According to the method of [40], we construct nearest neigh-
bor graphs in both data space and feature space. We first
construct a k-nearest neighbor graph G = (V,E) in data space,
where V denotes the vertex set {X:,1, . . . ,X:,n}, E denotes
the weight of the edge between two points, which rep-
resents the similarity of two points. We choose Gaussian
function [40] and a parameter free method [52] as weight
measures, respectively.

The Gaussian function is defined as follows:

[
WS

]
ij
=

⎧⎪⎨
⎪⎩

exp
(
−∥∥X:,i − X:,j

∥∥2
2

/
σ 2

)
, if X:,i ∈ N

(
X:,j

)

or X:,j ∈ N
(
X:,i

)
0, otherwise

(14)
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where, i, j = 1, . . . , n. X:,i denotes the ith column of the
data matrix, which represents the ith data points. N(X:,i)
denotes the k-nearest neighborhood set of X:,i, and σ is the
bandwidth parameter of the Gaussian function.

The parameter free method [52] is defined as follows:

[
WS

]
ij
=

⎧⎪⎨
⎪⎩

ei,k+1−ei,j

kei,k+1−∑k
h=1 ei,h

, if X:,i ∈ N
(
X:,j

)

or X:,j ∈ N
(
X:,i

)
0, otherwise

(15)

where k is the number of neighbors, ei,j = ‖X:,i − X:,j‖22.
The graph Laplacian matrix of the data graph is LS = DS−

WS, where DS is a diagonal matrix, and [DS]ii =∑
j [WS]ij.

Similarly, we construct a k-nearest neighbor graph in fea-
ture space. The vertex set of the graph is a feature set
{XT

1,:, . . . ,XT
d,:}.

The Gaussian function is defined as follows:

[
WP]

ij =

⎧⎪⎪⎨
⎪⎪⎩

exp

(
−

∥∥∥XT
i,: − XT

j,:

∥∥∥2

2

/
σ 2

)
, if XT

i,: ∈ N
(

XT
j,:

)

or XT
j,: ∈ N

(
XT

i,:

)
0, otherwise.

(16)

The parameter free method [52] is defined as follows:

[
WP]

ij =

⎧⎪⎨
⎪⎩

ei,k+1−ei,j

kei,k+1−∑k
h=1 ei,h

, if XT
i,: ∈ N

(
XT

j,:

)

or XT
j,: ∈ N

(
XT

i,:

)
0, otherwise

(17)

where ei,j = ‖XT
i,:−XT

j,:‖22, i, j = 1, . . . , d. Xi,: denotes the ith
row of the data matrix, which represents the ith feature. The
graph Laplacian matrix of the feature graph is LP = DP−WP,
where DP is a diagonal matrix, and [DP]ii =∑

j [WP]ij.
Through (14) and (16), or (15) and (17), we obtain the sim-

ilarity matrix and Laplacian matrix of the data space and the
feature space. Next, we use these matrices to carry out dual-
graph non-negative spectral learning, which means that we
need to embed the data from the high-dimensional data and
feature spaces into low-dimensional spaces. More specifically,
we transform the original data X:,i ∈ �d and XT

i,: ∈ �n into
S:,i ∈ �m and PT

:,i ∈ �m, where m is the dimension of the
embedding space, m < n and m < d. S = [s1, s2, . . . , sn] ∈
�m×n and P = [pT

1 , pT
2 , . . . , pT

d ]T ∈ �d×m are the low-
dimensional spectral embedding matrices of the data space
and feature space. Considering that we need to make the low-
dimensional spectral embedding matrix of the data space close
to the ideal label matrix, we make m equal to the real sam-
ple class number c. To generate the low-dimensional spectral
embedding matrix S, we need to solve the following problem:

arg min
S

1

2

n∑
i,j=1

∥∥si − sj
∥∥2

2WS = Tr
(

SLSST
)
. (18)

The matrix S obtained by the above objective function may
contain negative elements, and each column may contain more
than one nonzero element, which makes S deviate from the
ideal label matrix. Therefore we use the non-negative and
orthogonal constraints to constrain S, i.e., SST = Im,S ≥ 0,

where Im ∈ �m×m is the identity matrix. This allows us to
obtain a new objective function as follows:

arg min
S

1

2

n∑
i,j=1

∥∥si − sj
∥∥2

2WS = Tr
(

SLSST
)

s.t. SST = Im,S ≥ 0. (19)

The method for generating P is similar to that for S. In prac-
tical problems, the data are usually non-negative. Therefore,
we add a non-negative constraint to P to guarantee the features
of S can be described as a positive linear combination of the
original features. Therefore, we need to solve the following
problem:

arg min
P

1

2

d∑
i,j=1

∥∥∥pT
i − pT

j

∥∥∥2

2
WP = Tr

(
PTLPP

)

s.t. P ≥ 0. (20)

B. Dual-Graph Sparse Regression

Next, we introduce dual-graph sparse regression. We need to
regress each original sample xi to its low-dimensional embed-
ding si by a transformation matrix P, i.e., PTxi → si. In this
paper, we propose a dual-graph sparse regression method. In
contrast to conventional sparse regression [11], our method
simultaneously uses the low-dimensional embedding matrices
S and P. We can see that the transformation matrix is also
denoted by P. This is because the embedding matrix P can
guide the learning of the transformation matrix. Therefore, we
obtain the objective function of the regression as follows:

arg min
P

n∑
i=1

∥∥PTxi − si
∥∥2

2 =
∥∥PTX − S

∥∥2
2. (21)

Optimizing this objective function is equivalent to find-
ing a suitable transformation matrix P which reduces the
regression error below a certain threshold. By an appropriate
operation, matrix P can be used to measure the importance
of each feature. The use of sparse constraint with matrix P
can more accurately reflect the importance of each feature,
while the use of some important features can make the orig-
inal data effectively regress to the low-dimensional space.
Therefore, we apply the L2,1-norm to matrix P, which helps
to avoid trivial solutions and ensure the sparsity of the fea-
ture array. Therefore, we obtain the new regression objective
function as follows:

arg min
P

n∑
i=1

∥∥PTxi − si
∥∥2

2 =
∥∥PTX − S

∥∥2
2

s.t. ‖P‖2,1 ≤ ε. (22)

Our NSSRD algorithm adopts a single step method, that
is, the matrices S and P must be optimized within the same
objective function. Therefore, we achieve joint dual-graph
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non-negative spectral learning and dual-graph sparse regres-
sion. We obtain the final objective function as follows:

arg min
S,P

∥∥PTX − S
∥∥2

2 + β1Tr
(

SLSST
)
+ β2Tr

(
PTLPP

)

+ α‖P‖2,1 + λ2
∥∥SST − Im

∥∥2
2

s.t. S ≥ 0,P ≥ 0 (23)

where the parameters β1 > 0, β2 > 0, α > 0, and λ > 0. For
ease of adjustment, we let β1 = β2 = β, and the objective
function can be rewritten as follows:

arg min
S,P

∥∥PTX − S
∥∥2

2 + β
(

Tr
(

SLSST
)
+ Tr

(
PTLPP

))

+ α‖P‖2,1 + λ2
∥∥SST − Im

∥∥2
2

s.t. S ≥ 0,P ≥ 0. (24)

C. Feature Selection

By optimizing the objective function of NSSRD, we can
obtain the matrices S and P, where P = [p1; p2; . . . ; pd], and
pi is the ith row of the matrix P. Usually, ‖pi‖2 represents
the contribution of the ith feature, and the greater the value
of ‖pi‖2, the greater the contribution of the ith feature. So
‖pi‖2 can be used as the feature weights to rank features.
We obtain all the weights of the d features by computing
‖pi‖2. By arranging weights in descending order and select-
ing features corresponding to the l (l ≤ d) largest weights, we
can obtain the new dataset, and complete the feature selection
process.

D. Optimization

We now explain how the objective function of (24) is
optimized. The problem is a nonconvex function of S and
P, making it nontrivial to find a globally optimal solution.
Fortunately, the problem is convex individually for S and P.
Therefore, we propose an iterative and alternative optimization
scheme to solve (24).

We introduce ψij and φij as the corresponding Lagrange
multipliers for constraints Pij ≥ 0 and Sij ≥ 0, respectively.
So (24) can be rewritten into a Lagrange function as follows:

L(S,P) = ∥∥PT X − S
∥∥2

2 + β
(

Tr
(

SLSST
)
+ Tr

(
PT LPP

))

+ α‖P‖2,1 + λ2
∥∥SST − Im

∥∥2
2 + Tr

(
ψPT)+ Tr

(
φST)

.

(25)

Before solving this problem, we introduce a diagonal matrix
U ∈ �d×d, whose ith diagonal element is defined as follows:

Uii = 1

2
∥∥pi

∥∥
2

. (26)

To avoid overflow, we usually introduce a small constant ε
in the definition of the matrix U as follows:

Uii = 1

2max
(∥∥pi

∥∥
2, ε

) . (27)

We rewrite ‖P‖2,1 into Tr(PTUP), and Lagrange for-
mula (25) can be rewritten as follows:

L(S,P) = Tr
((

PTX − S
)(

PTX − S
)T

)
+ β

(
Tr

(
SLSST

)

+ Tr
(
PTLPP

))+ λ
2

Tr
((

SST − Im
)(

SST − Im
)T

)

+ αTr
(
PTUP

)+ Tr
(
ψPT)+ Tr

(
ϕST)

. (28)

To update P, we take the partial derivative of the Lagrange
formula (28) with respect to P, and arrive at

∂L

∂P
= 2XXTP− 2XST + 2βLPP+ 2αUP+ ψ. (29)

Using the Karush–Kuhn–Tucker (KKT) conditions [27],
ψijPij = 0, we obtain

[
XXTP− XST + βLPP+ αUP

]
ijPij = 0. (30)

We then obtain the updating formula for P as follows:

Pij ← Pij

[
XST + βWPP

]
ij[

XXTP+ βDPP+ αUP
]

ij

. (31)

To update S, we take the partial derivative of the Lagrange
formula (28) with respect to S, giving

∂L

∂S
= −2PTX + 2S+ 2βSLS + 2λSSTS− 2λS+ ϕ. (32)

We also use the KKT conditions [27], φjkSjk = 0 and giving

[
−PTX + S+ βSLS + λSSTS− λS

]
jk

Sjk = 0. (33)

Therefore, we get the updating formula for S as follows:

Sjk ← Sjk

[
PTX + βSWS + λS

]
jk[

S+ βSDS + λSSTS
]

jk

. (34)

To improve the learning efficiency and the convergence
speed of the algorithm, we introduce a special method to ini-
tialize the matrices S and P. For the matrix S, we use the
k-means algorithm to cluster the original data into c classes,
and then get a good class label matrix. We then use this as
the initialization of matrix S. For the matrix P, we calculate
the eigenvalues and eigenvectors of graph Laplacian matrix
LP, and select the eigenvectors corresponding to m maxi-
mum eigenvalues to form the eigenvector matrix. The d-by-m
eigenvector matrix is used as the initialization of matrix P.
Additionally, we initialize U as an identity matrix.

Table I shows the procedure of NSSRD.

E. Convergence Analysis

In this section, we analyze the convergence properties of
NSSRD. We prove that the objective function (24) is mono-
tonically decreasing under the updating rules (31) and (34).

First, we prove that the objective function is monotonically
decreasing under (31).
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TABLE I
PROCEDURE OF NSSRD

Definition 1: If there is a function G(h, h′) which makes
F(h) satisfy the following conditions:

G
(
h, h′

) ≥ F(h),G(h, h) = F(h) (35)

then F is nonincreasing under the following updating formula:

h(t+1) = arg min
h

G
(

h, h(t)
)

(36)

where G(h, h′) is an auxiliary function for F(h).
Proof: F(h(t+1)) ≤ G(h(t+1), h(t)) ≤ G(h(t), h(t)) =

F(h(t)).
Considering that we only need to prove that the objective

function is monotonic under the updating rules for P, we only
retain the objective function to contain the P term, and obtain
the following functions:

F(P) = Tr
(
PT XXT P− 2PT XST)+ βTr

(
PT LPP

)+ αTr
(
PT UP

)
.

(37)

The first-order and second-order partial derivatives for F(P)
with respect to P are

F′ij =
[
∂F

∂P

]

ij
=

[
2XXTP− 2XST + 2βLPP+ 2αUP

]
ij

(38)

F′′ij = 2
[
XXT + αU

]
ii + 2β

[
LP]

jj. (39)

Lemma 1: The following function:

G
(

Pij,P(t)ij

)
= Fij

(
P(t)ij

)
+ F′ij

(
P(t)ij

)(
Pij − P(t)ij

)

+
[
XXTP+ βDPP+ αUP

]
ij

P(t)ij

(
Pij − P(t)ij

)2

(40)

is the auxiliary function of Fij.
Proof: The Taylor expansion of Fij(Pij) is

Fij
(
Pij

) = Fij

(
P(t)ij

)
+ F′ij

(
P(t)ij

)(
Pij − P(t)ij

)

+
{[

XXT + αU
]

ii + β
[
LP]

jj

}(
Pij − P(t)ij

)2
. (41)

According to (40), G(Pij,P(t)ij ) ≥ Fij(Pij) is equivalent to
[
XXTP+ βDPP+ αUP

]
ij

P(t)ij

≥ [
XXT + αU

]
ii + β

[
LP]

jj. (42)

TABLE II
CHARACTERISTICS OF EIGHT DATASETS

It is obvious that

[(
XXT + αU

)
P
]

ij =
d∑

l=1

[
XXT + αU

]
ilP

(t)
lj ≥

[
XXT + αU

]
iiP

(t)
ij

and

β
[
DPP

]
ij = β

d∑
l=1

[
DP]

ilP
(t)
lj ≥ βDP

iiP
(t)
ij ≥ β

[
DP −WP]

iiP
(t)
ij

= β[
LP]

iiP
(t)
ij .

Therefore, (42) holds and G(Pij,P(t)ij ) ≥ Fij(Pij), and we also

have G(Pij,P(t)ij ) ≥ Fij(Pij).
Next, we prove that the variable P conforms to the updating

rules (36) that make Fij monotonically decreasing.
Proof: Substituting G(Pij,P(t)ij ) in (40) into (36), gives

P(t+1)
ij = P(t)ij − P(t)ij

F′ij
(

P(t)ij

)

2
[
XXTP+ βDPP+ αUP

]
ij

= P(t)ij

[
XST + βWPP

]
ij[

XXTP+ βDPP+ αUP
]

ij

.

From the updating rules for P, we see that Fij is monoton-
ically decreasing under updating (31).

The proof of the convergence of the objective function to
the updating rules of S is similar to that of P. And we can
also find that Fij is monotonically decreasing under updat-
ing (34). Therefore we can conclude that the objective function
is monotonically decreasing under (31) and (34).

IV. EXPERIMENTS AND ANALYSIS

In this section, we present the results of experiments to ver-
ify the performance of NSSRD. Specifically, we compare the
performance of five state-of-the-art algorithms against that of
NSSRD using public benchmark datasets. We choose k-means
clustering algorithm [53] to verify the dimensionality reduc-
tion effect of all algorithms. We also provide an analysis of
the experimental results, the computational complexity and the
sensitivity of the algorithm to parameter values.

A. Dataset

In this experiment, we use eight datasets, which are similar
to those in [10], [11], [40], [54], and [55], shown in Table II.

Table II describes the important information for the eight
datasets, including the number of data samples, the dimension
of each sample, the types and categories of each dataset. The
information will be used in the following experiments.
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Fig. 1. Two test samples from AT&T face database with different number of selected features.

B. Compared Algorithms

In order to validate the effectiveness of NSSRD, we choose
four unsupervised feature selection algorithms, and a new
NMF algorithm as the comparison algorithms. The five com-
parison algorithms are LapScor [13], MCFS [19], SPEC [10],
JELSR [11], and AGNMFFS [37].

C. Evaluation Metrics

We use clustering accuracy (ACC) [56] and normalized
mutual information (NMI) [57]–[59] as metrics to indirectly
evaluate the results of all of the algorithms. The higher the
value of ACC or NMI is, the better the performance of the
algorithm, and vice versa.

ACC is defined as

ACC = 1

n

n∑
i=1

δ(ci,map(gi)) (43)

where ci is the clustering label and gi is the ground truth label
of xi. map(·) is the optimal mapping function using Hungarian
algorithm [60] to permute clustering labels and the ground
truth labels. δ(ci, gi) is an indicator function that equals 1 if
ci = gi and equals 0 if ci �= gi.

NMI is defined as

NMI = MI
(
C,C′

)
max(H(C),H(C′))

(44)

where C and C′ are clustering labels and the ground truth
labels, respectively. MI(C, C′) is the information entropy
between C and C′, and

MI
(
C,C′

) =
∑

ci∈C,c′j∈C′
p
(

ci, c′j
)
. log2

p
(

ci, c′j
)

p(ci).p
(

c′j
) (45)

where p(ci) and p(c′j) denote the probabilities that a sample
belongs to the clusters ci and c′j, respectively. p(ci, c′j) is the
joint probability that a sample belongs to the clusters ci and
c′j simultaneously.

D. Comparisons With Four Feature Selection Algorithms

1) Experimental Settings: In this experiment, we need to
obtain a low-dimensional spectrum embedding matrix S which
is close to the ideal label matrix, so we set m equal to the

true number of clusters. α is searched from {110, 120, 150,
180, 190, 500, 800}. We tune β in the range of {10−4, 10−3,
10−1, 102, 103, 107}. λ is searched from {10−3, 10−2, 10−1,
103}. We tune the parameter σ in the range of {101, 102,
103, 104, 105, 106, 107, 108}. All the parameters under differ-
ent datasets are obtained by grid search. We tune the feature
selection parameter l in the range of {5, 10, 15, 20, 25, 30,
35, 40, 45, 50}. The neighborhood size k is set as 5. All the
results are obtained with 20 iterations. We repeat the cluster-
ing for 100 runs independently to get the average value, since
the performance of the k-means algorithm largely depends on
initialization. We fix l, and tune the other parameters so that
the algorithms have the best ACC and NMI.

2) Simple Illustrative Example Problem: We randomly
chose two images from the AT&T face database as test sam-
ples. From reshaping the two images, we get two single vectors
to represent the images, and each single vector is of the size
10 304. By using the proposed algorithm on the test samples,
we select {1280, 2560, 3840, 5120, 6400, 7680, 8960, 10 240}
features, respectively. We set the unselected features to white
and maintain their selected features with original values. We
illustrate the results in Fig. 1.

Fig. 1 shows that NSSRD can effectively select the impor-
tant features of each face when we fixed each number of
selected features, such as nose, mouth, eyes, and chin. These
discriminative features can be used to effectively describe the
individual’s appearance.

3) Evaluating the Effectiveness of NSSRD: In this sec-
tion, we first verify the effectiveness of our feature selection
algorithm through a test experiment. We use the “iono-
sphere” dataset [54] as an example to test whether NSSRD
can successfully find the most representative features. Table II
shows that the ionosphere dataset has 351 samples and
34 features. We artificially generate 66 features, where each
new feature is the linear combination of the 34 original
features with a series of randomly generated combination
coefficients, where the combination coefficients are normal-
ized. This yields a new dataset, which has 351 samples and
100 features. The first 34 features are the original features
and the rest are synthetic features. We apply NSSRD to this
new dataset, and generate the sparse transformation matrix P.
By computing ‖pi‖2, we obtain scores for all 100 features.
We use these scores to generate a diagonal matrix shown
in Fig. 2.
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TABLE III
CLUSTERING ACC OF SIX ALGORITHMS ON COIL20 DATASET WITH DIFFERENT NUMBERS OF SELECTED FEATURES (MEAN ± STD %)

TABLE IV
CLUSTERING ACC OF SIX ALGORITHMS ON ISOLET DATASET WITH DIFFERENT NUMBERS OF SELECTED FEATURES (MEAN ± STD %)

TABLE V
CLUSTERING ACC OF SIX ALGORITHMS ON UMIST DATASET WITH DIFFERENT NUMBERS OF SELECTED FEATURES (MEAN ± STD %)

Fig. 2. Score diagonal matrix of 100 features.

From Fig. 2, we can clearly see that the original features
have significantly larger scores than the synthetic features.
This suggests that NSSRD can effectively select the most
representative features.

4) Clustering Results and Analysis: Clustering results are
presented in Tables III–VIII. We give the results of NSSRD
using Gaussian function and parameter free method [52] as
metric methods, respectively, which are denoted as NSSRD
and NSSRD_PF. The bold numbers denote the highest statis-
tics. The results are visualized in Figs. 3 and 4.

Tables III–V show the values of ACC of six algorithms,
respectively, on COIL20, Isolet, and Umist datasets [11] with
different numbers of selected features. From Table II, we can
know that these three datasets are relatively easy to handle
because their features are less than or similar to the num-
ber of samples. Therefore, all of the compared algorithms

give good performance. However, we can clearly see that the
performance of NSSRD on all of the datasets is better than that
of the other algorithms. NSSRD_PF also performs well, and
it reduces a parameter σ that needs to be adjusted. It is evi-
dent that NSSRD has good performance, which demonstrates
its effectiveness. NSSRD, JELSR, and MCFS have better fea-
ture selection quality than the other algorithms, which suggests
that a good learning mechanism is very important for feature
selection. We know that MCFS is a two-stage feature selec-
tion algorithms, while NSSRD and JELSR unify embedded
learning and sparse regression simultaneously to solve two
objective functions. Overall, NSSRD and JELSR have better
feature selection performance than MCFS, which suggests that
the use of a single-step strategy to optimize the embedding
matrix and transformation matrix produces a better learning
effect. Compared with JELSR, the main improvement is that
NSSRD utilizes the information in the feature space. The fea-
ture selection performance of NSSRD is better than that of
JELSR, suggesting that the information in the feature space is
of great importance for feature selection.

Tables VI and VII show the clustering ACC of six algo-
rithms, respectively, on the ORL and PIE10P datasets, with
different numbers of selected features. The two datasets have
a common characteristic, that the number of samples is much
less than the number of features. It is relatively difficult to
do feature selection for this kind of dataset, because there are
a lot of features that are redundant, and some features may
even represent noise. From Tables VI and VII, we can see
that, in most cases, NSSRD and NSSRD_PF perform better
than the other four algorithms.

Table VIII shows the clustering ACC of six algorithms,
respectively, on the Optdigit dataset with different numbers
of selected features. The number of features in this dataset is
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TABLE VI
CLUSTERING ACC OF SIX ALGORITHMS ON ORL DATASET WITH DIFFERENT NUMBERS OF SELECTED FEATURES (MEAN ± STD %)

TABLE VII
CLUSTERING ACC OF SIX ALGORITHMS ON PIE10P DATASET WITH DIFFERENT NUMBERS OF SELECTED FEATURES (MEAN ± STD %)

TABLE VIII
CLUSTERING ACC OF SIX ALGORITHMS ON OPTDIGIT DATASET WITH DIFFERENT NUMBERS OF SELECTED FEATURES (MEAN ± STD %)

Fig. 3. Clustering ACC of six algorithms on six datasets with different numbers of selected features. x-axis is the number of selected features l and y-axis
is the ACC. (a) COIL20. (b) Isolet. (c) Umist. (d) ORL. (e) PIE10P. (f) Optdigit.

far less than the number of samples, which is advantageous
for feature selection. Therefore, all of the six algorithms have
achieved good results; however, NSSRD is also clearly the
best. The selection of a small number of features is able to
represent the entire dataset, which makes the clustering effect
greatly improved. This also helps illustrate the significance of
feature selection.

Fig. 3 visually shows the clustering ACC of six algorithms,
respectively, on six datasets with different numbers of selected
features. We use six curves with different colors and shapes

to express the corresponding six algorithms. Feature selec-
tion parameter l is in the range of {5, 10, 15, 20, 25, 30,
35, 40, 45, 50}. In Fig. 3, we can see that the red curve of
NSSRD is almost always above the other curves. The blue
curve represents JELSR, which is somewhat lower than the red
curve. Overall, the ACC of NSSRD is higher than the other
algorithms, and demonstrates the effectiveness of NSSRD.

Fig. 4 shows the clustering NMI of six algorithms, respec-
tively, on six datasets with different numbers of selected
features. In Fig. 4, we also use a red curve to represent
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Fig. 4. Clustering NMI of six algorithms on six datasets with different numbers of selected features. x-axis is the number of selected features l and y-axis
is the NMI. (a) COIL20. (b) Isolet. (c) Umist. (d) ORL. (e) PIE10P. (f) Optdigit.

TABLE IX
COMPUTATIONAL COMPLEXITY ANALYSIS

NSSRD, which is predominantly higher than the other curves
on the vertical axis. The clustering NMI of NSSRD on the
six datasets are higher than those of the other algorithms.
The results show that NSSRD is highly competitive with the
compared algorithms.

5) Computational Complexity Analysis: The computational
complexity of the five algorithms is shown in Table IX, and
the specific experimental results of NSSRD are given to verify
our analysis.

In Table IX, n is the number of samples, m represents
the dimension of the embedding space, d is the total number
of features, l represents the number of the selected features,
and t is the number of iterations, (n, d >> m, d ≥ l).
We will mainly analyze the computational complexity of
NSSRD. First, we need O(d2n + dn2) operations to build
Laplacian matrices LS and LP. Next, we need O(mdn) oper-
ations to calculate each iteration of the alternating iteration
step. Assuming NSSRD is iterated t times, the overall com-
putational complexity of NSSRD is O(d2n + dn2 + tmdn).
Therefore, the computational complexity of NSSRD is lower
than that of JELSR.

Table X shows the computation time of five algorithms on
the Optdigit dataset with different numbers of selected fea-
tures. We can see that the computation time needed by NSSRD
is similar to that of LapScor and SPEC, and only half that
of MCFS.

TABLE X
COMPUTATION TIME OF FIVE ALGORITHMS ON OPTDIGIT DATASET

WITH DIFFERENT NUMBERS OF SELECTED FEATURES (S)

Table X shows that NSSRD adopts an iterative and alter-
native updating rule to optimize the objective function, which
makes the algorithm converge faster and reduces the time com-
plexity. The computational time of JELSR is over 296 times
longer than that of NSSRD, which highlights the efficiency of
our proposed algorithm.

6) Parameters Sensitivity Analysis: There are some param-
eters which need to be set in advance for NSSRD, such as
neighborhood size k, Gaussian kernel bandwidth parameter σ ,
balance parameters α, β, and λ, and the number of selected
feature parameter l. First, we discuss the sensitivity of α and
β. We select the COIL20 and Umist datasets as test examples.
The sensitivity of the parameters can be analyzed by the clus-
tering ACC and NMI on each dataset under different values
of α and β. We vary α in the range of {100, 300, 500, 700,
900}, and chose β from a wide range {10−3, 10−2, 10−1, 1,
10+1, 10+2}.

We repeated 20 independent runs of each experiment,
to get an average value, ploted in the 3-D figures in
Fig. 5(a) and (b) to show the ACC and NMI of clustering,
respectively, on COIL20 dataset under different values of α
and β. Fig. 5(c) and (d) shows the ACC and NMI of cluster-
ing, respectively, on the Umist dataset under different values
of α and β. Fig. 5 shows that on the COIL20 and Umist
datasets, the ACC and NMI of clustering have little change
under different values of α and β, which demonstrates that
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Fig. 5. ACC and NMI of clustering on COIL20 and Umist datasets under different values of α and β.

Fig. 6. ACC and NMI of clustering on six datasets under different values of σ . (a) COIL20. (b) Isolet. (c) Umist. (d) ORL. (e) PIE10P. (f) Optdigit.

TABLE XI
CLUSTERING ACC AND NMI OF TWO ALGORITHMS ON SIX DATASETS (MEAN ± STD %)

NSSRD is relatively insensitive to the choice of parameters α
and β.

Next, we discuss the sensitivity of the algorithm to parame-
ter σ . We performed experiments on all six datasets. We tune
σ in the range of {100, 101, 102, 103, 104, 105, 106, 107, 108}
and the other parameters remain fixed.

Fig. 6 shows the clustering ACC and NMI of NSSRD on
six datasets with different values of σ . From Fig. 6, we can
see that under different values of σ , ACC and NMI show little
change on most of the datasets. This suggests that NSSRD is
not sensitive to the parameter σ .

E. Comparisons With AGNMFFS

NSSRD and AGNMFFS [37] are both dimension reduc-
tion methods. Therefore, we compare the performance of

dimensionality reduction of the two algorithms. We record
the best clustering results of NSSRD and AGNMFFS from
the optimal parameters and show these in Table XI. The best
ACC and NMI are highlighted in bold.

From Table XI, we can see that the results of NSSRD on
almost all datasets are better than those of AGNMFFS, except
for the NMI values on datasets Umist and PIE10P. This sug-
gests that NSSRD has a better effect of dimension reduction
than AGNMFFS on many kinds of data.

V. CONCLUSION

In this paper, we have proposed a novel feature selection
algorithm named NSSRD. Inspired by the idea of the dual-
graph regularized algorithms, we introduce the feature graph
based on an unsupervised feature selection framework: JELSR.
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By making full use of underlying information of feature man-
ifold and the advantages of this framework, we obtain a more
efficient unsupervised feature selection algorithm. We con-
struct the nearest neighborhood graphs in both data space and
feature space, respectively, and compute the Laplacian matri-
ces LS and LP. By embedding the data space and feature space,
respectively, into low-dimension spaces, we get the embed-
ding matrices S and P. We use non-negative and orthogonal
constraints to constrain the embedding matrix S, which helps
S become much closer to the ideal label matrix, providing
accurate discrimination information for feature selection. In
addition, we use the embedding matrix P to represent the trans-
formation matrix in the regression step. Thus, the manifold
information of the feature space can guide the learning of the
transformation matrix. The use of non-negative constraints and
L2,1-norm constraints ensures non-negative values of P and
the sparsity of the feature array. The manifold information of
data space and feature space are both fully exploited within the
learning process. The use of the alternating iterative updating
rule makes the algorithm converge faster in the optimiza-
tion process and reduces the computational complexity. The
experimental results show that the proposed algorithm outper-
forms several other unsupervised feature selection algorithms
on a variety of datasets.
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