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Abstract—In the information age of big data, and increas-
ingly large and complex networks, there is a growing challenge
of understanding how best to restrain the spread of harmful
information, for example, a computer virus. Establishing models
of propagation and node immunity are important parts of this
problem. In this article, a dynamic node immune model, based
on the community structure and threshold (NICT), is proposed.
First, a network model is established, which regards nodes car-
rying harmful information as new nodes in the network. The
method of establishing the edge between the new node and the
original node can be changed according to the needs of dif-
ferent networks. The propagation probability between nodes is
determined by using community structure information and a
similarity function between nodes. Second, an improved immune
gain, based on the propagation probability of the community
structure and node similarity, is proposed. The improved immune
gain value is calculated for neighbors of the infected node at each
time step, and the node is immunized according to the hand-
coded parameter: immune threshold. This can effectively prevent
invalid or insufficient immunization at each time step. Finally, an
evaluation index, considering both the number of immune nodes
and the number of infected nodes at each time step, is proposed.
The immune effect of nodes can be evaluated more effectively.
The results of network immunization experiments, on eight real
networks, suggest that the proposed method can deliver better
network immunization than several other well-known methods
from the literature.

Index Terms—Dynamic propagation model, immune threshold,
node immunization, propagation probability.
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I. INTRODUCTION

AN EARLY use of the term “network” appears in elec-
trical systems: a circuit or part of it consisting of

several elements is called a network. The network enables
electrical signals to be transmitted according to a certain
requirement. In computing, network sometimes refers to a
set of connected computers, or more recently to the system
composed of several individuals connected via the World
Wide Web, such as a social network. Other forms of the
network include transportation networks, political networks,
the contagion of populations by biological pathogens, and
many other examples. By abstracting these network systems
into complex network structures composed of nodes and
edges, it is helpful to study the characteristics, functions,
and security of the network systems [1]. Information prop-
agation networks [2] and computer networks are a soci-
etally important infrastructure. Therefore, it is particularly
important to control harmful information [3] in information
propagation networks, such as inappropriate social media
content (preventing nasty images/videos from spreading via
Facebook), or virus propagation in computer networks. In
order to ensure the continuous spread of harmless information
and the normal operation of network systems in information
propagation networks and computer networks, while simulta-
neously preventing the spread of harmful information, there is
increasing interest within the research community in devel-
oping efficient and accurate methods of network immu-
nization or node immunization [4]. The purpose of node
immunization is to achieve the optimal effect of harmful
information or virus control under the condition of minimal
node immunization.

In order to study the characteristics of information or
virus propagation and network immune methods, a variety
of propagation network models has emerged. The thresh-
old model [5], [6], proposed to describe collective behavior,
has been widely used in solving the propagation threshold
problem in complex systems [7]. More recently, threshold
models have been extended to research multilayer networks [8]
and time networks [9]. The independent cascade (IC) model
was originally proposed in research on marketing mod-
els [10]. By introducing a time-delay parameter into the IC
model, a new continuous-time independent cascade (CTIC)
model [11] was proposed. Adding the dynamic time variation
to the CTIC model, the time-based asynchronous IC model
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(T-BASIC) [12] was proposed. The most widely used epi-
demic model [13], [14] was first proposed by Kermack and
McKendrick. There is also a susceptible-infectious model
(SIm), [15] suitable for modeling the initial outbreak of the
virus. The susceptible-infectious-recovered (SIR) model [16]
was proposed by adding a removed state to the SIm model.
Considering that each infected individual may be trans-
formed back into a susceptible individual after recovery,
with a fixed probability, the susceptible-infectious-susceptible
(SIS) model [17] was proposed. A stable Cox–Ingersoll–Ross
(SCIR) model [18] was proposed by introducing a new nodal
contacted state. Other network models include the adaptive
networks model [19], [20] and the activity-driven networks
model [21]. These are two popular models that are used to
describe the network structure and the propagation dynam-
ics process. Because these models predominantly ignore the
original connection between nodes in the real network, they
typically cannot explain the essential law of information or
virus propagation in the real network. To overcome this
problem, this article proposes a new network information and
virus propagation model, which describes the essential rela-
tionship between the network topology information and the
individuals in the real network, based on the network commu-
nity structure information and the similarity between nodes.
Our proposed model can be used to study the nodal immu-
nization problem which inhibits the propagation of harmful
information.

In order to better inhibit the spread of harmful information,
many network or node immunization methods have been
proposed. The purpose of node immunization is to immune
as few nodes as possible to achieve the optimal immune
effect. Classic immunization strategies include random immu-
nization [22], acquaintance immunization [23], and target
immunization [24].

Random immunization is also known as uniform immunity.
The immunized nodes in the network are selected randomly
without any information of the network or nodes. This method
is the simplest, but requires a priori knowledge of the min-
imum number of nodes requiring immunization to ensure
that harmful information does not continue to spread. This
method does not exploit models or rules of information or
virus propagation in the network.

Acquaintance immunization belongs to the class of meth-
ods known as decentralized immunization. Some nodes in the
network are randomly selected, and then some neighbor nodes
of these nodes are randomly selected for immunization. This
method requires much less network information. Nodes with a
large node degree are selected preferentially over nodes with
a small node degree. Due to incorporation of the additional
knowledge about node degree, the acquaintance immuniza-
tion method is typically more effective and efficient than the
random immunization.

Target immunization methods improve efficiency by exploit-
ing the knowledge of the attributes of the nodes, node
degrees, betweenness, and other information, e.g., select-
ing the core nodes in the network, which have a higher
node degree, and have a higher influence on other nodes.
This is more effective in suppressing the spread of harmful

information. This method can reduce the number of nodes
that need to be immunized, by better targeting the most critical
nodes.

Most of the existing nodal immunization methods are based
on the advance selection of k nodes for immunization. There
are three main approaches given as follows.

1) Static immunization (SI) [25], [26] selects k nodes for
immunization according to certain rules at the initial
moment of propagation, namely, before the spread of
harmful information.

2) Uniform immunization (UI) [27] attempts to immunize
during propagation. According to certain rules, the num-
ber of k/T nodes in each time step is selected for
immunization, where k is the total number of immune
nodes, and T is the estimated time of the propagation
process.

3) Exponent immunization (EI) [28] also performs immu-
nization during the propagation process. According to
certain rules, 2−t ∗ k nodes are selected for immuniza-
tion at each time step, where t is the number of time
steps. Determining an appropriate number of immune
nodes is another problem to be solved in suppressing
the spread of harmful information.

Because information propagation is often dynamic, dynamic
immune models are now attracting increasing attention from
the research community. This article proposes a dynamic
immune model, incorporating an immune method based on
the immune gain threshold. The main contributions of this
article are as follows.

1) Considering the situation of the real network, the node
carrying harmful information is abstracted as a new node
in the network. In the real network, harmful information
is more likely to spread within closely connected small
groups. Therefore, in this article, based on the com-
munity structure information in the network and the
similarity between nodes, the propagation probability of
the harmful information between nodes is calculated.

2) In order to judge more efficiently and accurately whether
any particular node should be immunized, an improved
immune gain based on the propagation probability of the
community structure and node similarity is proposed.
The improved immune gain value is calculated for the
neighbors of the infected node, at each time step, and
the node is immunized according to the given thresh-
old. This can effectively prevent invalid or insufficient
immunization at a certain time step.

3) In order to better evaluate the results of immuniza-
tion algorithms, a novel evaluation index is proposed in
this article. By considering both the number of immu-
nized nodes, and the nodes finally infected, the immune
effect of nodes and the efficiency of the immunization
approach, can be evaluated more accurately.

II. INFORMATION OR VIRUS PROPAGATION

A. Propagation Model

The information or virus propagation model was originally
abstracted from the problem of maximizing the influence of
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information propagation on social networks [29]. The connec-
tion between nodes is abstracted by establishing the network
structure. The propagation probability between nodes is used
as the weight of the edge to describe the process or charac-
teristics of the propagation of information or virus. A set of
initially infected nodes is generated and harmful information
or viruses are disseminated at each step. The nodes that suc-
cessfully transmit harmful information or viruses are called
activated nodes or infected nodes [30]. Contrary to the problem
of maximization of influence, this article studies the methods
to effectively suppress the spread of harmful information or
viruses. The propagation model in the maximization of influ-
ence can also be used to suppress nodal immunity in the
propagation of harmful information or virus. There are three
main types of common information or virus propagation mod-
els: 1) linear threshold (LT) model [31]; 2) IC model [32], [33];
and 3) SIR model [34].

In the LT model, the probability of node j being activated
is calculated by the state of its neighbor nodes and the prop-
agation probability between them. Given a fixed or randomly
generated threshold [35] between (0, 1), determine whether
node j is activated or not. The condition that node j is activated
is determined by the following formula:

∑

i∈Nin(j)

p(i, j) ≥ θ (1)

where j is the node to be activated, node i is the neighbor
node of node j, Nin(j) is the neighbor node of node j in the
set of infected nodes, and p(i, j) is the probability of dissem-
inating information from node i to node j. θ is the threshold
to determine whether the node is activated. It is important to
note that

∑

i∈N(j)

p(i, j) ≤ 1 (2)

where N(j) is the set of neighbor nodes of node j.
In the IC model, when node i is activated, it obtains an

opportunity to activate its neighbor node. When there is more
than one infected node in the set of neighbor nodes of node j,
the node j will be activated in the random order and can-
not be repeated. The weighted independent cascade (WIC)
model [36] is an extension of the IC model. In the WIC model,
the weight of the edge between nodes represents the propa-
gation probability between nodes, which is non-negative and
independent of the network structure. Compared with the SIm
model [37], the SIR model adds a recovery state which can
reflect some special viruses in the real network. For example, if
a man has smallpox and is cured, he will not be infected again,
nor will he pass it on to others. In the SIR model, nodes are
classified into three states: 1) susceptible (S); 2) infected (I);
and 3) recovered (R). S state indicates that the nodes are
not affected by the virus. I state indicates that the nodes are
affected by the virus and it can transmit the virus to other
nodes. R state means that the nodes are neither infected nor
infect other nodes.

In the traditional LT model, IC model, SIR model, and its
derivative model, the propagation probability between nodes

are usually only related to the states of nodes and their neigh-
bors. In real-world networks, the probability of spreading
information or virus between nodes is closely related to the
relationship and degree between nodes. Presently, there is no
suitable propagation model that starts from the connection
between nodes in the network. So they cannot explain the
essential rule of information or virus transmission in the real
network. In this article, a new network information and virus
propagation model is proposed based on the network topology
information and the essential relationship between individuals
in the real network. It can be used to study the problems that
how to suppress the spread of harmful information or viruses.
In the part of the experiment, the model in this article will be
analyzed and verified in detail.

B. Concepts in Complex Networks

In this section, the network community structure and the
similarity between network nodes mentioned in this algorithm
are briefly introduced.

1) Community Structure in Complex Networks: In order to
study the principles and functions of complex systems better,
complex systems are often abstracted into complex networks.
The complex network is composed of nodes abstracted by
individuals and edges abstracted by links between individuals.
Complex networks have the properties of scale-free [38], small
world, aggregation, and power-law distribution of degree.
There are differences in the degree of closeness between nodes
in complex networks. The edges in the network have diversity
and heterogeneity. It may be unidirectional or bidirectional.
The weights of the edges in the network may be different.
Studying these characteristics of complex networks is help-
ful to understand and analyze the structural characteristics
of various real network systems [39]. There are many sub-
structures in the real network structure, among which the
community structure is widely studied and analyzed because of
its contribution to the study of network functions and behavior
patterns [40], [41]. Community structure is a kind of sub-
network structure with tight internal connection and sparse
external connection [42]. It can be seen from this intuitive def-
inition that the community structure in the network is usually
a set of nodes with some common characteristics or similar
function to the entire system. In the scientific research coop-
erative network [43], the research group that the researchers
work together can be divided according to the unit where
the researcher belongs or according to the region. Community
structure in the network is formed by the partitioning results.
In the jazz musicians’ partnership model [44], the network can
be divided into black musicians’ group and white music group
by race. In Belgian mobile communication networks [45],
users speak the same language form the community structure
in the network. In the protein network [46], the community
structures are the sets of proteins with consistent functions.

2) Node Similarity: The node similarity in the network can
represent the influence ability between the two nodes. It can
be calculated according to the information of connected nodes
in the network. There are many kinds of functions for node
similarity measurement. Several common similarity functions
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Fig. 1. Example of a simple node intrusion model. (a) Before invasion.
(b) After invasion.

include RA index [47], Jaccard index [48], hub promoted
index [49], cosine similarity function [50], and so on.

III. DYNAMIC NODE IMMUNIZATION UNDER THE NEW

DYNAMIC PROPAGATION MODEL

A. Intrusion Node With Harmful Information and Virus

It is relatively simple to select nodes randomly in
the network structure as infected nodes carrying harmful
information or viruses. But in real social networks or virus
propagation networks, foreign persons or sources that carry
harmful information or viruses usually invade the network.
There may be one or more new nodes. The new node may be
connected to one or more nodes in the network. The spread
of the harmful information or virus carried by the new node
may end at the first moment, or it may still appear in the fol-
lowing moment. Harmful information or virus disseminated
between nodes may be unidirectional or bidirectional. These
depend on the actual applications. In this article, a dynamic
network model is established, in which nodes carrying harm-
ful information or viruses are abstracted into new nodes in the
network. The number of new nodes and the way of building
the edges between the new nodes and the original nodes in the
network can be changed according to the needs of different
networks. Fig. 1 shows an example of a simple node intrusion
model. The right part of Fig. 1(a) is an existing network struc-
ture. The left three nodes Inv1, Inv2, and Inv3 of Fig. 1(a) are
intrusion nodes with harmful information or viruses that sud-
denly appear at the initial moment. Suppose that at the second
moment, all three intrusion nodes complete the propagation of
harmful information or virus as shown in Fig. 1(b). The intru-
sion node Inv1 transmits the harmful information or virus to
the nodes 5, 7, and 17, the intrusion node Inv2 transmits the
harmful information or virus to the nodes 4, 6, 9, and 25,
and the intrusion node Inv3 transmits the harmful information
or virus to the nodes 19, 27, and 34 in the original network
structure. Then at the next moments, the harmful information
or virus that has already intruded in the network will continue
to spread between nodes. The object node that the intrusion
node spreads the virus may be randomly selected, also may
have some kinds of rules. For example, in the social network,
the harmful information is easier to disseminate through the
known person.

In the network propagation model shown in Fig. 1, the
new node terminates the infection at the end of the initial
moment. According to different reality, the number of nodes
and the propagation mode of the network propagation model
can be changed. For example, at the following moments, the
edges between the foreign nodes and the original nodes in the
network are still generated according to the propagation con-
dition of the foreign nodes. This article assumes that foreign
nodes only disseminate harmful information or virus at the ini-
tial moment, and the harmful information or virus propagation
between nodes is bidirectional.

B. New Propagation Model Based on Propagation
Probability According to Community Structure and Node
Similarity

In this article, a new network propagation model is estab-
lished, in which the foreign or the infected source carrying
harmful information or virus is abstracted as the new node in
the network structure. The connection between the new nodes
and the original network structure is established by the edge
between the new nodes and the original nodes. When there are
intrusion nodes in the network, namely, harmful information
or virus, the initial affected or infected nodes will continue to
spread harmful information or virus at the next moment. It can
be seen from Section II-A that the commonly used information
propagation network models often assign fixed propagation
probability to nodes in the network or simply assign the prop-
agation probability according to the number of node neighbors.
This is divorced from the relationship between individuals and
network topology information in real networks. For example,
there are 50 students in a class. Suppose there are several small
groups of well-connected students. Then these small groups
can be seen as societies in the network structure of this class.
When a student learns about some news or finds something,
he is most likely to tell his classmates in his group of friends,
at least tell them first. It can be seen that because of the closer
relationship between the members of the community structure,
when intrusion nodes carry harmful information or virus in
these network structures, the infection and propagation within
the communities will be more frequent and more serious.

In addition to the connections among the members of the
communities, each pair of connected nodes in the whole
network has different degrees of connection. When a node i in
the network carries harmful information or virus, it will dis-
seminate the harmful information or virus to its neighbor nodes
by probability. It is obvious that node i is more likely to dis-
seminate harmful information or virus to its neighbor nodes in
the same community than the neighbor nodes out of the same
community. From the community point of view, assuming that
node i is equally likely to disseminate harmful information or
virus to its neighbor nodes in the same community, the prob-
ability that node i disseminates harmful information or virus
to node j in the same community is the reciprocal of the num-
ber of neighbor nodes of node i. From the point of view of
the similarity between nodes, the probability of disseminat-
ing harmful information or virus between node i and node
j is related to their common neighbors. In conclusion, when
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Algorithm 1 Procedure of the Community Integration Strategy
Input: n: Total number of network nodes, Node connection

information;
Output: Network partition result f ;

1: Update the core node set ← calculate node degree;
2: Pre-partitioning result← calculate node similarity between each

core node and its neighbors; �D = 0;
3: while �D ≥ 0 do
4: Arrange the communities in a descending order according to

their external connection number;
5: for i = 1: Number of current communities do
6: Calculate �Du ← for the neighbor community u of the

community i;
7: Calculate �Dv ← find the community v corresponding

to the max(�Du);
8: if max(�Du) ≥ max(�Dv) then
9: label(v) =label(u)← merge u and v;

10: end if
11: end for
12: Calculate �D.
13: end while

node j and node i belong to the same community, the proba-
bility of node i disseminating harmful information or virus to
node j is related to the similarity between the two nodes. It
is also related to the number of neighbors in the community
which node i belongs to. When node j and node i are not in
the same community, the probability of node i transmitting
harmful information or virus to node j is only related to the
similarity between node i and node j.

In order to deal with the problem of probability assignment
of the large-scale propagation network model, the community
integration strategy based on an improved modularity density
increment for large-scale networks is used in this article to
detect the network structure [51]. An improved modularity
density increment was proposed as the objective function for
community integration in this method. The global judgment is
added to the local integration process, which can improve the
resolution of the modularity density function effectively and
reduce the probability of error integration. The experimental
results showed that the method can obtain more detailed and
accurate community partition results on large-scale networks.
The modularity density increment function �D is represented
as follows:

�D =
[

l(u)− lo(u)− lo(v)+ 3luv

ds(u)+ ds(v)

]

−
[

l(u)− lo(u)

ds(u)
+ l(v)− lo(v)

ds(v)

]
(3)

where u indicates any community in the network, v indicates
the neighbor community of community u, l(u) indicates the
number of connections within the community u, lo(u) indicates
the number of connections between the community u and the
outside, luv represents the number of connections between u
and v, ds(u) represents the sum of node degree of nodes in
community u, and ds(v) represents the sum of node degree of
nodes in community v.

The flow of the specific community detection method is
shown in Algorithm 1.

Fig. 2. Community detection results on the karate network.

After getting the results of community detection, based
on the dynamic propagation model, the propagation prob-
ability of harmful information or virus between each pair
of connected nodes is calculated according to the commu-
nity structure and the similarity between nodes. In order to
avoid the low influence of community attributes on propaga-
tion probability, the similarity function value in propagation
probability is divided by 2. The probability of node i trans-
mitting harmful information or virus to its neighbor node j is
calculated as follows:

p(i, j) =
{

Sim(i,j)
2 + 1

|Ni| , if j ∈ Ni
Sim(i,j)

2 , otherswise
(4)

where Sim denotes the degree of similarity between nodes i
and j, i and j denote any two nodes in the network, and Ni rep-
resents a set of neighbor nodes within the same community as
node i. As described in Section II-C, there are many methods
to calculate the similarity between nodes. Cosine similarity is
used as follows:

Sim(i, j) = |N(i) ∩ N(j)|√|N(i)||N(j)| (5)

where n denotes the total number of nodes in the network,
N(i) denotes the set of all neighbor nodes of node i, and N(j)
represents the set of all neighbor nodes of node j.

It can be seen that when the connected node i and node j
belong to the same community, the probabilities of transmit-
ting harmful information and virus of them are equal. Taking
the karate network [52] as an example, the division of commu-
nity and the calculation of propagation probability are given.
Shang et al. [52] observed and studied a karate club from 1970
to 1972 and established the karate network model. During
the observation period, club activities include regular karate
classes for members in club and social affairs (party, dance,
etc). The karate network consists of 34 nodes and 78 edges.

The result of community detection on the karate network is
shown in Fig. 2. It can be seen from Fig. 2 that the community
integration strategy based on the improved modularity density
increment divides the karate network into three groups. The
square, circle, and triangle represent three community struc-
tures, respectively. As can be seen, the association structure
within the members of the relationship is relatively close.

Based on the above results, the propagation probability of
harmful information or virus is calculated for each pair of
connected nodes in the karate network. Table I shows the prob-
ability of node 1 transmitting harmful information or virus to
its neighbor nodes in the karate networks.
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TABLE I
PROBABILITY OF NODE 1 PROPAGATING TO ITS NEIGHBOR NODES IN

KARATE NETWORKS

TABLE II
PROPAGATING PROBABILITY OF NODE 2 AND NODE 3 TO THEIR

NEIGHBOR NODES IN KARATE NETWORKS

From Table I, we can see that nodes 6 and 7 have the same
node degree, that is, equal neighbor nodes. Although they are
not in the same community of node 1, they have an equal
number of common neighbors with node 1. Therefore, it is
not difficult to understand that the propagation probability of
node 1 to nodes 6 and 7 is equal. Similarly, the propagation
probabilities of node 1 to nodes 13, 18, and 22 are equal.

Table II shows the probability of nodes 2 and 3 spreading
harmful information or virus to their neighbors.

It can be seen from Table II that the spread of information
or virus is directed. That is, in this propagation model, the
propagation probability of node 1 to node 2 is not equal to
that of node 2 to node 1.

In summary, the propagation probability is calculated for
each pair of connected nodes in the network, and the new
network propagation model is established. In the process of
node immunization, it is ensured that the immune nodes will
not be infected, and the propagation probability between other
nodes will not be affected, so it is not necessary to calculate the
propagation probability between nodes repeatedly in the pro-
cess of dynamic propagation, and the algorithm complexity is
greatly reduced. In this article, a propagation threshold pt is
given. The probability of the neighbor node of the infected
node being activated is calculated according to the propa-
gation probability. When the activation probability is greater
than the propagation threshold, the neighbor node is transmit-
ted harmful information or virus. The activation probability is
calculated as follows:

AP(i) = 1−∏
w∈Nin(i)(1− p(w, i)) (6)

where i and w are any two nodes in the network, AP(i) denotes
the activation probability of node i, Nin(i) is the neighbor node
set of node i in the infected node set, and p(w, i) represents the
probability of propagating harmful information or virus from
node w to node i.

In this article, it is assumed that the new nodes only
propagate harmful information or virus at the initial time,
and randomly select the nodes in the network to propagate.
Therefore, the community structure in the network is first

Algorithm 2 Procedure of Generating the Propagation
Network Model
Input: f : Network community partition results, n: total number of

network nodes, pt: propagation threshold, a, b: the number of
new nodes and edges, T: maximum time step, Node connection
information;

Output: Infected nodes set I;
1: for each pair of connected nodes do
2: Calculate Sim← the similarity of connected nodes;
3: end for
4: Initial infected nodes ← Randomly select a ∗ b nodes;
5: for t = 1:T do
6: for i = 1:n do
7: Calculate the activation probability AP ← for each

neighbor node in the initial infected node set;
8: if AP(i) > pt then
9: Add node i to the set of infected nodes set I;

10: end if
11: i = i+ 1;
12: end for
13: t = t + 1.
14: end for

detected and the propagation probability is allocated. The pro-
cedure of generating the propagation network model is shown
in Algorithm 2.

C. Modified Immunization Gain

This section will introduce the modified immune gain (MIG)
based on the proposed network propagation framework. The
immune gain represents the changes in the probability of
neighbors being infected after the node is immunized.

First, influence ability Ia of node i on the neighbor node
j outside the infected node set is calculated. The influence
ability represents the difference in the probability of neighbor
j being infected before and after node i is immunized. In this
article, the probability of node j being infected is not only
calculated according to its neighbor nodes in the infected node
set but also to all its neighbor nodes. The influence of node i
on node j is calculated according to the activation probability
of node i and the probability that all neighbor nodes of node
j propagate to it. The formula is as follows:

Ia(i, j) =
⎛

⎝
∏

v∈N(j),v 
=i

(1− AP(v) ∗ p(v, j))

⎞

⎠

−
⎛

⎝
∏

v∈N(j)

(1− AP(v) ∗ p(v, j))

⎞

⎠ (7)

where Ia(i, j) is the influence ability of node i on node j, AP(v)
is the activation probability of node v, p(v, j) is the probability
of node v spreading harmful information or virus to node j,
and N(j) is the neighbor node set of node j. The immune gain
of node i is calculated as follows:

MIG(i) =
∑

j∈Nout(i)

Ia(i, j) (8)

where MIG(i) is the immune gain obtained after immunizing
the node i, Ia(i, j) is the influence ability of node i on node j,
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and Nout(i) is all neighbor nodes of node i outside the set of
infected nodes.

D. Node Immunization

Node immunization in the network propagation model is
to reduce the spread of harmful information or virus. In
order to reduce the number of infected nodes in the whole
network at the end of the propagation, the nodes that are
most likely to be infected or play an important role in
the propagation process should be quarantined in advance.
According to the introduction in Section II-B, the immune
nodes will no longer participate in the propagation of harm-
ful information or virus in the proposed propagation model.
That is, the immune nodes will no longer be infected or
spread harmful information or virus to other nodes. The nodes
in the infected node set will propagate harmful information
or virus to the nonimmune nodes in the network at each
time according to the propagation probability. Based on the
proposed network propagation model and the improved node
immune gain, an effective node immune method is proposed,
which does not require the number of immune nodes in
advance. The efficiency and accuracy of the method are
improved by immunization against the neighbors of infected
nodes.

The node immunization methods should not only restrain
the propagation of harmful information or virus but also needs
to maintain the original function and information exchange
of the network. Previous algorithms always need the num-
ber of nodes to be immunized in advance. It is one sided to
achieve control of immune nodes in each time step only by
a fixed number. For example, the number of influential nodes
that needed to be immunized in a certain time step may be
more or less than the number of nodes that will be immu-
nized in this time step. This will reduce the accuracy and the
final effect of the entire immunization process. The number of
necessary immune nodes in each time step should be judged
more flexibly because of the randomness of the initial infec-
tion set during each propagation of harmful information or
virus. The immune method proposed in this article determines
the number of immunized nodes in each time step by a given
threshold value. It will be controlled from the point of view of
the attribute of the node itself, so as to improve the immune
accuracy.

The initial infection node set is determined according to
the network propagation model introduced in Sections III-A
and III-B. In this article, it is assumed that foreign nodes only
spread harmful information or virus at the initial moment.
After the initial infected node set is determined, the improved
immune gain value is calculated for the neighbor nodes of
nodes in the infected node set at each time. Then, we need
to determine whether or not to immunize the node against a
given threshold, and ensure that immune nodes no longer par-
ticipate in the propagation of harmful information or virus.
The procedure of the node immune algorithm is shown in
Algorithm 3.

In summary, the overall flowchart of the proposed algorithm
is shown in Fig. 3.

Algorithm 3 Procedure of the Node Immune Algorithm
Input: it: Immune threshold, I0: Initial infected nodes set, T:

maximum time step, Propagation model, Node connection
information;

Output: Immune nodes set IM, Infected nodes set I;
1: for t = 0:T do
2: for j = 1 : length(I(t)) do
3: Calculate MIG(j)← each neighbor node j of the nodes

i;
4: if MIG(j) > it then
5: Add the node j to IM;
6: end if
7: i = i+ 1;
8: end for
9: I(t)← Run propagation model;

10: t = t + 1.
11: end for

Fig. 3. Overall flow chart of the proposed algorithm.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Comparison Algorithms and Datasets

In order to validate the effectiveness of this article, the NICT
is compared with the following algorithms. The network prop-
agation framework of the following algorithms is based on the
framework given in this article. All the immune gain involved
is based on the improved immune gain given in this article.

1) Formal Position-Based Acquaintance-Degree Algorithm
(FPAD): In [53], an algorithm combining acquain-
tance algorithm with the formal position was proposed.
Since the proposed network propagation model is also
based on the similarity between nodes and community
structure information, this method is applied to node
immunization as one of the comparative algorithms. In
the problem of node immunization, formal posts are
regarded as the core nodes in the network [54]. In the
acquaintance algorithm, nodes with a higher degree in
the core node neighborhood will be immunized before
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TABLE III
REAL NETWORK INFORMATION

propagation begins. The total number of immune nodes
is k.

2) Dynamic Immunization (DI) Algorithm: The method of
dynamic node immunization given in [55] is adopted.
The immune gain between the current time step and
the next time step is compared before the node is
immunized.

3) Static Immunization (SI) Algorithm: The most classical
static immunization algorithm is used to immunize k
nodes in the network before propagation begins, where
k is the number of nodes immunized in advance.

4) UI Algorithm: The UI method is a kind of the dynamic
method. There are k/T nodes immunized in each time
step during propagation, where T is the total number of
propagation time steps.

5) EI Algorithm: The EI method is also a kind of dynamic
method. 2−t ∗ k nodes are immunized in each time step
during propagation, where t is the number of the current
propagation time step.

The methods are tested on eight real-world networks ranging
from small scale to large scale. The real network information
is shown in Table III.

B. Evaluation Index

The common evaluation method of the node immune effect
is to compare the number of infected nodes in the network
at the end of the propagation. When the number of immune
nodes is the same, the smaller the number of infected nodes
is, the better the immune effect is. The algorithm in this arti-
cle does not need to give the number of immune nodes in
advance, so in order to better compare the algorithm with the
contrast algorithm, a specific calculation method is proposed.
The evaluation index node immune effect (NIE) is presented
as follows:

NIE =
√

n

I
+ n

IM
(9)

where n is the total number of nodes in the network, IM is
the number of immune nodes at the last moment, and I is the
number of infected nodes at the last moment. It can be seen
that for the same network, when the number of immune nodes
is the same, the larger the number of infected nodes at the final
moment is, the smaller the value of NIE is, and the worse the
immune effect is. When the number of immune nodes is the
same, the smaller the number of infected nodes is, the greater
the value of NIE is, and the better the immune effect is.

It is need to note that in theory I and IM will not be zero.
When I or IM is zero, the value of NIE will be positive
infinity. Because in the propagation framework, the number
of propagation time steps has been given in advance, it has no
significant effect on the propagation when the immune nodes
are too small. The infected node may not increase due to the
limitation of the number of steps, thus the NIE value will
be larger. Therefore, the NIE function is not suitable for the
results with too few immune nodes.

C. Parameter Analysis

This section will analyze the parameters in this algorithm.
The main parameters in the propagation model are propagation
threshold pt and immune threshold it.

The propagation threshold pt is used to determine whether
the node can be activated during the propagation process. That
is, the activation probability of the node is compared with the
propagation threshold. The propagation model in this article
is tested on several real networks. There are 34 nodes in the
karate network and 115 nodes in the football network. The
initial number of infected nodes a∗b is set to 6 and the prop-
agation time step T is set to 10. There are 1589 nodes in the
netscience network. The initial number of infected nodes a∗b
is set to 20, and the propagation time step T is set to 50. There
are 10 680 nodes in the PGP network. The initial number of
infected nodes a ∗ b is set to 50, and the propagation time
step T is set to 100. After 20 runs, the average numbers of
final infected nodes in several real networks under different
propagation thresholds pt are shown in Fig. 4.

Fig. 4 shows that when the propagation threshold pt is set
to 0.1 or 0.2, all nodes in the karate network are infected at
the end of the propagation. When the propagation threshold
pt is set to 1, no node is infected during propagation. In the
football network, when the propagation threshold pt is set to
0.1 to 0.3, all nodes in the network will be infected at the
end. When the propagation threshold pt is set to 0.9 or 1,
few nodes are infected during propagation. In the netscience
network, when the propagation time step T is set to 50 and the
propagation threshold pt is set to 0.1 or 0.2, nearly one-third
of the nodes in the network are infected at the end. When the
propagation threshold pt is set to 1, only about 0.3% of the
nodes are infected during propagation. In the PGP network,
when the propagation threshold pt is set to 1, only about 0.2%
of the nodes are infected during the propagation process. That
is, nearly no harmful information is propagated. In conclusion,
when the propagation threshold pt is too high or too low, the
propagation model cannot reflect the harmful information or
virus propagation process well. Considering the performance
on both small-scale and large-scale networks, the propagation
threshold pt of the propagation model is set to 0.5.

The immune threshold it directly controls the number of
immune nodes in each time step in the immune algorithm.
The immune threshold should be selected based on different
network structures and sizes. Since the propagation probability
in this article is determined by the similarity between nodes
and the community structure information, and the similarity
between nodes is a cosine similarity function determined by

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 23,2023 at 02:47:09 UTC from IEEE Xplore.  Restrictions apply. 



SHANG et al.: DYNAMIC IMMUNIZATION NODE MODEL FOR COMPLEX NETWORKS 1547

Fig. 4. Average number of infected nodes in four real networks under dif-
ferent propagation thresholds pt. (a) Karate network. (b) Football network.
(c) Netscience network. (d) PGP network.

the node degree, the determination of the immune threshold
can be preliminarily determined according to the average node
degree of the network. The method is tested on several real
networks. There are 34 nodes in the karate network, and the
average node degree is 4.59. There are 115 nodes in the foot-
ball network, and the average node degree is 10.66. There are
1589 nodes in the netscience network, and the average node
degree is 3.45. There are 10 680 nodes in the PGP network.
The average node degree is 4.55. The initial number of infected
nodes a∗b is set to 50, and the propagation time step T is set
to 100. After 20 runs, the final immune situations of four real
networks under different immune thresholds are compared as
shown in Fig. 5.

Fig. 5 shows that when the immune threshold is set to
0.2, a relatively high NIE value can be obtained when the
number of immune nodes is small. This indicates that the
immune nodes play an important role in the transmission of
harmful information. When they were immunized, the num-
ber of infected nodes decreased significantly at subsequent
times. When the immune threshold is above 0.4, the num-
ber of immune nodes is 0. In the football network, when the

Fig. 5. Final immune situations of four real networks under different immune
thresholds. (a) Karate network. (b) Football network. (c) Netscience network.
(d) PGP network.

immune threshold is set to 0.4, a relatively high NIE value
can be obtained when the number of immune nodes is small.
When the immune threshold is above 0.5, it is easy to generate
too few immune nodes. In the netscience network, when the
immune threshold is set to 0.3, a relatively high NIE value
can be obtained when the number of immune nodes is small.
In the PGP network, when the immune threshold is set to 0.3,
a relatively high NIE value can be obtained when the number
of immune nodes is small.

In summary, the immune threshold setting is related to the
average node degree of the network. Through the analysis and
preliminary test of the average node degree of the network,
the specific value of the immune threshold in this experiment
is shown in Table IV.

D. Model Analysis

In order to verify the validity of the propagation model
proposed in this article, the comparison with the WIC model
in the karate network is analyzed. There are 34 nodes in the
karate network. As can be seen from Fig. 2, the karate network
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TABLE IV
AVERAGE NODE DEGREE AND IMMUNE THRESHOLD SETTING

OF EIGHT REAL NETWORKS

is divided into three community structures by community inte-
gration strategy adopted in this article. The initial infected
nodes are all set to 6, and the propagation time step is set
to 10. In the WIC model, the edge weight between nodes
i and j is w(i, j) = 1/|Nin(j)|, where Nin(j) is the neighbor
node set of node j in the infected node set. Fig. 6 shows the
information dissemination of the WIC model in the karate
network. Fig. 7 shows the information dissemination of the
model proposed in this article. pt is set to 0.5. The nodes
whose color changes in each time step are the activated nodes
at the end of the time step. The red nodes when t = 0 are the
nodes randomly selected as the initial active nodes. As can be
seen from Fig. 6, the number of activated nodes in the WIC
model reaches its maximum at t = 3. In the end of the time
step, only two nodes in the network were not activated. The
number of nodes activated at t = 1 was the largest and signifi-
cantly more than other times. The propagation probability only
depends on the state of the neighbor nodes. This model does
not take into account the actual laws of the network structure
and information propagation. As can be seen from Fig. 7, the
propagation model presented in this article no longer produces
active nodes after t = 4. In the end, 71% of the total number
of nodes in the network are activated by setting the parameter
propagation threshold pt = 0.5. At each time step, the number
of activated nodes is more uniform. The propagation depends
on the degree of closeness between nodes. In the propagation
process, the activated node still has the opportunity to dissem-
inate information to any neighbor node, which is more in line
with the actual situation of the real network. Therefore, the
model proposed in this article based on network community
structure information and node similarity can better explain
the essence of information or virus dissemination in the real
network.

E. Performance Comparison

In this section, the node immune effect of this algorithm
and comparison algorithms are analyzed in detail. In order to
compare several algorithms fairly, all the algorithms are tested
on the propagation model proposed in this article. Assume
that the new nodes only spread harmful information at the
initial time. For small-scale networks (karate, dolphin, foot-
ball, and SFI), the number of initial infected nodes is set to
6, and the maximum value of propagation time step is set
to 10. For medium-scale networks (netscience and power),
the initial number of infected nodes is set to 20, and the
maximum propagation time step is set to 50. For large-scale

Fig. 6. Information dissemination of the WIC model in the karate network.
(a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3.

Fig. 7. Information dissemination of the model proposed in this article in
the karate network. (a) t = 0. (b) t = 1. (c) t = 2. (d) t = 3. (e) t = 4.

networks (PGP and Internet), the initial number of infected
nodes is set to 50, and the maximum propagation time step is
set to 100.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 23,2023 at 02:47:09 UTC from IEEE Xplore.  Restrictions apply. 



SHANG et al.: DYNAMIC IMMUNIZATION NODE MODEL FOR COMPLEX NETWORKS 1549

Fig. 8. Node immunization result of the NICT running 20 times on the
power network.

Fig. 9. Immunization result of the SI algorithm running 20 times on the
power network. (a) k = 15. (b) k = 20.

In order to prove the effectiveness of the NICT, the node
immunization results of the NICT and the comparison algo-
rithms in the power network are analyzed. The three parts of
the graph from top to bottom represent the number of final
immune nodes, the number of infected nodes, and the number
of normal nodes. In order to compare the algorithms intu-
itively, the normal nodes in all result graphs are subtracted
from the same number according to the concrete situation of
the power network. Fig. 8 shows the node immunization result
of the NICT after 20 runs on the power network. Fig. 8 shows
that the NICT controls the number of the final infected nodes
between 50 and 83 in the power network. The number of
immune nodes is between 10 and 23. Although the number of
immune nodes in 20 runs of the NICT is different, the number
of final infected nodes in the network is relatively stable.

We set the number of immune nodes on the power network
to 15 and 20, respectively, for each of the five comparison
algorithms. Fig. 9 shows the immunization result of the SI
algorithm running 20 times on the power network.

As can be seen in Fig. 9, when the number of immune
nodes is set to 15, the best result of the SI algorithm in the
power network controls the number of infected nodes to 50,
and the worst result is to control the number of infected nodes
to 92. The immune effect is very unstable. When the number of
immune nodes is set to 20, the best result of the SI algorithm in
the power network is to control the number of infected nodes
to 56, and the worst result is to control the number of infected
nodes to 77. At the cost of increasing the number of immune
nodes, the worst case of node immunity is improved in the SI
algorithm, but the overall effectiveness is not obvious.

Fig. 10 shows the immunization result of the UI algorithm
running 20 times on the power network.

As shown in Fig. 10, when the number of immune nodes is
set to 15, the result of the UI algorithm in the power network

Fig. 10. Immunization result of the UI algorithm running 20 times on the
power network. (a) k = 15. (b) k = 20.

Fig. 11. Immunization result of the EI algorithm running 20 times on the
power network. (a) k = 15. (b) k = 20.

Fig. 12. Immunization result of the DI algorithm running 20 times on the
power network. (a) k = 15. (b) k = 20.

controls the number of infected nodes to 59–82. When the
number of immune nodes is set to 20, the result of the UI
algorithm in the power network is to control the number of
infected nodes to 60–78. Compared with the SI algorithm, the
stability of the UI algorithm is better, but the overall effect is
not high.

Fig. 11 shows the immunization result of the EI algorithm
running 20 times on the power network. Fig. 11 shows that
when the number of immune nodes is set to 15, the result of
the EI algorithm in the power network controls the number of
infected nodes to 55–71. When the number of immune nodes
is set to 20, the result of the EI algorithm in the power network
controls the number of infected nodes to 51–68. It can be seen
that the immune effect of the EI algorithm is relatively stable.
But at the cost of increasing the number of immune nodes,
the immune effect of the EI algorithm in the power network
is not obviously improved.

Fig. 12 shows the immunization result of the DI algorithm
running 20 times on the power network. Fig. 12 shows that
when the number of immune nodes is set to 15, the result of
the DI algorithm in the power network controls the number of

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 23,2023 at 02:47:09 UTC from IEEE Xplore.  Restrictions apply. 



1550 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 3, MARCH 2022

Fig. 13. Immunization result of the FPAD algorithm running 20 times on
the power network. (a) k = 15. (b) k = 20.

TABLE V
NUMBER OF IMMUNE NODES OF THE COMPARISON ALGORITHM ON

EIGHT REAL NETWORKS

infected nodes at 66–96. When the number of immune nodes
is set to 20, the result of the DI algorithm in the power network
controls the number of infected nodes to 64–93.

Fig. 13 shows the immunization result of the FPAD algo-
rithm running 20 times on the power network. As can be seen
in Fig. 13, when the number of immune nodes is set to 15, the
result of the FPAD algorithm in the power network controls
the number of infected nodes to 57–124. When the number of
immune nodes is set to 20, the result of the FPAD algorithm
in the power network controls the number of infected nodes at
64–97. That is, at the cost of increasing the number of immune
nodes, the worst case of node immunity in the power network
is improved by the FPAD algorithm, but the overall immune
effect of nodes is not significantly improved. And the immune
effect is very unstable.

Compared with Fig. 8, it can be seen that the NICT cannot
only determine the number of immune nodes more flexibly but
also obtain better immune effect than five algorithms when the
number of immune nodes is less.

Obviously, the more the immune nodes is, the less the
number of infected nodes is. But this is contrary to the orig-
inal intention of nodal immunization. When the number of
immune nodes increases to a certain number, the immune
effect of some immune nodes may be poor. This will lead to
the decrease of the impact on the number of infected nodes.
Therefore, according to the approximate number of immune
nodes by the NICT in each network, the number of immune
nodes in the comparison algorithm is set as shown in Table V.
The best NIE values of the NICT compared with those of
the five comparison algorithms running 20 times in eight real
networks are shown in Table VI. The average NIE values of
the NICT compared with those of the five comparison algo-
rithms running 20 times in eight real networks are shown in
Table VII. Bold numbers denote the optimal values.

TABLE VI
BEST NIE VALUES OF SIX ALGORITHMS RUNNING 20 TIMES IN EIGHT

REAL NETWORKS

TABLE VII
AVERAGE NIE VALUES OF SIX ALGORITHMS RUNNING 20 TIMES IN

EIGHT REAL NETWORKS

Compare the results of each algorithm in Figs. 8–13 on
the power network. It can be found that the NICT has the
best control of the number of infected nodes in the network
without giving the number of immune nodes in advance. The
node immune effect of the EI algorithm is optimal and very
stable. It can be found from Tables VI and VII that the most
of maximum and average NIE values obtained by the NICT
are optimal. Although the maximum NIE value of the EI algo-
rithm is not optimal compared with that of the NICT and SI,
the average NIE value of obtained by EI is just lower than
that obtained by the NICT. So the effect of the algorithm is
stable. The validity of the NIE evaluation index proposed in
this article is further verified. By calculating the maximum
value of NIE, we can compare the optimal situation of the
number of infected nodes that the algorithm can achieve. By
calculating the average value of NIE, the stability of the algo-
rithm can be better reflected. Thus, the node immune effect
of the algorithm can be evaluated and compared more effec-
tively. As shown in Tables VI and VII, the NICT can get
the highest maximum NIE values in eight real networks com-
pared with the five comparison algorithms. The NICT can
get five best results of the average NIE values in the eight
real-world networks. Therefore, the NICT has a significant
improvement compared with the comparison algorithms on the
optimal results of the node immunization without giving the
number of the immune nodes in advance.Compared with the
comparison algorithms, the stability of the NICT is also dom-
inant on the whole. Moreover, in large-scale networks, the
advantages of the NICT will be more obvious because the
number of immune nodes is more difficult to determine.

V. CONCLUSION

In this article, a dynamic node immune model based on the
community structure and threshold (NICT) has been proposed.
In real networks, harmful information is more likely to spread

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 23,2023 at 02:47:09 UTC from IEEE Xplore.  Restrictions apply. 



SHANG et al.: DYNAMIC IMMUNIZATION NODE MODEL FOR COMPLEX NETWORKS 1551

within closely connected small groups. Therefore, we propose
a method for calculating the probability of propagation of the
information or virus between nodes, based on the community
structure information in the network and the similarity between
nodes. In addition, in order to be more flexible to immune
network nodes, we have proposed an improved immune gain
based on the propagation probability of the community struc-
ture and node similarity. The improved immune gain value
is calculated for the neighbors of infected nodes at each time
step, and the immunization of the nodes is determined accord-
ing to the given threshold. This can effectively prevent the
situation of ineffective or too little immunization at certain
time steps. Finally, an evaluation index of the node immune
effect has been proposed. This evaluation index takes into con-
sideration the numbers of immune nodes and infected nodes
at the same time, facilitating the evaluation of the immune
effect and the efficiency of the node immunization process.
The experimental results show that our proposed NICT method
yields a better node immunization effect, and verifies the
effectiveness of the NIE index.

However, we note that the NIE function is not suitable for
situations in which the number of immune nodes is too small.
In future work, this problem will be studied further.
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[9] O. Yaǧan and V. Gligor, “Analysis of complex contagions in random
multiplex networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 86, no. 3, Sep. 2012, Art. no. 036103.

[10] J. Goldenberg, B. Libai, and E. Muller, “Talk of the network: A complex
systems look at the underlying process of word-of-mouth,” Market. Lett.,
vol. 12, no. 3, pp. 211–223, Aug. 2001.

[11] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear
time: A martingale approach,” in Proc. ACM SIGMOD Int. Conf. Manag.
Data, Jun. 2015, pp. 1539–1554.

[12] L. Liu, B. Chen, B. Qu, L. He, and X. Qiu, “Data driven modeling of
continuous time information diffusion in social networks,” in Proc. IEEE
2nd Int. Conf. Data Sci. Cybersp. (DSC), Jun.–Aug. 2017, pp. 655–660.

[13] W. O. Kermack and A. G. Mckendrick, “A contribution to the math-
ematical theory of epidemics,” Proc. Roy. Soc., vol. 115, no. 772,
pp. 700–721, Aug. 2003.

[14] W. O. Kermack and A. G. McKendrick, “Contributions to the mathe-
matical theory of epidemics. II. The problem of endemicity,” Proc. Roy.
Soc. London A, vol. 138, no. 834, pp. 55–83, Oct. 1932.

[15] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans
and Animals. Princeton, NJ, USA: Princeton Univ. Press, 2011.

[16] P. Y. Chen, S. M. Cheng, and K. C. Chen, “Optimal control of epidemic
information propagation over networks,” IEEE Trans. Cybern., vol. 44,
no. 12, pp. 2316–2328, Dec. 2014.

[17] A. J. Gray, D. Greenhalgh, L. Hu, X. Mao, and J. Pan, “A stochastic
differential equation SIS epidemic model,” SIAM J. Appl. Math., vol. 71,
no. 3, pp. 876–902, Jun. 2011.

[18] F. Xiong, Y. Liu, Z.-J. Zhang, J. Zhu, and Y. Zhang, “An information dif-
fusion model based on retweeting mechanism for online social media,”
Phys. Lett. A, vol. 376, nos. 30–31, pp. 2103–2108, Jun. 2012.

[19] D. Guo, S. Trajanovski, R. van de Bovenkamp, H. Wang, and P. Van
Mieghem, “Epidemic threshold and topological structure of susceptible–
infectious–susceptible epidemics in adaptive networks,” Phys. Rev. E,
Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 88, no. 4,
Oct. 2013, Art. no. 042802.

[20] T. Gross, C. J. D. D’Lima, B. Blasius, “Epidemic dynamics on
an adaptive network,” Phys. Rev. Lett., vol. 96, no. 20, May 2006,
Art. no. 208701.

[21] N. Perra, A. Baronchelli, D. Mocanu, B. Gonçalves, R. Pastor-
Satorras, and A. Vespignani, “Random walks and search in time-
varying networks,” Phys. Rev. Lett., vol. 109, no. 23, Dec. 2012,
Art. no. 238701.

[22] R. Pastor-Satorras and A. Vespignani, “Epidemics and immuniza-
tion in scale-free networks,” 2002. [Online]. Available: arxiv.cond-
mat.0205260.

[23] R. Cohen, S. Havlin, and D. Ben-Avraham, “Efficient immunization
strategies for computer networks and populations,” Phys. Rev. Lett.,
vol. 91, no. 24, Dec. 2003, Art. no. 247901.

[24] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani, “The
architecture of complex weighted networks,” Proc. Nat. Acad. Sci. USA,
vol. 101, no. 11, pp. 3747–3752, Mar. 2004.

[25] P. Echenique, J. Gómez-Gardeñes, Y. Moreno, and A. Vàzquez,
“Distance-d covering problems in scale-free networks with degree cor-
relations,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 71, no. 3, Mar. 2005, Art. no. 035102.

[26] L. K. Gallos, F. Liljeros, P. Argyrakis, and A. Vàzquez, “Improving
immunization strategies,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 75, no. 4, Apr. 2007, Art. no. 045104.

[27] R. Pastor-Satorras and A. Vespignani, “Immunization of complex
networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 65, no. 3, Feb. 2002, Art. no. 036104.

[28] B. Wang, G. Chen, L. Fu, and X. Wang, “DRIMUX: Dynamic rumor
influence minimization with user experience in social networks,” IEEE
Trans. Knowl. Data Eng., vol. 29, no. 10, pp. 2168–2181, Oct. 2017.

[29] S. Bharathi, D. Kempe, and M. Salek, “Competitive influence
maximization in social networks,” in Proc. Int. Workshop Web Internet
Econ., 2007, pp. 306–311.

[30] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. 9th ACM SIGKDD Int.
Conf. Knowl. Disc. Data Min., Aug. 2003, pp. 137–146.

[31] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in
social networks under the linear threshold model,” in Proc. IEEE 10th
Int. Conf. Data Min. (ICDM), Dec. 2010, pp. 88–97.

[32] C. Wang, W. Chen, and Y. Wang, “Scalable influence maximization for
independent cascade model in large-scale social networks,” Data Min.
Knowl. Disc., vol. 25, no. 3, pp. 545–576, Nov. 2012.

[33] J. Goldenberg, B. Libai, and E. Muller, “Using complex systems anal-
ysis to advance marketing theory development: Modeling heterogeneity
effects on new product growth through stochastic cellular automata,”
Acad. Market. Sci. Rev., vol. 9, no. 9, pp. 1–18, 2001.

[34] D. Gruhl, R. V. Guha, D. Liben-Nowell, and A. Tomkins, “Information
diffusion through blogspace,” in Proc. ACM 13th Int. Conf. World Wide
Web, May 2004, pp. 491–501.

[35] E. Berger, “Dynamic monopolies of constant size,” J. Comb. Theory B,
vol. 83, no. 2, pp. 191–200, Nov. 2001.

[36] Y. Wang, H. Wang, J. Li, and H. Gao, “Efficient influence maximization
in weighted independent cascade model,” in Proc. Int. Conf. Database
Syst. Adv. Appl., Mar. 2016, pp. 49–64.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 23,2023 at 02:47:09 UTC from IEEE Xplore.  Restrictions apply. 



1552 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 52, NO. 3, MARCH 2022

[37] T. Zhou, J. G. Liu, W. J. Bai, G. Chen, and B. H. Wang, “Behaviors
of susceptible–infected epidemics on scale-free networks with identical
infectivity,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 74, no. 5, Nov. 2006, Art. no. 056109.

[38] M. Feng, H. Qu, Z. Yi, X. Xie, and J. Kurths, “Evolving scale-free
networks by Poisson process: Modeling and degree distribution,” IEEE
Trans. Cybern., vol. 46, no. 5, pp. 1144–1155, May 2016.

[39] S. Fortunato, “Community detection in graphs,” Phys. Rep., vol. 486,
nos. 3–5, pp. 75–174, Feb. 2010.

[40] C. Liu, J. Liu, and Z. Jiang, “A multiobjective evolutionary algo-
rithm based on similarity for community detection from signed
social networks,” IEEE Trans. Cybern., vol. 44, no. 12, pp. 2274–2287,
Dec. 2014.

[41] W. Wang and Y. Jiang, “Community-aware task allocation for social
networked multiagent systems,” IEEE Trans. Cybern., vol. 44, no. 9,
pp. 1529–1543, Sep. 2014.

[42] R. Shang, H. Liu, L. Jiao, and A. M. G. Esfahani, “Community min-
ing using three closely joint techniques based on community mutual
membership and refinement strategy,” Appl. Soft Comput., vol. 61,
pp. 1060–1073, Dec. 2017.

[43] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 69, no. 2, Feb. 2004, Art. no. 026113.

[44] P. M. Gleiser and L. Danon, “Community structure in jazz,” Adv.
Complex Syst., vol. 6, no. 4, pp. 565–573, 2003.

[45] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mech. Theory Exp.,
vol. 10, no. 10, Oct. 2008, Art. no. P10008.

[46] A. C. F. Lewis et al., “The function of communities in protein
interaction networks at multiple scales,” 2009. [Online]. Available:
arXiv:0904.0989.

[47] T. Zhou, L. Lü, and Y. C. Zhang, “Predicting missing links via local
information,” Eur. Phys. J. B Condensed Matter Complex Syst., vol. 71,
no. 4, pp. 623–630, Oct. 2009.

[48] L. Leydesdorff, “On the normalization and visualization of author co-
citation data: Salton’s Cosine versus the Jaccard index,” J. Amer. Soc.
Inf. Sci. Technol., vol. 59, no. 1, pp. 77–85, Oct. 2008.

[49] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-
L. Barabási, “Hierarchical organization of modularity in metabolic
networks,” Science, vol. 297, no. 5586, pp. 1551–1555, Aug. 2002.

[50] L. Donetti and M. A. Munoz, “Detecting network communities: A new
systematic and efficient algorithm,” J. Stat. Mech. Theory Exp., vol. 10,
no. 10, Oct. 2004, Art. no. P10012.

[51] R. Shang, W. Zhang, L. Jiao, R. Stolkin, and Y. Xue, “A community
integration strategy based on an improved modularity density incre-
ment for large-scale networks,” Physica A Stat. Mech. Appl., vol. 469,
pp. 471–485, Mar. 2017.

[52] R. Shang, J. Bai, L. Jiao, and C. Jin, “Community detection based on
modularity and an improved genetic algorithm,” Physica A Stat. Mech.
Appl., vol. 392, no. 5, pp. 1215–1231, Mar. 2013.

[53] G. F. Chami, S. E. Ahnert, N. B. Kabatereine, and E. M. Tukahebwa,
“Social network fragmentation and community health,” Proc. Nat. Acad.
Sci. USA, vol. 114, no. 36, Jul. 2017, Art. no. E7431.

[54] Z. Lin, X. Zheng, N. Xin, and D. Chen, “CK-LPA: Efficient community
detection algorithm based on label propagation with community kernel,”
Physica A Stat. Mech. Appl., vol. 416, pp. 386–399, Dec. 2014.

[55] D. Yang, X. Liao, H. Shen, X. Cheng, and G. Chen, “Dynamic
node immunization for restraint of harmful information diffusion in
social networks,” Physica A Stat. Mech. Appl., vol. 503, pp. 640–649,
Aug. 2018.

Ronghua Shang (Member, IEEE) received the B.S.
degree in information and computation science and
the Ph.D. degree in pattern recognition and intelli-
gent systems from Xidian University, Xi’an, China,
in 2003 and 2008, respectively.

She is currently a Professor with Xidian
University. Her current research interests include
optimization problems, evolutionary computation,
image processing, and data mining.

Weitong Zhang (Member, IEEE) received the
B.E. degree from the School of Electronic and
Information Engineering, Changchun University of
Science and Technology, Changchun, China, in
2013, the M.S. degree from the School of Electronics
and Communication Engineering, Xidian University,
Xi’an, China, in 2017, where she is currently pur-
suing the Ph.D. degree with the School of Circuits
and Systems.

Her current research interests include com-
plex networks, intelligent optimization, and deep
learning.

Licheng Jiao (Fellow, IEEE) received the B.S.
degree from Shanghai Jiaotong University, Shanghai,
China, in 1982, and the M.S. and Ph.D. degrees from
Xi’an Jiaotong University, Xi’an, China, in 1984 and
1990, respectively.

From 1990 to 1991, he was a Postdoctoral Fellow
with the National Key Laboratory for Radar Signal
Processing, Xidian University, Xi’an, where he has
been a Professor with the School of Electronic
Engineering since 1992. He is currently the Director
of the Key Laboratory of Intelligent Perception and

Image Understanding of Ministry of Education of China, Xidian University.
He has led 40 major scientific research projects, and published more than 20
monographs and 100 papers in international journals and conferences. His
research interests include image processing, natural computation, machine
learning, and intelligent information processing.

He is a member of the IEEE Xi’an Section Executive Committee and the
Chairman of Awards and Recognition Committee, a Vice Board Chairperson
of the Chinese Association of Artificial Intelligence, the Councilor of the
Chinese Institute of Electronics, the Committee Member of the Chinese
Committee of Neural Networks, and an expert of the Academic Degrees
Committee of the State Council.

Xiangrong Zhang (Senior Member, IEEE) received
the B.Sc. and M.Sc. degrees in computer science and
technology and the Ph.D. degree in pattern recogni-
tion and intelligent systems from Xidian University,
Xi’an, China, in 1999, 2003, and 2006, respectively.

She is currently a Professor with the School
of Artificial Intelligence, Xidian University. Her
research interests include visual information analysis
and understanding, pattern recognition, and machine
learning.

Rustam Stolkin (Member, IEEE) received the
M.Eng. degree in engineering science from the
University of Oxford, Oxford, U.K., in 1998, and
the Ph.D. degree in computer vision from University
College London, London, U.K., in 2004.

He is currently the Director and the Royal Society
Industry Fellow of the National Centre for Nuclear
Robotics, Birmingham, U.K., and a Professor
of robotics with the University of Birmingham,
Birmingham, where he is the Founder and the
Director of the Extreme Robotics Lab. He is also

the Director of Spinout Company A.R.M Robotics Ltd., Barakaldo, Spain.
He is highly interdisciplinary, with research interests spanning computer
vision and image processing, machine learning and AI, robotic grasping and
manipulation, and human–robot interaction.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on February 23,2023 at 02:47:09 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


