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The anisotropic mechanical properties and atomistic deformation mechanism of incompressible
c-BeP2N4 were comprehensively investigated by first-principles calculations. According to the depen-
dence of the Young’s modulus on different directions in crystal, the c-BeP2N4 exhibits a well-pronounced
anisotropy which may impose certain limitations and restrictions on its applications. The ideal strength
calculations demonstrated that c-BeP2N4 shows substantially lower ideal shear strength than superhard
c-BN and diamond, suggesting that it cannot be intrinsically superhard as claimed in the previous studies.
Furthermore, the origin of the lattice instability of c-BeP2N4 under large shear strain that occurs at the
atomic level during plastic deformation can be attributed to the breaking of P–N bonds in PN6

octahedrons.
Crown Copyright � 2013 Published by Elsevier B.V. All rights reserved.
1. Introduction

The quest for intrinsic superhard materials is motivated by
scientific curiosity and by the need of materials with high hardness,
high thermal stability, and oxidation resistance [1,2]. In synthesiz-
ing intrinsic strongly covalent superhard materials formed by the
light elements (boron, carbon, nitrogen, etc.) [3–6], one of the
lightest elements beryllium (Be) has been often neglected in this
field. However, Kaner et al. [7] recently pointed out that the
compounds of Be with other light elements may form alternative
superhard materials. The following theoretical calculations [8–10]
indeed found that B12N2Be and Be3N2 are potential superhard
materials with the calculated hardness of about 50 GPa. A novel
beryllium phosphorus nitride BeP2N4 with phenakite-type struc-
ture (hereafter denoted as b-BeP2N4), recently has been experimen-
tally determined by Pucher et al. [11] under high temperature and
high pressure. Experimental and theoretical works [11–13] have
found that b-BeP2N4 is isotypic and isoelectronic to b-Si3N4, which
can transform into cubic spinel-type c-Si3N4 at pressure of 15 GPa
[14,15]. It is well known that ceramics made up of Si3N4 cover a
broad range of applications. Predominant materials properties of
this compound are chemical inertness, high hardness, mechanical
strength, etc. Especially for c-Si3N4, the measured Vickers hardness
is between 35 GPa [16] and 43 GPa [17,18] and confirms that this
material qualifies as a potentially superhard solid. Meanwhile, in
the c-Si3N4, octahedrally and tetrahedrally coordinated Si atoms
are fixed by symmetry and the N positions possess a single degree
of freedom in support of the suggestion that a small number of
internal degrees of freedom are necessary but not sufficient condi-
tion for a superhard material [19]. The successful synthesis of c-
Si3N4 has evoked a search for other isoelectronic or isostructural
compounds with comparable materials properties. Accordingly, as
the isoelectronic compound b-BeP2N4 which under pressure might
also form a spinel-type phase (hereafter denoted as c-BeP2N4) with
interesting properties as well.

Most recently, different density functional theory calculations
[11–13] have supported the possible existence of the c-BeP2N4 at
readily attainable pressures (15–24 GPa) by state-of-the-art high
pressure techniques. The calculations of mechanical properties
further indicated that the c-BeP2N4 is a promising ultra-
incompressible material with notably large elastic moduli. Using
two different empirical and semi-empirical models proposed by
Sung and Sung [20] and Gao et al. [21], Ding and Xiao [13] estimated
the hardness of the c-BeP2N4 to be 43.3–45.2 GPa. Therefore, it
seems as if the recent theoretical studies [11–13] have reached a
consensus that c-BeP2N4 can be qualified as a superhard material.
However, a predictability of hardness [20–22] from the equilibrium
properties (such as bulk or shear modulus, bond length, charge
density, ionicity, etc.) is very limited because plastic deformation
of materials occurs far from equilibrium upon bond breaking in
practical measurement of hardness. More importantly, studies of
the stress–strain relations and the underlying atomistic bond-
breaking processes can provide important insights into the
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fundamental aspects of the deformation and failure modes critical
to the understanding of the mechanical behavior, especially for
hardness [1,2]. Previous studies [23,24] have demonstrated that
ultimate hardness of a material may be assessed from its ideal shear
strength and bonding nature, which also appears to correlate with
the onset of dislocation formation in an ideal, defect-free crystal
[25,26]. For example, ReB2, which has been suggested to be super-
hard, undergoes a series of shear transitions and a final structural
collapse [27]. Therefore, first-principles studies on deformation
and failure mode of the c-BeP2N4 are highly desirable. In the pres-
ent work, we have extended the mechanical properties of c-BeP2N4

and presented in detail the variations of the elastic moduli along the
arbitrary directions. The ideal strengths of the c-BeP2N4 in compar-
ison with c-Si3N4 were systematically studied in order to provide a
deeper insight into mechanical behavior and hardness.
2. Computational methods

First-principles calculations were performed using the VASP
code [28] with the generalized-gradient approximation (GGA) pro-
posed by Perdew–Burke–Ernzerhof exchange–correlation func-
tional [29]. The electron and core interactions were included by
using the frozen-core all-electron projector augmented wave
(PAW) potential [30]. Tests of the computational parameters
showed that converged results of the Kohn–Sham equations can
be obtained with a plane-wave energy cutoff of 600 eV and a prop-
er Monkhorst–Pack grid (10 � 10 � 10) [31] in the Brillouin zone.
During the geometrical optimization, all forces on atoms were con-
verged to less than 0.001 eV/Å and the total stress tensor was
reduced to the order of 0.01 GPa. Dynamical properties were calcu-
lated within the harmonic approximation [32] by using the direct
method based on the forces calculated via the Hellmann–Feynman
theorem. The stress–strain relationships were calculated by incre-
mentally deforming the model cell in the direction of the applied
strain, and simultaneously relaxing the cell basis vectors conju-
gated to the applied strain, as well as the positions of atoms inside
the cell, at each step [24,33]. To ensure that the strain path is con-
tinuous, the starting position at each strain step has been taken
from the relaxed coordinates of the previous strain step.
3. Results and discussion

The crystal structure of c-BeP2N4 is sketched in Fig. 1a, in which
two basic building blocks along h100i directions are edge-shared
PN6 octahedrons and BeN4 tetrahedrons. The equilibrium struc-
tural parameter for c-BeP2N4 [space group: Fd�3m (No. 227)] was
Fig. 1. Crystal structure of c-BeP2N4, the blue, black, and gray spheres represent Be, N, a
(For interpretation of the references to colour in this figure legend, the reader is referre
obtained by full relaxations of both lattice constant and internal
atomic coordination. The optimized lattice constant for c-BeP2N4

is a = 7.553 Å, which is in good agreement with other theoretical
values a = 7.564 Å [11], 7.4654 Å [12], and 7.471 Å [13]. The
calculated bond lengths for P–N (1.819 Å) and Be–N (1.759 Å) in
c-BeP2N4 also agree well with these available theoretical results.
Moreover, the total energy of c-BeP2N4 is calculated by varying
the volume and these calculated E–V data are fitted using the
Birch–Murnaghan equation of state (EOS) [34]. The obtained bulk
modulus B0 and its pressure derivative are 265 GPa and 3.99,
which are consistent with the theoretical values of 268 GPa and
4.036 [13], thus confirming the reliability of the present calcula-
tions. At zero temperature a stable crystalline structure requires
all phonon frequencies to be positive. We have calculated the pho-
non dispersion curves of the c-BeP2N4 at 0 GPa. No imaginary pho-
non frequencies are found in the whole Brillouin zones (Fig. 1b),
indicating the dynamical stability of this spinel-type structure.
The similar case has been reported for the high-pressure poly-
morphs of c-Si3N4 typically synthesized at high pressure and high
temperature, turned out to be quenchable at ambient pressure to
at least 700 K [14].

The elastic stabilities, incompressibility, and rigidity of both
c-BeP2N4 and c-Si3N4 are determined from the calculated elastic
constants by applying a set of given strains with a finite variation.
Table 1 summarizes the calculated single-crystal elastic constants
Cij and derived Hill elastic moduli of c-BeP2N4 and c-Si3N4 along
with previous experimental and theoretical results [11–13,18,19,
35–37]. One can see that the obtained elastic constants Cij and
derived Hill elastic moduli [38] of c-BeP2N4 are very close to those
of c-Si3N4, which agree well with available experimental data
[18,35,36]. The agreement of c-Si3N4 supports the reliability of
the elastic calculations for c-BeP2N4 although there are no avail-
able experimental data for comparison. Furthermore, our
calculated elastic constants Cij and derived Hill elastic moduli of
c-BeP2N4 listed in Table 1 are in a good accordant with the results
reported in Refs. [13,11] using the same GGA+PAW approach, but
smaller than those recorded in Ref. [12] using a slightly different
approach [the orthogonalized linear combination of atomic orbi-
tals (OLCAO) method]. The mechanical stabilities of both c-BeP2N4

and c-Si3N4 satisfy the Born–Huang criterion [39] for a cubic crys-
tal [C11 � |C12| > 0, C11 > 0, C44 > 0, C11 + 2C12 > 0], indicating that
both compounds are mechanically stable at ambient conditions.
A well-established consideration of whether a crystalline solid is
intrinsically ductile or brittle is if dislocation embryos can be
nucleated from an atomically sharp crack prior to its propagation
by cleavage [40,41]. This bifurcation in mechanical behavior is
characterized by the ratio (specific to the solid) of the shear
nd P atoms, respectively (a), and phonon dispersion curves of c-BeP2N4 at 0 GPa (b).
d to the web version of this article.)



Table 1
Calculated Elastic Constants Cij, Bulk Modulus B, Shear Modulus G, Young’s Modulus E, and ideal strength (minimum tensile strength rmin and shear strength smin) (in units of
GPa). Also shown is G/B ratio.

Compound Source C11 C12 C44 B G E G/B rmin smin

c-BeP2N4 Present 510 146 318 268 254 579 0.951 rh100i = 42.5 sð1 1 0Þh1 �1 0i = 35.2

Theory [13] 532 147 335 275 268 607 0.980
Theory [12] 643 98 221 279 231 544
Theory [11] 263

c-Si3N4 Present 520 181 326 294 250 585 0.851 rh110i = 41.2 sð1 1 1Þh�1 �1 2i = 31.3

Exp. [18] 290 (5)
Exp. [35] 300 (10)
Exp. [36] 308
Theory [19] 511 174 323 286
Theory [37] 500 159 334 273
Theory [35] 533 191 341 305 258

c-BN Theory [45] 786 172 445 376 390 rh111i= 55.3 sð1 1 1Þh�1�12i= 58.3

Diamond Theory [46] 1079 124 578 442 528 rh111i= 82.3 sð111Þh�1�12i= 86.6
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modulus to the bulk modulus, i.e., G/B, by simply considering G as
the resistance to plastic deformation and B the resistance to frac-
ture. The critical G/B ratio which separates ductile and brittle mate-
rials is around 0.57 [42], i.e., if G/B <0.57 the material behaves in a
ductile manner, otherwise the material behaves in a brittle man-
ner. As shown in Table 1, the calculated G/B ratios for c-BeP2N4

and c-Si3N4 (0.951 and 0.851) suggest their brittle behaviors. A
useful visualization of the elastic anisotropy can be obtained by
plotting three-dimensional picture of dependence of the Young’s
modulus E on a direction in crystal. For cubic solid, it is described
by the following [43]:

E�1 ¼ s11 � b1ða2b2 þ a2c2 þ b2c2Þ ð1Þ

where a, b, and c is the direction cosine of the tensile stress direction,
b1 = 2s11 � 2s12 � s44, and s11, s12, and s44, are elastic compliance
constants which are given by Ney [44]. This equation determines a
three-dimensional closed surface, and the distance from the origin
Fig. 2. Directional dependence of the Young’s Modulus E for c-BeP2N4 (a) and c-Si3N
of system of coordinate to this surface equals to the Young’s modu-
lus in a given direction. For a perfectly isotropic medium this surface
would be a sphere. Fig. 2a and b show well-pronounced anisotropy
for c-BeP2N4 and c-Si3N4, and the cross-sections of c-BeP2N4 and
c-Si3N4 in the bc plane are also shown in Fig. 2c and d for compari-
son. Analytical equations for determination of the maximum and
minimum values of the Young’s moduli are [43] Emax ¼ 1=s11 and
Emin ¼ 3=ðs11 þ 2s12 þ s44Þ if b1 < 0. The ‘‘max’’ and ‘‘min’’ subscripts
should be interchanged if b1 > 0. For c-BeP2N4 (c-Si3N4), the esti-
mated Emax and Emin values are 802(882) GPa along [100] directions
and 556(554) GPa along [111] directions, respectively. The ratio
Emax/Emin of c-BeP2N4 (1.442) is smaller than that of c-Si3N4

(1.592), indicating that there is a larger elastic anisotropy in c-Si3N4.
The ideal strength in a specified direction is microscopically

determined by bond strength and breaking nature under strain.
The stress–strain relations upon tension and shear for the cubic
spinel-type phase are calculated in three main crystallographic
4 (b), the corresponding projection in bc plane for c-BeP2N4 (c) and c-Si3N4 (d).



Fig. 3. Calculated stress–strain relations for c-BeP2N4 in various tensile (a) and shear (b) directions, and for c-Si3N4 in various tensile (c) and shear (d) directions.

Fig. 4. Calculated bond lengths as a function of strain for c-BeP2N4 under shear
deformation along ð110Þh1 �10i directions. Insets: crystal structures before (a) and
after (b) shear instability, and basic building blocks of PN6 octahedrons and BeN4

tetrahedrons in c-BeP2N4 (c). The dashed line represents the shear-induced
structural deformation firstly occurrence.
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directions through projection of an 56-atom unit cell onto the cor-
responding crystal axes with one axis parallel to the strain direc-
tion for tension deformation, or with one axis parallel to the slip
direction and another axis perpendicular to the slip plane for shear
deformation. The anisotropic ideal strengths of both c-BeP2N4 and
c-Si3N4 were deduced from the stress–strain relationships, which
are shown in Fig. 3 and summarized in Table 1, together with those
of superhard c-BN [45] and diamond [46] for comparisons. Firstly,
under tension, the anisotropic ratio for c-BeP2N4 (Fig. 3a) is about
1:1.28:1.08 (the ideal decohesion strengths are rh100i = 42.5 GPa,
rh110i = 54.5 GPa, rh111i = 45.8 GPa) which is close to that of c-
Si3N4 (Fig. 3c) of 1:1.3:1 (rh100i = 53.7 GPa, rh110i = 41.2 GPa,
rh111i = 53.7 GPa). For c-BeP2N4 (Table 1), the weakest direction
along h100iwith ideal tensile strength of 42.5 GPa is slightly lower
than the lowest tensile strength of 55.3 GPa for c-BN along the
h111i direction [45]. This, however, does not suggest its intrinsi-
cally superhard character. Because plastic deformation occurs in
shear, one has to compare the calculated ideal shear strengths
and the bonding nature. Secondly, the lowest shear strength for
c-BeP2N4 (see Table 1 and Fig. 3b) found in the ð110Þh1 �10i slip
system is 35.2 GPa, which is about 40% lower than the lowest shear
strength of 58.3 GPa in c-BN [45], showing its lower shear resis-
tance or potential superhardness. This is the similar case for c-
Si3N4 presented in Table 1 and Fig. 3d. In spite of their significantly
high bulk moduli, both c-BeP2N4 and c-Si3N4 are much weaker
than c-BN and diamond in terms of shear moduli and strengths.
Thus, higher incompressibility does not necessarily guarantee
higher shear resistance and hardness. Thirdly, the lowest shear
strength of c-BeP2N4 along the ð110Þh1 �10i direction (35.2 GPa),
is lower than the lowest tensile strength (42.5 GPa). This means
the failure mode in c-BeP2N4 is dominated by the shear type. To
shed light on the origin of deformation mechanism in this direc-
tion, the variations of bond lengths as a function of applied strain
under ð110Þh1 �10i direction were plotted in Fig. 4. At equilibrium
state as mentioned above, the P–N bond length (d1 = d2 = d3) in
PN6 octahedrons and Be–N bond length in BeN4 tetrahedrons
[see the inset (c) in Fig. 4] is 1.819 Å and 1.759 Å, respectively.
Under increasing shear strains, the P–N bonds denoted as d1 in
PN6 octahedrons are stretched and break at the critical shear strain
of c = 0.2990, which limits the achievable strengths of c-BeP2N4.
Such a bond-breaking can also be clearly seen from the selected
crystal structures before (c = 0.2762) and after (c = 0.3219) shear



Fig. 5. Developments of ELF for c-BeP2N4 during shear in the ð110Þh1 �1 0i slip at different strains of 0.2762 (a), 0.2990 (b), 0.3219 (c), and 0.3452 (d).
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instability [see the inset (a) and insect (b) in Fig. 4]. It means that
this shear-induced structural deformation firstly occur at strain of
c = 0.2990 through the collapse of PN6 octahedrons by simulta-
neously breaking of d1 bonds, resulting in the formation of puck-
ered P–N layers. The bond length of d2 remains nearly invariant
up to the critical strain of 0.2990 and then decreases abruptly
along with the breaking of d1 bonds. The P–N bond indicated as
d3 decreases slowly in the whole studied strain range, on the con-
trary, all the Be–N bonds in BeN4 tetrahedrons increase conform-
ably at each strain. Therefore, the instability of P–N bonds under
shear deformation for c-BeP2N4 can be attributed to a local trans-
formation of sp3 to sp2 upon the shear. In addition, the changes
of the Electronic Localization Function (ELF) of c-BeP2N4 upon
shear deformation [ð110Þh1 �10i direction] were analyzed to ratio-
nalize the deformation of d1 bonds. At ELF = 0.7, Fig. 5 presents the
electron localization distributions of c-BeP2N4 at different strains
of about 0.2762, 0.2990, 0.3219, and 0.3452, i.e. before and after
the instability for the ð110Þh1 �10i slip system (see Fig. 3b). It can
be seen that at strains of 0.2762 and 0.2990 (before the shear insta-
bility) the ELF are similar, but a significant difference appears
around the N and P atoms for N and P at large strains of 0.3219
and 0.3452 (after the shear instability). Especially for ELF at strain
of 0.3452 (Fig. 5d), the charge density between N and P atom is
nearly centered on the N atom, i.e. the d1 bonding becomes rather
weak at this large shear strain. On the basis of these calculations,
the results highlight the importance of bonding deformation mech-
anism in the design of and search for intrinsically hard or super-
hard materials.
4. Conclusions

In summary, we have carried out first-principles calculations on
structural and mechanical properties as well as ideal strengths for
recently proposed c-BeP2N4. The calculated equilibrium lattice
parameters, bulk modulus, and its pressure derivative are consis-
tent with previous theoretical results. The orientation dependence
of the Young’s modulus reveals that the c-BeP2N4 is the stiffest
along [100] and the most compliant along [111] in response to
tension or compression loading. The substantially low shear
strength of c-BeP2N4 indicates that it cannot be intrinsically super-
hard. Detailed analyses of the deformed atomic structures under
shear strain reveal that the lattice instability of c-BeP2N4 is due
to the collapse of PN6 octahedrons by simultaneously breaking of
d1 bonds which limits its achievable strength.
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