Journal of Alloys and Compounds 581 (2013) 508-514

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Theoretical study on tetragonal transition metal dinitrides from first principles calculations

^a College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, People's Republic of China

^b Department of Physics and Information Technology, Baoji University of Arts and Sciences, Baoji 721016, People's Republic of China

^c School of Science, Xidian University, Xi'an 710071, People's Republic of China

^d Department of Physics, Northwest University, Xi'an 710069, People's Republic of China

ARTICLE INFO

Article history: Received 16 May 2013 Received in revised form 22 July 2013 Accepted 23 July 2013 Available online 31 July 2013

Keywords: First principles calculations Transition metal ditrinides Structural stability Mechanical properties

ABSTRACT

Three new transition metal dinitrides TMN_2 (TM = Ta, W, and Re) with the *P4/mbm* structure are investigated by the first principles calculations method based on the density functional theory. The elastic constants and phonons calculations have confirmed that these three compounds are all mechanical and dynamically stable at ambient pressure. The distributions of elastic moduli of these dinitrides have been systematically studied and the obtained results indicate that the (001) plane may be viewed as the cleavage plane for TaN_2 and WN_2 as well as (100) plane for ReN_2 . Moreover, TMN_2 within this tetragonal structure are found to be ultra-incompressible and hard, among which WN_2 exhibits the largest bulk modulus (389 GPa) and Vickers hardness (38.5 GPa). Density of states calculation revealed that the strong TM–N covalent bonding is the driving force for the high bulk and shear modulus as well as small Poisson's ratio of the studied dinitrides.

Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

5d TM nitrides. More recently, a hexagonal MoS₂-type ReN₂ was synthesized by metathesis reaction using X-ray diffraction under

high pressure by Kawamura et al. [11]. However, a following theo-

retical work [12] has revealed that this MoS₂-ReN₂ is mechanical

unstable and it is actually nitrogen-vacancies in MoS₂-ReN₂. Strik-

ingly, theoretical calculations for this nitrogen-vacancies phase

correctly reproduce the experimental X-ray diffraction pattern.

Their further structural searching identifies a possible ground state

monoclinic structure and a high-pressure tetragonal phase (space

group: P4/mbm, Z = 2) for ReN2. Especially, this P4/mbm-ReN₂

exhibits an unusual incompressibility along the c axis, close to that

synthesized in crystalline form when compared to other 5d TMN₂

(TM = Os, Ir, and Pt) compounds. Therefore, many theoretical stud-

ies [13–23] have proposed a series of hypotheses on the structures

and properties of TMN₂ (TM = Hf, Ta, and W). Recently, HfN₂ and

TaN₂ within four different structures fluorite-type, pyrite-type,

have proposed different structures for ReN_2 [18–23], among which a tetragonal phase for ReN_2 suggested by Du et al. is potential

superhard. Therefore, as a possible metastable phase, the

Up to now, however, TMN₂ (TM = Hf, Ta, and W) have not been

1. Introduction

Transition metal (TM) nitrides have attracted considerable attentions from both theoretical and experimental studies due to their extreme hardness and durability as well as the outstanding mechanical, electronic, magnetic and optoelectronic properties [1–3]. Most of the early transition metal mononitrides are well known hard materials. For example, TiN and CrN hard coatings are widely used in cutting tools industry [4]. Recently, great interest for transition metal nitrides has re-emerged based on the design concept for intrinsically superhard compounds that the interaction of lights elements (e.g., B, C, N, and O) into the transition metal lattices to form strong covalent bonds yet keeping a high valence-electron density and bulk moduli [5,6]. Taking advantage of high-pressure techniques, bulk TM3N4 (TM = Zr, Hf) [3] with high elastic moduli and hardness has been obtained, opening new avenues for the synthesis of other TM nitrides. Subsequently, the platinum-metal (such as Pt, Ir, Os, and Pd) dinitrides were successfully synthesized under high pressure and high temperature (HPHT) [7–10]. The anomalously ultra-high incompressibility of these nitrides (428 GPa for IrN_2), comparable to that of *c*-BN, suggests that they are potential (super)hard materials. These pioneering studies have stimulated considerable research enthusiasm for

of diamond

^{*} Corresponding authors. Tel./fax: +86 917 3566589.

E-mail addresses: hyyan1102@163.com (H. Yan), weiaqun@163.com (Q. Wei).

^{0925-8388/\$ -} see front matter Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jallcom.2013.07.157

re and high temperature $P6_3/mmc$, and $P\overline{6}m2$ structures have been systematically studied [13–15], and these two compounds within pyrite-type structure are potential ultra-incompressible. For WN₂, Wang et al. predicted [16] two types of hexagonal structures which are ultra-incompressible and are energetically superior to the previously proposed cotunnite phase [17]. Meanwhile, numerous theoretical studies

P4/mbm-ReN₂-type structure mentioned above can be extended by those of Hf, Ta, and W which can provide further details are highly desirable. However, the calculated phonon dispersion curves in the present work indicate that only TaN₂ and WN₂ with the P4/mbm structure are dynamically stable. Accordingly, to explore such possibilities and provide guidance for future experimental efforts, here we perform first principles density functional theory (DFT) calculations to investigate the structural stability, mechanical properties, electronic properties, and chemical bonding of TaN₂ and WN₂ in comparison with ReN₂. The calculated results indicate that these dinitrides are mechanically stable and exhibit excellent mechanical properties. We hope our results can stimulate further experimental research to synthesize these ultra-incompressible and potential (super)hard compounds.

2. Computational methods

The DFT calculations have been performed within generalized gradient approximation (GGA) [24], as implemented in the Vienna ab initio simulation package (VASP) [25]. The electron and core interactions were included by using the frozen-core all-electron projector augmented wave (PAW) potential [26] of the metal atoms including d electrons as valence states. The integration in the Brillouin zone was employed using the Monkhorst-Pack scheme [27] with a grid of 0.03 Å⁻¹, an energy cutoff of 800 eV, and a tetrahedron method with Blöchl corrections for the energy calculation and Gaussian smearing for the stress calculations. During the structural optimizations, all forces on atoms were converged to the order of 0.001 eV/Å, and the external stresses were reduced to be less than 0.01 GPa. The phonon calculations were carried out by using a supercell approach as implemented in the PHONOPY code [28]. Single crystal elastic constants were calculated from evaluation of stress tensor generated small strain, and the bulk modulus, shear modulus, Young's modulus, and Poisson's ratio were thus derived from the Voigt-Reuss-Hill approximation [29].

3. Results and discussion

The considered P4/mbm crystal structure of TMN₂ is shown in Fig. 1. It can be seen that this P4/mbm phase consists of a fundamental building block connected by edge along the *c*-axis: a tetragonal sublattice (solid line cell in Fig. 1) which can be viewed as a distorted CsCl-type structure. Table 1 lists the calculated lattice constants, equilibrium volumes, bond lengths, bulk moduli, and their pressure derivatives of TMN₂ (TM = Ta, W, and Re) along with previous theoretical values of ReN2 [12]. The bulk moduli and their pressure derivatives are obtained by fitting pressures and cell volumes with the third-order Birch-Murnaghan equation of state (EOS) [30]. From this table, the calculated lattice parameters, equilibrium volumes and bond lengths of ReN₂ are in good agreement with previous theoretical results. However, for other compounds of TaN₂ and WN₂, there are no available experimental data and theoretical values for comparison. Therefore, the present results could provide useful information for further experimental or theoretical investigations. Moreover, as in the Birch-Murnaghan EOS treatment, we also obtained the values of equilibrium bulk moduli and their pressure derivatives for these three dinitrides presented in Table 1. It can be seen that these compounds possess a large value of bulk moduli which are comparable to those of synthesized platinum-metal dinitrides (PtN₂: 372 GPa [7], OsN₂: 358 GPa [9], IrN₂: 428 GPa [9]), but larger than previous proposed structures of TaN₂ [13,14], WN₂ [16], and ReN₂ [18-20]. Thus, one might expect their excellent ultra-incompressibility. At zero-temperature a stable crystalline structure requires all phonon frequencies to be

Fig. 1. Crystal structure of the tetragonal *P4/mbm* phase. The black and blue spheres represent TM and N atoms, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

positive. Therefore, we have performed the full phonon dispersion calculations for TMN_2 (TM = Ta, W, and Re) at 0 GPa. As shown in Fig. 2. no imaginary phonon frequency was detected in the whole Brillouin zone, indicating the dynamical stability of the TaN₂, WN₂, and ReN₂, respectively. It is important to explore the thermodynamic stability of TMN₂ with P4/mbm structure for further experimental synthesis. The thermodynamic stability at ambient pressure with respect to decomposition is quantified in terms of the formation enthalpy, using $\Delta H_f = H_{(TMN_2)} - H_{(TM)} - H_{(N_2)}$. The ΔH_f is the formation enthalpy, the body-centered-cubic Ta and W (space group: *Im-3m*), hexagonal Re (space group: *P*6₃/*mmc*), and α -phase N₂ are chosen as the reference phases. The calculated ΔH_f per formula unit (f.u.) of these compounds are listed in Table 1, together with other theoretical values for WN₂. Compared to the negative formation enthalpy values of previous candidates P6₃/ *mmc* [16], *P*6*m*2 [16], and *P*21/*c* [22], the *P*4/*mbm*-WN₂ is metastable with positive formation enthalpy comparable to that of P4/ mmm phase proposed by Du et al. [20]. Therefore, high temperatures are needed to synthesize this P4/mbm structure for WN₂ in actual experiment. Results obtained by this reaction route for TaN₂, on the contrary, have demonstrated its stability against the decomposition into the mixture of Ta and N₂, suggesting that it is most likely to be synthesized at ambient pressure.

In order to provide some insights into the pressure behavior of TMN₂, the pressure acting on the system as functions of lattice parameters $(a/a_0 \text{ and } c/c_0)$ and unit cell volume (V/V_0) are plotted in Fig. 3, where a_0 , c_0 , and V_0 are the equilibrium structural parameters at zero pressure. The structural behaviors of synthesized hexagonal Re₂N and Re₃N as well as *c*-BN under pressure were also presented in Fig. 3 for comparison. Firstly, it can be seen that the incompressibility along the *c*-axis is larger than that along the *a*axis for each TMN₂ compound, suggesting their clear elastic anisotropy. The incompressibility of WN₂ is almost identical to that of ReN₂, but larger than that of TaN₂. Secondly, both WN₂ and ReN₂ exhibit a larger *a*-axis incompressibility and similar volume incompressibility when compared to recently synthesized ultra-incompressible Re₂N and Re₃N. Thirdly, we notice that the volume incompressibility of WN₂ and ReN₂ exceeds that of *c*-BN at high pressure, although *c*-BN has the higher bulk at zero pressure. Take WN₂ for example, by fitting obtained data with least squares meth-

Table 1

Calculated equilibrium lattice constants a₀ (Å), c₀ (Å), equilibrium volume V₀ (Å³), bond length (Å), EOS fitted bulk modulus B₀ (GPa), its pressure derivative B'₀, and formation enthalpy ΔH_f (eV/f.u.) for the P4/mbm-TMN₂, respectively.

TMN ₂	Space group	<i>a</i> ₀	b_0	<i>C</i> ₀	Vo	$d_{\rm TM-N}$	d _{N-N}	Bo	B'_0	ΔH_f
TaN ₂	P4/mbm	4.403		2.839	55.041	2.272	1.410	343	4.477	-0.951
WN ₂	P4/mbm	4.331		2.761	51.784	2.221	1.408	390	4.590	0.537
	P63/mmc ^a	2.934		7.790	58.07	2.102	1.405			-0.942
	P6m2ª	2.928		3.916	29.069	2.101	1.420			-0.941
	P4/mmm ^b	2.71		7.38	54.20	2.23	1.41	378	4.58	0.74
	$P21/c^{c}$	4.83	4.88	5.10						-2.67
ReN ₂	P4/mbm	4.390		2.663	51.330	2.211	1.424	387	4.766	1.938
	P4/mbm ^d	4.390		2.644	50.955	2.20	1.453			

^a Ref. [16].

^b Ref. [20]. ^c Ref. [22].

^d Ref. [12].

Fig. 2. Phonon dispersion curves of TaN₂ (a), WN₂ (b), and ReN₂ (c) within P4/mbm structure at 0 GPa.

Fig. 3. Calculated *a*-axis compressions (*a*/*a*₀) (a), *c*-axis compressions (*c*/*c*₀) (b), and volume compressions (*V*/*V*₀) (c) as a function of pressure TMN₂, respectively.

od, we obtained their relationships at the temperature of 0 K as the following relations:

 $c/c_0 = 0.99992 - 7.58873 \times 10^{-4} P + 2.90318 \times 10^{-6} P^2$ (2)

$$a/a_0 = 0.9995 - 8.36028 \times 10^{-4}P + 3.10152 \times 10^{-6}P^2$$
(1)

$$V/V_0 = 0.99981 - 2.41 \times 10^{-3} P + 1.00029 \times 10^{-5} P^2 \eqno(3)$$

511

The mechanical properties (elastic constants and elastic moduli) are essential for understanding the macroscopic mechanical properties of solids and for the design of (super)hard materials and their potential technological applications. We calculated the zero-pressure elastic constants C_{ij} of these TMN₂ compounds by the strain-stress method. A small finite strain was applied on the optimized structure and the atomic positions were fully optimized. Then, the elastic constants were obtained from the stress of the strained structure. The calculated elastic constants C_{ii} are listed in Table 2, along with the previous theoretical values of the TMN₂ (TM = Ta, W, and Re) [12–13,16,18–20,22]. It is well known that the elastic stability is a necessary condition for a stable crystal. A tetragonal crystal has to obey the following restrictions of its elastic constants [31]: $C_{11} > 0$, $C_{33} > 0$, $C_{44} > 0$, $C_{66} > 0$, $(C_{11} - C_{12}) > 0$, $(C_{11} + C_{33} - 2C_{13}) > 0$, and $2(C_{11} + C_{12}) + C_{33} + C_{13} + C_{13}$ $4C_{13} > 0$. As shown in Table I, these conditions are clearly satisfied for tetragonal stability, confirming that these compounds are mechanically stable. It also can be seen that these compounds possess a remarkable value of C_{33} , especially for WN₂ (894 GPa), which is comparable to those of $P6_3/mmc$ and $P\overline{6}m2$ phases and smaller than that of diamond (1079 GPa) [32]. These results indicate that their *c*-axis directions are extremely stiff. Elastic constant C_{44} is an important parameter of the material's indentation hardness. Among the three compounds within P4/mbm structure and previous proposed candidates, the C_{44} of WN₂ (275 GPa) is the largest one which is close to that of superhard material ReB₂ (276 GPa) [33], indicating that WN₂ has the strong resistance to shear stress. The shear anisotropic factors of the tetragonal TaN₂/WN₂/ReN₂ deduced from the present results are $A_1 = 4C_{44}/(C_{11} + C_{33} - 2C_{13}) =$ 0.70/0.82/0.75 within (100) planes between $\langle 011\rangle$ and $\langle 010\rangle$ directions, $A_2 = 2C_{66}/(C_{11} - C_{12}) = 0.97/1.03/0.60$ within (001) shear planes between (110) and (010) directions, indicating a certain degree of elastic anisotropy.

Based on the calculated C_{ij} , the corresponding six independent elastic compliance constants s_{ij} of the tetragonal crystal given by Sirdeshmukh were determined [34]. For engineering applications that make use of single crystals, it is necessary to know the values of bulk modulus, Young's modulus, and shear modulus as a function of crystal orientation. As outlined by He et al. [35], executing the appropriate coordinate system transformations for the compliances allows the determination of the variation of Young's moduli *E* and shear modulus *G* with crystallographic direction, [*u vw*], for a given crystallographic plane, (h k l), containing these directions, i.e., $E_{[uvw]}$ and $G_{(hkl)[uvw]}$ are obtained. For *P*4/*mbm* crystal structure, the Young's modulus *E* can be expressed as:

$$E^{-1} = s_{11}(\alpha^4 + \beta^4) + s_{33}\gamma^4 + 2s_{12}\alpha^2\beta^2 + 2s_{13}(\beta^2\gamma^2 + \alpha^2\gamma^2) + s_{44}(\beta^2\gamma^2 + \alpha^2\gamma^2) + s_{66}\alpha^2\beta^2$$
(4)

where α , β , and γ are the direction cosines of [uvw] direction. The three-dimensional surface representations showing the variation of Young's modulus are plotted in Fig. 4. For an isotropic system, one would see a spherical shape. The degree of elastic anisotropy in a system can be directly reflected from the degree of deviation in shape from a sphere. As shown in Fig. 4, all the TMN₂ compounds exhibit the elastic anisotropy since the shape of the Young's modulus representation deviates from a spherical shape, especially for ReN₂ (Fig. 4c). For more detail in Fig. 5, the variation of Young's modulus in the (001) plane for the quadrant of directions [u vw]between $[1 \ 0 \ 0]$ ($\theta = 0^{\circ}$) and $[01 \ 0]$ ($\theta = 90^{\circ}$). It is clearly seen that Young's moduli of TaN₂ and WN₂ exhibit little change on the whole, on the contrary, ReN₂ possesses a maximum of $E_{[100]} = E_{[010]} = 738$ -GPa and a minimum of $E_{[110]}$ = 533 GPa. For the (100) plane in Fig. 5 displays the variation of Young's modulus for directions [0vw] between $[001](\theta = 0^{\circ})$ and $[010](\theta = 90^{\circ})$, the variation tendencies of Young's moduli for TaN₂ and WN₂ are similar among three compounds, with $E_{[001]} = 735/838/764$ GPa and $E_{[011]} = 523/689/$ 630 GPa for TaN₂/WN₂/ReN₂. For $(1\overline{1}0)$ plane, Young's moduli E of TaN₂ and WN₂ behave again very similar for the quadrant of directions [uuw] between [001] and [110], and the values of $E_{[111]}$ are 520 GPa and 691 GPa for TaN₂ and WN₂, respectively. The Young's moduli E of WN₂ decrease guickly form [001] to [010] directions within $(1\overline{1}0)$ plane.

To understand plastic deformations in TMN_2 , the dependence of the shear modulus on stress direction is also plotted in Fig. 6. The shear modulus *G* on the (*hkl*) shear plane with shear stress applied along [*u vw*] direction is given by:

$$G^{-1} = 4s_{11}(\alpha_1^2\alpha_2^2 + \beta_1^2\beta_2^2) + 4s_{33}\gamma_1^2\gamma_2^2 + 8s_{12}\alpha_1\alpha_2\beta_1\beta_2 + s_{66}(\alpha_1\beta_2 + \alpha_2\beta_1)^2 + 8s_{13}(\beta_1\beta_2\gamma_1\gamma_2 + \alpha_1\alpha_2\gamma_1\gamma_2) + s_{44}[(\beta_1\gamma_2 + 1\beta_2\gamma_1)^2 + (\alpha_1\gamma_2 + \alpha_2\gamma_1)^2]$$
(5)

where α_1 , β_1 , γ_1 , α_2 , β_2 , γ_2 are the direction cosines of the [*u vw*] and [*HKL*] directions in the coordinate systems, where the [*HKL*] denotes

Table 2

Calculated elastic constants C_{ij} (in GPa), isotropic bulk modulus B_{H} , shear modulus G_{H} , Young's modulus E_{H} , and the hardness H_{v} in unit of GPa for the P4/mbm-TMN₂. Also shown are Poisson's ratio v_{H} and B_{H}/G_{H} ratio.

Crystal	Phases	<i>C</i> ₁₁	C ₂₂	C ₃₃	C ₄₄	C ₅₅	C ₆₆	C ₁₂	C ₁₃	C ₂₃	B_H	G_H	E_H	v_H	B_H/G_H	H_{ν}
TaN ₂	P4/mbm	651		771	204		205	228	125		340	225	552	0.2296	1.51	26.3
	Pyrite ^a	255			82			322			299	37				
WN_2	P4/mbm	785		894	275		308	188	165		389	300	716	0.1953	1.33	38.5
	P6 ₃ /mmc ^b	579		973	233			195	211		364	228				
	P6m2 ^b	588		973	232			191	206		364	231				
	P4/mmm ^c	853		861	203		276	122	147		378	295		0.19		
	$P21/c^{d}$	537	609	562	137	131	239	214	201	223	332	173				
ReN ₂	P4/mbm	795		829	240		191	160	176		375	259	632	0.2192	1.45	30.5
	P4/mbm ^e	820		967	258		252	165	111		374	297				
	P4/mmm ^c	881		936	212		162	134	116		378	295		0.19		
	Pbcn ^f	365	553	610	138	230	83	307	232	242	334	127	337	0.3319		
	Pmmn ^g	788	889	573	131	339	235	125	308	76	358	238	584	0.23		

^a Ref. [13].

^b Ref. [16].

^c Ref. [20]. ^d Ref. [22].

^c Ref. [22].

^e Ref. [12]. ^f Ref. [19].

^g Ref. [18].

Fig. 4. Three-dimensional surface representations of the Young's modulus for TaN₂ (a), WN₂ (b), and ReN₂ (c).

Fig. 5. Orientation dependence of the Young's modulus for TaN₂ (a), WN₂ (b), and ReN₂ (c).

Fig. 6. Orientation dependence of the Shear modulus for TaN₂ (a), WN₂ (b), and ReN₂ (c).

the vector normal to the (*hkl*) shear plane. For shear plane (001) with the shear stress direction rotated from [100] to [010], the direction cosines are $\alpha_1 = \cos\theta$, $\beta_1 = \sin\theta$, $\gamma_1 = 0$, $\alpha_2 = \beta_2 = 0$, and

 γ_2 = 1, where θ is the angle between the [100] and the shear stress direction. By solving Eq. (5), the *G* = 1/*s*₄₄ = *C*₄₄, which means that within (001) plane, the shear modulus of the TMN₂ is independent

of the shear stress direction. For shear plane (100) with the shear stress directions [0 vw] varying from [100] to [010], the direction cosines are $\alpha_1 = 0$, $\beta_1 = \sin\theta$, $\gamma_1 = \cos\theta$, $\alpha_2 = 1$, $\beta_2 = \gamma_2 = 0$, and $G^{-1} = S_{66} + (S_{44} - S_{66}) \cos^2 \theta$. Because $S_{44} > S_{66}$ in TaN₂ and WN₂, their shear moduli are the largest along [010] and the smallest along [001]. Contrarily, ReN₂ possesses a maximum of $E_{[001]}$ and a minimum of $E_{[010]}$ due to $S_{44} < S_{66}$. For shear plane $(1\bar{1}0)$ with the shear stress directions [u vw] between [001] and [110] in Fig. 6, it is clear that the shear moduli are the smallest on the (100) plane for TaN₂, (100) plane for WN₂, and (100) plane for ReN₂, respectively. This means that the (001) plane may be viewed as the cleavage plane for TaN₂ and WN₂ as well as (100) plane for ReN₂.

Based on the calculated elastic constants, the isotropic bulk modulus (B_H) and shear modulus (G_H) for the TMN₂ polycrystalline are calculated by the Voigt-Reuss-Hill approximation [29] in Table 2. The Young's modulus E_H and Poisson's ratio v_H are obtained from the equations of $E_H = 9B_H G_H / (3B_H + G_H)$ and $v_H = (3B_H - 2G_H) / (3B_H + G_H)$ $(6B_H + 2G_H)$. The calculated bulk moduli of the TMN₂ are above 340 GPa, indicating ultra-incompressible structural nature. Strikingly, it should be noted that the calculated bulk moduli agree well with those directly obtained from the fitting of the third-order Birch–Murnaghan equation of state (EOS) (see Table 1), which further demonstrates the reliability of our elastic calculations. A material with high bulk modulus is not enough to ensure its high hardness. For the partially covalent transition metal-based materials, the shear modulus of a material quantifies its resistance to the shear deformation and is a better indicator of potential hardness. The value of Poisson's ratio is indicative of the degree of directionality of the covalent bonding, and small Poisson's ratio indicates a strong degree of covalent bonding, which contributes to the materials' hardness. In Table 2, the WN₂ is found to have the highest shear modulus (300 GPa) and lowest Poisson's ratio (0.195), which are two important elastic properties thought to be strongly correlated to hardness. Indeed, the estimated Vickers hardness (H_{ν}) for WN_2 is 38.5 GPa, the largest one among the studied TMN_2 compounds based on the empirical formula for hardness prediction proposed by Chen et al. [36]. Future synthesis of this nitride is thus of great interest and important for utility of this excellent mechanical property. In addition, the ratio between the bulk and the shear modulus B/G are used to predict the brittle or ductile behavior of materials. According to the Pugh criterion [37], the ductile behavior is predicted when B/G > 1.75, otherwise the material would fail in a brittle manner. It can be clearly seen in Table 2 that all these TMN₂ compounds are strongly prone to brittle manner.

We have also obtained other fundamental properties using above calculated mechanical quantities. The Debye temperature closely relates to many physical properties of solids, such as specific, dynamic properties, and melting temperature. At low temperature, it can be calculated from the elastic constants using the average sound velocity v_m , by the following equation [38],

$$\Theta_D = \frac{h}{k} \left[\frac{3n}{4\pi} \left(\frac{\rho N_A}{M} \right) \right]^{\frac{1}{3}} v_m \tag{6}$$

where *h* is Planck's constant, *k* is Boltzmann's constant, N_A is Avogadro's number, *n* is the number of atoms per formula unit, *M* is the molecular mass per formula unit, and ρ is the density. The average sound velocity v_m is given by

$$v_m = \left[\frac{1}{3} \left(\frac{2}{v_t^3} + \frac{1}{v_l^3}\right)\right]^{-\frac{1}{3}}$$
(7)

here v_t and v_l are the transverse and longitudinal elastic wave velocities of the polycrystalline materials, which can be obtained using the polycrystalline bulk modulus and shear modulus from Navier's equation [38]. The calculated Debye temperatures of these TMN₂ compounds increase in the following sequence: TaN₂ (666 K) < ReN₂ (697 K) < WN₂ (753 K), which is the same as the trend in estimated hardness of TMN₂ listed Table 2. This can be naturally explained by the empirical linear relationship between hardness and Debye temperature proposed by Abrahams and Hsu [39].

To illustrate the mechanical properties on a fundamental level. the total and site projected electronic densities of states (DOS) of TMN_2 (TM = Ta, W, and Re) at 0 GPa were plotted in Fig. 7, where the vertical dot line is the Fermi level. Clearly, all these structures exhibit metallic behavior by evidence of the finite electronic DOS at the Fermi level (E_F) . From the partial DOS, it reveals that the TM-5d orbital has a significant hybridization with N-2p orbital localized in the energy range from -10 eV to 0 eV, indicating the strong TM-N covalent bonding nature. Therefore, the strong covalent Ta-N bond is the main driving force for their high bulk and shear moduli as well as small Poisson's ratio. In addition, the contribution to Fermi level is mainly due to TM-5d orbital which is the principal cause for their metallicity. The typical feature of the total DOS is the presence of so-called pseudogap [40], which is considered as the borderline between the bonding and antibonding states. It can be seen that the E_F of is WN₂ and ReN₂ nearly lying on the pseudogap, respectively, indicating the *p*-*d* bonding states started to be saturated. This nearly full occupation of the bonding states enhances the stability of WN₂ and ReN₂. We also performed the Mulliken population analysis of these nitrides and found a charge transfer from TM to N, implying an ionic contribution to the TM-N bonding. We thus conclude that the chemical bonding in these molybdenum borides is a complex mixture of covalent, ionic, and metallic

Fig. 7. Total and partial densities of states of TaN₂ (a), WN₂ (b), and ReN₂ (c) at 0 GPa. The vertical dashed line is the Fermi energy.

characters. Such a conclusion was also found in other transition metal nitrides.

4. Conclusions

In summary, by means of density functional theory calculations, we have systematically study the structural stability, mechanical properties, electronic structure and chemical bonding of TMN₂ (TM = Ta, W, and Re) within P4/mbm-ReN₂ structure. The elastic constants and phonons calculations show that these three compounds are all mechanical and dynamically stable. The Young's modulus and shear modulus as a function of crystal orientation for the TMN₂ were systematically investigated. The results indicate that the (001) plane may be viewed as the cleavage plane for TaN₂ and WN₂ as well as (100) plane for ReN₂. The calculated bulk moduli and hardness suggested that these nitrides are ultraincompressible and hard materials. The electronic densities of states analysis have demonstrated that the strong covalent TM-N bonding plays a key role in the ultra-incompressibility and hardness of the TMN₂. These findings will inevitably stimulate extensive experimental works on synthesizing these technologically important materials.

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 11204007), Natural Science Basic Research plan in Shaanxi Province of China (Grant No. 2012JQ1005), Education Committee Natural Science Foundation in Shaanxi Province of China (Grant No. 2013JK0638), and the Fundamental Research Funds for the Central Universities.

References

- [1] S.H. Jhi, J. Ihm, S.G. Louie, M.L. Cohen, Nature 399 (1999) 132.
- [2] E. Horvath-Bordon, R. Riedel, A. Zerr, P.F. McMillan, G. Auffermann, Y. Prots, W. Bronger, R. Kniep, P. Kroll, Chem. Soc. Rev. 35 (2006) 987.
- [3] A. Zerr, G. Miehe, R. Riedel, Nat. Mater. 2 (2003) 185.
- [4] R. Buhl, H.K. Pulker, E. Moll, Thin Solid Films 80 (1981) 265.

- [5] R.B. Kaner, J.J. Gilman, S.H. Tolbert, Science 308 (2005) 1268.
- [6] H.Y. Chung, M.B. Weinberger, J.B. Levine, A. Kavner, J.M. Yang, S.H. Tolbert, R.B. Kaner, Science 316 (2007) 436.
- [7] E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H.K. Mao, R.J. Hemley, Nat. Mater. 3 (2004) 294.
- [8] J.C. Crowhurst, A.F. Goncharov, B. Sadigh, C.L. Evans, P.G. Morrall, J.L. Ferreira, A.J. Nelson, Science 311 (2006) 1275.
- [9] A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, H.K. Mao, Phys. Rev. Lett. 96 (2006) 155501.
- [10] J.C. Crowhurst, A.F. Goncharov, B. Sadigh, J.M. Zaug, D. Aberg, Y. Meng, V.B. Prakapenka, J. Mater. Res. 23 (2008) 1.
- [11] F. Kawamura, H. Yusa, T. Taniguchi, Appl. Phys. Lett. 100 (2012) 251910.
- [12] Y.C. Wang, T.K. Yao, J.L. Yao, J.W. Zhang, H.Y. Gou, Phys. Chem. Chem. Phys. 15 (2013) 183.
- [13] J. Zhou, Z.M. Sun, R. Ahuja, J. Alloys Comp. 472 (2009) 425.
- [14] S.K.R. Patil, N.S. Mangale, S.V. Khare, S. Marsillac, Thin Solid Films 517 (2008) 824.
- [15] G. Soto, Comput. Mater. Sci. 61 (2012) 1.
- [16] H. Wang, Q. Li, Y.W. Li, Y. Xu, T. Cui, A.R. Oganov, Y.M. Ma, Phy. Rev. B 79 (2009) 132109.
- [17] P. Kroll, T. Schröter, M. Peters, Angew. Chem. Int. Ed. 44 (2005) 4249.
- [18] E.J. Zhao, Z.J. Wu, Comput. Mater. Sci. 44 (2008) 531.
- [19] Y.L. Li, Z. Zeng, Chem. Phys. Lett. 474 (2009) 93.
- [20] X.P. Du, Y.X. Wang, V.C. Lo, Phys. Lett. A 374 (2010) 2569.
- [21] H.C. Zhai, X.F. Li, J.Y. Du, Mater. Trans. 53 (2012) 1247.
- [22] L. Song, Y.X. Wang, Phys. Status Solidi B 247 (2010) 54.
- [23] D.V. Suetin, I.R. Shein, A.L. Ivanovskii, Russ. Chem. Rev. 79 (2010) 611.
- [24] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
- [25] G. Kresse, J. Furthmüller, Phys. Rev. B 54 (1996) 11169.
- [26] G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
- [27] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188.
- [28] A. Togo, Phonopy, <http://phonopy.sourceforge.net/>.[29] R. Hill, Proc. Phys. Soc. London A 65 (1952) 349.
- [30] F. Birch, Phys. Rev. 71 (1947) 809.
- [31] M. Born, Proc. Cambridge Philos. Soc. 36 (1940) 160.
- [32] H.T. McSkimin, P. Andreatch, P. Glynn, J. Appl. Phys. 43 (1972) 985.
- [32] M.R. Koehler, V. Keppens, B.C. Sales, R. Jin, D. Mandrus, J. Phys. D: Appl. Phys. 42 (2009) 095414.
- [34] D.B. Sirdeshmukh, L. Sirdeshmukh, K.G. Subhadra, Atomistic Properties of Solids, Springer Press, Berlin, 2011.
- [35] Y. He, R.B. Schwarz, A. Migliori, J. Mater. Res. 10 (1995) 1187.
- [36] X.Q. Chen, H. Niu, D. Li, Y. Li, Intermetallics 19 (2011) 275.
- [37] S.F. Pugh, Phil. Mag. 54 (1954) 823.
- [38] P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl. Phys. 84 (1998) 4891.
- [39] S.C. Abrahams, F.S.L. Hsu, J. Chem. Phys. 63 (1975) 1162.
- [40] P. Vajeeston, P. Ravindran, C. Ravi, R. Asokamani, Phys. Rev. B 63 (2001) 045115.