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The elastic anisotropy and thermodynamic properties of the

potential superhard carbon nitride phase C2N2(NH) have been

investigated by using an ab initio plane-wave pseudopotential

density theory method. The crystal parameters have been

calculated at ambient as well as high pressure. The Young’s

modulus and shear modulus as a function of crystal orientations

for C2N2(NH) have been systematically investigated. The

Young’s modulus is found to reach a maximum along the [100]
direction. Using a set of total energy versus volume obtained

with the first-principles calculations, the quasiharmonic Debye

model is applied to the study of the thermal and vibrational

effects. The dependence of Debye temperature, Grüneisen

parameter, heat capacity, and expansion coefficient on the

temperature and pressure are systematically explored in the

whole pressure range from 0 to 60 GPa and temperature range

from 0 to 2000 K.
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction Superhard materials are important in
modern high-pressure science and technology due to their
outstanding properties, such as ultraincompressible, high
elastic modulus, high hardness, and scratch resistance [1]. It
is generally accepted that the superhard materials are those
strong covalent compounds formed by light elements B, C,
N, and O. The intrinsically strong and directional covalent
bonds between these light elements lead to tight, three-
dimensional crystalline networks with extreme resistance to
external shear. In the past two decades, the binary C–N
system has been studied extensively as potential candidate
for extraordinary hardness materials. It has been theoreti-
cally predicted that sp3-bonded forms of carbon nitride
(b-C3N4) can be superhard [2, 3]. Since then, there have been
intense interests in developing high-density materials
within the C–N–H system. Such compounds could also have
applications for energy storage [4]. Analogous compounds
include refractory ceramics based on Si3N4, Ga-, and Ge-
containing nitrides that provide wide-bandgap materials
for optoelectronics applications [5]. High-pressure, high-
temperature (HPHT) synthesis experiments have resulted
in spinel-structured forms of Si3N4 [6] and Ga3O3N [7, 8]
with low compressibility, high hardness, and wide bandgaps.
However, the synthesis of a purely crystalline form of carbon
nitride phase under pressure has proved to be a challenging
task, although some nonstoichiometric and amorphous
C–N solids have been reported in previous experimental
works [9].

Prepared from the molecular precursor dicyandiamide in
the laser-heated diamond-anvil cell under HPHT conditions,
Horvath-Bordon et al. [9] recently reported the synthesis of a
well-crystallized compound with a N:C ratio of 3:2, carbon
nitride imide C2N2(NH) (see Fig. 1). This new dense carbon
nitride phase can be recovered to a defect wurtzite structure
(space group Cmc21, Z¼ 4) under ambient conditions. Their
findings were confirmed by another following experiment
study [10]. These experimental achievements have greatly
stimulated the theoretical exploration of its novel physical
properties to complement further experiments. Recently,
the mechanical properties, electronic structure, and chemical
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1 (online color at: www.pss-b.com) Crystal structure of
C2N2(NH); thelarge,middle,andsmallspheresrepresentN,C,andH
atoms, respectively. Figure 2 Total energy as a function of molecular volume for

C2N2(NH).
bonding of C2N2(NH) have been investigated using the
projector augmented-wave (PAW) method [11] based on
density functional theory (DFT) [12] under ambient
conditions [13]. This novel carbon nitride phase was found
to be ultraincompressible and hard due to its high elastic
moduli. In the present work, we extend the mechanical
properties and present in detail the influence of elastic
properties on the plastic deformation behavior and the role of
the possible anisotropy of interatomic bonding. These will
provide new insights into the excellent mechanical proper-
ties of C2N2(NH). In addition, the structural and thermo-
dynamic properties of the orthorhombic C2N2(NH) under
HPHT are also studied. The effects of pressure and
temperature are systematically studied, and these can help
us to further understand its potential applications under
HPHT.

2 Computation details All structure relaxations
were performed using DFT within the generalized gradient
approximation (GGA) [14], as implemented in the Vienna ab
initio simulation package [15]. The electron and core
interactions were included by using the frozen-core all-
electron PAW method [11], with H: 1s1, C: 2s22p2, and N:
2s22p3 treated as the valence electrons. The cutoff energy
520 eV for expansion of the wave function into plane waves
was set for C2N2(NH), and the special points sampling
integration over the Brillouin zone was employed by using
the Monkhorst–Pack method [16] with a grid of 0.03 Å�1 to
obtain a well-converged total energy within 1 meV atom�1.
During the structural optimizations, all forces on atoms were
converged to the order of 0.001 eV Å�1, and the external
stresses were reduced to be less than 0.01 GPa.

3 Result and discussions
3.1 Ground-state equilibrium properties The

crystal structure of the C2N2(NH) with Cmc21 space group
is shown in Fig. 1. This compound contains two C2N2(NH)
formula units in a unit cell, in which four inequivalent atoms
H, C, N1, and N2 occupy the Wyckoff 4a (0, 0.607, 0.203),
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
8b (0.671, 0.660, 0.998), 8b (0.699, 0, 0.416), and 4a (0,
0.719, 0.425) sites, respectively. The structural properties
are the very important first step to understand the material
properties from a microscopic point of view. The ground-
state structure of C2N2(NH) is investigated by the total
energy electronic calculations over a wide range of the
molecular volume V from 0.82 V0 to 1.16 V0, where V0 is the
zero-pressure equilibrium molecular volume. The calculated
total energies as a function of the molecular volume for
C2N2(NH) are shown in Fig. 2. The equilibrium lattice
constants, zero-pressure bulk modulus B0, and its pressure
derivative B0

0 from the third-order Birch–Murnaghan
equation of state (EOS) have been calculated in our previous
work [13], which are the basis of our studies in this paper. In
the present work, for the similar values at corresponding
equilibrium lattice constants for GGA and LDA approaches,
only the GGA results are presented in all calculations.
Moreover, the pressure dependence of the normalized
parameters a/a0, b/b0, and c/c0 as a function of pressure for
the C2N2(NH) is exhibited in Fig. 3, where a0, b0, and c0 is its
value at T¼ 0 K andP¼ 0 GPa. By fitting the calculated data
with least squares method, we obtained their relationships
at the temperature of 0 K as the following relations:
0:99991� 1:31 � 10�3Pþ 5:73677� 10�6P2; (1)
0:99961� 1:47 � 10�3Pþ 6:54306� 10�6P2; (2)
0:99977� 0:933278 � 10�3Pþ 3:97542� 10�6P2:

(3)
It can be clear seen that the compression along the c-axis
is the smallest, consistent with the accumulation of CN4
www.pss-b.com
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Figure 3 (online color at: www.pss-b.com) The normalized
parametersa/a0,b/b0,c/c0asafunctionofthepressureforC2N2(NH).
tetrahedron with strong C–N covalent bond along the c-axis.
Moreover, this indicates clear elastic anisotropy of the
C2N2(NH).

3.2 Elastic anisotropy For the orthorhombic
C2N2(NH), the matrix of its elastic stiffness constants
contains nine nonzero elements, i.e., C11, C12, C13, C22,
C23, C33, C44, C55, and C66. The values of Cij have been
calculated in our previous work [13]. By using the relations
between elastic compliance constants sij and the elastic
constantsCij [17, 18], the elastic compliance constants can be
obtained. The values of Cij and sij are collected in Table 1.

To calculate Young’s modulus for a tensile stress applied
along an arbitrary [hkl] direction, a variation of the Young’s
modulus along the arbitrary directions for orthorhombic
symmetry can be written as [17]
Tab

ij
Cij

a

sij

aRef

www
E�1 ¼ s11a
4 þ s22b

4 þ s33g
4 þ 2s12a

2b2 þ 2s23b
2g2

þ2s13a
2g2 þ s44b

2g2 þþs55a
2g2 þ s66a

2b2;

(4)
where a, b, and g are the direction cosines of the [hkl]
direction. The directional dependence of the Young’s
modulus is shown in Fig. 4a, and the plane projections of the
directional dependence of the Young’s modulus in Fig. 4b
for comparison. To study the anisotropy further, we can
calculate the orientation dependence of Young’s modulus
when the tensile axis within specific planes. The formulas
used in calculations are collected in Table 2 and the
calculated results are plotted in Fig. 5a. Figure 5a shows that
le 1 The values of Cij (in GPa) and sij (in 10�3 GPa�1) for C2

11 22 33 12
597 567 804 89
1.749 1.823 1.286 �0.245

. [13].

.pss-b.com
Young’s modulus in C2N2(NH) is the largest with
Emax ¼ 778 GPa when the tensile axis is in the [001]
direction, while on the contrary Young’s modulus has its
minimal value Emin¼ 526 GPa along the [120] direction.
This indicates that the C2N2(NH) exhibits a pronounced
anisotropy, namely Emax/Emin¼ 1.48. From the results in
Fig. 5a, we can obtain the ordering of Young’s modulus
when the tensile axis along some specific direction as:
E[001] >E[011] >E[100] >E[010] �E[101] �E[111] >E[110] >
E[120].

To understand plastic deformation in C2N2(NH), the
study of the dependence of the shear modulus on stress
direction is useful. We choose a shear plane (hkl) and vary
the shear stress direction [uvw] within that plane. The axis
normal to the (hkl) plane is denoted as [HKL]. Thus, the shear
modulus on the (hkl) shear plane with shear stress applied
along [uvw] direction can be expressed as [17]
N2(N

23
79
�0
1 ¼ 4s11a
2
1a

2
2 þ 4s22b

2
1b

2
2 þ 4s33g

2
1g

2
2

þ 8s12a1a2b1b2 þ 8s23b1b2g1g2 þ 8s13a1a2g1g2

þ s44ðb1g2 þ b2g1Þ2 þ s55ða1g2 þ a2g1Þ2

þ s66ða1b2 þ a2b1Þ2;

(5)
where a1;b1; g1;a2;b2; andg2 are the direction cosines of
the [uvw] and [HKL] directions. For shear plane (001) with
the shear stress direction rotated from [100] to [010], the
direction cosines are a1¼ cosu, b1¼ sinu, g1¼ 0,
a2¼ b2¼ 0, and g2¼ 1, where u is the angle between the
[100] and shear stress direction. From Eq. (5), one can
deduce the shear modulus on (001) as follows:
G�1
ð001Þ ¼ s55 þ ðs44 � s55Þsin2u: (6)
For C2N2(NH), s44< s55, the shear modulus is the largest
along [010] and the smallest along [001].

When (100) is the shear plane, we rotate the shear stress
direction from [001] to [010]. In Eq. (5), a1¼ 0, b1¼ sinu,
g1¼ cosu,a2¼ 1,b2¼ g2¼ 0, then the shear modulus can be
obtained as
G�1
ð100Þ ¼ s55 þ ðs66 � s55Þsin2u: (7)
Since in our case, s66� s55, then G�1
ð100Þ � s�1

55 , which means
that within the (100) plane, the shear modulus of C2N2(NH)
is nearly independent of the shear stress direction.

For the shear plane (010) with the shear stress direction
rotated from [001] to [100],
G�1
ð010Þ ¼ s44 þ ðs66 � s44Þsin2u: (8)
H).

13 44 55 66
107 335 221 222

.146 �0.209 2.985 4.524 4.505

� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 4 (online color at: www.pss-b.com) (a) Directional dependence of the Young’s modulus in C2N2(NH). The plane projections of the
directional dependence of the Young’s modulus are shown in (b) for comparison.

Table 2 Formulas for the orientation dependence of Young’s modulus when the tensile direction is rotated on specific planes.

tensile plane E�1 orientation angle

(001) s11cos
4u þ s22sin

4u þ 2s12sin
2ucos2u þ s66sin

2ucos2u between [hk0] and [100]

(100) s22sin
4u þ s33cos

4u þ 1
4
ð2s23 þ s44Þsin22u between [001] and [0kl]

(010) s11sin
4u þ s33cos

4u þ 1
4
ð2s13 þ s55Þsin22u between [001] and [h0l]

ð110Þ

sin4u

ða2 þ b2Þ2
½a4s11 þ b4s12 þ a2b2ð2s12 þ s66Þ� þ s33cos

4u

þ sin2ucos2u

a2 þ b2
½a2ð2s13 þ s55Þ þ b2ð2s23 þ s44Þ�

between [001] and [hkl]
Due to s44< s66, the shear modulus is the largest along [001]
with G(010)[001]¼ 335 GPa and the smallest along [100] with
G(010)[100]¼ 222 GPa.

If the shear plane is ð110Þ, we rotate the shear stress from
[001] to [110], then a1 ¼ affiffiffiffiffiffiffiffiffiffi

a2þb2
p sinu, b1 ¼ bffiffiffiffiffiffiffiffiffiffi

a2þb2
p sinu,
Figure 5 (online color at: www.pss-b.com) Orientation depend-
ence of Young’s modulus in C2N2(NH) (a) and orientation depend-
ence of the shear modulus in C2N2(NH) (b).

� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
g1 ¼ cosu, a2 ¼ bffiffiffiffiffiffiffiffiffiffi
a2þb2

p , b2 ¼ � affiffiffiffiffiffiffiffiffiffi
a2þb2

p , g2 ¼ 0, where u is

the angle between [001] and the shear stress direction, a and b
are the lattice constants. Then the shear modulus can be
expressed as
G�1
¼ sin2u

ða2þb2Þ2
a2b2ð4s11þ 4s22 � 8s12Þþðb2 � a2Þ2s66

h i

þ cos2u

a2 þ b2
ða2s44 þ b2s55Þ:

(9)
The orientation dependence of the shear modulus for the
four cases discussed above is plotted in Fig. 5b. It can be seen
from the figure that the shear modulus is the smallest on the
(100) plane and almost independent of shear direction. This
means that the (100) plane may be the cleavage plane of
C2N2(NH).

3.3 Thermodynamic properties The investigations
on the thermodynamic properties of the orthorhombic
C2N2(NH) under high temperature and pressure are deter-
mined by the quasiharmonic Debye model [19]. It should be
www.pss-b.com
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noted that the Debye model of phonon density of states is
essentially a linear extrapolation of the sound speed of
acoustic branches but not optical branches in order to
get density states. In fact, the thermodynamic properties
of the crystal can be obtained by treating the lattice vibrations
as quantized (phonons). Since this Debye model is very
computationally quick and easy, it has been successfully
applied to predict the thermodynamic properties of
some materials [20–22]. The model has been described
in detail in Ref. [19]. We only give a brief description
as follows:

In the quasiharmonic Debye model, the nonequilibrium
Gibbs function G�(V; P, T) is taken in the form of
f ðs

www
G�ðV ;P; TÞ ¼ EðVÞ þ PV þ AVibðQðVÞ; TÞ; (10)
where E(V) is the total energy, PV corresponds to the
constant hydrostatic pressure condition, QðVÞ is the Debye
temperature, and the vibrational contribution AVib can
be written as
AVibðQðVÞ; TÞ¼nkT
9

8

Q

T
þ 3lnð1�e�Q=TÞ�D

Q

T

� �� �
:

(11)
Here n is the number of atoms per formula unit, and the
Debye integral DðQ=TÞ is defined as [19]
DðyÞ ¼ 3

y3

Z y

0

x3

ex � 1
dx: (12)
For an isotropic solid, Q is expressed as
Q ¼ �hð6p2V1=2nÞ1=3f ðsÞ
ffiffiffiffiffiffiffiffiffiffiffi
BS

kB2M

r
; (13)
where V, M, and n is the molecular volume, molar mass, the
number of atom per formula unit. A scaling function, f(s),
which depend on Poisson’s ratio of the isotropic solid is
given by [23, 24]
Þ ¼ 3 2
2

3
� 1 þ s

1 � 2s

� �3=2

þ 1

3
� 1 þ s

1 � s

� �3=2
" #�1

8<
:

9=
;

1=3

:

(14)
Here, the Poisson ratio s is taken as 0.137 [13],
f(s)¼ 0.748661. The BS is the adiabatic bulk modulus,
which can be approximated by the static compressibility
BS ffi BðVÞ ¼ V
d2EðVÞ
dV2

� �
: (15)
Therefore, the nonequilibrium Gibbs function G� as a
function of (V; P, T) can be minimized with respect to
volume V as
@G�ðV ;P; TÞ
@V

� �
P;T

¼ 0: (16)
.pss-b.com
By solving Eq. (16), one can get the thermal EOSV(P,T).
The isothermal bulk modulus and other thermal properties
such as heat capacity CV and CP, the relationship of BS and
BT, and the thermal expansion a are, respectively, taken as:
BTðP; TÞ ¼ �V
@P

@V

� �
¼ @2G�ðV ;P; TÞ

@V2

� �
P;T

; (17)
CV ¼ 3nk 4DðQ=TÞ � 3Q=T

eQ=T � 1

� �
; (18)
CP ¼ CVð1 þ agTÞ; (19)
BS ¼ BTð1 þ agTÞ; (20)
a ¼ gCV

BTV
; (21)
where g is the Grüneisen parameter defined as
g ¼ � dlnQðVÞ
dlnV

: (22)
The Debye model with quasiharmonic approximation
has its shortcomings [25]: (i) the anharmonic interatomic
interaction is more pronounced at higher temperature; (ii) the
Debye model is developed for crystalline solids, thus when
the temperature approaches the melting point, the system is
no longer an ideal crystalline solid and the model will
become less reliable. In the present work, the thermal
properties of the C2N2(NH) are determined in the tempera-
ture range from 0 to 2000 K, which is within the actual
experimental conditions. Therefore, the quasiharmonic
model used here is reliable and reasonable.

In the quasiharmonic Debye model, the Debye tempera-
tureQ and the Grüneisen parameter g are two key quantities.
The Debye temperature closely relates to many physical
properties of solids, such as specific heat, dynamic proper-
ties, and melting temperature [26]. The Grüneisen parameter
describes the anharmonic effects in the vibrating lattice, and
it has been widely used to characterize and extrapolate the
thermodynamic behavior of a material at HPHT. The Debye
temperature and the Grüneisen parameter at various
temperatures (0, 300, 600, 1200, and 2000 K) and different
pressures (0, 10, 20, 30, 40, 50, and 60 GPa) are listed in
Table 3. In this work, we obtained the Debye temperature
Q¼ 1525.7 K at P¼ 0 GPa and T¼ 0 K. this is smaller than
the result (1658 K) calculated by elastic constants in our
previous work [13]. It can be seen from Table 3 that, when the
applied pressure is from 0 to 60 GPa, the Debye temperature
increases by 23.9, 24.1, 24.7, 26.5, and 29.7% at tempera-
tures of 0, 300, 600, 1200, and 2000 K, respectively. This
indicates that the Debye temperature Q increases more
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Table 3 Calculated Debye temperature Q (in K) and Grüneisen parameter g of orthorhombic C2N2(NH) at different pressures and
different temperatures.

T (K) P (GPa)

parameter 0 10 20 30 40 50 60

0 Q 1525.7 1621.4 1709.2 1790.4 1866.3 1937.7 2005.4
g 1.623 1.577 1.542 1.516 1.496 1.481 1.469

300 Q 1521.7 1618.3 1706.7 1788.3 1864.4 1936.1 2004.0
g 1.625 1.578 1.543 1.517 1.497 1.481 1.469

600 Q 1500.9 1600.9 1691.4 1774.7 1852.1 1924.9 1993.7
g 1.637 1.586 1.549 1.521 1.500 1.484 1.471

1200 Q 1437.0 1544.9 1641.0 1728.5 1809.2 1884.6 1955.6
g 1.676 1.613 1.568 1.536 1.511 1.492 1.478

2000 Q 1330.8 1453.9 1559.7 1654.1 1740.1 1819.6 1893.8
g 1.757 1.665 1.605 1.563 1.532 1.508 1.490
quickly at high temperature than at low temperature. When
carefully examined, one can find that Q increases almost
linearly with applied pressures. As the Grüneisen parameter
g has anharmonic behavior, we would not expect linear
variation with pressure P and temperature T. At given
pressure, the g increases dramatically with the temperature T
when T> 600 K and varies almost monotonously with
temperature T. While at fixed temperature, the g decreases
dramatically with increasing pressure, and the decrease
becomes more rapid with the increasing temperature. These
results show that the effect of temperature T on the ratio g is
not as significant as that of pressure P, and there will be a
large thermal expansion at a low pressure P.

The variations of the heat capacity at constant pressure
CP and the constant volume heat capacity CV with
temperature T and pressure P are also investigated, as shown
in Fig. 6. The difference between CP and CV is very small at
low temperatures. At high temperatures, theCV approaches a
constant value, CP increases monotonously with increments
of the temperature. On the other hand, the difference between
Figure 6 (online color at: www.pss-b.com) Temperature depend-
ence of the heat capacity at different pressures for C2N2(NH).

� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
the CP and the CV decreases with increasing pressure. It is
also interesting to note that the values ofCV follow the Debye
model at low temperature due to the anharmonic approxi-
mations. The anharmonic effect on CV is suppressed and the
CV is close to a constant at sufficiently high temperatures,
obeying Dulong and Petit’s Rule. In summary, one can see
that the heat capacity increases with the temperature at the
same pressure and decreases with the pressure at the same
temperature. The influences of the temperature on the heat
capacity are much more significant than that of the pressure
on it.

In Fig. 7, we present the change in thermal expansion
coefficient a with pressure and temperature for C2N2(NH).
At T¼ 300 K and P¼ 0 GPa, the calculated a is
1.64� 10�5 K�1 in the present work. In Fig. 7a, it is noted
that as the pressure increases, a almost decreases exponen-
tially. This means that there is a large thermal expansion at
low pressure, which is in accordance with the variation of V
with pressure P. Moreover, the effects of the pressure P on
Figure 7 (online color at: www.pss-b.com) Pressure (a) and tem-
perature (b) dependence of the thermal expansion coefficient a for
C2N2(NH).

www.pss-b.com
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the thermal expansion coefficient a are very small at low
temperature, and as the temperature T increases, the effects
become obvious. That is to say, the higher the temperature T
is, the faster the a decreases, as shown in Fig. 7a. From
Fig. 7b, the thermal expansion coefficient a increases with
T3 at low temperatures and gradually approaches a linear
increase at high temperatures. Finally, the increasing trend
becomes gentler. It should be noted that the thermal
expansion coefficient a converges to a constant value at
high temperatures and pressures. Moreover, the impact of
temperature is much greater than the impact of pressure on
the thermal expansion coefficient a, which is similar to CV.
These results are in accordance with the results of the Debye
theory that applies to many materials.

The experimental data about the Debye temperature,
Grüneisen parameter, heat capacity, and expansion coeffi-
cient of C2N2(NH) under HPHT are not yet available for
comparison, but considering the case of Refs. [27, 28], our
predicted values should be credible. We hope that future
experimental measurements will verify all these calculated
results.

4 Conclusions The structural, elastic anisotropy, and
thermodynamic properties of C2N2(NH) are successfully
investigated using the plane-wave pseudopotential density
theory method in combination with the quasiharmonic
Debye model. The Young’s modulus in C2N2(NH) varies
with the tensile direction. For the principal crystal directions,
the calculations show the order E[001]>E[011]>E[100]>
E[010]�E[101] �E[111] >E[110]>E[120]. This means that the
crystal is stiffer when deformed uniaxially along the [001]
direction. This is attributed to the accumulation of CN4

tetrahedron with strong C–N covalent bonds along the c-axis.
The shear modulus of C2N2(NH) is the largest on the (001)
with the [010] shear stress direction and on (010) with the
[001] shear stress direction. The smallest shear modulus on
the (100) plane means that the (100) plane may be the
cleavage plane of C2N2(NH). Using the quasiharmonic
Debye model, the thermodynamic properties including the
Debye temperature, Grüneisen parameter, the heat capacity,
and the thermal expansion coefficients are predicted under
HPHT. The result shows that the Debye temperature Q

increases linearly with pressure and decreases with increas-
ing temperature, especially at high temperatures. High
pressure gives rise to a smaller Grüneisen parameter, heat
capacity, and thermal expansion coefficients at constant
temperature. However, high temperature leads to a larger
Grüneisen parameter, a larger heat capacity, and a larger
thermal expansion coefficient at constant pressure.
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