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First principles calculations are used to study the structural, mechanical, and electronic properties of
C2N2(CH2). Due to the large bulk modulus and shear modulus, C2N2(CH2) can be regarded as a potential
candidate of incompressible and hard material. For the first time, the tensors of the elastic constants were
calculated and used for the analysis and visualization of the directional dependence of the Young’s mod-
ulus and shear modulus. The maximal value of the Young’s modulus is along the [001] direction. The cal-
culated band structure is typical for insulator. The quasi-harmonic Debye model is applied to the study of
the thermodynamic properties. The thermal expansions, heat capacities, Grüneisen parameter on the
temperature and pressure are obtained in the pressure range from 0 to 100 GPa and temperature range
from 0 to 2000 K.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In the past few decades, the fact that diamond [1] and cubic
boron nitride (c-BN) [2] are superhard materials has been ac-
cepted; meanwhile, extensive experimental and theoretical efforts
have been devoted to the search of new superhard materials, par-
ticularly to the covalent compounds formed by light elements
(B,C,N, and O), such as BC2N [3], BC7 [4], B6O [5,6], etc. These com-
pounds attain their hardness from strong covalent bonds and iso-
tropic structure. The strengthening mechanism of these
compounds have been studied detailedly in Refs. [7–9,6]. Carbon-
nitride-related materials attract much attention [10,11] by boast-
ing their bonds which is slightly shorter than the C–C bonds in dia-
mond, especially for b-C3N4 [12] which has been a particular focus
of synthetic work due to the predicted ultra-high modulus
(�430 GPa). Many synthetic studies on superhard C3N4 have been
conducted over the last two decades, including chemical and phys-
ical vapor depositions [13], the implantation of nitrogen ions into
graphite [14], and direct synthesis under high pressure [15,16].
But no conclusive report has been obtained, hitherto. In the course
of synthetic studies on superhard carbon nitride, Horvath-Bordon
et al. [17] reported the synthesis C2N2(NH) prepared from the dic-
yandiamide molecules as precursor in a laser-heated diamond an-
vil cell at high pressure and high temperature. Later, Salamat et al.
[18] produced the high-density dwur-structured compound
C2N2(NH) by heating C2N4H4 as a molecular precursor at high pres-
sure. C2N2(NH) is the first material obtained having the definite C–
N single bond expected in the superhard C3N4. Recently, Sougawa
et al. [11] synthesized C2N2(CH2) nanoplatelet by subjecting a pre-
cursor C3N4HxOy nanoparticle in a laser-heating diamond anvil cell
to the pressure of 40 GPa and temperature of 1200–2000 K. The
crystal lattice constants and internal atomic positions are deter-
mined by X-ray diffraction and first principles calculations. Com-
pared to C2N2(NH) [19], the detailed physical properties of
C2N2(CH2) including structural, elastic, electronic, and thermody-
namic properties are least studied so far. Therefore, as another
new kind of carbon nitride phases, one might expect the excellent
physical properties mentioned above. In the present work, using
first principles calculations, we find that C2N2(CH2) is a wide
band-gap insulator. The influence of elastic properties on the plas-
tic deformation behavior and the role of the possible anisotropy of
interatomic bonding are also studied. These would provide new in-
sight into the excellent mechanical properties of C2N2(CH2). In
addition, the effects of pressure and temperature on the thermody-
namic properties of C2N2(CH2) are systematically investigated, and
this can help us to understand its potential application under high
pressure and high temperature further.
2. Computational methods

The density functional theory (DFT) [20] calculations have been
performed within the generalized gradient approximation (GGA)
[21] and local density approximation (LDA) [22], as implemented
in the Vienna ab initio simulation package (VASP) [23]. The electron
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and core interactions were included by using the frozen-core all-
electron projector augmented wave (PAW) method [24], with H:
1s1, C: 2s22p2, and N: 2s22p3 treated as the valence electrons.
The energy cutoff of 800 eV and appropriate Monkhorst–Pack k
points mesh 10 � 10 � 10 were chosen to ensure that energy cal-
culations are converged to better than 1 meV/atom. The elastic
constants were determined from evaluation of stress tensor gener-
ated small strain. Bulk modulus, shear modulus, Young’s modulus,
and Poisson’s ratio were estimated by using Voigt–Reuss–Hill
approximation [25]. And the quasi-harmonic Debye model was ap-
plied to investigate the lattice thermal expansion [26].
3. Results and discussion

3.1. Structural properties

The experiment has demonstrated that C2N2(CH2) adopts ortho-
rhombic structure with the symmetry of the space group Cmc21

[11] as shown in Fig. 1. There are four formula units (f. u.) in a unit
cell, in which C1 is tetrahedrally coordinated with three N and one
C2 atoms, C2 bridges those two tetrahedrons, and N atoms are con-
nected to three C1 neighbors. We optimized both lattice geometry
and ionic positions to get a fully relaxed structure of C2N2(CH2).
The calculated equilibrium lattice parameters and bond lengths
within GGA and LDA method are listed in Table 1, together with
corresponding experimental data and theoretical values. It is clear
that the predicted lattice constants and bond lengths within LDA
method are smaller than those within GGA method, as the usual
cases. The predicted structural constant a; b, and c deviate from
Fig. 1. Crystal structure of C2N2(CH2), the large, middle, and small spheres
represent N, C, and H atoms, respectively.

Table 1
Calculated equilibrium lattice parameters a; b; c, bond length (in Å), EOS fitted bulk modu

Method a b c

GGAa 8.1259 4.6381 4.1178

LDAa 8.0168 4.5662 4.0667

Experimentalb 7.625 4.490 4.047

Theoreticalb 8.1222 4.6430 4.1177

a This work.
b Ref. [11].
the corresponding experimental values within 4.9%, 1.7%, and
0.5%, respectively, and agree well with the previous theoretical val-
ues performed by the same authors at LDA level. Furthermore, it
should be noted that the bond lengths are also consistent with
those of experimental results in Table 1. In order to provide some
insight into the pressure behaviors of C2N2(CH2), the total energy
of C2N2(CH2) was minimized as a function of the selected unit cell
volume at different pressure. By fitting the E–V data at different
pressures into the third-order Birch–Murnaghan equation of states
(EOS) [27], we obtained the values of equilibrium bulk modulus
and its pressure derivative for C2N2(CH2) are 239/263 GPa and
3.57/3.51 at GGA/LDA level. To compare the incompressibility of
C2N2(CH2) and C2N2(NH) under pressure, the volume compressions
as a function of pressure are plotted in Fig. 2. One can see that the
incompressibility of C2N2(CH2) is little smaller than that of
C2N2(NH).

3.2. Mechanical properties

3.2.1. Elastic constants
The elastic properties (including elastic constants, elastic mod-

uli, elastic anisotropy, etc.) give important information concerning
the nature of the forces operating in solids. Particularly, they pro-
vide information on the stability and stiffness of materials. To our
knowledge, there are no experimental data or other theoretical
studies available about the elastic constants of C2N2(CH2). In the
present work, the strain–stress method was used in calculating
lus B0 (in GPa), and its derivative B00 for C2N2(CH2).

B0 B00 dC1�N1 dC1�C2 dC�H

239 3.57 1.5050, 1.5535 1.0835,
1.4760, 1.0793
1.4691

263 3.51 1.4818 1.5323 1.0913,
1.4596, 1.0867
1.4521
1.503, 1.456 1.075,
1.501, 1.064
1.444
1.505, 1.551 1.084,
1.476, 1.080
1.469

Fig. 2. Variation of ratio V=V0 as a function of pressure.



Fig. 3. The calculated phonon frequencies of C2N2(CH2) at the ambient pressure.

Table 3
Calculated elastic constants Cij (in GPa) for C2N2(CH2), C2N2(NH), c-BN, and B6O.

Structure Method BH GH EH mH GH=BH

C2N2(CH2) GGA 256 210 494 0.178 0.820
LDA 272 222 524 0.179 0.817

C2N2(NH) GGAa 276 265 600 0.137 0.960
LDAa 282 270 616 0.135 0.957

c-BN GGAb 376 390
B6O GGAb 231 218

a Ref. [19].
b Ref. [6].

Table 4
Calculated anisotropy factors A1;A2;A3 ;ABa;ABc ;AG;AB and directional bulk modulus
Ba ;Bb ;Bc (in GPa) of C2N2(CH2).

Method A1 A2 A3 ABa ABc Ba Bb Bc

GGA 1.1446 0.7301 0.6942 1.0742 1.8295 670 624 1104
LDA 1.1839 0.7507 0.6554 1.0715 2.0585 685 640 1317

Table 2
Calculated elastic constants Cij (in GPa) for C2N2(CH2), C2N2(NH), c-BN, and B6O.

Structure Method C11 C22 C33 C44 C55 C66 C12 C13 C23

C2N2(CH2) GGA 505 489 728 283 186 143 85 122 99
LDA 529 510 799 309 201 145 77 142 119

C2N2(NH) GGAa 597 567 804 335 221 222 89 107 79
LDAa 616 576 871 347 221 218 80 103 71

c-BN GGAb 786 445 172
B6O GGAb 603 459 179 109 50

a Ref. [19].
b Ref. [6].
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the elastic constants. For orthorhombic crystal, there are nine inde-
pendent elastic constants. The calculated results are shown in Ta-
ble 2. For comparison, the theoretical value of elastic constants of
C2N2(NH) [19], c-BN, and B6O [6] are also listed in Table 2. The cal-
culated elastic constants of C2N2(CH2) satisfy the orthorhombic
structural stability criteria, as can be expressed by the following
inequalities [28]: C11 > 0; C22 > 0;C33 > 0;C44 > 0;C55 > 0;C66 >

0; ½C11 þ C22 þ C33 þ 2ðC12 þ C13 þ C23Þ� > 0; ðC11 þ C22 � 2C12Þ > 0;
ðC11 þ C33 � 2C13Þ > 0; ðC22 þ C33 � 2C23Þ > 0, indicating that it is
mechanically stable at ambient pressure. To verify its stability fur-
ther, the phonon dispersion of C2N2(CH2) is calculated and shown
in Fig. 3, no imaginary phonon frequency was detected in the
whole Brillouin zone, indicating its dynamical stability at ambient
pressure.

The bulk modulus, shear modulus, Young’s modulus, and Pois-
son’s ratio, which are the most interesting elastic properties for
applications, often measured for polycrystalline materials when
investigating their hardness. Bulk modulus and shear modulus
can be obtained by using the relations given in Ref. [25]. Young’s
modulus and Poisson’s ratio can be calculated by the following
expressions:

EH ¼
9BHGH

3BH þ GH
; ð1Þ

mH ¼
3BH � 2GH

6BH þ 2GH
; ð2Þ

where the subscript H represents Hill approximation. The calculated
results are given in Table 3. The calculated bulk modulus is of
C2N2(CH2) is 256/272 GPa within GGA/LDA, which agree well with
that obtained from the third-order Birch–Murnaghan EOS fitting re-
sults listed in Table 1. The results of C2N2(NH) are also shown in Ta-
ble 3 for comparison. One can see that, the bulk modulus of
C2N2(CH2) is little smaller than that of C2N2(NH), indicating that
C2N2(CH2) is more compressible than C2N2(NH). This is in accor-
dance with the results shown in Fig. 2. G/B ratio can used to deter-
mine the relative directionality of the bonding in the material. The
calculated ratio G/B for C2N2(CH2) is 0.820, which is smaller than
that of C2N2(NH) at the GGA level. This shows that the directionality
of C–N bond in C2N2(CH2) is not as strong as that in C2N2(NH). Nev-
ertheless, the calculated mechanical properties show that
C2N2(CH2) is a potential hard material.

3.2.2. Elastic anisotropy
Elastic anisotropy can give a prediction of how the atoms ar-

range in each direction, the bonding properties, and some chemical
characters in different directions of materials. The shear aniso-
tropic factors provide a measure of the degree of anisotropy in
the bonding between atoms in different planes. the shear aniso-
tropic factor for the {100} shear plane between the < 011 > and
< 010 > directions is [29]

A1 ¼
4C44

C11 þ C33 � 2C13
: ð3Þ

For the {010} shear planes between < 101 > and < 001 > directions
it is

A2 ¼
4C55

C22 þ C33 � 2C23
ð4Þ

and for the {001} shear planes between < 110 > and < 010 > direc-
tions it is

A3 ¼
4C66

C11 þ C22 � 2C12
: ð5Þ

The shear anisotropy factors A1;A2, and A3 must be 1.0 for an isotro-
pic crystal. Any departure from 1.0 is a measure of the degree of
elastic anisotropy. The calculated results are shown in Table 4. It
can be seen that, the anisotropy of the {001} shear planes between
< 110 > and < 010 > directions is the largest. The bulk modulus
along the a-, b- and c-axis are defined as Bi ¼ iðdP=diÞ with i ¼ a; b
and c. Then the anisotropies of the bulk modulus along the a-axis
and c-axis with respect the b-axis can be expressed as ABa ¼ Ba=Bb

and ABc ¼ Bc=Bb. The calculated results are also listed in Table 4.
One can see that, the directional bulk modulus along the c-axis is
much larger than those along a- and b- axis.

To illustrate the elastic anisotropy in detail, it is worthy to study
the variation of Young’s modulus and shear modulus with



a b

Fig. 5. Orientation dependence of Young’s modulus (a) and orientation dependence of the shear modulus (b) in C2N2(CH2).

a b

Fig. 4. (a) Directional dependence of the Young’s modulus in C2N2(CH2), (b) The plane projections of the directional dependence of the Young’s modulus in C2N2(CH2).
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direction. The variation of Young’s modulus along an arbitrary ½hkl�
direction for orthorhombic symmetry can be written as [29]

E�1 ¼ s11a4 þ s22b
4 þ s33c4 þ 2s12a2b2 þ 2s23b

2c2 þ 2s13a2c2

þ s44b
2c2 þþs55a2c2 þ s66a2b2; ð6Þ

where a; b, and c is the direction cosine of the tensile stress direc-
tion, and s11; s22, etc., are elastic compliance constants which are gi-
ven by Ney [30]. The directional dependence of the Young’s
modulus is shown in Fig. 4(a), and the plane projections of the
directional dependence of the Young’s modulus in Fig. 4(b) for com-
parison. From Eq. (6), we can deduce the expressions of the orienta-
tion dependence of Young’s modulus when the tensile direction is
rotated on specific planes. When Young’s modulus for a tensile axis
is within the (001) plane, let h be the angle of between ½hk0� and
½1 00�. Then the orientation dependence of Young’s modulus can
be expressed as:

E�1 ¼ s11 cos4 hþ s22 sin4 hþ 2s12 sin2 h cos2 hþ s66 sin2 h cos2 h:

ð7Þ

When Young’s modulus for a tensile axis is within the (100) plane,
let h be the angle of between ½001� and ½0kl�. Then the orientation
dependence of Young’s modulus can be expressed as:
E�1 ¼ s22 sin4 hþ s33 cos4 hþ 1
4
ð2s23 þ s44Þ sin2 2h: ð8Þ

When Young’s modulus for a tensile axis is within the (010) plane,
let h be the angle of between [001] and ½h0l�. Then the orientation
dependence of Young’s modulus can be expressed as:

E�1 ¼ s11 sin4 hþ s33 cos4 hþ 1
4
ð2s13 þ s55Þ sin2 2h: ð9Þ

When Young’s modulus for a tensile axis is within the ð1�10Þ) plane,
let h be the angle of between [001] and ½hkl�. Then the orientation
dependence of Young’s modulus can be expressed as:

E�1 ¼ sin4 h

ða2 þ b2Þ2
a4s11 þ b4s12 þ a2b2ð2s12 þ s66Þ
h i

þ s33 cos4 h

þ sin2 h cos2 h

a2 þ b2 a2ð2s13 þ s55Þ þ b2ð2s23 þ s44Þ
h i

: ð10Þ

The calculated results are plotted in Fig. 5(a). One can see that, the
largest value of Young’s modulus is 686 GPa when the tensile axis is
in the [001] direction. The minimal value of 376 GPa is along the
[120] direction. The ratio Emax=Emin ¼ 1:82 is larger than that of
C2N2(NH) (1.48), indicating that there is a larger anisotropy in
C2N2(CH2). From Fig. 5(a), we can obtain the ordering of Young’s
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modulus when the tensile axis along some specific direction as:
E½001� > E½011� > E½100� > E½010� � E½101� > E½111� > E½110� > E½120�. This
means that the crystal is stiffer when deformed uniaxially along
the [001] direction.

The study of the dependence of the shear modulus on stress
direction is useful in understanding plastic deformation in
C2N2(CH2). We choose a shear plane ðhklÞ and vary the shear stress
direction ½uvw� within that plane. The axis normal to the ðhklÞ
plane is denoted as ½HKL�. Thus, the shear modulus on the ðhklÞ
shear plane with shear stress applied along ½uvw� direction can
be expressed as [31]

G�1 ¼ 4s11a2
1a

2
2 þ 4s22b

2
1b

2
2 þ 4s33c2

1c
2
2 þ 8s12a1a2b1b2

þ 8s23b1b2c1c2 þ 8s13a1a2c1c2 þ s44ðb1c2 þ b2c1Þ
2

þ s55ða1c2 þ a2c1Þ
2 þ s66ða1b2 þ a2b1Þ

2
; ð11Þ

where a1; b1; c1;a2; b2, and c2 are the direction cosines of the ½uvw�
and ½HKL� directions. For shear plane (001) with the shear stress
direction rotated from [100] to [010], the direction cosines are
a1 ¼ cosh;b1 ¼ sinh; c1 ¼ 0;a2 ¼ b2 ¼ 0, and c2 ¼ 1, where h is the
angle between the [100] and shear stress direction. From Eq. (11),
one can deduced the shear modulus can be expressed as
a

Fig. 7. Temperature (a) and Pressure (b) dependenc

a

Fig. 6. The calculated band structur
G�1 ¼ s55 þ ðs44 � s55Þ sin2 h: ð12Þ

For C2N2(CH2), s44 < s55, the shear modulus is the largest along [010]
and the smallest along [001].

When (100) is the shear plane, we rotate the shear stress direc-
tion from [001] to [010]. In this case, a1 ¼ 0; b1 ¼
sinh; c1 ¼ cosh;a2 ¼ 1; b2 ¼ c2 ¼ 0, then the shear modulus can be
obtained as

G�1 ¼ s55 þ ðs66 � s55Þ sin2 h: ð13Þ

Since in our case, s66 > s55, the shear modulus is the largest along
[001] and the smallest along [010].

For the shear plane (010) with the shear stress direction rotated
from [001] to [100],

G�1 ¼ s44 þ ðs66 � s44Þ sin2 h: ð14Þ

Due to s44 < s66, the shear modulus is the largest along [001] with
Gð010Þ½001�= 283 GPa and the smallest along [100] with Gð010Þ½1 0 0� =
143 GPa.

If the shear plane is ð1�10Þ, we rotate the shear stress from [001]
to [110], then a1 ¼ affiffiffiffiffiffiffiffiffiffi

a2þb2
p sin h; b1 ¼ bffiffiffiffiffiffiffiffiffiffi

a2þb2
p sin h; c1 ¼ cos h;a2 ¼

bffiffiffiffiffiffiffiffiffiffi
a2þb2
p ; b2 ¼ � affiffiffiffiffiffiffiffiffiffi

a2þb2
p ; c2 ¼ 0, where h is the angle between [001]
b

e of the Debye temperature for the C2N2(CH2).

b

e (a) and DOS (b) of C2N2(CH2).



Fig. 9. Temperature dependence of the heat capacity at different pressures for the
C2N2(CH2).
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and the shear stress direction, a and b are the lattice constants.
Then the shear modulus can be expressed as

G�1 ¼ sin2 h

ða2 þ b2Þ2
a2b2ð4s11 þ 4s22 � 8s12Þ þ ðb2 � a2Þ2s66

h i

þ cos2 h

a2 þ b2 a2s44 þ b2s55

� �
ð15Þ

The orientation dependence of the shear modulus for the four cases
discussed above is plotted in Fig. 5(b).

3.3. Electronic properties

To understand the mechanical properties of C2N2(CH2) on a fun-
damental level, the band structure and electronic densities of
states (DOS) of C2N2(CH2) were calculated at zero pressure within
GGA method, as shown in Fig. 6. It can be seen from Fig. 6(a) that,
C2N2(CH2) is insulator characterized by large direct energy gap of �
4.24 eV located at G point, which is slightly smaller than that of
C2N2(NH) (� 4.36 eV) [19]. It is known that the calculated band
gaps with DFT usually underestimate by 30–50%, the true band
gap must be larger than the calculated result. The wide band gap
means C2N2(CH2) can be a good optical material. The total DOS
and the partial wave DOSs projected onto different atoms at
0 GPa are plotted in Fig. 6(b). The main features of C2N2(CH2) can
be summarized as follows: (a) the peak present in the lower energy
part (�23 to �16.5 eV) of the DOS is mainly due to contributions of
the s electrons of N and C; (b) the states from �16.5 eV to Fermi
energy (0 eV) mainly originate from C–p and N–p orbitals with
slight contributions of C–s and H–s. Moreover, the partial DOS pro-
files for both C–p and N–p are very similar in the range of �16.5 to
0 eV, reflecting the significant hybridization between these two
orbitals. This fact also shows that a strong covalent interaction be-
tween the C and N atoms; (c) In the conduction band region of DOS,
the peaks are mainly superimposed by the C–p. Mulliken atomic
population, which is a useful tool in evaluating the nature bonds
in a compound. Although the absolute magnitudes of Mulliken
populations have little physical meaning, the relative values can
still offer some useful information [32]. The ionicity in C–H bond
is mainly featured by the charge transfer form H atom to C atom.
The number of charge transfer in two C2–H bonds is 0.23 and
a

Fig. 8. Pressure (a) and Temperature (b) dependence
0.22, respectively. N atom obtains 0.36 e from its three neighbored
C1 atoms. We thus conclude that the C–H and C–N bonds are mix-
ture of covalent and ionic characters.

3.4. Thermodynamic properties

The investigation on the thermodynamic properties of solids at
high pressure and high temperature is an interesting topic in the
condensed matter physics. The investigations on the thermody-
namic properties of the orthorhombic C2N2(CH2) under high tem-
perature and pressure are determined by the quasi-harmonic
Debye model [26]. It should be noted that the Debye model of pho-
non density of states is essentially a linear extrapolation of the
sound speed of acoustic branches but not optical branches in order
to get density of states. Since this model is very computationally
quick and easy, it has been successfully applied to predict the ther-
modynamic properties of some materials [33–35]. The model has
been described detailedly in Ref. [26]. The thermodynamic proper-
ties of the C2N2(CH2) are determined in the temperature range
b

of the Grüneisen parameter for the C2N2(CH2).
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Fig. 10. Temperature (a) and Pressure (b) dependence of the thermal expansion coefficient for the C2N2(CH2).
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from 0 to 2000 K where the quasi-harmonic model remains fully
valid. Meanwhile, the pressure effect is studied in the range 0–
100 GPa. In the quasi-harmonic Debye model, the Debye tempera-
ture and the Grüneisen parameter are two key quantities. The De-
bye temperature closely relates to many physical properties of
solids, such as specific heat, dynamic properties, and melting tem-
perature. The calculated relationships of Debye temperature on
pressure and temperature are plotted in Fig. 7. It is clear seen that,
Debye temperature decreases with temperature at certain pres-
sure. The lower the pressure is, the faster Debye temperature de-
creases. Varying temperature from 0 to 2000 K, Debye
temperature decreases 13.6% at 0 GPa and 4.0% at 100 GPa. From
Fig. 7(b), one can see that the Debye temperature increases monot-
onously at given pressure.

The Grüneisen parameter, which describes the alteration in a
crystal lattices vibration frequency, can reasonably predict the
anharmonic properties of a solid, such as the temperature depen-
dence of phonon frequencies and lattice volume. Usually, the Grün-
eisen parameter are positive and lie in the range 1:5� 1:0. The
calculated relationships of Grüneisen parameter on pressure and
temperature are plotted in Fig. 8. It is found that, Grüneisen param-
eter increases with temperature at a given pressure, but decreases
with pressure at a given temperature. Grüneisen parameter almost
decreases lineally with pressure. At low temperature (T < 300 K),
Grüneisen parameter is constant, as well as increases linearly with
temperature at high temperature (T > 500 K).

The temperature dependence of the calculated heat capacity Cv

and Cp at various pressures are shown in Fig. 9. Due to the anhar-
monic approximations of Debye model, the heat capacity Cv and Cp

increase rapidly with pressure. At low temperature (< 300 K), the
difference between Cv and Cp is slight, Cv is proportional to T3.
However, at high temperature, the Cv approaches a constant value,
Cp increases monotonously with increments of the temperature. It
is also interesting to note that the values of Cv follow the Debye
model at low temperature due to the anharmonic approximations.
However, the anharmonic effect on Cv is suppressed and the Cv is
close to a constant at sufficient high temperatures, obeying Dulong
and Petit’s Rule. In a word, one can see that the heat capacity in-
creases with the temperature at certain pressure and decreases
with the pressure at certain temperature. The influences of the
temperature on the heat capacity are much more significant than
that of the pressure on it. The thermal expansion coefficient a with
pressure and temperature for C2N2(CH2) are investigated, as shown
in Fig. 10. In Fig. 10(a), one can see that, a increase with increasing
temperature. At certain temperature, a decrease monotonically
with increasing pressure. The effects of pressure on the thermal
expansion coefficient are very small at low temperature, and the
effects increase with increasing the temperature.
4. Conclusions

The structural, electronic, elastic and thermodynamic proper-
ties of C2N2(CH2) are successfully obtained using first principles
calculations in combination with the quasi-harmonic Debye mod-
el. The calculated structural parameters agree well with the exper-
imental data and previous theoretical values. Our results show that
C2N2(CH2) has high bulk modulus and shear modulus, indicating
C2N2(CH2) is a potential low compressible and hard materials.
The directional dependence of the Young’s modulus in C2N2(CH2)
are investigated. The ordering of Young’s modulus when the tensile
axis along some specific direction is: E½001� > E½011� > E½100� >

E½010� � E½101� > E½111� > E½110� > E½120�. The shear modulus of
C2N2(CH2) is the largest on the (001) plane with [010] shear stress
direction and on (010) plane with the [001] shear stress direction.
Using the quasi-harmonic Debye model, the thermodynamic prop-
erties including the Debye temperature, Grüneisen parameter, the
heat capacity, and the thermal expansion coefficients of C2N2(CH2)
are predicted under high temperature and high pressure. High
pressure leads to a smaller Grüneisen parameter, heat capacity,
and thermal expansion coefficients at a given temperature. On
the contrary, high temperature leads to a larger Grüneisen param-
eter, a larger heat capacity, and a larger thermal expansion coeffi-
cient at certain pressure.
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