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The first-principles study on the elastic properties, elastic anisotropy and thermodynamic properties of
the orthorhombic OsB4 is reported using density functional theory method with the ultrasoft pseudo-
potential scheme in the frame of the generalized gradient approximation. The calculated equilibrium
parameters are in good agreement with the available theoretical data. A complete elastic tensor and
crystal anisotropies of the ultra-incompressible OsB4 are determined in the pressure range of 0e50 GPa.
By the elastic stability criteria, it is predicted that the orthorhombic OsB4 is stable below 50 GPa. By using
the quasi-harmonic Debye model, the heat capacity, the coefficient of thermal expansion, and the
Grüneisen parameter of OsB4 are also successfully obtained in the present work.

� 2012 Elsevier Masson SAS. All rights reserved.
1. Introduction

Transition metal borides have attracted considerable attentions
from both theoretical and experimental studies due to their
chemically inert and extreme hardness as well as high thermal
and electrical conductivity [1]. Recently, Kaner et al. have suggested
that the introduction of light and covalent-bond-forming elements
(B, C, N, and O) into the transition metal (TM) lattices with highly
valence-electron density is expected to have profound influences
on their chemical, mechanical, and electronic properties [2e4].
Based on this prospect, recent design of new intrinsically potential
superhard materials (Hv � 40 GPa) has concentrated on light
element TM compounds with high elastic moduli, in particular the
4d and 5d TM compounds [5e8]. Following the first synthesized
ultra-incompressible material OsB2 [3], extensive experimental and
theoretical investigations have been carried out for other TM
borides in view of their synthesis is more straightforward. Nowa-
days, some TM borides such as WB4, ReB2, WB2, RhB1.1, and IrB1.35
has been synthesized and were proposed to be superhard with
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claimed hardness of >40 GPa [9e12]. Among these superhard TM
borides, WB4 has the largest B contents reported hitherto. WB4
exhibits a unique three-dimensional boron covalent bonding
network which consisted of in-plane honeycomb B sublattice and
out-of-plane B2 dimer. This is responsible for its high hardness [13].

Up to now, the structures of osmium borides with various
stoichiometries (OsB, Os2B3, and OsB2) have been synthesized and
some related mechanical properties were also investigated. The
obtained results indicated that they are all only hard materials.
However, a promising material, osmium tetraboride (OsB4) within
WB4-type structure, was proposed to be superhard with claimed
hardness of 46.2 GPa but with a much low shear modulus of 52 GPa
through first-principles calculations [13]. Recently, Zhang et al. [14]
proposed an orthorhombic Pmmn structure for OsB4, which is
energetically much superior to the WB4-type structure. This Pmmn
structure consists of irregular OsB10 dodecahedrons connected by
edges and is stable against decompression into a mixture of Os and
B at ambient pressure. The elastic and electronic properties of this
orthorhombic structure are also explored at ambient conditions.
However, to our knowledge, the investigations on its elastic and
thermodynamic properties of the orthorhombic OsB4 under pres-
sures are least studied. Especially, the comprehensive analysis of
elastic characteristics (elastic constants, bulk and shear modulus,
etc.) under pressures can provide a deeper insight into the response
of the crystal to external forces, and obviously play an important
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role in determining the strength and hardness of materials. More-
over it is essential for many practical applications, such as load
deflection, thermoelastic stress, fracture toughness, anisotropic
character of the bonding, and structural stability [15]. The physical
properties under pressures and temperatures have important
guidable significances to accelerate the synthesis of OsB4 and other
TM borides.

Here, the aim of this paper is to perform a theoretical investi-
gation of structural, elastic and thermodynamic properties of OsB4
within orthorhombic Pmmn structure under pressures up to 50 GPa
by first-principles calculations. The elastic properties of ortho-
rhombic OsB4 under high pressure are investigated for the first
time, from which the elastic anisotropy are also determined. In
order to further investigate the OsB4, the thermodynamic proper-
ties, such as the heat capacity, thermal expansion, Grüneisen
parameters and so on are determined by the Debye model.

2. Computational methodology

2.1. Total energy electronic structure calculations

In the present work, density functional theory calculations are
performed with plane-wave ultrasoft pseudopotential [16] using
the generalized gradient approximation with the PerdeweWang
functional [17] as implemented in the CASTEP code [18]. The ionic
cores are represented by ultrasoft pseudopotentials for B and Os
atoms. The B: 2s2p1 and Os: 4p65d66s2 electrons are explicitly
treated as valence electrons. The electronic wave functions are
expanded in plane-wave basis set with cutoff energy of 540 eV, and
the special points sampling integration over the Brillouin zone was
employed by using the MonkhorstePack method with a grid of
0.03 �A�1. The total energy was well converged within 1 meV/atom
and this set of parameters assures the maximum force is 0.01 eV/�A,
the maximum stress is 0.02 GPa.

2.2. Elastic properties

The elastic constants are defined bymeans of a Taylor expansion
of the total energy, E (V, d), for the system with respect to a small
strain d of the lattice primitive cell volume V. The energy of
a strained system is expressed as follows [19]

EðV ; dÞ ¼ EðV0;0Þ þ V0

 X
i

sixidi þ
1
2
Cijdixidjxj

!
; (1)

where E (V0, 0) is the energy of the unstrained system with equi-
librium volume V0, si is an element in the stress tensor, and xi is
a factor to take care of Voigt index. It is known, there are nine
independent components of the elastic tensor for the orthorhombic
structure OsB4, i.e. C11, C12, C13, C22, C23, C33, C44, C55, and C66.

For the specific case of orthorhombic OsB4 phase, the isotropic
Reuss shearmodulusGR and the Voigt shearmodulus GV are [20e22]

GR¼
15

4ðS11þS22þS33Þ�4ðS12þS13þS23Þþ3ðS44þS55þS66Þ
; (2)

GV ¼ ðC11þC22þC33�C12�C13�C23Þþ3ðC44þC55þC66Þ
15

; (3)

and the isotropic Reuss bulk modulus BR and the Voigt bulk
modulus BV are defined as

BR ¼ 1
ðS11 þ S22 þ S33Þ þ 2ðS12 þ S13 þ S23Þ

; (4)
BV ¼ ðC11 þ C22 þ C33Þ þ 2ðC12 þ C13þC23Þ
9

; (5)

In Eqs. (2) and (4), the Sij are elastic compliance constants. The
arithmetic average of the Voigt and the Reuss bounds is called the
VoigteReusseHill (VRH) average and is commonly used to estimate
elastic moduli of polycrystals. Hence, The VRH averages for shear
modulus (G) and bulk modulus (B) are G ¼ (GR þ GV)/2 and
B ¼ (BR þ BV)/2. The Young’s modulus, E, and Poisson’s ratio, v, are
given by E ¼ (9BG)/(3B þ G) and n ¼ (3B � 2G)/(6B þ 2G).

The Debye temperature can be calculated from the elastic
constants using the average sound velocity vm, by the following
equation [23]

QD ¼ h
k

�
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4p

�
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M

��1
3

nm; (6)

where h is Planck’s constant, k is Boltzmann’s constant, NA is
Avogadro’s number, n is the number of atoms per formula unit,M is
the molecular mass per formula unit, and r is the density. The
average sound velocity vm is given by

nm ¼
"
1
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; (7)

where vt and vl are the transverse and longitudinal elastic wave
velocity of the polycrystalline materials and are given by Navier’s
equation [24].

2.3. Thermodynamic properties

The investigations on the thermodynamic properties of the
orthorhombic OsB4 under high temperature and pressure are
determined by the quasi-harmonic Debye model [25], in which the
phononic effect is considered. However, it should be noted that the
Debye model of phonon density of states is essentially a linear
extrapolation of the sound speed of acoustic branches but not
optical branches in order to get density states. In fact, the ther-
modynamic properties of the crystal can be obtained by treating
the lattice vibrations as quantized (phonons). However, this model
is very computationally quick and easy, which has been successfully
applied to predict the thermodynamic properties of somematerials
[26e28]. The model has been described in detail in elsewhere [25],
here, we give only a brief description as follows:

In the quasi-harmonic Debye model, the non-equilibrium Gibbs
function G*(V; P, T) is taken in the form of

G*ðV ; P; TÞ ¼ EðVÞ þ PV þ AVibðQðVÞ; TÞ; (8)

where E(V) is the total energy, PV corresponds to the constant
hydrostatic pressure condition, QðVÞ is the Debye temperature, and
the vibrational contribution AVib can be written as

AVibðQðVÞ; TÞ ¼ nkT
�
9
8
Q

T
þ 3ln

�
1� e�Q=T

�
� D

�
Q

T

��
; (9)

here DðQ=TÞ represents the Debye integral, n is the number of
atoms per formula unit. For an isotropic solid, Q is expressed as

Q ¼ Z
�
6p2V1=2n

�1=3
f ðsÞ

ffiffiffiffiffiffiffiffiffiffi
BS
k2M

r
; (10)

here V, M, n, and f(s) is the molar volume, molar mass, the number
of atom per formula unit, and a scaling function that depend on
Poisson’s ratio of the isotropic solid, respectively. The BS is the



Table 1
Calculated equilibrium lattice constants a0 (�A), b0 (�A), c0 (�A), equilibrium volume V0

(�A3/f.u.), EOS fitted bulk modulus B0 (GPa), and its pressure derivative B00 for the
Pmmn-OsB4 at 0 K and 0 GPa.

Source a0 b0 c0 V0 B0 B00

This work 7.106 2.888 4.006 82.199 291 4.327
Theoreticala 7.119 2.896 4.015 82.776 293 4.119

a Ref. [14].
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adiabatic bulk modulus, which is equal to the isothermal bulk
modulus BT in the Debye model, leading to the following equation:

BS ¼ BT ¼ V

 
d2E
dV2

!
(11)

where E is the total energy of the crystal at 0 K.
Therefore, the non-equilibrium Gibbs function G* as a function

of (V; P, T) can be minimized with respect to volume V as 
vG*ðV ; P; TÞ

vV

!
P;T

¼ 0: (12)

By solving Eq. (12), one can get the thermal equation of state
(EOS) V (P, T). The heat capacity CV, CP, and the thermal expansion
a are expressed as is given by

CV ¼ 3nk
�
4DðQ=TÞ � 3Q=T

eQ=T � 1

�
; (13)

Cp ¼ CV ð1þ agTÞ; (14)

a ¼ gCV
BTV

; (15)

where g is the Grüneisen parameter defined as

g ¼ �dln QðVÞ
dln V

: (16)
3. Results and discussion

3.1. Structural properties

The crystal structure of the OsB4 with Pmmn space group is
shown in Fig. 1. To calculate the equilibrium lattice constants and
bulk modulus, the total energy is calculated by varying the volume
for the Pmmn-OsB4. The calculated EeV data are fitted to the third-
order BircheMurnaghan equation of state (EOS) [29], and the
calculated equilibrium structure parameters, bulk modulus, and its
pressure derivative are tabulated Table 1 together with other
theoretical results for comparison. It is clear that our results agree
well with the recent work from the Ref. 14 using PAW þ GGA
method, and the mismatch of lattice parameter is within 0.3%.
Furthermore, the pressure dependence of the normalized param-
eters a/a0, b/b0, and c/c0 as a function of pressure for the Pmmn-
OsB4 is exhibited in Fig. 2, where a0, b0, and c0 is its value at T ¼ 0 K
Fig. 1. Crystal structure of the Pmmn-OsB4. The large and small spheres represent Os
and B atoms, respectively.
and P ¼ 0 GPa. By fitting the calculated data with least squares
method, we obtained their relationships at the temperature of 0 K
as the following relations:

a
a0

¼ 0:99985� 0:8438� 10�3P þ 3:65293� 10�6P2 (17)

b
b0

¼ 0:99991� 1:34� 10�3P þ 5:86437� 10�6P2 (18)

c
c0

¼ 0:99979� 1:05� 10�3P þ 4:45302� 10�6P2 (19)

It can be clear seen that the compression along the b-axis is the
largest, and the smallest compression is exhibited along the a-axis.
This indicates the clear elastic anisotropy of the Pmmn-OsB4. The
smallest compression along the a-axis can be attributed to the
strong covalent BeB bonding in B layers and BeOs bonding in
BOs10 dodecahedron along a-axis that has been clarified in our
previous work [14].

3.2. Elastic properties

The nine independent elastic constants of the Pmmn-OsB4 using
stressestrain relation derived from the method described above
and listed in Table 2. It is shown that our results are in good
agreement with data reported in Ref. [14] at 0 K and 0 GPa. Under
high pressure, the elastic constants Cij increase monotonically with
pressure (Fig. 3). Relatively, the slops for C44 and C66 are slower
when one carefully checks the augmental interval of these elastic
Fig. 2. The normalized parameters a/a0, b/b0, c/c0 as a function of the pressure for the
Pmmn-OsB4.



Fig. 3. The calculated pressure dependence of the elastic constants for the Pmmn-OsB4.
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constants. Moreover, these nine independent elastic constants Cij of
the Pmmn-OsB4 still satisfy the well-known Born stability criteria
[30] up to 50 GPa. As shown in Table 2, the calculated elastic moduli
also increase monotonically with pressure as expected. The ratio
between the bulk and the shearmodulus B/G are used to predict the
brittle or ductile behavior of materials. According to the Pugh
criterion [31], the ductile behavior is predicted when B/G > 1.75,
otherwise the material behaves in a brittle manner. As shown in
Table 2, the ration of B/G in the Pmmn-OsB4 increases with pressure
and reaches nearly 1.75 at 50 GPa. The results indicate that the
Pmmn-OsB4 is prone to brittleness below 50 GPa, and is strongly
prone to ductility above 50 GPa. Such a phenomenon was also
found in other transition metal borides [33,34]. Debye temperature
correlates with many physical properties of materials, such as
specific heat, elastic constants, and melting temperature. The
Debye temperatures are predicted deriving from elastic constants
under pressures and the result at 0 GPa for the Pmmn-OsB4 is 781 K,
which is close to that of the known intra-incompressible OsB2
(780 K) [32].

The elastic anisotropy of crystals can exert great effects on the
properties of physical mechanism, such as anisotropic plastic
deformation, crack behavior, and elastic instability. Hence, it is
important to calculate elastic anisotropy in order to improve its
mechanical durability [19]. The shear anisotropic factors provide
a measure of the degree of anisotropy in the bonding between
atoms in different planes. The shear anisotropic factor for the {100}
shear planes between the <011> and <010> direction is:

A1 ¼ 4C44
C11 þ C33 � 2C13

: (20)

For the {010} shear planes between the <101> and <001>
directions it is

A2 ¼ 4C55
C22 þ C33 � 2C23

; (21)

and for the {001} shear planes between the <110> and
<010 > directions it is

A3 ¼ 4C66
C11 þ C22 � 2C12

: (22)

For an isotropic crystal the factors A1, A2, and A3must be 1.0, while
any value smaller or greater than 1.0 is a measure of the degree of
elastic anisotropy. Moreover, for the orthorhombic crystal, the elastic
anisotropy which arises from the anisotropy of linear bulk modulus
was also considered in addition to the shear anisotropy. The direc-
tional bulk modulus along different crystallographic axes can be
defined as Bi ¼ iðdP=diÞ(i ¼ a, b, and c) in Ref. [19].

Using the relations mentioned above, the parameters about
elastic anisotropy are calculated and shown in Table 3. It is clear
Table 2
Calculated elastic constants Cij, bulkmodulus B, shear modulus G, Young’s modulus E
in unit of GPa of the Pmmn-OsB4. Also shown are B/G ratio and Debye temperatureQ
under pressure.

P C11 C22 C33 C44 C55 C66 C12 C13 C23 B G E B/G Q

0a 612 576 630 152 349 178 128 245 51 294 218 524 1.34
0 605 583 632 149 347 177 127 247 48 293 217 522 1.35 781
10 670 648 702 159 382 188 155 290 69 335 233 567 1.44 807
20 729 710 765 167 413 198 182 329 89 375 248 610 1.51 829
30 785 768 825 174 441 207 210 368 110 414 260 645 1.59 847
40 837 825 880 179 468 219 238 406 130 450 273 681 1.65 865
50 887 878 932 184 493 223 264 444 154 487 282 709 1.73 877

a Ref. [14].
that the Pmmn-OsB4 is elastic anisotropic. The shear anisotropy
results indicate that the elastic anisotropy for {010} shear planes
between the <101> and <001> directions is close to that of the
{001} shear planes between the <110> and <010> directions, but
larger than that of the {100} shear planes between the <011> and
<010> directions. The smaller shear anisotropy within {100} shear
planes can be explained by the orderly manner of BOs10 dodeca-
hedrons along [001] directions. This result also demonstrates that
the {010} and {001} shear planes are easier to be cleavage planes
among these principal planes. Moreover, it can be seen that the A1
remains nearly invariant on the whole, A2 increases with increasing
pressure, and A3 decreasewith increasing pressure. Meanwhile, it is
interesting to note that the directional bulk modulus Ba along the a-
axis is largest when compared to the Bb and Bc, which is in agree-
ment with the pressure dependence of the normalized lattice
parameters (see Fig. 2). However, this result is not consistent with
the calculated elastic constants values of C11 and C33 (see Table 2).
This differentia can be explained by the definition of the directional
bulk modulus which is proportional to both lattice parameters and
the pressure dependence of the lattice parameters. The lattice
constant a is almost 1.8 times larger than c for the Pmmn-OsB4,
although the elastic C33 is little larger than C11.

An illustrative way of describing the elastic anisotropy is a three-
dimensional surface representation showing the variation of elastic
moduluswith crystallographicdirection.Thisdirectional dependence
of the Young’s modulus E for orthorhombic crystal is given by [19]:

1
E

¼ l41S11 þ l42S22 þ l43S33 þ 2l21l
2
2S12 þ 2l21l

2
3S13 þ 2l22l

2
3S23

þ l21l
2
2S66 þ l21l

2
3S55 þ l22l

2
3S44 (23)

where Sij are the elastic compliance constants and l1, l2, and l3 are
the direction cosines. Fig. 4 illustrate the directional dependence of
the Pmmn-OsB4 in the elastic modulus calculated using the
Table 3
Calculated anisotropy factors A1, A2, and A3 and the directional bulk modulus Ba, Bb,
Bc (in GPa) of the Pmmn-OsB4 under pressure.

P Ba Bb Bc A1 A2 A3

0 1118.4 700.3 889.4 0.802 1.240 0.758
10 1284.2 798.3 1020.7 0.803 1.261 0.746
20 1436.6 892.8 1139.6 0.799 1.274 0.737
30 1588.9 984.4 1254.8 0.798 1.286 0.731
40 1742.2 1074.3 1362.3 0.791 1.296 0.739
50 1877.6 1161.2 1478.8 0.790 1.313 0.722



Fig. 5. Temperature dependence of the heat capacity at different pressures for the
Pmmn-OsB4.
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compliance constants computed from the present calculation. The
projection of the Young’s modulus along ab, ac, and bc planes are
also shown in Fig. 4. It can be seen that Fig. 4(a) shows a large
deviation from a spherical shape and hence one can conclude that
the Pmmn-OsB4 exhibit a high degree of anisotropy. As expected,
the Pmmn-OsB4 keeps it strong elastic anisotropy alone different
planes with the increasing pressure as shown in Fig. 4(b) and (c).

3.3. Thermodynamics properties

The thermodynamic properties of the Pmmn-OsB4 are deter-
mined in the temperature range from 0 K to 1800 K where the
quasi-harmonicmodel remains fully valid, meanwhile, the pressure
effect is studied in the range 0e50 GPa. The temperature-
dependent behavior of the calculated constant pressure heat
capacity CP and constant volume heat capacity CV at various pres-
sures P are shown in Fig. 5. It clearly shows that the difference
between CP and CV is very small at low temperatures (<400 K),
meanwhile, the CP and CV increase rapidly with pressure that this is
due to the anharmonic approximations of the Debye model.
However, the anharmonic effect on CV is suppressed at high
temperatures, and the CV approaches a constant value called as
DulongePetit limit (CV (T) w 3R for mono atomic solids) and the CP
still increases monotonously with increments of the temperature.
In addition, one can also see that both the CP and CV increase
with the temperature at the given pressure and decrease with
the pressure at the given temperature, the influences of the
Fig. 4. Illustration of directional dependent Young’s modulus of the Pmmn-OsB4 (a), and the
(b), ac plane (c), and bc plane (d).
temperature on the heat capacity are much more significant than
that of the pressure on them.

The pressures and temperatures’ dependences of the thermal
expansion coefficient a for the Pmmn-OsB4 are also illustrated in
Fig. 6. It is shown that the expansion coefficient a increases sharply
at low temperatures especially at 0 GPa and gradually reaches to
projections of the directional dependent Young’s modulus in different planes: ab plane



Fig. 6. Pressure (a) and temperature (b) dependence of the thermal expansion coefficient a for the Pmmn-OsB4.
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a linear increase at high temperature in Fig. 6(b). The variations of
thermal expansion coefficient with pressures become gently. At
a given temperature, the thermal expansion coefficient decreases
strongly with pressures and remains very smoothly at high
temperatures and high pressures. It can be found that the thermal
expansion coefficient a converges to a constant value at high
temperatures and pressures. These results are in accordance with
the results of the Debye theory which applied to many kinds of
materials.
Fig. 7. Pressure (a) and temperature (b) dependence o
The Grüneisen parameter could describe the alteration in
vibration of a crystal lattice based on the increase or decrease in
volume as a result of temperature change. Recently, it has been
widely used to characterize and extrapolate the thermodynamic
properties of materials at high pressures and high temperatures
such as the temperature dependence of phonon frequencies and
line-widths. Grüneisen parameter [35] is dominated by lower-
frequency transverse modes at low temperatures. In Fig. 7, we
have plotted the Grüneisen parameter g of the Pmmn-OsB4 at
f the Grüneisen parameter g for the Pmmn-OsB4.
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various temperatures and pressures. It can be observed that the
g decreases dramatically with pressure at given temperature in
Fig. 7(a). Meanwhile, at higher temperatures, the g decreases more
rapidly with the increasing pressure. As shown in Fig. 7(b), at fixed
pressure (T > 600 K), the g increases monotonously with temper-
ature. These results are due to the fact that the effect of temperature
on the Grüneisen parameter g is not as significant as that of pres-
sure, and there will be a large thermal expansion at a low pressure.
4. Conclusion

In summary, the structural, elastic, and thermodynamic prop-
erties of the ultra-incompressible orthorhombic Pmmn structure of
OsB4 under pressures have been predicted by first-principles
calculations in combination with the quasi-harmonic Debye
model. The obtained results of the ground state structural proper-
ties and equation of state are in good agreement with previous
theoretical calculations. The elastic constants Cij, polycrystalline
aggregate elastic moduli, Debye temperature, and the elastic
anisotropies of the Pmmn-OsB4 under high pressures are also pre-
dicted for the first time. The results indicated that the Pmmn-OsB4
is prone to brittleness below 50 GPa and exhibits larger elastic
anisotropy with increasing pressure. In addition, some basic ther-
modynamical quantities such as the heat capacity (CV and CP),
thermal expansion coefficient a, and Grüneisen parameter g are
calculated systematically based on the quasi-harmonic Debye
model at the pressure of 0e50 GPa and temperature of 0e1800 K,
and the results are also interpreted. We hope that our results will
stimulate further experimental and theoretical works on this
technologically material in the future.
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