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a b s t r a c t

First principles calculations are performed to investigate the structural, mechanical, electronic, and ther-
modynamic properties of BeB2C2. Our calculated lattice parameters are in good agreement with the
experimental data. Orthorhombic BeB2C2 phase is found to be mechanically stable at ambient pressure.
The Young’s modulus and shear modulus as a function of crystal orientation for the BeB2C2 have been sys-
tematically investigated. Further mechanical properties demonstrated that BeB2C2 is strongly prone to
brittle and possesses high Vickers hardness of 26.5–28.6 GPa. Density of states and electron topological
analysis show that chemical bonding among Be, B, and C atoms in BeB2C2 is a complex mixture of cova-
lent and ionic characters. Based on the quasi-harmonic Debye model, the dependence of Debye temper-
ature, Grüneisen parameter, heat capacity, and thermal expansion coefficient on the temperature and
pressure are systematically explored in the whole pressure range from 0 to 20 GPa and temperature
range from 0 to 1200 K.

Crown Copyright � 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

The chemistry of boron-containing compounds is particularly
rich and offers an extremely broad variety of topologies [1]. Phys-
ical properties such as superconductivity, hardness, neutron scat-
tering length, and thermoelectricity have made boron-containing
compounds attractive to materials research and for applications
[2]. The exciting discovery in 2001 that the well-known compound
MgB2 with an unusually high transition temperature (Tc = 39 K) [3]
triggered an enormous interest in compounds with structurally
similar features, namely graphite-like layers. In the case of the
MB2C2 phases (M = alkaline-earth or rare earth metal), for instance,
the recent discovery of various potentially interesting properties
has revived the interest of the scientific community. The prediction
of high temperature superconductivity as high as 120 K in hole
doped MgB2C2 [4], which containing B–C layers isoelectronic to
graphite, fueled the research activities in this field even more.
The superconductivity at low temperature has also been reported
for YB2C2 and LuB2C2 as well as the hole-doped LixBC (x = 0.5)
[5–7]. Although the properties of this family of compounds have
been widely investigated, some of their structures are still debated,
especially with respect to the position of B atoms versus C atoms
(the so-called ‘‘coloring problem’’) [8].

BeB2C2 is the first boride carbide with slipped 63 B/C layers as in
graphite. This beryllium diboride dicarbide is one of two com-

pounds that were described in the Be–B–C system about 40 years
ago. Its structure was first described in 1966 [9], but has only re-
cently been definitely resolved [10]. This was achieved by a combi-
nation of X-ray power diffractometry on the basis of synchrotron
data, and experimental as well as theoretical determination of
the energy loss near edge structures (ELNES). DFT calculations have
confirmed that the BeB2C2 adopts the orthorhombic Pmmn (No. 59,
Z = 2, a = 613.42 pm, b = 542.20 pm, and c = 469.28 pm) structure.
The observed g1g6 � Be coordination by B and C atoms is reminis-
cent of the g1g6 metal-organic compound [Be(C5H5)2] [11]. Similar
to the LixBC mentioned above, the superconducting Tc of Be2BxC1�x

is predicted to increase with boron concentration with a value of
3–8 K at x = 0.25 and a plateau of 5–13 K for x > 0.4 [12]. Compared
to this new determined orthorhombic BeB2C2 phase, the high pres-
sure behaviors of the LiBC and MgB2C2, both containing B–C layers
isoelectronic to graphite, have been investigated in detail in many
experimental and theoretically work [13–16]. LiBC was experimen-
tally subjected to very high pressures in a diamond anvil cell [14],
which revealed that the crystal structure of LiBC remains stable up
to 60 GPa. For MgB2C2, a high-pressure orthorhombic Pnnm phase
was synthesized and structurally characterized [16]. However, the
detailed physical properties, such as elastic constants, electronic
properties, and thermodynamic of the BeB2C2 are least studied at
ambient conditions as well as high pressure and high temperature
so far. Therefore, as a novel kind of beryllium boride carbide phase,
one might expect excellent physical properties mentioned above.
In the present work, using first principles total energy calculations,
the electronic properties and bonding scheme of BeB2C2 are fully
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discussed. Moreover, the Young’s modulus and shear modulus as a
function of crystal orientation for BeB2C2 have been systematically
investigated. The thermodynamic properties, such as the heat
capacity, thermal expansion, Grüneisen parameters and so on are
investigated by the quasi-harmonic Debye model implemented in
Gibbs program [17].

2. Computational methods

The density functional theory (DFT) calculations have been per-
formed within generalized gradient approximation (GGA) [18], as
implemented in the Vienna ab initio simulation package [19]. The
electron and core interactions were included by using the frozen-
core all-electron projector augmented wave (PAW) method [20],
with Be: 1s22s2, B: 2s22p1, and C: 2s22p2 treated as the valence elec-
trons. The convergence tests used a kinetic energy cutoff of 520 eV
for the calculations. The special points sampling integration over
the Brillouin zone was employed by using the Monkhorst–Pack
method [21] with a grid of 0.03 Å�1 to obtain well converged total
energy within 1 meV/atom. During the structural optimizations, all
forces on atoms were converged to the order of 0.001 eV/Å, and the
external stresses were reduced to be less than 0.01 GPa. Crystal
orbital Hamiltonian population (COHP) [22] was used for bond
analysis, as implemented in the SIESTA package [23]. The elastic
constants were calculated from evaluation of stress tensor gener-
ated small strain, and the bulk modulus, shear modulus, Young’s
modulus, and Poisson’s ratio were thus derived from the Voigt–
Reuss–Hill approximation [24]. The quasi-harmonic Debye model
was applied to investigate the lattice thermal expansion and fur-
ther details of this procedure can be found elsewhere [17,25–26].

3. Results and discussion

3.1. Structural properties

The crystal structure of Pmmn–BeB2C2 is shown in Fig. 1. The B/
C layers are planar, as shown in Fig. 1a. The Pmmn structure

consists of a fundamental building block: the g1g6 � Be polyhe-
drons (Fig. 1b), which are pointing alternately upward and down-
ward along a-axis (Fig. 1c). To calculate the equilibrium lattice
parameters, the total energy is calculated by varying the volume
for the Pmmn–BeB2C2. The calculated E–V data are fitted to the
third-order Birch–Murnaghan equation of state (EOS) [27], and
the calculated equilibrium structure constants and bond lengths
are listed in Table 1 together with available experimental data
for comparison. It is clear that the predicted lattice constants and
bond lengths of the Pmmn–BeB2C2 are in excellent with those of
experimental results in Table 1. This confirms the accuracy and
reliability of the computational procedure employed here. In order
to provide some insight into the pressure behavior of BeB2C2, the
pressure dependences of the normalized parameters a/a0, b/b0,
and c/c0 as a function of pressure for the BeB2C2 are calculated,
where a0, b0, and c0 is its value at T = 0 K and P = 0 GPa. By fitting
the calculated data with least squares method, we obtained their
relationships at the temperature of 0 K as the following relations:

a=a0 ¼ 0:99983� 3:62� 10�3P þ 0:32899� 10�6P2 ð1Þ

b=b0 ¼ 0:99998� 1:12� 10�3P þ 7:81124� 10�6P2 ð2Þ

c=c0 ¼ 0:99997� 1:12� 10�3P þ 7:80587� 10�6P2 ð3Þ

It can be clear seen that the compression along the a-axis is the
largest, and the similar compression behaviors are exhibited along
the b-axis and c-axis in this Pmmn structure. This indicates the
clear elastic anisotropy of the Pmmn-BeB2C2.

3.2. Mechanical properties

Recently, Kaner et al. [28] have pointed out that the compounds
of beryllium with other light elements (B, C, N, and O) may form
alternative superhard materials. Earlier theoretical predictions
[29–32] have demonstrated that the B12N2Be, Be3N2, and BeCN2

are potential superhard materials with excellent mechanical prop-
erties and high hardness. Therefore, the mechanical properties of
this novel beryllium-based compound are highly demanded. By
strain–stress method, nine independent zero pressure elastic con-
stants Cij for Pmmn–BeB2C2 were calculated in order to check its
mechanical stability. Table 2 lists the calculated elastic constants
Cij at ambient pressure along with theoretical values of BeCN2 for
comparison. The elastic stability is a necessary condition for a sta-
ble crystal. For a stable orthorhombic structure, Cij has to satisfy
the elastic stability criteria [33]: C11 > 0, C22 > 0, C33 > 0, C44 > 0,
C55 > 0, C66 > 0, C11 + C22 + C33 + 2(C12 + C13 + C23) > 0, (C11 + C22 �
2C12) > 0, (C11 + C33 � 2C13) > 0, and (C22 + C33 � 2C23) > 0. As shown
in Table 2, these conditions are clearly satisfied for orthorhombic
stability, confirming that Pmmn–BeB2C2 is mechanically stable. In
addition, the calculated results of BeB2C2 showed that the elastic
constants possess the trend C11 < C22 � C33, indicating the anisot-
ropy of the elasticity. The implication of this trend is that the bond-
ing between nearest neighbors along the {100} planes are weaker
than that along the {010} and {001} planes, which agree with the
pressure dependence of the normalized lattice parameters men-
tioned above. However, the calculated elastic constants of BeB2C2

are smaller than those of BeCN2, indicating that the Pmmn–BeB2C2

may be common hard material.
Like the elastic constants, the bulk modulus, shear modulus,

and Young’s modulus contain information regarding the hardness
of a material with respect to various types of deformation. Bulk
modulus B measures the resistance of a material to volume
changes and provides an estimate of its response to a hydrostatic
pressure, shear modulus G describes the resistance of a material
to shape change, and Young’s modulus E measures the resistance

Fig. 1. Projections of the unit cell of BeB2C2 along the crystallographic a axis (a), the
g1g6 � Be polyhedrons (b), and polyhedral views of the BeB2C2 (c). The large,
middle, and small spheres represent C, B, and Be atoms, respectively.
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against uniaxial tensions. These are important parameters for
defining the mechanical properties of a material. For engineering
applications that make use of single crystals, it is necessary to
know the values of bulk modulus, Young’s modulus, and shear
modulus as a function of crystal orientation. As outlined by Panda
et al. [34] and He et al. [35], executing the appropriate coordinate
system transformations for the compliances allows the determina-
tion of the variation of bulk modulus, Young’s moduli, and shear
modulus with crystallographic direction, [uvw], for a given crystal-
lographic plane, (hkl), containing these directions, (i.e., B[uvw], E[uvw],
and G(hkl)[uvw]) are obtained. For orthorhombic BeB2C2, the bulk
modulus B and Young’s modulus E can be expressed as:

B�1 ¼ ðs11 þ s12 þ s13Þa2 þ ðs12 þ s22 þ s23Þb2 þ ðs13 þ s23 þ s33Þc2

ð4Þ

E�1 ¼ s11a4 þ s22b
4 þ s33c4 þ 2s12a2b2 þ 2s23b

2c2 þ 2s13a2c2

þ s44b
2c2 þþs55a2c2 þ s66a2b2 ð5Þ

where a, b, and c are the direction cosines of [uvw] direction, and
s11, s22, etc., are elastic compliance constants which are given by
Ney [36]. The shear modulus G on the (hkl) shear plane with shear
stress applied along [uvw] direction is given by:

G�1 ¼ 4s11a2
1a

2
2 þ 4s22b

2
1b

2
2 þ 4s33c2

1c
2
2 þ 8s12a1a2b1b2

þ 8s23b1b2c1c2 þ 8s13a1a2c1c2 þ s44ðb1c2 þ b2c1Þ
2

þ s55ða1c2 þ a2c1Þ
2 þ s66ða1b2 þ a2b1Þ

2 ð6Þ

where a1, b1, c1, a2, b2, c2 are the direction cosines of the [uvw] and
[HKL] directions in the coordinate systems, where the [HKL] denotes
the vector normal to the (hkl) shear plane.

The three-dimensional surface representations showing the
variation of the bulk modulus and Young’s modulus are plotted
in Fig. 2a and b, and the plane projections (ab plane and bc plane)
of the directional dependence of the bulk modulus and Young’s
modulus are given in Fig. 2c and d for comparison, respectively.
It can be clearly seen that BeB2C2 exhibit a pronounced anisotropy,
with the nonspherical nature in Fig. 2a and b. Moreover, while in-
plane anisotropy in bc plane is nonexistent, a significant in-plane
elastic anisotropy in ab plane is revealed. In order to have a better
understanding of the origin of the changes in Young’s modulus
along different directions, we have calculated the orientation
dependence of Young’s modulus when the tensile axis within spe-
cific planes. The obtained results for BeB2C2 are plotted in Fig. 3a. It
can be clear seen that the Young’s modulus on the (011) plane is
independent of tensile stress direction, which is also in agreement
with the results shown in Fig. 2c. For the orientation dependence of

Young’s modulus from [100] (h = 0�) to [010] (h = 90�) on the (001)
plane, the BeB2C2 possess a maximum of E[010] and a minimum of
E[110]. For the (010) plane in the Fig. 3a displays the variation of
Young’s modulus with Emax along [001] directions and Emin along
[101] directions. For the ð1 �10Þ plane Young’s moduli E behave
again very similar for the directions between [001] and [110] with
minima of E[110] and maximum of E[001]. Therefore, the ordering of
Young’s modulus as a function of the principal crystal tensile [uvw]
for BeB2C2 is: E[1 0 1] � E[1 1 0] < E[1 1 1] < E[1 0 0] < E[0 0 1]. Meanwhile,
the crystallographic characteristics for the shear modulus G are
summarized in Fig. 3b. For shear plane (001) with the shear stress
direction rotated from [100] to [010], the direction cosines are
a1 = cosh, b1 = sinh, c1 = 0, a2 = b2 = 0, and c2 = 1, where h is the
angle between the [100] and shear stress direction. From Eq. (6),
one can deduce the shear modulus can be expressed as
G�1 = s55 + (s44 � s55) sin2h. For BeB2C2, s44 < s55, the shear modulus
is the largest along [010] and the smallest along [001]. When
(100) is the shear plane, we rotate the shear stress direction from
[001] to [010]. In this case, a1 = 0, b1 = sinh, c1 = cosh, a2 = 1,
b2 = c2 = 0, then the shear modulus can be obtained as G�1 = s55 +
(s66 � s55)sin2h. Since in our case, s66 = s55, then G�1 = s55, which
means that within (100) plane, the shear modulus of BeB2C2 is
nearly independent of the shear stress direction. For the shear
plane (010) with the shear stress direction rotated from [001] to
[100], G�1 = s44 + (s66 � s44)sin2h. Due to s44 < s66, the shear modu-
lus is the largest along [001] with G(010)[001] = 305 GPa and the
smallest along [100] with G(010)[100] = 73 GPa. Similarly, the shear
modulus within ð1 �10Þ is also plotted in Fig. 3b with the shear
stress direction rotated from [001] to [110]. It can be seen from
the Fig. 3b that, the shear modulus is the smallest on the (100)
plane and almost independent of shear direction. This means that,
(100) plane may be the cleavage plane of Pmmn–BeB2C2.

Using the calculated elastic constants Cij, the bulk modulus BH

and shear modulus GH for the corresponding polycrystalline aggre-
gate are thus determined by the Voig–Reuss–Hill approximation
method [24]. In addition, the Young’s modulus EH and Poisson’s
ratio vH are obtained in the light of the following equations: EH = 9-
BHGH/(3BH + GH) and vH = (3BH � 2GH)/(6BH + 2GH). The calculated
bulk modulus, shear modulus, Young’s modulus, and Poisson’s ra-
tio are given in Table 2. It can be seen that BeB2C2 exhibits a much
smaller bulk modulus of 195 GPa than those of BeCN2, suggesting
an low incompressible character. The shear modulus of a material
quantifies its resistance to the shear deformation. However, the
calculated shear modulus of BeB2C2 is 162 GPa, which is also
smaller than those of BeCN2, but larger than the theoretical value
of known superhard WB4 (104 GPa) [37]. The ratio between the
bulk and the shear modulus B/G are used to predict the brittle or
ductile behavior of materials. According to the Pugh criterion

Table 1
Calculated equilibrium lattice parameters, a0, b0, c0, bond length (in Å), and volume V0 (in Å3 per f.u.) for BeB2C2.

a0 b0 c0 V0 dB–C dBe–C dB–C

This work 6.134 5.433 4.701 39.175 1.543–1.596 1.811–1.971 2.021–2.057
Experimentala 6.134 5.422 4.693 39.021 1.544–1.594 1.811–1.975 2.018–2.068

a Ref. [10].

Table 2
Calculated elastic constants Cij, bulk modulus BH, shear modulus GH, and Young’s modulus EH in unit of GPa. Also shown are Poisson’s ratio vH and BH/GH ratio.

Structure C11 C22 C33 C44 C55 C66 C12 C13 C23 BH GH EH vH BH/GH

Pnnm-BeB2C2 264 738 741 305 73 73 2 1.5 132 195 162 381 0.175 1.203
CH-BeCN2

a 641 565 384 361 101 206 321 302 689 0.142 1.065
WU-BeCN2

a 741 670 804 281 265 322 143 63 80 309 298 678 0.135 1.037

a Ref. [32].
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Fig. 2. Three-dimensional surface representations of the bulk modulus (a) and Young’s modulus (b) in BeB2C2. The plane projections (ab plane and bc plane) of the directional
dependence of the bulk modulus (c) and Young’s modulus (d).

Fig. 3. Orientation dependence of the Young’s modulus (a) and orientation dependence of the shear modulus (b) in BeB2C2.
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[38], the ductile behavior is predicted when B/G > 1.75, otherwise
the material behaves in a brittle manner. It can be clearly seen in
Table 2 that the BeB2C2 is strongly prone to brittle with respect
to the value of BH/GH (1.203), being smaller than 1.75. This is also
the case for BeCN2. Furthermore, the Vickers hardness of BeB2C2

is estimated by Šimůnek model [39], in which the hardness of
the idea single crystal is assumed to be proportional to the bond
strength and to their number in the unit cell. An alternate empiri-
cal formula for hardness prediction proposed by Chen et al. [40]
was also considered for comparison. According to the Šimůnek
model and Chen model, Vickers hardness of BeB2C2 is speculated
to be 26.5 GPa and 28.6 GPa, respectively, indicating a potentially
hard material.

3.3. Electronic properties

In order to elucidate the origin of the mechanical properties of
BeB2C2 on a fundamental level, we show the calculated total and
partial density of states (DOSs) in Fig. 4. As shown in Fig. 4a, the
semiconductor nature of BeB2C2 is characterized by large energy
gap of �0.44 eV, which is in agreement with previous values pre-
dicted by the FP-LAPW method within the WIEN2 K codes. [10]
Moreover, we could see three groups of states, depicted as I, II,
and III in the valence band region. From inspection of its partial
DOS curves, Part I and part II are mainly dominated by C–s states
mixed with contributions of B–s states. Part III is characterized
by a mixture of B–p and C–p states as well as small Be–p states.
The electrons of B–s and B–p states have a significant hybridization
with C–s and C–p states from the �15 eV up to Fermi level (EF), sig-
nifying the strong B–C covalent bonding nature in B/C layers within
bc plane. Moreover, another Be–C and Be–B covalent bonding nat-
ure can be seen from their partial DOS profiles from �15 eV to
�5 eV, although not as strong as B–C bonds. We have also
calculated the crystal orbital Hamilton population (COHP) to
investigate the chemical bonding of BeB2C2. The COHP analysis,

as a partitioning scheme for the band structure energy in terms
of the orbital-pair contributions, can provide a quantitative mea-
sure of bond strengths. According to the original definition of the
COHP, the negative and positive energy regions in the COHP curves
correspond to the bonding and antibonding interactions, respec-
tively. The COHP curves of B–C, Be–B, and Be–C bonds for BeB2C2

are shown in Fig. 5. It can be seen that B–C interactions are bonding
in the energy regions below EF in Fig. 5a. The Be–B and Be–C inter-
actions are bonding in the energy regions from �15 eV to � �5 eV
and turn out to be antibonding in the energy region from � �5 eV
to EF. In order to describe the ionic/covalent character quantita-
tively and more clearly, electron topological analysis [41] are per-
formed. Due to B–C distance in B/C layers is 1.543 � 1.596 Å, which
is close to the C–C bond length in diamond (1.55 Å). The properties
of the bond critical points (BCPs) of the adjacent B and C atoms in
B/C layers were calculated. The B–C bonding has a nature of the
shared interaction because the BCP has a negative Laplacian value
with large local electron density of 1.160 � 1.220, which is compa-
rable to that of diamond (1.60) [42], indicating that indeed the
strong B–C covalent bonding nature. The charge (Q) enclosed with-
in the Bader volume (V) is a good approximation to the total elec-
tronic charge of an atom. Based on the calculated data for BeB2C2

per f.u. in Table 3, we find that about 1.6465 and 3.5786 electrons
transfer from Be and B atoms to C atoms. We thus conclude that
the chemical bonding among Be, B, and C atoms in BeB2C2 is a com-
plex mixture of covalent and ionic characters.

3.4. Thermodynamic properties

The investigation on the thermodynamic properties of solids at
high pressure and high temperature is an interesting topic in the
condensed matter physics. Compared to the LiBC and MgB2C2,
there are very limited theoretical works on the thermodynamic
properties for BeB2C2 at high pressure and high temperature. The
thermal properties of BeB2C2 are determined in the temperature
range from 0 to 1200 K, where the quasi-harmonic model remains
fully valid [10,43]. The pressure effect is investigated in the range
of 0–20 GPa. In the quasi-harmonic Debye model, the Debye tem-
perature H and the Grüneisen parameter c are two key quantities.
The Debye temperature closely relates to many physical properties
of solids, such as specific heat, dynamic properties, and melting
temperature. The Grüneisen parameter describes the anharmonic
effects in the vibrating lattice, and it has been widely used to char-
acterized and extrapolate the thermodynamic behavior of a mate-
rial at high pressure and high temperature. The Debye temperature
and the Grüneisen parameter at various temperatures (0, 300, 600,
and 1200 K) and different pressures (0, 5, 10, 15, and 20 GPa) are
listed in Table 4. It is found that, at certain temperature, as pres-
sure increases, Debye temperature H increases, and the Grüneisen
parameter c decreases. When the applied temperature increases
from 0 to 1200 K, the Debye temperature H decreases by 11.33%,
8.57%, 6.90%, 5.75%, and 4.92% at 0, 5, 10, 15, and 20 GPa, respec-
tively. When the applied pressure increases from 0 to 20 GPa, the
Grüneisen parameter c decreases by 15.57%, 15.86%, 16.87%, and
20.62% at 300, 600, 900, and 1200 K, respectively.

Heat capacity belongs to one of the most important thermody-
namic properties of solids. It is intimately related to the tempera-
ture dependence of fundamental thermodynamic functions, and it
is of key importance for linking thermodynamics with microscopic
structure and dynamics. The calculated heat capacity at constant
pressure CP and heat capacity at constant volume CV with the tem-
perature and pressure are shown in Fig. 6. The difference between
CP and CV is very small at low temperatures (T < 300 K). However,
at high temperatures, the CV approaches a constant value, CP in-
creases monotonously with increments of the temperature. It is
also interesting to note that the values of CV follow the Debye mod-

Fig. 4. Total and partial densities of states of BeB2C2 at 0 GPa. The vertical dashed
line denotes the Fermi level at zero.
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el at low temperature due to the anharmonic approximations.
However, the anharmonic effect on CV is suppressed and the CV is
close to a constant at sufficient high temperatures, obeying Dulong
and Petit’s Rule. In a word, one can see that the heat capacity in-
creases with the temperature at the same pressure and decreases
with the pressure at the same temperature. The influences of the
temperature on the heat capacity are much more significant than
that of the pressure on it. The thermal expansion coefficient a
dependence on temperature and pressure is presented in Fig. 7.
From Fig. 7, we can see that the thermal expansion coefficient
a increases quickly with temperature at T < 600 K under 0 GPa,
whereas at constant temperature, for instance T = 600 K, it changes
linearly with pressure following a gently decreasing trend.

4. Conclusions

Based on the first principles calculations, the structural,
mechanical, and electronic, and thermodynamic properties of
orthorhombic BeB2C2 have been systematically studied. Our calcu-
lated lattice parameters are in good agreement with the experi-
mental data. The tensile directional dependences of the Young’s
modulus E have been investigated, and the results show

Fig. 5. COHP curves for the B–C (a), Be-B (b), and Be–C (c) interactions in BeB2C2. The vertical dashed lines denote the Fermi level.

Table 3
Calculated charge and volumes (Å3 per f.u.) for BeB2C2 according to Bader
partitioning.

Q (Be) Q (B � 2) Q (C � 2) V (Be) V (B) V (C)

BeB2C2 2.3535 6.4214 17.2265 1.9891 6.3679 30.8183

Table 4
Calculated Debye temperature H (in K) and Grüneisen parameter c of BeB2C2 at
different pressure and different temperatures.

T(K) P (GPa)

Parameters 0 5 10 15 20

0 H 1198.9 1266.0 1326.4 1381.5 1432.3
c 1.818 1.729 1.655 1.591 1.535

300 H 1191.5 1260.1 1321.6 1377.5 1429.0
c 1.829 1.736 1.660 1.595 1.539

600 H 1160.7 1234.9 1300.2 1359.0 1412.5
c 1.873 1.769 1.686 1.617 1.557

1200 H 1063.1 1157.5 1234.9 1302.0 1361.9
c 2.032 1.878 1.769 1.684 1.613

Fig. 6. Temperature dependences of the heat capacity at different pressures for
BeB2C2.

Fig. 7. The temperature dependence of thermal expansion coefficient a of BeB2C2

under 0 GPa (a). The pressure dependences of thermal expansion coefficient a of
BeB2C2 at 600 K. (b).
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E[1 0 1] � E[1 1 0] < E[1 1 1] < E[1 0 0] < E[0 0 1] for these principal crystal
directions. The shear modulus of BeB2C2 is the smallest within
(100) plane, which may be the cleavage plane of the BeB2C2. The
computed mechanical properties suggest that BeB2C2 potential
hard material with theoretical hardness of 26.5–28.6 GPa. The
B–C, Be–C, and Be–B bonds were interpreted as displaying a mixed
ionic/covalent character by electronic structure analysis. Moreover,
we have demonstrated that the B–C bonds in B/C layers have
strong covalency which is comparable to that of C–C in diamond.
Using the quasi-harmonic Debye model, the thermodynamic prop-
erties including the Debye temperature, Grüneisen parameter, and
the heat capacity of BeB2C2 are predicted under high pressure and
high temperature. We hope that these calculations will be helpful
for future experimental works on this technologically important
material.
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