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Abstract – The structure and distributions of elastic moduli of c-W3N4 have been investigated
by first-principles calculations. The formation of c-W3N4 can be understood from the fact that the
N atoms partially occupy the 6b (0, 1/2, 1/2) interstitial sites in pure cubic W. Young’s modulus
of c-W3N4 is found to reach a maximum along the [100] direction and a minimum along the [111]
direction, and the ideal shear strength along the weakest (100)[100] slip system is about 22.5GPa.
The evidence of the bonding nature of W-N which plays an important role to form a hard material
is manifested by the PDOS and Mulliken population analysis.

Copyright c© EPLA, 2012

Introduction. – Recently, great interest for transition
metal nitrides has re-emerged based on the design concept
for intrinsically superhard compounds that the interaction
of light elements (e.g., B, C, N, and O) into the transition
metal lattices forms strong covalent bonds yet keeping
a high valence-electron density and bulk moduli [1,2].
Compared to early transition metals, the heavy transition
metals were initially thought not to form solid nitrides
for many years. Until recently, the dinitrides of Ir, Os,
and Pd were successfully synthesized under high pressure
and high temperature (HPHT) [3–6]. The anomalously
ultra-high incompressibility of these nitrides (428GPa
for IrN2), comparable to that of c-BN, suggests that
they are potential (super)hard materials. Immediately
after these pioneering studies, the rhenium nitrides with
various stoichiometries (Re2N, Re3N, and ReN2) [7,8]
were synthesized at HPHT and some related mechanical
properties were also investigated. In these Re nitrides,
both Re2N and Re3N exhibit very high bulk moduli
>400GPa, which is higher than that of ReB2. Moreover,
ReN2 shows the advantage over other transition metal

(a)E-mail: zhmgbj@126.com
(b)E-mail: weiaqun@163.com

nitrides of the relatively moderate synthesis conditions at
the pressure of 7.7GPa and temperature of 1873K.
W is commonly referred to as refractory metal, which is

close to Re and platinum-metal Os in the periodic table, it
exhibits the highest melting point in the heavy transition
metal family. Thus, the crystal structures and mechani-
cal properties of tungsten nitrides have attracted much
attention. In the binary W-N system, several nitrides with
different stoichiometric compositions have been reported
by using various techniques. However, most materials in
this W-N system are in the form of thin films produced by
a nonequilibrium process and are often poorly crystallized,
which severely limits their use in diverse technological
applications. A novel cubic W3N4 (c-W3N4) nitride was
first characterized by Guenther and Schneider by using
the X-ray power diffraction technique about forty years
ago [9]. More recently, the well-crystallized c-W3N4 was
successfully reproduced again by Wang et al. [10] using
the solid-state reaction method under HPHT. Moreover,
this c-W3N4 phase has a high measured bulk modulus
of 376GPa, which is 50% and 45% higher, respectively,
than those of the previous c-Zr3N4 [11] and c-Hf3N4 [12].
Therefore, c-W3N4 can be potentially superhard since
the incorporation of N atoms not only compensates its
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valence electron densities but also introduces the cova-
lent bonding. Accordingly, understanding the structural,
mechanical and electronic properties of c-W3N4 is not only
of particular interest in fundamental research but also a
requirement for the design of superhard materials with
improved capabilities. In the present work, we have stud-
ied the structural intrinsic connections between pure W
metal and c-W3N4 in order to investigate the incorpora-
tion of N into W lattice. Moreover, we have extended the
mechanical properties and presented in detail the varia-
tions of the elastic moduli along the arbitrary directions
and the ideal shear strength in the easy-slip plane. These
theoretical calculations which can provide further details
are highly desirable.

Computational methods. – All structure relaxations
were performed using the VASP code [13] with the general-
ized gradient approximation (GGA) proposed by Perdew-
Burke-Ernzerhof exchange-correlation functional [14]. The
electron and core interactions were included by using the
frozen-core all-electron projector augmented wave (PAW)
potential [15] of the metal atoms including d electrons
as valence states. The integration in the Brillouin zone
was employed using the Monkhorst-Pack scheme [16] (12×
12× 12), an energy cutoff of 700 eV, and a tetrahedron
method with Blöchl corrections for the energy calcula-
tion and Gaussian smearing for the stress calculations.
During the geometrical optimization, all forces on atoms
were converged to less than 0.001 eV/Å and the total
stress tensor was reduced to the order of 0.01GPa. Elastic
constants were calculated by the strain-stress method [17]
and the polycrystalline bulk modulus and shear modu-
lus were thus derived from the Voigt-Reuss-Hill averaging
scheme [18]. The quasistatic ideal strength [19] is calcu-
lated by incrementally deforming the modeled cell in the
direction of the applied strain and controlling the specific
strain components, and simultaneously relaxing both the
other strain components, as well as the atoms inside the
unit cell, at each step. The critical shear stresses along
various directions were then calculated by applying shear
deformations in the easy-slip plane.

Results and discussion. – For the cubic W unit cell
in fig. 1(a), the lattice parameter a is 3.18 Å and each
W atom is eightfold coordinated. Experiments [10] have
demonstrated that the solid c-W3N4 (fig. 1(b)) possesses
a cubic lattice of space group Pm3̄m (No. 221) with one
formula unit in a unit cell: Two inequivalent N1 and N2
occupying the Wyckoff 1b (1/2, 1/2, 1/2) and 3d (1/2,
0, 0) sites, and W sitting at 3c (0, 1/2, 1/2) positions.
If we consider a 1× 1× 2 supercell for c-W3N4 presented
in fig. 1(c), one can clearly see that this c-W3N4 phase
consists of a fundamental building block along the c-axis:
a tetragonal sublattice (dashed cell in fig. 1(c)) with lattice
constants a= b= 2.91 Å and c= 4.216 Å. Strikingly, this
tetragonal sublattice can be viewed as a distorted cubic
W unit cell when the N atoms partially occupy the 6b
(0, 1/2, 1/2) interstitial sites in a pure cubic W unit cell.

Fig. 1: (Colour on-line) Crystal structures of pure W metal (a),
c-W3N4 (b), and 1× 1× 2 supercell of c-W3N4 (c).

While by this approach, the pressure and temperature
effects on the interaction of the N atoms into the W
lattice for the formation of c-W3N4 could be understood
as follows: the N atoms incorporate into the W lattice
and partially locate on the 6b interstitial sites (which
would be possible from the packing considerations) and
this leads to a significantly extension of the c-lattice para-
meter and shrink of the a(b)-lattice parameter and then
to the formation of a building block for c-W3N4: the
tetragonal sublattice. The optimized equilibrium lattice
constant of a0 for c-W3N4 is 4.216 Å, which is in good
agreement with the experimental values of 4.122 Å [9]
and 4.125 Å [10]. Moreover, the total energy of c-W3N4
is calculated by varying the volume and these calculated
E -V data are fitted to the Birch-Murnaghan equation
of state (EOS) [20]. The obtained bulk modulus B0 and
its pressure derivative are 360GPa and 4.523, which are
consistent with the experimental data of 376GPa and 4.0,
confirming the accuracy and reliability of the computa-
tional procedure employed here. In order to provide some
insight into the pressure behavior of c-W3N4, the pressure
dependence of the normalized parameter a/a0 as a func-
tion of pressure is calculated. By fitting the calculated data
with the least squares method, we obtained their relation-
ship at the temperature of 0K as the following relation:
a/a0 = 0.99992− 9.04358× 10−4P +4.16469× 10−6P 2.
The elastic properties define the behavior of a solid that

undergoes stress, deforms, and then recovers and returns
to its original shape after stress ceases. The strain-stress
method was used in calculating the elastic constants. A
small finite strain was applied on the optimized struc-
ture and the atomic position was fully optimized. Then,
the elastic constants were obtained from the stress of
the strained structure. The obtained results are listed in
table 1. For a stable cubic structure, Cij should satisfy
the elastic stability criteria [21]: C11-|C12|> 0, C11 > 0,
C44 > 0, C11+2C12 > 0. Clearly, these calculated elas-
tic constants completely satisfy the criteria, suggesting
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Table 1: Calculated elastic constants Cij , bulk modulus BH , shear modulus GH , and Young’s modulus EH (in units of GPa).
Also shown are Poisson’s ratio σH , the BH/GH ratio, and the elastic compliance constants (in units of GPa

−1).

c-W3N4 c11 c12 c44 s11 s12 s44 BH GH EH σH BH/GH
This work 792 146 61 0.00092 0.00021 0.01639 361 128 343 0.342 2.82
Experiment [10] 376
Theory [10] 789 144 99 368 183

that the c-W3N4 is mechanically stable at ambient pres-
sure. It should be noted that the calculated C11 and C12
agree very well with the previous theoretical values [10].
However, the value of C44 is smaller than that calculated
by the same author. In fact, we have found that the use
of different strains in steps of 0.001 from 0.001 to 0.003
in calculations leads to nearly the same C44 values. We
are not aware of any experimental data on the elastic
constants. We hope that future experimental measure-
ments will verify all these calculated results. Using the
calculated elastic constants Cij , the bulk modulus BH
and shear modulus GH for the corresponding polycrys-
talline aggregate are thus determined by the Voig-Reuss-
Hill approximation method. In addition, Young’s modu-
lus EH and Poisson’s ratio vH are obtained in the light of
the following equations: EH = 9BHGH/(3BH +GH) and
vH = (3BH − 2GH)/(6BH +2GH). The calculated bulk
modulus, shear modulus, Young’s modulus, and Poisson’s
ratio are given in table 1. Obviously, the calculated BH
(361GPa) is in excellent agreement with that directly
obtained from the fitting of the Birch-Murnaghan EOS
(B0 = 360GPa), which further demonstrates the accuracy
of our elastic constants calculations. The shear modulus of
a material quantifies its resistance to the shear deforma-
tion. The calculated shear modulus of c-W3N4 is 128GPa,
which is close to those of c-Zr3N4 (129GPa) and c-Hf3N4
(138GPa) [22] but larger than the theoretical value of
known superhard WB4 (104GPa) [23]. The ratio between
the bulk and the shear modulus B/G are used to predict
the brittle or ductile behavior of materials. According to
the Pugh criterion [24], the ductile behavior is predicted
when B/G> 1.75, otherwise the material behaves in a
brittle manner. It can be clearly seen in table 1 that the
c-W3N4 is strongly prone to ductile with respect to the
value of BH/GH (2.82).
A useful visualization of the elastic anisotropy can

be obtained by plotting a three-dimensional picture of
the dependence of Young’s modulus on a direction in a
crystal. For cubic materials, it is described by the following
equation [25]:

E−1 = s11−β1(α2β2+α2γ2+β2γ2), (1)

where α, β, and γ are the direction cosines of the tensile
stress direction, β1 = 2s11− 2s12− s44, and s11, s22, and
s44, are the elastic compliance constants which are given
by Nye [26], as listed in table 1. This equation deter-
mines a three-dimensional closed surface, and the distance
from the origin of the system of coordinates to this
surface equals Young’s modulus in a given direction. For a

Fig. 2: (Colour on-line) Directional dependence of Young’s
modulus for c-W3N4 (a) and the projection in the bc plane (b).

perfectly isotropic medium this surface would be a sphere.
In fig. 2(a), it shows a well-pronounced anisotropy for c-
W3N4 and the cross-sections of c-W3N4 in the bc plane are
also shown in fig. 2(b) for comparison. Analytical equa-
tions for the determination of the maximum and mini-
mum values of Young’s moduli are [25] Emin = 3/(s11+
2s12+ s44) and Emax = 1/s11 if β1 < 0. The “max” and
“min” subscripts should be interchanged if β1 > 0. For c-
W3N4, the estimated Emax and Emin values are 1084GPa
along the [100] directions and 56.4GPa along the [111]
directions for c-W3N4, respectively. This large difference
between Emax and Emin may impose certain limitations
and restrictions on possible applications of this novel
nitride. Compared to the anisotropy of Young’s modulus,
the study of the dependence of the shear modulus G on
stress direction is useful for understanding plastic defor-
mation in c-W3N4. We choose a shear plane (hkl) and vary
the shear stress direction [uvw ] within that plane. The axis
normal to the (hkl) plane is denoted as [HKL]. Thus, the
shear modulus on the (hkl) shear plane with shear stress
applied along the [uvw ] direction can be expressed as [27]

G−1 = 4s11(α
2
1α
2
2+β

2
1β
2
2 + γ

2
1γ
2
2)

+8s12(α1α2β1β2+β1β2γ1γ2+α1α2γ1γ2)

+s44
[

(β1γ2+β2γ1)
2+(α1γ2+α2γ1)

2+(α1β2+α2β1)
2
]

,

(2)

where α1, β1, γ1, α2, β2, and γ2 are the direction cosines
of the [uvw ] and [HKL] directions. From this equation, as
plotted in fig. 3(a), the shear moduli (G= s−144 = 61GPa)
of c-W3N4 are independent of the shear stress direc-
tion from [100] to [010] within the (001) shear plane,
of the shear stress directions from [001] to [010] within
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Fig. 3: (Colour on-line) Orientation dependence of the shear
modulus in c-W3N4 (a) and ideal shear strength of c-W3N4
along the weakest (001) [100] direction.

the (100) shear plane, and of the shear stress directions
from [001] to [100] within the (010) shear plane. For
the shear plane (11̄0) , we rotate the shear stress from
[001] to [110], then α1 = β1 = sin θ/

√
2 ,γ1 = cos θ,α2 =

β2 = 1/
√
2 ,γ2 = 0, where θ is the angle between [001] and

the shear stress direction. Thus, the shear modulus can
be expressed as G−1 = 2(s11− s12)sin2 θ+ s44 cos2 θ. For
c-W3N4 in table 1, s44 > 2(s11− s12), the shear modulus
is the smallest along [001], which is G= s−144 = 61GPa,
and largest along [110], which is G= [2(s11− s12)]−1 =
700.3GPa. It can be seen from fig. 3(a) that, the shear
moduli are the smallest on the (100), (001), and (010)
planes and almost independent of any shear directions.
This means that these principal crystal planes may be
the cleavage planes of c-W3N4. The critical shear stress
in c-W3N4 was then calculated by applying [100] shear
deformation in the (001) easy cleavage plane, as shown
in fig. 3(b). It can be seen that the ideal shear strength
of c-W3N4 along the weakest (001)[100] slip system is
about 22.5GPa, which is higher than those of Re2N
(12.4GPa) and Re3N (15.5GPa) [28]. However, the ideal
shear strengths of c-W3N4 is much lower than those of
ReB2 (34.4GPa) [29] and c-BN (58.3GPa) [30], indicating
much lower shear resistance or potential superhardness.
In spite of its significantly higher bulk moduli, this novel
tungsten nitride is much weaker than c-BN in terms of
shear moduli and strengths. Thus, higher incompressibil-
ity does not necessarily guarantee higher shear resistance
and hardness. Here, we roughly estimate the hardness of
c-W3N4 based on a semiempirical approach proposed by
Šimůnek [31]. The Vickers hardness of c-W3N4 is calcu-
lated to be 24.6GPa, suggesting that it is potentially hard.
To gain insights into the effect of nitrogen incorpora-

tion, the electronic density of states (DOS) and bonding
features of W and c-W3N4 are analyzed. Figure 4 shows
the electronic DOS of W and W3N4. Both two phases
show similar metallic bonding features because of finite

Fig. 4: (Colour on-line) Total and partial densities of states of
W (a), c-W3N4 (b) at 0GPa, and contours of charge density
on the (001) plane (c).

total DOS at the Fermi level (EF), which originate mostly
from 5d electrons of W. The total DOS at the EF, N(EF)
(in states/eV/atom), which is 0.680 and 0.273 for W and
W3N4, respectively. In addition, the Fermi level is seen
to lie at a pronounced minimum in the DOS curve, a
pseudogap, and this feature is suggestive of the extra-
ordinary stability of c-W3N4. From the partial DOS of
c-W3N4 phase (fig. 4(b)), we observe a strong hybridiza-
tion between the N2-2p and W-5d states (from −10 to
−1 eV), an evidence of covalent bonding between N2-2p
and W-5d electrons. Also, the N1-2p and W-5d states
(from −4 to 0 eV) strongly hybridize as well and form
strong bonds. To further demonstrate this bonding nature,
we show in fig. 4(c) the charge density distributions on the
(001) plane. The bonding directionality is clearly revealed
between W and N, a typical feature of covalent bonding.
In addition, there is sizable larger bandwidth and smaller
total DOS of c-W3N4 when compared to the total DOS
of pure W in fig. 4(a). This may be due to the covalent
bonding of W and N which leads to the strong overlap of
W-5d and N-2p orbitals. We also performed the Mulliken
population analysis of c-W3N4 and found a charge trans-
fer (2.76 electrons/f.u.) from N to W, implying an ionic
contribution to the W-N bonding. We thus conclude that
the chemical bonding in these molybdenum borides is a
complex mixture of covalent, ionic, and metallic charac-
ters. Such a conclusion was also found in other transition
metal nitrides [28].

Conclusions. – To conclude, the structural, mechan-
ical and electronic properties of recent synthesized
c-W3N4 have been studied using first-principles calcu-
lations. Our calculated equilibrium lattice parameters,
bulk modulus, and its pressure derivative are highly
consistent with experimental reports. The formation of
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c-W3N4 can be understood from the fact that the N
atoms partially occupy the 6b (0, 1/2, 1/2) interstitial
sites in pure cubic W under high pressure and high
temperature. Large elastic anisotropy of Young’s modulus
is found between the [100] directions and [111] directions.
The ideal shear strength of c-W3N4 along the weakest
(001)[100] slip system is about 22.5GPa, which is much
lower than that of c-BN. The bonding nature in this
novel nitride is a complex mixture of covalent, ionic,
and metallic characters manifested by the PDOS and
Mulliken population analysis.
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