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a b s t r a c t

First principles calculations are performed to investigate the structural, mechanical, and electronic

properties of C2N2(NH). Our calculated lattice parameters are in good agreement with the experimental

data and previous theoretical values. Orthorhombic C2N2(NH) phase is found to be mechanically stable

at an ambient pressure. Based on the calculated bulk modulus and shear modulus of polycrystalline

aggregate, C2N2(NH) can be regarded as a potential candidate of ultra-incompressible and hard

material. Furthermore, the elastic anisotropy and Debye temperatures are also discussed by investigat-

ing the elastic constants and moduli. Density of states and electronic localization function analysis

show that the strong C–N covalent bond in CN4 tetrahedron is the main driving force for the high bulk

and shear moduli as well as small Poisson’s ratio of C2N2(NH).

& 2011 Elsevier Inc. All rights reserved.

1. Introduction

Due to the importance in fundamental science and technological
applications, searching for ultra-incompressible and superhard
materials is an intriguing and long-standing problem [1]. Besides
the two well-known superhard materials of diamond and cubic
boron nitride (c-BN), many experimental and theoretical efforts
have been devoted to searching for a new class of hard materials. It
is well-known that strong three-dimensional covalent compounds
formed by the light elements, namely, B, C, N, and O are good
candidates for extraordinary hardness, such as BC2N [2], BC5 [3],
B6O [4], etc. Among these covalent compounds, the C–N compounds
(C3N4, CN, C3N, etc.) have attracted much attention by boasting high
bulk modulus and hardness values comparable with or exceeding
than those of diamond. Especially for the b-C3N4 phase [5], which
has been a particular focus of synthetic work due to the prediction
of ultra-high modulus (�430 GPa). Although many researchers have
attempted to synthesize crystalline CxNy phases by using various
techniques, including high-pressure and high-temperature (HP–HT)
synthesis; there is still no reliable evidence for analogy of any dense
phase of these materials so far. Nonstoichiometric solids with N:C
ratios of 1.3–1.5 have been reported in the previous work [6,7].

However, these materials are amorphous or nanocrystalline. Their
structures and chemical compositions are not well characterized.
Furthermore, the compounds prepared under HP–HT conditions are
not generally recovered to ambient conditions.

Recently Horvath-Bordon et al. [8] first synthesized a well-
crystallized compound with an N:C ratio of 3:2, carbon nitride
imide C2N2(NH), in the laser-heated diamond-anvil cell under
HP–HT conditions. Single crystal of this new dense carbon nitride
phase can be recovered to ambient conditions. By using the TEM,
EELS, and SIMS analyses, it was found that C2N2(NH) is a defect
wurtzite structure, which analogous to that of Si2N2(NH). In addi-
tion, the bulk modulus of C2N2(NH) was calculated to be 277 GPa by
the same authors. More recently, this defect wurtzite C2N2(NH),
synthesized by laser heating from dicyandiamide, has been con-
firmed again by Synchrotron X-ray diffraction and Raman scattering
at high-pressure [9]. On decompression from the high-pressure,
there was no phase transition in the sample and the defect wurtzite
structure remained at an ambient pressure with a high bulk
modulus. However, the detailed physical properties, such as elastic
constants, thermodynamic, and electronic properties of this com-
pound are least studied so far. Therefore, as a new kind of carbon
nitride phase, one might expect excellent mechanical and other
novel physical properties. In the present work, using first principles
total energy calculations, we demonstrated that C2N2(NH) is a wide
band-gap insulator. Moreover the C2N2(NH) compound was found
to have high bulk modulus and large shear modulus at an ambient
pressure. These intriguing properties of C2N2(NH) can be attributed
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to its unconventional bonding scheme. In addition, Si2N2(NH) with
the same structure was also studied for comparison.

2. Computational methods

The density functional theory (DFT) [10,11] calculations have been
performed within the local density approximation (LDA) [12] and
generalized gradient approximation (GGA) [13], as implemented in
the Vienna ab initio simulation package [14]. The electron and core
interactions were included by using the frozen-core all-electron
projector augmented wave (PAW) method [15], with H: 1s1,
C: 2s22p2, N: 2s22p3, and Si: 3s23p2 treated as the valence electrons.
The convergence tests used a kinetic energy cutoff of 520 eV for the
calculations of two compounds. For the total energy calculations,
Monkhorst–Pack k points mesh [16] of 10�10�10 was used for
both C2N2(NH) and Si2N2(NH), which was found to be adequate for
obtaining the total energy with an accuracy of about � meV/f.u. The
elastic constants were calculated from an evaluation of stress tensor
generated small strain, and the bulk modulus, shear modulus,
Young’s modulus, and Poisson’s ratio were thus derived from
Voigt–Reuss–Hill approximation [17]. Atoms were allowed to relax
until Hellman–Feynman forces were o0.001 eV/Å and the maxim
strain value was 0.2%.

3. Results and discussion

3.1. Structural properties

Experiments have demonstrated that the solid C2N2(NH) at
HP–HT (P427 GPa, T42000 K) adopts the space group Cmc21, which

can be recovered to ambient conditions. There are four formula units
in the unit cell (see Fig. 1), in which all of the C atoms are tetrahedral
coordinated by N atoms, and two inequivalent N1 and N2 atoms are
connected to three neighbors with three single covalent bonds. We
optimized both lattice geometry and ionic positions to get a fully
relaxed structure of C2N2(NH) and Si2N2(NH). The calculated
equilibrium lattice parameters and bond lengths within GGA
and LDA methods, together with their corresponding experimental
data [8,9,18] and other theoretical values [8,9] are listed in Table 1. It
is clear that the predicted lattice constants and bond lengths within
the LDA method are smaller than those within the GGA method, as
the usual cases. For C2N2(NH), the predicted structural constant a, b,
and c deviates from the corresponding experimental values within
0.5%, 0.2%, and 0.6%, respectively, and agrees well with the previous
theoretical values at an LDA level. Furthermore, it should be noted
that the bond lengths are also consistent with those of experimental
results in Table 1. For an Si2N2(NH), the computed lattice constants
are in good agreement with the available experimental data. The
maximal error of about 1.2% and 0.9% using LDA and GGA shows the
accuracies of our calculations.

In order to provide some insight into the pressure behavior of
C2N2(NH) according to Ref. [9], the total energy of C2N2(NH) was
minimized as a function of the selected unit cell volume at
different pressures. The calculated E–V data were then fitted to
the third-order Birch–Murnaghan equation of state [19] (EOS),
and we obtained the bulk modulus B0 and its pressure derivative
B0
0 to be 256/281 GPa and 3.50/3.49 at GGA/LDA level, respec-

tively. These bulk modulus values are in excellent agreement with
the experimental data and other theoretical calculations as shown
in Table 1. Moreover the pressure acting on the system as a
function of the unit cell volume can be obtained through the
thermodynamic relationship given in Ref. [19]. The resulting
pressure dependence of the C2N2(NH) unit cell is plotted in
Fig. 2, along with the experimental data and other theoretical
results. Strikingly, the experimental data sit perfectly between
curves fitted at GGA and LDA calculations which usually over-
estimate and underestimate the volumes of crystal, respectively.
More interestingly, our DFT calculations within GGA and LDA
agree well with the DFT-PBE0 and DFT-B3LYP results [9] sepa-
rately in Fig. 2. Therefore, the excellent agreements above support
the reliability of our calculations in the present work.

3.2. Mechanical properties

3.2.1. Elastic properties

The elastic properties define the behavior of a solid that under-
goes stress, deforms, and then recovers and returns to its original
shape after stress ceases. To the best of our knowledge, there are

Fig. 1. Crystal structure of C2N2(NH), the large, middle, and small spheres

represent N, C, and H atoms, respectively.

Table 1

Calculated equilibrium lattice parameters, a, b, c, bond length (in Å), EOS fitted Bulk modulus B0, and its pressure derivative B0
0 for C2N2(NH) and Si2N2(NH).

Structure Method a b c B0 B00 dC/Si–N1 dC/Si–N2 dN2–H

C2N2(NH) GGA 7.6827 4.5186 4.0546 256 3.50 1.47, 1.48 1.46 1.06

LDA 7.5738 4.4429 4.0038 281 3.49 1.45, 1.46 1.44 1.05

Experimentala 7.5362 4.4348 4.0298 1.45, 1.46 1.43 1.05

Experimentalb 7.618 4.483 4.038 258 6.3

Theoreticala 7.5726 4.4425 4.0036

Theoreticalb 271 3.97

Theoreticalb 288 3.94

Si2N2(NH) GGA 9.2720 5.4640 4.8550 1.74, 1.75 1.74 1.03

LDA 9.1371 5.3437 4.7852 1.72, 1.73 1.72 1.04

Experimentalc 9.1930 5.4096 4.8190

a Ref. [8].
b Ref. [9].
c Ref. [18].
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hitherto no available experimental data about the elastic constants
of C2N2(NH). We hope our work could provide a useful reference for
future study. The strain–stress method was used in calculating the
elastic constants [20]. A small finite strain was applied on the
optimized structure and the atomic position was fully optimized.
Then, the elastic constants were obtained from the stress of the
strained structure. The calculated elastic constants are listed in
Table 2. For stable orthorhombic crystals, the nine independent
elastic constants Cij should satisfy the well-known Born stability
criteria [21], i.e., C1140, C2240, C3340, C4440, C5540, C6640,
[C11+C22+C33+2(C12+C13+C23)]40, (C11+C22–2C12)40, (C11+C33–
2C13)40, and (C22+C33–2C23)40. Clearly, the calculated elastic
constants Cij satisfy Born stability criteria. Thus, the orthorhombic
phases of C2N2(NH) and Si2N2(NH) are all mechanically stable at
ambient pressure.

Using the calculated elastic constants Cij, bulk modulus and shear
modulus for the corresponding polycrystalline aggregate are thus
determined by Voig–Reuss–Hill approximation method [17]. In
addition, Young’s modulus EH and Poisson’s ratio vH are obtained
in the light of the following equations:

EH ¼
9BHGH

3BHþGH
, ð1Þ

vH ¼
3BH�2GH

6BHþ2GH
, ð2Þ

where the subscript H represents Hill approximation. The calculated
bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio
are given in Table 3. The calculated bulk modulus of C2N2(NH) is
276/282 GPa at the GGA/LDA level, which is close to the experi-
mental data of B6O (270 GPa) [22], indicating ultra-incompressible
character. In addition, these calculated bulk moduli agree well
with those directly obtained from the fitting of the third-order
Birch–Murnaghan EOS listed in Table 1, which further demonstrates
the reliability of our calculations. As a better indicator of the
potential hardness for materials, shear modulus quantifies the
resistance to the shear deformation. Remarkably, the calculated
shear modulus is very large for C2N2(NH), 265 GPa within GGA and
270 GPa within an LDA. Thus, it is expected to withstand shear
strain to a large extent. In addition, the relative directionality of the
bonding in the material also has an important effect on its hardness
and can be determined by the G/B ratio. The calculated ratio G/B for
C2N2(NH) is 0.960, which is slightly smaller than that of diamond
(1.10) and close to that of a-C3N2 (0.96) and b-C3N2 (1.07) at the
GGA level [23]. This shows that there exists strong directionality in
the C–N bond. All these excellent mechanical properties strongly
suggest that C2N2(NH) is a potential candidate to be ultra-incom-
pressible and hard. Comparing with C2N2(NH), the elastic moduli of
Si2N2(NH) are remarkably lower, which may be due to the weaker
directionality of the Si–N bond, as shown in Table 3.

3.2.2. Elastic anisotropy

The elastic anisotropy of crystals can exert great effects on the
properties of physical mechanism, such as anisotropic plastic
deformation, crack behavior, and elastic instability. Hence, it is
important to calculate elastic anisotropy in order to improve its
mechanical durability [24]. The shear anisotropic factors provide a
measure of the degree of anisotropy in the bonding between atoms
in different planes. The shear anisotropic factor for the {1 0 0} shear
planes between the /0 1 1S and /0 1 0S directions is

A1 ¼
4C44

C11þC33�2C13
: ð3Þ

For the {0 1 0}, shear planes between the /1 0 1S and /0 0 1S
directions it is

A2 ¼
4C55

C22þC33�2C23
, ð4Þ

and for the {0 0 1} shear planes between the /1 1 0S and /0 1 0S
directions it is

A3 ¼
4C66

C11þC22�2C12
: ð5Þ

For an isotropic crystal, the factors A1, A2, and A3 must be 1.0,
while any value smaller or greater than 1.0 is a measure of the
degree of elastic anisotropy. Moreover for an orthorhombic
crystal, the elastic anisotropy which arises from the anisotropy
of linear bulk modulus was also considered in addition to the
shear anisotropy. The anisotropy of the bulk modulus along the
a- and c-axis with respect to the b-axis are given by ABa¼(Ba/Bb)

Fig. 2. The pressure dependence of unit cell volume for C2N2(NH).

Table 2
Calculated elastic constants Cij (in GPa ) for C2N2(NH) and Si2N2(NH).

Structure Method C11 C22 C33 C12 C23 C13 C44 C55 C66

C2N2(NH) GGA 597 567 804 89 79 107 335 221 222

LDA 616 576 871 80 71 103 347 221 218

Si2N2(NH) GGA 285 195 313 38 26 43 125 62 75

LDA 302 255 375 83 47 79 147 86 109

Table 3
Calculated bulk modulus B, shear modulus G, Young’s modulus E (in GPa), Poisson’s ratio V, B/G ratio, and Debye temperature TD (K) of C2N2(NH) and Si2N2(NH).

Structure Method BV BR BH GV GR GH EH v GH/BH TD

C2N2(NH) GGA 280 272 276 269 260 265 600 0.137 0.960 1658

LDA 286 277 282 275 265 270 616 0.135 0.957 1662

Theoreticala 277

Si2N2(NH) GGA 112 107 110 98 90 94 220 0.166 0.855 894

LDA 150 144 147 117 111 114 272 0.192 0.776 978

a Ref. [8].
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and ABc¼(Bc/Bb), where Ba, Bb, and Bc are the bulk modulus along
different crystal axes, defined as Bi¼ i(dP/di), i¼a, b, and c. Note
that a value of 1.0 indicates an elastic isotropy and any deviation
from 1.0 represents an elastic anisotropy. In addition, we also
calculated the percentage elastic anisotropy for shear modulus AG

and bulk modulus AB in polycrystalline materials, which can be
defined as follows: AG¼((GV�GR)/(GV+GR)) and AB¼((BV�BR)/
(BV+BR)), where the subscripts V and R represent the Voit and
Reuss approximations. The implication of the definition is that a
value of zero corresponds to an elastic isotropy, and a value of
100% identifies the largest elastic anisotropy.

Using the relations mentioned above, the parameters about an
elastic anisotropy are calculated and only the values of C2N2(NH)
are shown in Table 4 for simplicity. It is clear that the C2N2(NH) is
an elastic anisotropic. The shear anisotropy results indicate that
the an elastic anisotropy for {0 1 0} shear planes between the
/1 0 1S and /0 0 1S directions is larger than those for the {1 0 0}
shear planes between the /0 1 1S and /0 1 0S directions and the
{0 0 1} shear planes between the /1 1 0S and /0 1 0S directions.
Moreover it is interesting to note that the directional bulk
modulus along the c-axis is larger than those along the a- and
b-axis, which is consistent with the predicted elastic constants
along different axes (see Table 2). In addition, we also noticed that
the percentage shear modulus AG (1.89%/2.39% within GGA/LDA)

is bigger than the percentage bulk modulus AB (1.45%/1.78%
within GGA/LDA), indicating that there is more anisotropy in
shear than in compressibility for C2N2(NH).

As a fundamental parameter, Debye temperature closely
relates to many physical properties of solids, such as specific,
dynamic properties, and melting temperature [24]. At low tem-
perature, it can be calculated from the elastic constants, using the
average sound velocity vm, by the following equation

YD ¼
h

k

3n

4p
rNA

M

� �� �1=3

nm, ð6Þ

where h is Planck’s constant, k is Boltzmann’s constant, NA is
Avogadro’s number, n is the number of atoms per formula unit,
M is the molecular mass per formula unit, and r is the density.
The average sound velocity vm is given by

nm ¼
1

3

2

n3
t

þ
1

n3
l

 !" #�ð1=3Þ

, ð7Þ

where vt and vl are the transverse and longitudinal elastic wave
velocities of the polycrystalline materials and are given by
Navier’s equation [25]. The calculated values of Debye tempera-
tures are listed in Table 3. Our results have predicted that TD of
C2N2(NH) is higher than that of an Si2N2(NH). This shows that

Table 4
Calculated anisotropy factors A1, A2, A3, ABa, ABc, AG, AB and directional bulk modulus Ba, Bb, Bc (in GPa) of C2N2(NH).

Structure Method A1 A2 A3 ABa ABc Ba Bb Bc AG AB

C2N2(NH) GGA 1.1289 0.7288 0.9052 1.060 1.476 760.1 716.8 1058.3 1.89% 1.45%

LDA 1.0835 0.6774 0.8450 1.124 1.651 776.1 690.1 1139.4 2.39% 1.78%

Fig. 3. The calculated total and partial density of state (a), electronic band structure (b) of C2N2(NH), total and partial density of state (c), and electronic band structure

(d) of Si2N2(NH).
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C2N2(NH) is harder than an Si2N2(NH). For both compounds, due
to the tendency to overestimate the bonding, the calculated
results obtained within LDA are slightly larger than those
within GGA.

3.3. Electronic properties

3.3.1. Band structure and density of states

To gain a deeper insight into the elastic properties, the band
structures and electronic densities of states (DOS) of C2N2(NH)
and Si2N2(NH) were calculated at zero pressure within the GGA
method, as shown in Fig. 3. Both compounds are insulators
characterized by large energy gap of �4.36 eV for C2N2(NH) and
�5.01 eV for Si2N2(NH) (see Fig. 3b and d). As is well-known, the
band gap is generally underestimated within density functional
calculations at least about 30%, so the true band gap may be larger
than 5.67 and 6.51 eV, leading to excellent optical applications.
The atom-resolved PDOS of C2N2(NH) and Si2N2(NH) is plotted
in Fig. 3a and c, respectively. The main features of C2N2(NH) can

be summarized as follows: (a) the peak present in the lower
energy part of the DOS curve, which is mainly due to contribu-
tions of the s electrons of C and N; (b) the bonding states of C-s, p

and N-s, p orbitals near Fermi level; (c) the top of DOS curve due
to the antibonding states. It is found that the part s electrons of C
and N are localized in the low energy range �23 to �16 eV. The
electrons from C-s and C-p orbitals have a significant hybridiza-
tion with N-s and N-p orbitals from the �15 eV up to Fermi level,
signifying the strong C–N covalent bonding nature in the CN4

tetrahedrons, which has been further confirmed by the following
electronic localization function (ELF) calculations [26,27]. In the
conduction band region of DOS, the peaks are mainly super-
imposed by the C-p and N-p states. For an Si2N2(NH) compound,
similar trend can be observed (see Fig. 3c).

The bonding mechanism of these two compounds can be
further analyzed by examining the charge transfer situation by
Mulliken atomic population analysis, which is useful in evaluating
the nature bonds in a compound. Although the absolute magni-
tudes of Mulliken populations have little physical meaning, the
relative values can still offer some useful information [28]. The
charge transfer values for C2N2(NH) and Si2N2(NH) are shown in
Table 5, in which the N1 and N2 are two inequivalent atoms
demonstrated in Fig. 1. The total valences for C and Si in the two
solids are 3.57 and 2.81, unequal to 4; moreover the Si atoms have
6.30–6.37 electrons, larger than those of C atoms in C2N2(NH).
These values show that these compounds also possess an ionic
feature. We also noted that the charge transfer from H to N is 0.4e

in two compounds. Compared to the values of charge transfer
(0.86e) from C to N atoms in C2N2(NH), Si atoms have more
charge transfer (3.64e) to N, which mainly come from the Si-2s

orbital in an Si2N2(NH). Therefore, the Si–N bond has more
ionicity than that of the C–N bond, which may be responsible

Table 5
Calculated charge transfer among different atoms in the C2N2(NH) and Si2N2(NH).

Structure s p Total Charge

C2N2(NH) H 0.6 0.0 0.6 0.4

C (�2) 1.01 2.56 3.57 0.43

N1 (�2) 1.40 3.95 5.36 �0.36

N2 1.47 4.08 5.55 �0.55

Si2N2(NH) H 0.6 0.0 0.6 0.4

Si (�2) 0.79 1.39 2.18 1.82

N1 (�2) 1.66 4.71 6.37 �1.37

N2 1.65 4.66 6.30 �1.30

Fig. 4. Contours of electronic localization function (ELF) of C2N2(NH) on the: (0 0 1) plane (a), (1 0 0) plane (b), ELF of Si2N2(NH) on the: (0 0 1) plane (c), and (1 0 0)

plane (d).
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for the lower elastic moduli of an Si2N2(NH). We thus conclude
that the chemical bonding in these two solids is a complex
mixture of covalent and ionic characters.

3.3.2. Electronic localization function analysis

In order to quantitatively identify the chemical bond character
in two compounds, we have calculated the ELF, which is a
measure of the probability of finding an electron near another
electron with the same spin. The ELF is represented as a contour
plot in real space, where different contours correspond to numer-
ical values ranging 0.0–1.0. In the region with an ELF is 1.0, there
is no chance of finding two electrons with the same spin. This
usually occurs in places, where bonding pairs molecular orbitals
or lone pairs atomic orbitals reside. An ELF 0.0 corresponds to the
area, where there is no electron density, and a homogeneous
electron gas, like in metals, ELF is 0.5. It should be noted that an
ELF is a measure of Pauli principle and not of an electron
density [29]. The contours of ELF domains for the C2N2(NH) and
Si2N2(NH) on their respective crystal plane are shown in Fig. 4.
For C2N2(NH), we note strong C–N covalent bonds on the (0 0 1)
plane, with nearly identical C–N covalent ‘‘point attractors’’ at
ELF¼0.9. At the (1 0 0) plane, the ELF is negligible at the N sites,
whereas it attains local maximum values at the H sites, manifest-
ing another covalent interaction between N and H atoms. The
bonding situation in Si2N2(NH) is similar to that seen for
C2N2(NH) in Fig. 4c. However, in contrast, covalent interaction
between C and N in C2N2(NH) is stronger than that between Si
and N in Si2N2(NH), which is the main driving force for its higher
bulk and shear modulus.

4. Conclusions

Based on the first principles calculations, we have investigated
the mechanical and electronic properties of C2N2(NH) and
Si2N2(NH). Our calculated lattice parameters are in good agree-
ment with the experimental data and previous theoretical values.
The predicted high bulk modulus and large shear modulus
suggested that C2N2(NH) is a potential low compressible and
hard material. Meanwhile, C2N2(NH) compound shows different
degrees of an elastic anisotropy. Moreover both C2N2(NH) and
Si2N2(NH) are found to have insulating feature with large band
gaps of �4.36 and �5.01 eV. In addition, our electronic densities
of states and electronic localization function calculations con-
firmed that the strong covalent C–N bonding in CN4 tetrahedrons

play a key role in the incompressibility and hardness of C2N2(NH).
We hope that these calculations will be helpful for future
experimental works on these technologically important materials.
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