
IBM开源技术微讲堂
Hyperledger Fabric v1.4 LTS

第四讲 《Peer解析》

每周四晚8点直播

课程安排
03/14 区块链赋能产业价值和商业模式
03/21 Hyperledger 项⽬目概览 社区介绍
03/28 Fabric 1.4 LTS 功能介绍 架构概览
04/04 Peer 解析
04/11 Orderer 解析
04/18 MSP 与 CA
 04/25 应⽤用开发指南
05/09 部署实践

欢迎关注微信公众号
“IBM开源技术”

获取更多资讯

公众号中发送“replay”
获取往期视频地址

公众号中发送“报名”，

即有机会参加Fabric线下训练营

自我介绍
李春玲

软件工程师， IBM开发实验室

IBM Blockchain Platform 开发团队

Hyperledger开源社区爱好者

Technical Deep Dive

•  [Fabric Peer in Network Consensus]

•  Fabric Ledger and State DB

•  Smart Contract in Fabric Network

•  Gossip Protocol

•  Private data to protect privacy

•  Sample Distributed network
deployment

5

Fabric Peer

A

B

0 1 2 3

Peer

Ledger
Blockchain WorldState

! Events

Chaincode

–  A blockchain network is comprised primarily of a
set of peer nodes

–  Host ledgers and smart contracts

–  Each peer:
–  Connects to one or more channels
–  Maintains one or more ledgers per channel
–  Maintains installed chaincode
–  Manages runtime docker containers for

instantiated chaincode
–  Has a local MSP (Membership Services

Provider) that provides crypto material
–  Emits events to the client application

Channels

Local
MSP

5

Fabric Peer

A

B

0 1 2 3

Peer

Ledger
Blockchain WorldState

!Events

Chaincode

– A blockchain network is comprised primarily of a
set of peer nodes

– Host ledgers and smart contracts

– Each peer:
– Connects to one or more channels
– Maintains one or more ledgers per channel
– Maintains installed chaincode
– Manages runtime docker containers for

instantiated chaincode
– Has a local MSP (Membership Services

Provider) that provides crypto material
– Emits events to the client application

Channels

Local
MSP

6

Hyperledger Fabric V1.x Architecture

Client
Application

SDK
(HFC)

Membership
Services

Peer

Endorser

Ledger

Committer

A Chaincode B

! Events
Ordering-Service

O

O O

O

ü 

Fabric-CA

ü 

External-CA

Hyperledger Fabric Network

optional optional
Admin

7

Hyperledger Fabric V1.x Transaction Flow

O

O O

O

Endorsing Peer Committing Peer

Client
Application SDK

Endorsing
Policy

Worldstate Worldstate
Ordering-Service

1. Application
proposes
transaction

2. Endorsers Execute Proposals

3. Application receives
responses

4. Responses
submitted for ordering

5. Orderer delivers to
committing peers

6. Committing peers
validate transactions

7. Committing peers
notify applications

Commit the
transaction and
the block

Endorsing Peer: endorses transactions by receiving a transaction
proposal and responds by granting or denying endorsement
Committing Peer: maintains ledger and state

8

Endorsement Policies

An endorsement policy describes the conditions by which a transaction can be
endorsed. A transaction can only be considered valid if it has been endorsed
according to its policy.

–  Each chaincode is deployed with an Endorsement Policy
–  ESCC (Endorsement System ChainCode) signs the proposal response on the endorsing peer
–  VSCC (Validation System ChainCode) validates the endorsements

Chaincode ESCC VSCC Ledger

Propose - Execute - Respond

Order - Deliver

Validate - Commit

Sign Policy

Endorsing Peer Committing Peer

P

9

Endorsement Policy Syntax

Policy Syntax: EXPR(E[, E...])

 Where EXPR is either AND, OR or OutOf and E is either a principal or nested EXPR

Principal Syntax: MSP.ROLE

 Supported roles are: member, admin, client, peer

 Where MSP is the MSP ID, and ROLE is either “member” or “admin”

$ peer chaincode instantiate
-C mychannel
-n mycc
-v 1.0
-p chaincode_example02
-c '{"Args":["init","a", "100", "b","200"]}'
-P "AND('Org1MSP.member')“

Instantiate the chaincode mycc on
channel mychannel with the policy
AND('Org1MSP.member')

10

Endorsement Policy Examples

Examples of policies:

•  Request 1 signature from all three principals

–  AND('Org1.member', 'Org2.member', 'Org3.member')

•  Request 1 signature from either one of the two principals

–  OR('Org1.member', 'Org2.member')

•  Request either one signature from a member of the Org1 MSP or (1 signature from a
member of the Org2 MSP and 1 signature from a member of the Org3 MSP)

–  OR('Org1.member', AND('Org2.member', 'Org3.member'))

Technical Deep Dive

•  Fabric Peer in Network Consensus

•  [Fabric Ledger and State DB]

•  Smart Contract in Fabric Network

•  Gossip Protocol

•  Private data to protect privacy

•  Sample Distributed network
deployment

12

•  The Fabric ledger is sequenced, tamper-resistant record of all state transitions

•  Blockchain
–  Channel configurations
–  Immutable, sequenced record in blocks

•  World state
–  Maintain current state

Config
Block

0

Config
Block

1

Transaction
Block

2

Transaction
Block

3
Genesis

Fabric Ledger

Worldstate

Blockchain

13

Block chain

An historical record of the facts about how these objects arrived at their current states.

14

Block(s)

•  Block header
•  Block number
•  Current Block Hash
•  Previous Block Hash

•  Block Data
•  Block Metadata

15

Transactions

Captures some essential metadata about
the transaction

16

World State

Holds current state of a set of business objects

17

Example Ledger: fabcar

Technical Deep Dive

•  Fabric Peer in Network Consensus

•  Fabric Ledger and State DB

•  [Smart Contract in Fabric Network]

•  Gossip Protocol

•  Private data to protect privacy

•  Sample Distributed network
deployment

19

Smart Contract & chaincode

•  Smart Contract
–  Heart of a blockchain network
–  Defines the rules between different organizations in executable code
–  Generate transactions that are recoded on the ledger
–  packaged into a chaincode

•  Chaincode
–  Can package multiple smart contracts
–  Smart contacts are available to applications
 when a chain code is deployed

20

Blockchain
developer

Smart
Contract

submits develops

develops

recorded

accesses

event

emits

emits

D

Ledger

‘get’, ‘put’, ‘delete’

Client
Application

SDK

!

!

World state

block

txn txn txn

Blockchain
Peer

event

How smart contract interact with the ledger

21

Smart Contract Example – SimpleSet
•  Add the Go import statements

•  Initializing

import (!
 "fmt" !
 "github.com/hyperledger/fabric/core/chaincode/shim"!
 "github.com/hyperledger/fabric/protos/peer"!
) !
// SimpleChaincode example simple Chaincode implementation!
type SimpleChaincode struct { !
} !

// Init is called during chaincode instantiation to initialize any data. !
!
func (t *SimpleChaincode) Init(stub shim.ChaincodeStubInterface) pb.Response { !
 // Initialize the chaincode!
 A = args[0] !
 Aval, err = strconv.Atoi(args[1]) !
 B = args[2] !
 Bval, err = strconv.Atoi(args[3]) !
 fmt.Printf("Aval = %d, Bval = %d\n", Aval, Bval) !
 // Write the state to the ledger!
 err = stub.PutState(A, []byte(strconv.Itoa(Aval))) !
 err = stub.PutState(B, []byte(strconv.Itoa(Bval))) !
 return shim.Success(nil) !
} !

22

Smart Contract Example – SimpleSet

•  Invoking
// Invoke is called per transaction on the chaincode. Each transaction is !
// either a 'get' or a 'set' on the asset created by Init function. The Set !
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleChaincode) Invoke(stub shim.ChaincodeStubInterface) pb.Response { !
 !
 function, args := stub.GetFunctionAndParameters() !
 if function == "invoke" { !
 // Make payment of X units from A to B!
 return t.invoke(stub, args) !
 } else if function == "delete" { !
 // Deletes an entity from its state!
 return t.delete(stub, args) !
 } else if function == "query" { !
 // the old "Query" is now implemtned in invoke!
 return t.query(stub, args) !
 } !
!
 return shim.Error("Invalid invoke function name. Expecting \"invoke\"
\"delete\" \"query\"") !
} !

23

Chaincode Lifecycle

Package Install Instantiate Running

Upgrade Running

24

Chaincode Lifecycle – Packaging

•  Packaging
–  ChaincodeDeploymentSpec (CDS) - the source code, the name, and version of the chaincode
–  An instantiation policy, expressed as endorsement policies
–  A set of signatures by the entities that “own” the chaincode

•  Example

peer chaincode package -n mycc -p github.com/hyperledger/fabric-samples/
chaincode/abstore/go -v 1.0 -s -S -i "AND('OrgA.admin')" ccpack.out!
!
peer chaincode signpackage ccpack.out signedccpack.out !

25

Chaincode Lifecycle – Install & Instantiate

•  Installing chaincode

–  Installs chaincode on a peer node
–  Multiple chaincodes could be installed on a peer node
–  Must install the chaincode on each endorsing peer node of a

channel
–  Example

•  Instantiate chaincode
–  Create and initialize a chaincode on a channel
–  Sets up the endorsement policy during instantiation
–  Example

peer chaincode install ccpack.out!

Endorsing
Peer

A B

Endorsing
Peer

A B

A on blue channel

B on blue channel peer chaincode instantiate -n mycc -v 1.0 -c '{"Args":[“a”,
“100”, “b”, “200”]}' -P "AND ('Org1.member','Org2.member')" !

Endorsing
Policy A

Endorsing
Policy B

26

Chaincode Lifecycle – Running & Upgrade

•  Running

–  Application/Client submits a transaction
–  Smart contracts handles the transaction, update the ledger and return a response
–  Application/Client receives the response
–  Example

•  Upgrade
–  A chaincode may be upgraded any time by changing its version
–  Prior to upgrade, the new version of the chaincode must be installed on the required endorsers
–  Similar to the instantiate transaction, only affects one channel at a time

peer chaincode query -C mychannel -n mycc -c '{"Args":["query","a"]}’
peer chaincode invoke -o order-url -C mychannel -n mycc -c '{"Args":["invoke","a","b","10"]}'

peer chaincode upgrade -C mychannel -n mycc -v 1.0 -c '{"Args":
["a","100","b","200"]}' !

27

System Chaincode

•  Runs within the peer process rather than in an isolated container like normal chaincode
•  Implement a number of system behaviors

•  LSCC(Lifecycle system chaincode)
–  handles lifecycle requests of application chaincodes

•  CSCC(Configuration system chaincode)
–  handles channel configuration on the peer side

•  QSCC(Query system chaincode)
–  provides ledger query APIs such as getting blocks and transactions

Technical Deep Dive

•  Fabric Peer in Network Consensus

•  Fabric Ledger and State DB

•  Smart Contract in Fabric Network

•  [Gossip Protocol]

•  Private data to protect privacy

•  Sample Distributed network
deployment

29

Functions of Gossip Protocol

•  Manages peer discovery and channel membership

•  Disseminates ledger data across all peers on a channel

•  Allowing peer-to-peer state transfer update of ledger data for new peers.

30

Leader Peer & Anchor Peer

•  Leader Peer
–  Connect to the ordering service and pull out new blocks
–  Distribute transactions to the other committing peers in the organization
–  Allow one or more leader peers in an organization
–  Leader Peer election

•  Static
•  Dynamic

•  Anchor Peer
–  Used by gossip to make sure peers in different organizations know about each other

31

Leader Election

•  Static
–  A system administrator manually configures a peer in an organization to be the leader
–  Can define one or more peers within an organization as leader peers

•  Dynamic
–  Peers execute a leader election procedure to select one leader in an organization
–  A dynamically elected leader sends heartbeat messages to the rest of the peers as an evidence of

liveness

peer:
 # Gossip related configuration
 gossip: useLeaderElection: false
 orgLeader: true

peer:
 # Gossip related configuration
 gossip:
 useLeaderElection: true
 orgLeader: false
 election:
 leaderAliveThreshold: 10s

32

Gossip Messaging

•  Online peers indicate their availability by continually broadcasting “alive” messages
•  Peers maintain channel membership by collecting these alive messages

•  Peers receives/handle messages, and forward the received messages automatically as well
•  Each peer continually pulls blocks from other peers on the channel, in order to repair its own

state if discrepancies are identified

•  Peers on one channel cannot message or share information on any other channel

Technical Deep Dive

•  Fabric Peer in Network Consensus

•  Fabric Ledger and State DB

•  Smart Contract in Fabric Network

•  Gossip Protocol

•  [Private data to protect privacy]

•  Sample Distributed network
deployment

34

Private Data

•  Confidential data that is stored in a private database on each authorized peer

•  Private data collection policy to define authorized peers

•  Ordering service does not see the private data

•  Sent peer-to-peer via gossip protocol

35

Worldstate

Transaction flow with private data

O

O O

O

Endorsing Peer Committing Peer

Client
Application SDK

transient
data store

transient
data store

Ordering-Service

1. submits a
proposal request
with private data

2. Endorsers simulate the
transaction

3. sends the proposal
response back to the
client

4. Responses
submitted for ordering

5. Orderer delivers to
committing peers

6. Committing peers
validate transactions
with the hashes of
the private data

7. Committing peers
notify applications

 store the private
data to transient db

hash of any private
data keys and
values

disseminate the private data via gossip

 move private data
from transient db
to private db

Worldstate

Private
data store

commit the
transaction
and the block

36

An example to explain private data collection

[!
{ !

"name": "collectionMarbles", !
"policy": "OR('Org1MSP.member', 'Org2MSP.member')", !
"requiredPeerCount": 0, !
"maxPeerCount": 3, !
"blockToLive":1000000, !
"memberOnlyRead": true!

}, !
{ !

"name": "collectionMarblePrivateDetails", !
"policy": "OR('Org1MSP.member')", !
"requiredPeerCount": 0, !
"maxPeerCount": 3, !
"blockToLive":3, !
"memberOnlyRead": true!

} !
] !

37

How to save private data
// ==== Create marble object, marshal to JSON, and save to state ====!
 marble := &marble{ !
 ObjectType: "marble", !
 Name: marbleInput.Name, !
 Color: marbleInput.Color, !
 Size: marbleInput.Size, !
 Owner: marbleInput.Owner, !
 } !
 // === Save marble to state ===!
 err = stub.PutPrivateData("collectionMarbles", marbleInput.Name, marbleJSONasBytes) !
 !
// ==== Create marble private details object with price, marshal to JSON, and save to
state ====!
 marblePrivateDetails := &marblePrivateDetails{ !
 ObjectType: "marblePrivateDetails", !
 Name: marbleInput.Name, !
 Price: marbleInput.Price, !
 } !
 marblePrivateDetailsBytes, err := json.Marshal(marblePrivateDetails) !
 err = stub.PutPrivateData("collectionMarblePrivateDetails", marbleInput.Name,
marblePrivateDetailsBytes) !

38

Private Data DB

Technical Deep Dive

•  Fabric Peer in Network Consensus

•  Fabric Ledger and State DB

•  Smart Contract in Fabric Network

•  Gossip Protocol

•  Private data to protect privacy

•  [Sample Distributed network
deployment]

40

What is a Hyperledger blockchain network?

•  Multiple organizations as a consortium to form
the network

•  Governed by policies agreed by the
organizations

•  Provide ledger and smart contract service

41

Bootstrap Network (1/6) - Configure & Start Ordering Service

Hyperledger Fabric Network

Ordering-Service

An Ordering Service is configured and started for the network:
$ docker-compose [-f orderer.yml] ...

O

O O

O

42

Hyperledger Fabric Network

Bootstrap Network (2/6) - Configure and Start Peer Nodes

E0

E1

E2

P3

A peer is configured and started for each Endorser or Committer in the network:
$ peer node start ...

Ordering-Service

O

O O

O

43

Hyperledger Fabric Network

E0

E1

E2

P3

Bootstrap Network (3/6) - Install Chaincode

A BA B

A B

Chaincode is installed onto each Endorsing Peer that needs to execute it:
$ peer chaincode install ...

Ordering-Service

O

O O

O

44

Hyperledger Fabric Network

E0

E1

E2

P3

A BA B

Bootstrap Network (4/6) – Create Channels

A B

Channels are created on the ordering service:
$ peer channel create –o [orderer] ...

Ordering-Service

O

O O

O

45

Ordering-Service

O

O O

O

Hyperledger Fabric Network

E0

E1

E2

P3

A B

A B

A B

Bootstrap Network (5/6) – Join Channels

Peers that are permissioned can then join the channels they want to transact on:
$ peer channel join ...

46

Ordering-Service

O

O O

O

Bootstrap Network (6/6) – Instantiate Chaincode

Hyperledger Fabric Network

E0

E1

E2

P3

A B

A B

A B

Peers finally instantiate the Chaincode on the channels they want to transact on:
$ peer chaincode instantiate ... –P ‘policy’

An Endorsement Policy is specified and once instantiated chaincode can process transactions.

47

Sample network with multiple orgs/channels

48

Further Hyperledger Fabric Information

•  Project Home: https://www.hyperledger.org/projects/fabric

•  GitHub Repo: https://github.com/hyperledger/fabric

•  Latest Docs: https://hyperledger-fabric.readthedocs.io/en/latest/

•  Community Chat: https://chat.hyperledger.org/channel/fabric

•  Project Wiki: https://wiki.hyperledger.org/projects/fabric

•  Design Docs: https://wiki.hyperledger.org/community/fabric-design-docs

课程安排
03/14 区块链赋能产业价值和商业模式
03/21 Hyperledger 项⽬目概览 社区介绍
03/28 Fabric 1.4 LTS 功能介绍 架构概览
04/04 Peer 解析
04/11 Orderer 解析
04/18 MSP 与 CA
 04/25 应⽤用开发指南
05/09 部署实践

欢迎关注微信公众号
“IBM开源技术”

获取更多资讯

公众号中发送“replay”
获取往期视频地址

公众号中发送“报名”，

即有机会参加Fabric线下训练营

