Open by design..

IBMHA R AN 1 =

Hyperledger Fabric v1.4 LTS

i

JL

FEM (Peerf®fh)

BRMBRERER

o
o ,<

A

2,

04/04 Peer fi#H7
04/11 Orderer fE#f
04/18 MSP 5 CA
04/25 NRF &I
05/09 BB L%

“EH
K

ERH

Open by design..

W ERIE A NS
“IBMFFIRZA"
REUE 2 # R

anxshziz “replay”
SREFE BRI

AnxethgsE “BRE7
EAH LS Fabricd TS

Open by design..

FEB

TR, IBMFLSLW=
IBM Blockchain Platform 7% [Z1RA
Hyperledger i+t X Z 47 &

IBM Blockchain

Technical Deep Dive

« [Fabric Peer in Network Consensus]
» Fabric Ledger and State DB

« Smart Contract in Fabric Network

» Gossip Protocol
« Private data to protect privacy

« Sample Distributed network
deployment

Fabric Peer

— Ablockchain network is comprised primarily of a
set of peer nodes

— Host ledgers and smart contracts

— Each peer:

Connects to one or more channels
Maintains one or more ledgers per channel
Maintains installed chaincode

Manages runtime docker containers for
instantiated chaincode

Has a local MSP (Membership Services
Provider) that provides crypto material
Emits events to the client application

IBM Blockchain

Channels

Events <-----------

Ledger

Blockchain

WorldState

Hyperledger Fabric V1.x Architecture

]

IBM Blockchain

Ledger

A

Chaincode

Ordering-Service

\Events @/

B

External-CA Fabric-CA
. Membership optiona
u a IR o * Services e u a Admin
Peer
4 ™ " =\
Client sbk | [Endorser
Application (HFC) \\
{ Committer
\. J N

Hyperledger Fabric Network

Client
Application

Hyperledger Fabric V1.x Transaction Flow -
Endorsing |
Policy I |

1. Application
proposes
transactio

SDK

7. Committing peers
notify applications

. Responses

L _ submiXed for ordering
3, Application receives

6. Committing peers
validate transactions

Endorsing Peer Committing Peer

2. Endorsers Execyte Proposals) Commit the
5. Orderer delivers to transaction and
committing peers { the block

~—_ . =
Worldstate

Ordering-Service

Worldstate

Endorsing Peer: endorses transactions by receiving a transaction
proposal and responds by granting or denying endorsement
Committing Peer: maintains ledger and state

IBM Blockchain

. |

Endorsement Policies I
|

|

An endorsement policy describes the conditions by which a transaction can be
endorsed. A transaction can only be considered valid if it has been endorsed

according to its policy.

— Each chaincode is deployed with an Endorsement Policy
— ESCC (Endorsement System ChainCode) signs the proposal response on the endorsing peer
— VSCC (Validation System ChainCode) validates the endorsements

Endorsing Peer Committing_; Peer

| P I Validate - Commit
IBM Blockchain

Endorsement Policy Syntax

S peer chaincode instantiate
mychannel] _
mycc Instantiate the chaincode mycc on
1.0 channel mychannel with the policy
chaincode example(2

| {HArgSH: ["j_l’lj_t", HaH, HlOOH, HbH, HZOOH] } | AND(Org1MSP.member)

Policy Syntax: EXPR(E[, E...])

Where EXPR is either AND, OR or OutOf and E is either a principal or nested EXPR
Principal Syntax: MSP.ROLE

Supported roles are: member, admin, client, peer

Where MSP is the MSP ID, and ROLE is either “member” or “admin”

IBM Blockchain

Endorsement Policy Examples

Examples of policies:

* Request 1 signature from all three principals
— AND('Org1.member’, 'Org2.member’, 'Org3.member’)

* Request 1 signature from either one of the two principals
— OR('Org1.member’, 'Org2.member')

* Request either one signature from a member of the Org1 MSP or (1 signature from a
member of the Org2 MSP and 1 signature from a member of the Org3 MSP)

— OR('Org1.member', AND('Org2.member’, 'Org3.member"))

IBM Blockchain

IBM Blockchain

Technical Deep Dive

Fabric Peer in Network Consensus
» [Fabric Ledger and State DB]
« Smart Contract in Fabric Network

» Gossip Protocol

« Private data to protect privacy

« Sample Distributed network
deployment

Fabric Ledger

» The Fabric ledger is sequenced, tamper-resistant record of all state transitions

» Blockchain
— Channel configurations
- Immutable, sequenced record in blocks

* World state
— Maintain current state

Worldstate

Genesis

Blockchain

IBM Blockchain

Block chain

An historical record of the facts about how these objects arrived at their current states.

BO HO

DO

(genesis)

Blockchain
Block
H3 Block header
D1 Block data
T5 Transaction
M3 Block metadata
v

H2 is chained to H1

Block(s)

IBM BI

Block header
* Block number
* Current Block Hash

* Previous Block Hash

Block Data
Block Metadata

D2

H2

(block number) 2

Block header

C H 2 (current block hash)

Block number

(@)
S ED
N

Hash of current block
transactions

P H 1 (previous block hash)

Copy of hash from
PH1 previous block
H2 V2 |Vv2is detailed view of H2

Transactions

Captures some essential metadata about
the transaction

T4
H4 Transaction
< Header
Signature
P4 Proposal
Response
R4
Endorsements
E4 T4 V4 |vais detailed view of T4

IBM Blockcnamn

World State

Holds current state of a set of business objects

n Ledger world state

A ledger state with

— ~ key=K. It contains a set
e eals of facts expressed as a

version=0 .
. . simple value, V. The
{key=CAR1, value=Audi} version=0 » .
state is at version 0.

A ledger state with
key=K. It contains a set

{key=K, value = {KV} } of facts expressed as a

version=0 set of key-value pairs
{KV}. The state is at
version 0.

{key= CAR2, value = {type: BMW, color: red, owner: Jane}} version=0

IBM Blockchain

Example Ledger: fabcar -

key=CAR3, value={color: yellow, make: Volkswagen, model: Passat, owner: Max} version=0
key=CAR2, value={color: green, make: Hyundai, model: Tucson, owner: Jin Soo} version=0
key=CAR1, value={color: red, make: Ford, model: Mustang, owner: Brad} version=0
key=CARO, value={color: blue, make: Toyota, model: Prius, owner: Tomoko} version=0

(genesis) 1

IBM Blockchain

IBM Blockchain

Technical Deep Dive

Fabric Peer in Network Consensus
» Fabric Ledger and State DB
* [Smart Contract in Fabric Network]

» Gossip Protocol

« Private data to protect privacy

« Sample Distributed network
deployment

Smart Contract & chaincode

« Smart Contract
— Heart of a blockchain network
— Defines the rules between different organizations in executable code
— Generate transactions that are recoded on the ledger
— packaged into a chaincode

_ vehicle
* Chaincode chaincode

— Can package multiple smart contracts
— Smart contacts are available to applications
when a chain code is deployed

car contract

boat contract

truck contract

IBM Blockchain

How smart contract interact with the ledger

Client
Blockchain develops Application
developer

emits)@

emits

_ SDK
develops submits
/ v \
Smart
> Contract
4 accesses
‘get’, ‘put’, ‘delete’ recorded
Ledger
BEE I
\4
World state

IBM Blockchain Pee&

Blockchain

event

event

Smart Contract Example — SimpleSet
» Add the Go import statements

(
Ilfmtll

""github.com/hyperledger/fabric/core/chaincode/shim"
"github.com/hyperledger/fabric/protos/peer"

SimpleChaincode

* Initializing

// Init is called during chaincode instantiation to initialize any data.

(t xSimpleChaincode) Init(stub shim.ChaincodeStubInterface) pb.Response {

A = args[0]

Aval, err = strconv.Atoi(args[1])

B = args[2]

Bval, err = strconv.Atoi(args[3])
fmt.Printf("Aval = %d, Bval = %d\n", Aval, Bval)

err = (A, [lbyte(strconv.Itoa(Aval)))

err = (B, [lbyte(strconv.Itoa(Bval)))
return shim.Success ()

Smart Contract Example — SimpleSet

* Invoking

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
(t *SimpleChaincode) Invoke(stub shim.ChaincodeStubInterface) pb.Response {

function, args := stub.GetFunctionAndParameters()
if function == " "o

return t.invoke(stub, args)
} else if function == " " {

return t.delete(stub, args)
} else if function == " "

return t.query(stub, args)

by

return shim.Error("Invalid invoke function name. Expecting \"invoke\"
\"delete\" \"query\"")
}

IBM Blockchain

Chaincode Lifecycle

Install

Upgrade Running

IBM Blockchain

Instantiate

Running

Chaincode Lifecycle — Packaging

« Packaging
— ChaincodeDeploymentSpec (CDS) - the source code, the name, and version of the chaincode
— An instantiation policy, expressed as endorsement policies
— Aset of signatures by the entities that “own” the chaincode

« Example

peer chaincode package =-n mycc -p github.com/hyperledger/fabric-samples/
chaincode/abstore/go -v 1.0 -s =S -i "AND('OrgA.admin')" ccpack.out

peer chaincode signpackage ccpack.out signedccpack.out

IBM Blockchain

Chaincode Lifecycle — Install & Instantiate | :
|
|

* Installing chaincode

— Installs chaincode on a peer node Endorsing

— Multiple chaincodes could be installed on a peer node Peer

— Must install the chaincode on each endorsing peer node of a B
channel

— Example

peer chaincode install ccpack.out

i |nStantIate ChalnCOde Esgﬁéjlgg A on blue channel
— Create and initialize a chaincode on a channel
— Sets up the endorsement policy during instantiation oo g
- aya
— Example A
peer chaincode instantiate -n mycc -v 1.0 -c '{"Args":[“a", Endorsing
“100”, “b”, “200”1}' -P "AND ('Orgl.member’,'Org2.member')" Sl B B on blue channel

IBM Blockchain

Chaincode Lifecycle — Running & Upgrade N

* Running
— Application/Client submits a transaction
— Smart contracts handles the transaction, update the ledger and return a response
— Application/Client receives the response
— Example

peer chaincode query -C mychannel -n mycc -c '{"Args":["query","a"]}’

peer chaincode invoke -o order-url -C mychannel -n mycc -c '{"Args":["invoke","a","b","10"]}'

« Upgrade
— Achaincode may be upgraded any time by changing its version
— Prior to upgrade, the new version of the chaincode must be installed on the required endorsers
— Similar to the instantiate transaction, only affects one channel at a time

peer chaincode upgrade -C mychannel -n mycc -v 1.0 -c '{"Args":

[Ilall , ”100" . Ilbll) IIZOOII] }I

IBM Blockchain

System Chaincode

Runs within the peer process rather than in an isolated container like normal chaincode
Implement a number of system behaviors

LSCC(Lifecycle system chaincode)

— handles lifecycle requests of application chaincodes
CSCC(Configuration system chaincode)

— handles channel configuration on the peer side
QSCC(Query system chaincode)

— provides ledger query APIs such as getting blocks and transactions

IBM Blockchain

IBM Blockchain

Technical Deep Dive

Fabric Peer in Network Consensus
» Fabric Ledger and State DB
« Smart Contract in Fabric Network

* [Gossip Protocol]

« Private data to protect privacy

« Sample Distributed network
deployment

Functions of Gossip Protocol

* Manages peer discovery and channel membership
« Disseminates ledger data across all peers on a channel

» Allowing peer-to-peer state transfer update of ledger data for new peers.

IBM Blockchain

Leader Peer & Anchor Peer

* Leader Peer
— Connect to the ordering service and pull out new blocks
— Distribute transactions to the other committing peers in the organization
— Allow one or more leader peers in an organization

— Leader Peer election
» Static
+ Dynamic

* Anchor Peer
— Used by gossip to make sure peers in different organizations know about each other

IBM Blockchain

Leader Election _l"ﬁ_
|
|

* Static
— A system administrator manually configures a peer in an organization to be the leader
— Can define one or more peers within an organization as leader peers

peer:
Gossip related configuration

gossip: uselLeaderElection: false
orgLeader: true

* Dynamic
— Peers execute a leader election procedure to select one leader in an organization
— Adynamically elected leader sends heartbeat messages to the rest of the peers as an evidence of
liveness

peer:
Gossip related configuration
gossip:

useleaderElection: true

orglLeader: false

election:
leaderAliveThreshold: 10s

Gossip Messaging _I—ﬁ_
|
|

Online peers indicate their availability by continually broadcasting “alive” messages
Peers maintain channel membership by collecting these alive messages

Peers receives/handle messages, and forward the received messages automatically as well

Each peer continually pulls blocks from other peers on the channel, in order to repair its own
state if discrepancies are identified

Peers on one channel cannot message or share information on any other channel

IBM Blockchain

IBM Blockchain

Technical Deep Dive

Fabric Peer in Network Consensus
» Fabric Ledger and State DB
« Smart Contract in Fabric Network

» Gossip Protocol

- [Private data to protect privacy]

« Sample Distributed network
deployment

Private Data

Confidential data that is stored in a private database on each authorized peer
Private data collection policy to define authorized peers
Ordering service does not see the private data

Sent peer-to-peer via gossip protocol

IBM Blockchain

Transaction flow with private data

Client
Application SDK

7. Committing peers

notify applications
1. submits a

proposal request

sepds the p . ResponSeS
with private dats

submiged for ordering 6. Committing peers
pronse back to the validate transactions
with the hashes of
the private data

hash of any private
data keys and

2. Endorsers|3|mulate the
transaction

store the private !)
data to transient db '

Committing Peer

-
1
1
1

. Orderer delivers {0 con{mit the

move private data
committing peers’

trankaction from transient db
' and|the block tolprlvate db

Ordering-Service

transient

. transient
data store ‘

Private
data stc

data store

IBM Blockchai Worlastate Worldstate

An example to explain private data collection

"name"':

"policy":
"requiredPeerCount": 0,
"maxPeerCount": 3,
"blockToLive":1000000),
"memberOnlyRead":

"name" :

"policy":
"requiredPeerCount": 0,
"maxPeerCount": 3,
"blockToLive":3,
"memberOnlyRead":

IBM Blockchain

How to save private data

marble := &marble{
ObjectType: .
Name: marbleInput.Name,
Color: marbleInput.Color,
Size: marbleInput.Size,
Owner: marbleInput.Owner,

}

err = stub.PutPrivateData(, marbleInput.Name, marbleJSONasBytes)

marblePrivateDetails := &marblePrivateDetails{
ObjectType: ’
Name: marbleInput.Name,
Price: marbleInput.Price,
}
marblePrivateDetailsBytes, err := json.Marshal(marblePrivateDetails)
err = stub.PutPrivateData(, marbleInput.Name,
marblePrivateDetailsBytes)

IBM Blockchain

Private Data DB

Private Stat

Collection: Marbles Collection: Marbles
name, color, size, owner name, color, size, owner

Private State Private State
Collection: MarblesPrivateData Collection: MarblesPrivateData
price price

IBM Blockchain

Private Stal
Collection: Marbles
name, color, size, owner

Private Stat
Collection: Marbles
name, color, size, owner

IBM Blockchain

Technical Deep Dive

Fabric Peer in Network Consensus
» Fabric Ledger and State DB
« Smart Contract in Fabric Network

» Gossip Protocol

« Private data to protect privacy

* [Sample Distributed network
deployment]

What is a Hyperledger blockchain network?

* Multiple organizations as a consortium to form
the network

« Governed by policies agreed by the
organizations

» Provide ledger and smart contract service

Org 3 Peers

IBM Blockchain

Ordering Service

Org 2 Peers

Bootstrap Network (1/6) - Configure & Start Ordering ServiceiU:
I
|

Ordering-Service

Hyperledger Fabric Network

An Ordering Service is configured and started for the network:
$ docker-compose [-f orderer.yml] ...
IBM Blockchain

Bootstrap Network (2/6) - Configure and Start Peer Nodes —|—=

A peer is configured and started for each Endorser or Committer in the network:
$ peer node start ...
IBM Blockchain

Ordering-Service

Hyperledger Fabric Network

Bootstrap Network (3/6) - Install Chaincode —H—
|
|

Ordering-Service

Hyperledger Fabric Network

Chaincode is installed onto each Endorsing Peer that needs to execute it:
$ peer chaincode install ...
IBM Blockchain

Bootstrap Network (4/6) — Create Channels

Ordering-Service

Channels are created on the ordering service:
$ peer channel create —o [orderer] ...
IBM Blockchain

Hyperledger Fabric Network

Bootstrap Network (5/6) — Join Channels —H—
|
|

Orderln Service

Hyperledger Fabric Network

Peers that are permissioned can then join the channels they want to transact on:
$ peer channel join ...
IBM Blockchain

Bootstrap Network (6/6) — Instantiate Chaincode —r:—
|
|

Ordering-Service
4 B

Hyperledger Fabric Network

Peers finally instantiate the Chaincode on the channels they want to transact on:
$ peer chaincode instantiate ... —P ‘policy’
IBM Blockchain

An Endorsement Policy is specified and once instantiated chaincode can process transactions.

Sample network with multiple orgs/channels

o]

can | caz [€83

IBM Blockchain

Further Hyperledger Fabric Information

Project Home: https://www.hyperledger.org/projects/fabric

GitHub Repo: hitps://aithub.com/hyperledger/fabric

Latest Docs: https://hyperledger-fabric.readthedocs.io/en/latest/

Community Chat: hitps://chat.hyperledger.org/channel/fabric

Project Wiki: hitps://wiki.hyperledger.ora/projects/fabric

Design Docs: https://wiki.hyperledger.org/community/fabric-design-docs

IBM Blockchain

04/11 Orderer &4
04/18 MSP 5 CA
04/25 N AT &6
05/09 ERE L%

“EH
K

ERH

Open by design..

W ERIE A NS
“IBMFFIRZA"
REUE 2 # R

anxshziz “replay”
SREFE BRI

AnxethgsE “BRE7
EAH LS Fabricd TS

