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Hyperledger Fabric V1.x Architecture 
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Hyperledger Fabric V1.x Transaction Flow 
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Endorsement Policies 

An endorsement policy describes the conditions by which a transaction can be 
endorsed. A transaction can only be considered valid if it has been endorsed 
according to its policy. 

–  Each chaincode is deployed with an Endorsement Policy 
–  ESCC (Endorsement System ChainCode) signs the proposal response on the endorsing peer 
–  VSCC (Validation System ChainCode) validates the endorsements 

Chaincode ESCC VSCC Ledger 

Propose - Execute - Respond 

Order - Deliver 

Validate - Commit 

Sign Policy 

Endorsing Peer Committing Peer 

P 
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Endorsement Policy Syntax 

 
Policy Syntax: EXPR(E[, E...]) 
 

 Where EXPR is either AND, OR or OutOf and E is either a principal or nested EXPR 
 
Principal Syntax: MSP.ROLE 
 

 Supported roles are: member, admin, client, peer 
 

 Where MSP is the MSP ID, and ROLE is either “member” or “admin” 

$ peer chaincode instantiate  
-C mychannel  
-n mycc  
-v 1.0  
-p chaincode_example02  
-c '{"Args":["init","a", "100", "b","200"]}'  
-P "AND('Org1MSP.member')“ 
 

 
Instantiate the chaincode mycc on 
channel mychannel with the policy 
AND('Org1MSP.member') 
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Endorsement Policy Examples 

Examples of policies: 

•  Request 1 signature from all three principals  

–  AND('Org1.member', 'Org2.member', 'Org3.member') 

•  Request 1 signature from either one of the two principals  

–  OR('Org1.member', 'Org2.member') 

•  Request either one signature from a member of the Org1 MSP or (1 signature from a 
member of the Org2 MSP and 1 signature from a member of the Org3 MSP) 

–  OR('Org1.member', AND('Org2.member', 'Org3.member')) 
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•  The Fabric ledger is sequenced, tamper-resistant record of all state transitions  

•  Blockchain 
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Block chain 

An historical record of the facts about how these objects arrived at their current states.  
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Block(s) 

•  Block header 
•  Block number 
•  Current Block Hash 
•  Previous Block Hash 

•  Block Data 
•  Block Metadata 
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Transactions 

Captures some essential metadata about 
the transaction 
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World State 

Holds current state of a set of business objects 
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Example Ledger: fabcar 
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Smart Contract & chaincode 

•  Smart Contract 
–  Heart of a blockchain network  
–  Defines the rules between different organizations in executable code 
–  Generate transactions that are recoded on the ledger 
–  packaged into a chaincode 

•  Chaincode 
–  Can package multiple smart contracts 
–  Smart contacts are available to applications  
          when a chain code is deployed  
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Smart Contract Example – SimpleSet 
•  Add the Go import statements 

 
•  Initializing 

import ( !
    "fmt" !
    "github.com/hyperledger/fabric/core/chaincode/shim"!
    "github.com/hyperledger/fabric/protos/peer"!
) !
// SimpleChaincode example simple Chaincode implementation!
type SimpleChaincode struct { !
} !

// Init is called during chaincode instantiation to initialize any data. !
!
func (t *SimpleChaincode) Init(stub shim.ChaincodeStubInterface) pb.Response { !
    // Initialize the chaincode!
    A = args[0] !
    Aval, err = strconv.Atoi(args[1]) !
    B = args[2] !
    Bval, err = strconv.Atoi(args[3]) !
    fmt.Printf("Aval = %d, Bval = %d\n", Aval, Bval) !
    // Write the state to the ledger!
    err = stub.PutState(A, []byte(strconv.Itoa(Aval))) !
    err = stub.PutState(B, []byte(strconv.Itoa(Bval))) !
    return shim.Success(nil) !
} !
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Smart Contract Example – SimpleSet 
 

•  Invoking 
// Invoke is called per transaction on the chaincode. Each transaction is !
// either a 'get' or a 'set' on the asset created by Init function. The Set !
// method may create a new asset by specifying a new key-value pair. 
func (t *SimpleChaincode) Invoke(stub shim.ChaincodeStubInterface) pb.Response { !
    !
    function, args := stub.GetFunctionAndParameters() !
    if function == "invoke" { !
        // Make payment of X units from A to B!
        return t.invoke(stub, args) !
    } else if function == "delete" { !
        // Deletes an entity from its state!
        return t.delete(stub, args) !
    } else if function == "query" { !
        // the old "Query" is now implemtned in invoke!
        return t.query(stub, args) !
    } !
!
    return shim.Error("Invalid invoke function name. Expecting \"invoke\" 
\"delete\" \"query\"") !
} !
 



23 

Chaincode Lifecycle 

Package Install Instantiate Running 

Upgrade Running 
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Chaincode Lifecycle – Packaging 

•  Packaging  
–  ChaincodeDeploymentSpec (CDS) - the source code, the name, and version of the chaincode 
–  An instantiation policy, expressed as endorsement policies 
–  A set of signatures by the entities that “own” the chaincode 

•  Example 

peer chaincode package -n mycc -p github.com/hyperledger/fabric-samples/
chaincode/abstore/go -v 1.0 -s -S -i "AND('OrgA.admin')" ccpack.out!
!
peer chaincode signpackage ccpack.out signedccpack.out !
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Chaincode Lifecycle – Install & Instantiate 
 
•  Installing chaincode 

–  Installs chaincode on a peer node 
–  Multiple chaincodes could be installed on a peer node 
–  Must install the chaincode on each endorsing peer node of a 

channel 
–  Example 

•  Instantiate chaincode 
–  Create and initialize a chaincode on a channel 
–  Sets up the endorsement policy during instantiation 
–  Example 

peer chaincode install ccpack.out!

Endorsing 
Peer 

A B

Endorsing 
Peer 

A B

A on blue channel 

B on blue channel peer chaincode instantiate -n mycc -v 1.0 -c '{"Args":[“a”, 
“100”, “b”, “200”]}' -P "AND ('Org1.member','Org2.member')" !

Endorsing 
Policy A  

Endorsing 
Policy B 



26 

Chaincode Lifecycle – Running & Upgrade 
 
•  Running 

–  Application/Client submits a transaction 
–  Smart contracts handles the transaction, update the ledger and return a response 
–  Application/Client receives the response 
–  Example 

•  Upgrade 
–  A chaincode may be upgraded any time by changing its version  
–  Prior to upgrade, the new version of the chaincode must be installed on the required endorsers   
–  Similar to the instantiate transaction, only affects one channel at a time 
 

peer chaincode query -C mychannel -n mycc -c '{"Args":["query","a"]}’ 
peer chaincode invoke -o order-url  -C mychannel -n mycc -c '{"Args":["invoke","a","b","10"]}' 

peer chaincode upgrade -C mychannel -n mycc -v 1.0 -c '{"Args":
["a","100","b","200"]}' !



27 

System Chaincode 

•  Runs within the peer process rather than in an isolated container like normal chaincode 
•  Implement a number of system behaviors  

•  LSCC(Lifecycle system chaincode) 
–  handles lifecycle requests of application chaincodes 

•  CSCC(Configuration system chaincode) 
–  handles channel configuration on the peer side 

•  QSCC(Query system chaincode) 
–  provides ledger query APIs such as getting blocks and transactions 
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Functions of Gossip Protocol 
 

•  Manages peer discovery and channel membership 

•  Disseminates ledger data across all peers on a channel 
 
•  Allowing peer-to-peer state transfer update of ledger data for new peers. 
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Leader Peer & Anchor Peer 

•  Leader Peer 
–  Connect to the ordering service and pull out new blocks 
–  Distribute transactions to the other committing peers in the organization 
–  Allow one or more leader peers in an organization 
–  Leader Peer election 

•  Static  
•  Dynamic 

•  Anchor Peer 
–  Used by gossip to make sure peers in different organizations know about each other 
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Leader Election 

•  Static 
–  A system administrator manually configures a peer in an organization to be the leader 
–  Can define one or more peers within an organization as leader peers 

•  Dynamic 
–  Peers execute a leader election procedure to select one leader in an organization 
–  A dynamically elected leader sends heartbeat messages to the rest of the peers as an evidence of 

liveness 

peer: 
      # Gossip related configuration  
     gossip: useLeaderElection: false  
     orgLeader: true 

peer: 
      # Gossip related configuration  
     gossip:  
         useLeaderElection: true 
         orgLeader: false 
         election:  
               leaderAliveThreshold: 10s 
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Gossip Messaging 

•  Online peers indicate their availability by continually broadcasting “alive” messages 
•  Peers maintain channel membership by collecting these alive messages 
 
•  Peers receives/handle messages, and forward the received messages automatically as well 
•  Each peer continually pulls blocks from other peers on the channel, in order to repair its own 

state if discrepancies are identified 

•  Peers on one channel cannot message or share information on any other channel 
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Private Data 

•  Confidential data that is stored in a private database on each authorized peer 

•  Private data collection policy to define authorized peers 
 
•  Ordering service does not see the private data 

•  Sent peer-to-peer via gossip protocol  
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Worldstate 

Transaction flow with private data 
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An example to explain private data collection 

[ !
{ !

"name": "collectionMarbles", !
"policy": "OR('Org1MSP.member', 'Org2MSP.member')", !
"requiredPeerCount": 0, !
"maxPeerCount": 3, !
"blockToLive":1000000, !
"memberOnlyRead": true!

}, !
{ !

"name": "collectionMarblePrivateDetails", !
"policy": "OR('Org1MSP.member')", !
"requiredPeerCount": 0, !
"maxPeerCount": 3, !
"blockToLive":3, !
"memberOnlyRead": true!

} !
] !
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How to save private data 
// ==== Create marble object, marshal to JSON, and save to state ====!
    marble := &marble{ !
        ObjectType: "marble", !
        Name: marbleInput.Name, !
        Color: marbleInput.Color, !
        Size: marbleInput.Size, !
        Owner: marbleInput.Owner, !
    } !
    // === Save marble to state ===!
    err = stub.PutPrivateData("collectionMarbles", marbleInput.Name, marbleJSONasBytes) !
    !
// ==== Create marble private details object with price, marshal to JSON, and save to 
state ====!
    marblePrivateDetails := &marblePrivateDetails{ !
        ObjectType: "marblePrivateDetails", !
        Name: marbleInput.Name, !
        Price: marbleInput.Price, !
    } !
    marblePrivateDetailsBytes, err := json.Marshal(marblePrivateDetails) !
    err = stub.PutPrivateData("collectionMarblePrivateDetails", marbleInput.Name, 
marblePrivateDetailsBytes) !
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Private Data DB 
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What is a Hyperledger blockchain network? 

•  Multiple organizations as a consortium to form 
the network 

•  Governed by policies agreed by the 
organizations 

•  Provide ledger and smart contract service 
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Bootstrap Network (1/6) - Configure & Start Ordering Service 

Hyperledger Fabric Network 

Ordering-Service 

An Ordering Service is configured and started for the network: 
$ docker-compose [-f orderer.yml] ... 

O 

O O 

O 
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Hyperledger Fabric Network 

Bootstrap Network (2/6) - Configure and Start Peer Nodes 

E0 

E1 

E2 

P3 

A peer is configured and started for each Endorser or Committer in the network: 
$ peer node start ... 

Ordering-Service 

O 

O O 

O 



43 

Hyperledger Fabric Network 

E0 

E1 

E2 

P3 

Bootstrap Network (3/6) - Install Chaincode 

A BA B

A B

Chaincode is installed onto each Endorsing Peer that needs to execute it: 
$ peer chaincode install ... 

Ordering-Service 

O 

O O 

O 
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Hyperledger Fabric Network 

E0 

E1 

E2 

P3 

A BA B

Bootstrap Network (4/6) – Create Channels 

A B

Channels are created on the ordering service: 
$ peer channel create –o [orderer] ... 

Ordering-Service 

O 

O O 

O 
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Ordering-Service 

O 

O O 

O 

Hyperledger Fabric Network 

E0 

E1 

E2 

P3 

A B

A B

A B

Bootstrap Network (5/6) – Join Channels 

Peers that are permissioned can then join the channels they want to transact on: 
$ peer channel join ... 
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Ordering-Service 

O 

O O 

O 

Bootstrap Network (6/6) – Instantiate Chaincode 

Hyperledger Fabric Network 

E0 

E1 

E2 

P3 

A B

A B

A B

Peers finally instantiate the Chaincode on the channels they want to transact on: 
$ peer chaincode instantiate ... –P ‘policy’ 

An Endorsement Policy is specified and once instantiated chaincode can process transactions. 
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Sample network with multiple orgs/channels 
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Further Hyperledger Fabric Information 

•  Project Home: https://www.hyperledger.org/projects/fabric 

•  GitHub Repo: https://github.com/hyperledger/fabric 

•  Latest Docs: https://hyperledger-fabric.readthedocs.io/en/latest/ 

•  Community Chat: https://chat.hyperledger.org/channel/fabric 

•  Project Wiki: https://wiki.hyperledger.org/projects/fabric 

•  Design Docs: https://wiki.hyperledger.org/community/fabric-design-docs 
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