Lecture 13, Elementary counting; Stirling numbers

Qi Chen, Jingliang Gao

Fall , 2023

A counting problem

Problem

We have *n* indistinguishable balls that are to be placed in *k* boxes, marked $1, 2, \dots, k$. In how many different ways can this be done?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

A counting problem

Problem

We have *n* indistinguishable balls that are to be placed in *k* boxes, marked $1, 2, \dots, k$. In how many different ways can this be done?

Solution

Think of the balls as being colored blue and line them up in front of the boxes that they will go into. Then insert a red ball between two consecutive boxes. We end up with a line of n + k - 1 balls, k - 1 of them red, describing the situation. So the answer to the problem is $\binom{n+k-1}{k-1}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A counting problem

Problem

We have *n* indistinguishable balls that are to be placed in *k* boxes, marked $1, 2, \dots, k$. In how many different ways can this be done?

Solution

Think of the balls as being colored blue and line them up in front of the boxes that they will go into. Then insert a red ball between two consecutive boxes. We end up with a line of n + k - 1 balls, k - 1 of them red, describing the situation. So the answer to the problem is $\binom{n+k-1}{k-1}$.

Theorem

The number of solutions of the equation

$$x_1 + x_2 + \dots + x_k = n \tag{1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

in nonnegative integers is $\binom{n+k-1}{k-1}$.

Corollary

Corollary

The number of solutions of the equation (1) in positive integers is $\binom{n-1}{k-1}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Corollary

Corollary

The number of solutions of the equation (1) in positive integers is $\binom{n-1}{k-1}$.

Proof.

Replace x_i by $y_i \triangleq x_i - 1$. Then $\sum y_i = n - k$. Apply Theorem 13.1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

Consider the problem of selecting r of the integers $1, 2, \dots, n$ such that no two selected integers are consecutive.

Example

Consider the problem of selecting r of the integers $1, 2, \dots, n$ such that no two selected integers are consecutive.

- Let $x_1 < x_2 < \cdots < x_r$ be such a sequence.
- ► Define $y_1 \triangleq x_1$, $y_i \triangleq x_i x_{i-1} 1$, $2 \le i \le r$, $y_{r+1} \triangleq n - x_r + 1$.

• Then the y_i are positive integers and $\sum_{i=1}^{r+1} y_i = n - r + 2$.

▶ By the Corollary to Theorem 13.1, we see that there are $\binom{n-r+1}{r}$ solutions.

In how many ways can we arrange r_1 balls of color 1, r_2 balls of color 2, \cdots , r_k balls of color k in a sequence of length $n \triangleq r_1 + r_2 + \cdots + r_k$?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

In how many ways can we arrange r_1 balls of color 1, r_2 balls of color 2, \cdots , r_k balls of color k in a sequence of length $n \triangleq r_1 + r_2 + \cdots + r_k$?

- lf we number the balls 1 to n, then there are n! arrangements.
- Since we ignore the numbering, any permutation of the set of r_i balls of color i, 1 ≤ i ≤ k, produces the same arrangement.
- So the answer to the question is the multinomial coefficient $\binom{n}{r_1, \cdots, r_K}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

We wish to split $\{1, 2, \dots, n\}$ in to b_1 subsets of size 1, b_2 subsets of size 2, \dots , b_k subsets of size k. Here $\sum_{i=1}^{k} ib_i = n$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example

We wish to split $\{1, 2, \dots, n\}$ in to b_1 subsets of size 1, b_2 subsets of size 2, \dots , b_k subsets of size k. Here $\sum_{i=1}^k ib_i = n$.

- ► The same argument as used in Example 13.2 applies.
- Furthermore, the subsets of the same cardinality can be permuted among themselves without changing the configuration.
- So the solution is

 $\frac{n!}{b_1!b_2!\cdots b_k!(1!)^{b_1}(2!)^{b_2}\cdots (k!)^{b_k}}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let A run through all subsets of $\{1, 2, \cdots, n\}$. Calculate $S = \sum |A|$.

Let A run through all subsets of $\{1, 2, \cdots, n\}$. Calculate $S = \sum |A|$.

Since there are $\binom{n}{i}$ subsets of *i*. We apparently must calculate $\sum_{i=0}^{n} i\binom{n}{i}$.

• By differentiating $(1 + x)^n$, we find

$$\sum_{i=1}^{k} i \binom{n}{i} x^{i-1} = n(1+x)^{n-1}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and substitution of x = 1 yields the answer $S = n \cdot 2^{n-1}$.

Let A run through all subsets of $\{1, 2, \cdots, n\}$. Calculate $S = \sum |A|$.

Since there are $\binom{n}{i}$ subsets of *i*. We apparently must calculate $\sum_{i=0}^{n} i\binom{n}{i}$.

• By differentiating $(1 + x)^n$, we find

$$\sum_{i=1}^{k} i \binom{n}{i} x^{i-1} = n(1+x)^{n-1}$$

and substitution of x = 1 yields the answer $S = n \cdot 2^{n-1}$.

A set A and its complement together contain n elements and there are exactly 2ⁿ⁻¹ such pairs.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$

Proof.

- One can calculate this sum by determining the coefficient of xⁿ in (1 + x)ⁿ(1 + x)ⁿ and using the binomial formula.
- Each side of the above equation just counts (in two ways) the number of ways of selecting n balls from a set consisting of n red balls and n blue balls.

Example

How many sequences A_1, \dots, A_k are there for which $A_i \subseteq \{1, 2, \dots, n\}, 1 \le i \le k$, and $\cup_{i=1}^k A_i = \{1, 2, \dots, n\}$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

How many sequences A_1, \dots, A_k are there for which $A_i \subseteq \{1, 2, \dots, n\}, 1 \leq i \leq k$, and $\bigcup_{i=1}^k A_i = \{1, 2, \dots, n\}$? Solution

- ► Since we wish to avoid that j, 1 ≤ j ≤ n, is not an element of the union of the A_i's, we are tempted to use inclusion-exclusion.
- ► If we choose *i* elements from {1, 2, · · · , *n*} and consider all sequences A₁, · · · , A_k not containing any of these *i* elements, then we find (2ⁿ⁻ⁱ)^k sequences.
- ► So by Theorem 10.1, the solution to the problem is

$$\sum_{i=0}^{n} (-1)^{i} \binom{n}{i} 2^{(n-i)k} = (2^{k} - 1)^{n}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Stirling number of the first kind

Definition

- Let c(n, k) denote the number of permutations π ∈ S_n with exactly k cycles.
- Furthermore define c(0,0) = 1 and c(n,k) = 0 if $n \le 0$ or $k \le 0$, $(n,k) \ne (0,0)$.
- The Stirling numbers of the first kind s(n, k) are defined by

$$s(n,k) \triangleq (-1)^{n-k} c(n,k).$$
⁽²⁾

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem

The numbers c(n, k) satisfy the recurrence relation

$$c(n,k) = (n-1)c(n-1,k) + c(n-1,k-1).$$
(3)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Theorem

The numbers c(n, k) satisfy the recurrence relation

$$c(n,k) = (n-1)c(n-1,k) + c(n-1,k-1).$$
(3)

Proof.

- If π is a permutation in S_{n-1} with k cycles, then there are n-1 positions where we can insert the integer n to produce a permutation π' ∈ S_n with k cycles.
- ▶ We can also adjoin (n) as a cycle to any permutation in S_{n-1} with k − 1 cycles. This accounts for the two terms on the right-hand side of (3).

Theorem For $n \ge 0$, we have

$$\sum_{k=0}^{n} c(n,k) x^{k} = x(x+1) \cdots (x+n-1)$$
 (4)

and

$$\sum_{k=0}^{n} s(n,k) x^{k} = (x)_{n}.$$
 (5)

where

$$(x)_n \triangleq k(k-1)...(k-n+1) = \frac{k!}{(k-n)!}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Proof.

Write the right-hand side of (4) as

$$F_n(x) = \sum_{k=0}^n b(n,k) x^k.$$

Clearly b(0,0) = 1. Define $b(n,k) \triangleq 0$ if $n \le 0$ or $k \le 0$, (n,k) ≠ (0,0).

Since

$$F_n(x) = (x + n - 1)F_{n-1}(x)$$

= $\sum_{k=1}^n b(n-1, k-1)x^k + (n-1)\sum_{k=0}^{n-1} b(b-1, k)x^k$,

we see that the numbers b(n, k) satisfy the same recurrence relation as the c(n, k), namely (3).

Proof(cont.)

Since the numbers are equal if n ≤ 0 or k ≤ 0, they are equal for all n and k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

To prove (5) replace x by -x and use (2).

Stirling number of the second kind

Definition

Denote by P(n, k) the set of all partitions of an *n*-set into *k* nonempty subsets (blocks). Then

$$S(n,k) \triangleq |P(n,k)| \tag{6}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Again we have S(0,0) = 1 and take the numbers to be 0 for all values of the parameters not covered by the previous definition.

Theorem

The Stirling numbers of the second kind satisfy the relation

$$S(n,k) = kS(n-1,k) + S(n-1,k-1).$$
(7)

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Theorem

The Stirling numbers of the second kind satisfy the relation

$$S(n,k) = kS(n-1,k) + S(n-1,k-1).$$
(7)

Proof.

A partition of the set $\{1,2,\cdots,n-1\}$ can be made into a partition of $\{1,2,\cdots,n\}$

- by adjoining n to one of the blocks
- or by increasing the number of blocks by one by making {n} a block.

Bell number

Definition (Bell number)

The Bell number B(n) is the total number of partitions of an *n*-set, i.e.

$$B(n) \triangleq \sum_{k=1}^{n} S(n,k), \quad (n \ge 1).$$
(8)

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Theorem For $n \ge 0$ we have

$$x^{n} = \sum_{k=0}^{n} S(n,k)(x)_{k}.$$
 (9)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof.

- by (6) the number of surjective mappings from an *n*-set to a *k*-set is k!S(n, k)
- by Example 10.2, we have

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^k \binom{k}{i} (k-i)^n = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} i^n$$
(10)

Proof(cont.)

- let x be an integer.
- ▶ There are x_n mappings from the *n*-set $N \triangleq \{1, 2, \dots, n\}$ to the *x*-set $\{1, 2, \dots, x\}$.
- For any k-subset Y of {1,2,...,x}, there are k!S(n,k) surjections from N to Y.
- So we find

$$x^n = \sum_{k=0}^n \binom{x}{k} k! S(n,k) = \sum_{k=0}^n S(n,k)(x)_k.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Therom 13.6

Theorem

$$\sum_{n \ge k} S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k \quad (k \ge 0)$$

Therom 13.6

Theorem

$$\sum_{n \ge k} S(n,k) \frac{x^n}{n!} = \frac{1}{k!} (e^x - 1)^k \quad (k \ge 0)$$

Proof.

Let F_k(x) denote the sum on the left-hand side.
By (7) we have

$$F'_k(x) = kF_k(x) + F_{k-1}(x).$$

The result now follows by induction.

- Since S(n, 1) = 1, the assertion is true for k = 1.
- ▶ The induction hypothesis yields a differential equation for F_k , which with the condition S(k, k) = 1 has the right-hand side of the assertion as unique solution.

Theorem

$$\sum_{n=k}^{\infty} s(n,k) \frac{z^n}{n!} = \frac{1}{k!} (\log(1+z))^k,$$

Proof.

$$(1+z)^{x} = e^{x \log(1+z)} = \sum_{k=0}^{\infty} \frac{1}{k!} (\log(1+z))^{k} x^{k},$$

the right-hand side in the assertion is the coefficient of x^k in the expansion of $(1 + z)^x$.

• On the other hand, we have for |z| < 1,

$$(1+z)^{x} = \sum_{0}^{\infty} {\binom{x}{n}} z^{n} = \sum_{n=0}^{\infty} \frac{1}{n!} (x)_{n} z^{n}$$
$$= \sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{r=0}^{n} s(n,r) x^{r} = \sum_{n=r}^{\infty} \frac{s(n,r)}{n!} \frac{z^{n}}{n!}.$$

The Relation between two types of Stirling numbers

Proposition

$$\sum_{k=m}^{n} S(n,k) s(k,m) = \delta_{m,n},$$

where

$$\delta_{m,n} = egin{cases} 1, & \textit{if } m = n, \ 0, & \textit{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proof.

This follows immediately if we substitute (5) in (9).