
Lecture 13, Elementary counting; Stirling
numbers

Qi Chen, Jingliang Gao

Fall , 2023



A counting problem

Problem
We have n indistinguishable balls that are to be placed in k boxes,
marked 1, 2, · · · , k . In how many different ways can this be done?

Solution
Think of the balls as being colored blue and line them up in front
of the boxes that they will go into. Then insert a red ball between
two consecutive boxes. We end up with a line of n + k − 1 balls,
k − 1 of them red, describing the situation. So the answer to the
problem is

(n+k−1
k−1

)
.

Theorem
The number of solutions of the equation

x1 + x2 + · · ·+ xk = n (1)

in nonnegative integers is
(n+k−1

k−1
)
.
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Corollary

Corollary

The number of solutions of the equation (1) in positive integers is(n−1
k−1
)
.

Proof.
Replace xi by yi , xi − 1. Then

∑
yi = n − k . Apply Theorem

13.1.
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Example 13.1

Example

Consider the problem of selecting r of the integers 1, 2, · · · , n such
that no two selected integers are consecutive.

I Let x1 < x2 < · · · < xr be such a sequence.

I Define y1 , x1, yi , xi − xi−1 − 1, 2 ≤ i ≤ r ,
yr+1 , n − xr + 1.

I Then the yi are positive integers and
∑r+1

i=1 yi = n − r + 2.

I By the Corollary to Theorem 13.1, we see that there are(n−r+1
r

)
solutions.
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Example 13.2

In how many ways can we arrange r1 balls of color 1, r2 balls of
color 2, · · · , rk balls of color k in a sequence of length
n , r1 + r2 + · · ·+ rk?

I If we number the balls 1 to n, then there are n! arrangements.

I Since we ignore the numbering, any permutation of the set of
ri balls of color i , 1 ≤ i ≤ k , produces the same arrangement.

I So the answer to the question is the multinomial coefficient( n
r1,··· ,rK

)
.
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Example 13.3

Example

We wish to split {1, 2, · · · , n} in to b1 subsets of size 1, b2 subsets
of size 2, · · · , bk subsets of size k . Here

∑k
i=1 ibi = n.

I The same argument as used in Example 13.2 applies.

I Furthermore, the subsets of the same cardinality can be
permuted among themselves without changing the
configuration.

I So the solution is

n!

b1!b2! · · · bk !(1!)b1(2!)b2 · · · (k!)bk
.
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Example 13.4

Let A run through all subsets of {1, 2, · · · , n}. Calculate
S =

∑
|A|.

I Since there are
(n
i

)
subsets of i . We apparently must calculate∑n

i=0 i
(n
i

)
.

I By differentiating (1 + x)n, we find

k∑
i=1

i

(
n

i

)
x i−1 = n(1 + x)n−1

and substitution of x = 1 yields the answer S = n · 2n−1.

I A set A and its complement together contain n elements and
there are exactly 2n−1 such pairs.
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Example 13.5

n∑
k=0

(
n

k

)2

=

(
2n

n

)

Proof.

I One can calculate this sum by determining the coefficient of
xn in (1 + x)n(1 + x)n and using the binomial formula.

I Each side of the above equation just counts (in two ways) the
number of ways of selecting n balls from a set consisting of n
red balls and n blue balls.
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Example 13.6

Example

How many sequences A1, · · · ,Ak are there for which
Ai ⊆ {1, 2, · · · , n}, 1 ≤ i ≤ k, and ∪ki=1Ai = {1, 2, · · · , n}?

Solution

I Since we wish to avoid that j , 1 ≤ j ≤ n, is not an element of
the union of the Ai ’s, we are tempted to use
inclusion-exclusion.

I If we choose i elements from {1, 2, · · · , n} and consider all
sequences A1, · · · ,Ak not containing any of these i elements,
then we find (2n−i )k sequences.

I So by Theorem 10.1, the solution to the problem is

n∑
i=0

(−1)i
(
n

i

)
2(n−i)k = (2k − 1)n.
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Stirling number of the first kind

Definition

I Let c(n, k) denote the number of permutations π ∈ Sn with
exactly k cycles.

I Furthermore define c(0, 0) = 1 and c(n, k) = 0 if n ≤ 0 or
k ≤ 0, (n, k) 6= (0, 0).

I The Stirling numbers of the first kind s(n, k) are defined by

s(n, k) , (−1)n−kc(n, k). (2)



Theorem 13.2

Theorem
The numbers c(n, k) satisfy the recurrence relation

c(n, k) = (n − 1)c(n − 1, k) + c(n − 1, k − 1). (3)

Proof.

I If π is a permutation in Sn−1 with k cycles, then there are
n− 1 positions where we can insert the integer n to produce a
permutation π′ ∈ Sn with k cycles.

I We can also adjoin (n) as a cycle to any permutation in Sn−1
with k − 1 cycles. This accounts for the two terms on the
right-hand side of (3).
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Theorem 13.3

Theorem
For n ≥ 0, we have

n∑
k=0

c(n, k)xk = x(x + 1) · · · (x + n − 1) (4)

and
n∑

k=0

s(n, k)xk = (x)n. (5)

where

(x)n , k(k − 1)...(k − n + 1) =
k!

(k − n)!



Theorem 13.3

Proof.

I Write the right-hand side of (4) as

Fn(x) =
n∑

k=0

b(n, k)xk .

I Clearly b(0, 0) = 1. Define b(n, k) , 0 if n ≤ 0 or k ≤ 0,
(n, k) 6= (0, 0).

I Since

Fn(x) = (x + n − 1)Fn−1(x)

=
n∑

k=1

b(n − 1, k − 1)xk + (n − 1)
n−1∑
k=0

b(b − 1, k)xk ,

we see that the numbers b(n, k) satisfy the same recurrence
relation as the c(n, k), namely (3).



Theorem 13.3

Proof(cont.)

I Since the numbers are equal if n ≤ 0 or k ≤ 0, they are equal
for all n and k .

I To prove (5) replace x by −x and use (2).



Stirling number of the second kind

Definition
Denote by P(n, k) the set of all partitions of an n-set into k
nonempty subsets (blocks). Then

S(n, k) , |P(n, k)| (6)

Again we have S(0, 0) = 1 and take the numbers to be 0 for all
values of the parameters not covered by the previous definition.



Theorem 13.4

Theorem
The Stirling numbers of the second kind satisfy the relation

S(n, k) = kS(n − 1, k) + S(n − 1, k − 1). (7)

Proof.
A partition of the set {1, 2, · · · , n − 1} can be made into a
partition of {1, 2, · · · , n}
I by adjoining n to one of the blocks

I or by increasing the number of blocks by one by making {n} a
block.
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Bell number

Definition (Bell number)

The Bell number B(n) is the total number of partitions of an
n-set, i.e.

B(n) ,
n∑

k=1

S(n, k), (n ≥ 1). (8)



Theorem 13.5

Theorem
For n ≥ 0 we have

xn =
n∑

k=0

S(n, k)(x)k . (9)

Proof.

I by (6) the number of surjective mappings from an n-set to a
k-set is k!S(n, k)

I by Example 10.2, we have

S(n, k) =
1

k!

k∑
i=0

(−1)k
(
k

i

)
(k − i)n =

1

k!

k∑
i=0

(−1)k−i
(
k

i

)
in

(10)



Theorem 13.5

Proof(cont.)

I let x be an integer.

I There are xn mappings from the n-set N , {1, 2, · · · , n} to
the x-set {1, 2, · · · , x}.

I For any k-subset Y of {1, 2, · · · , x}, there are k!S(n, k)
surjections from N to Y .

I So we find

xn =
n∑

k=0

(
x

k

)
k!S(n, k) =

n∑
k=0

S(n, k)(x)k .



Therom 13.6

Theorem ∑
n≥k

S(n, k)
xn

n!
=

1

k!
(ex − 1)k (k ≥ 0)

Proof.

I Let Fk(x) denote the sum on the left-hand side.

I By (7) we have

F ′k(x) = kFk(x) + Fk−1(x).

The result now follows by induction.

I SinceS(n, 1) = 1, the assertion is true for k = 1.

I The induction hypothesis yields a differential equation for Fk ,
which with the condition S(k , k) = 1 has the right-hand side
of the assertion as unique solution.
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Theorem 13.7

Theorem
∞∑
n=k

s(n, k)
zn

n!
=

1

k!
(log(1 + z))k ,

Proof.

I Since

(1 + z)x = ex log(1+z) =
∞∑
k=0

1

k!
(log(1 + z))kxk ,

the right-hand side in the assertion is the coefficient of xk in
the expansion of (1 + z)x .

I On the other hand, we have for |z | < 1,

(1 + z)x =
∞∑
0

(
x

n

)
zn =

∞∑
n=0

1

n!
(x)nz

n

=
∞∑
n=0

zn

n!

n∑
r=0

s(n, r)x r =
∞∑
n=r

s(n, r)
zn

n!
.



The Relation between two types of Stirling numbers

Proposition

n∑
k=m

S(n, k)s(k,m) = δm,n,

where

δm,n =

{
1, if m = n,

0, otherwise.

Proof.
This follows immediately if we substitute (5) in (9).


