Lecture 13, Elementary counting; Stirling numbers

Qi Chen, Jingliang Gao

Fall, 2023

A counting problem

Problem

We have n indistinguishable balls that are to be placed in k boxes, marked $1,2, \cdots, k$. In how many different ways can this be done?

A counting problem

Problem

We have n indistinguishable balls that are to be placed in k boxes, marked $1,2, \cdots, k$. In how many different ways can this be done?

Solution
Think of the balls as being colored blue and line them up in front of the boxes that they will go into. Then insert a red ball between two consecutive boxes. We end up with a line of $n+k-1$ balls, $k-1$ of them red, describing the situation. So the answer to the problem is $\binom{n+k-1}{k-1}$.

A counting problem

Problem

We have n indistinguishable balls that are to be placed in k boxes, marked $1,2, \cdots, k$. In how many different ways can this be done?

Solution

Think of the balls as being colored blue and line them up in front of the boxes that they will go into. Then insert a red ball between two consecutive boxes. We end up with a line of $n+k-1$ balls, $k-1$ of them red, describing the situation. So the answer to the problem is $\binom{n+k-1}{k-1}$.

Theorem

The number of solutions of the equation

$$
\begin{equation*}
x_{1}+x_{2}+\cdots+x_{k}=n \tag{1}
\end{equation*}
$$

in nonnegative integers is $\binom{n+k-1}{k-1}$.

Corollary

Corollary

The number of solutions of the equation (1) in positive integers is $\binom{n-1}{k-1}$.

Corollary

Corollary

The number of solutions of the equation (1) in positive integers is $\binom{n-1}{k-1}$.

Proof.
Replace x_{i} by $y_{i} \triangleq x_{i}-1$. Then $\sum y_{i}=n-k$. Apply Theorem 13.1.

Example 13.1

Example

Consider the problem of selecting r of the integers $1,2, \cdots, n$ such that no two selected integers are consecutive.

Example 13.1

Example

Consider the problem of selecting r of the integers $1,2, \cdots, n$ such that no two selected integers are consecutive.

- Let $x_{1}<x_{2}<\cdots<x_{r}$ be such a sequence.
- Define $y_{1} \triangleq x_{1}, y_{i} \triangleq x_{i}-x_{i-1}-1,2 \leq i \leq r$, $y_{r+1} \triangleq n-x_{r}+1$.
- Then the y_{i} are positive integers and $\sum_{i=1}^{r+1} y_{i}=n-r+2$.
- By the Corollary to Theorem 13.1, we see that there are $\binom{n-r+1}{r}$ solutions.

Example 13.2

In how many ways can we arrange r_{1} balls of color $1, r_{2}$ balls of color $2, \cdots, r_{k}$ balls of color k in a sequence of length $n \triangleq r_{1}+r_{2}+\cdots+r_{k}$?

Example 13.2

In how many ways can we arrange r_{1} balls of color $1, r_{2}$ balls of color $2, \cdots, r_{k}$ balls of color k in a sequence of length $n \triangleq r_{1}+r_{2}+\cdots+r_{k}$?

- If we number the balls 1 to n, then there are n ! arrangements.
- Since we ignore the numbering, any permutation of the set of r_{i} balls of color $i, 1 \leq i \leq k$, produces the same arrangement.
- So the answer to the question is the multinomial coefficient $\binom{n}{r_{1}, \cdots, r_{K}}$.

Example 13.3

Example

We wish to split $\{1,2, \cdots, n\}$ in to b_{1} subsets of size $1, b_{2}$ subsets of size $2, \cdots, b_{k}$ subsets of size k. Here $\sum_{i=1}^{k} i b_{i}=n$.

Example 13.3

Example

We wish to split $\{1,2, \cdots, n\}$ in to b_{1} subsets of size $1, b_{2}$ subsets of size $2, \cdots, b_{k}$ subsets of size k. Here $\sum_{i=1}^{k} i b_{i}=n$.

- The same argument as used in Example 13.2 applies.
- Furthermore, the subsets of the same cardinality can be permuted among themselves without changing the configuration.
- So the solution is

$$
\frac{n!}{b_{1}!b_{2}!\cdots b_{k}!(1!)^{b_{1}}(2!)^{b_{2}} \cdots(k!)^{b_{k}}} .
$$

Example 13.4

Let A run through all subsets of $\{1,2, \cdots, n\}$. Calculate $S=\sum|A|$.

Example 13.4

Let A run through all subsets of $\{1,2, \cdots, n\}$. Calculate $S=\sum|A|$.

- Since there are $\binom{n}{i}$ subsets of i. We apparently must calculate $\sum_{i=0}^{n} i\binom{n}{i}$.
- By differentiating $(1+x)^{n}$, we find

$$
\sum_{i=1}^{k} i\binom{n}{i} x^{i-1}=n(1+x)^{n-1}
$$

and substitution of $x=1$ yields the answer $S=n \cdot 2^{n-1}$.

Example 13.4

Let A run through all subsets of $\{1,2, \cdots, n\}$. Calculate $S=\sum|A|$.

- Since there are $\binom{n}{i}$ subsets of i. We apparently must calculate $\sum_{i=0}^{n} i\binom{n}{i}$.
- By differentiating $(1+x)^{n}$, we find

$$
\sum_{i=1}^{k} i\binom{n}{i} x^{i-1}=n(1+x)^{n-1}
$$

and substitution of $x=1$ yields the answer $S=n \cdot 2^{n-1}$.

- A set A and its complement together contain n elements and there are exactly 2^{n-1} such pairs.

Example 13.5

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Example 13.5

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}
$$

Proof.

- One can calculate this sum by determining the coefficient of x^{n} in $(1+x)^{n}(1+x)^{n}$ and using the binomial formula.
- Each side of the above equation just counts (in two ways) the number of ways of selecting n balls from a set consisting of n red balls and n blue balls.

Example 13.6

Example

How many sequences A_{1}, \cdots, A_{k} are there for which
$A_{i} \subseteq\{1,2, \cdots, n\}, 1 \leq i \leq k$, and $\cup_{i=1}^{k} A_{i}=\{1,2, \cdots, n\} ?$

Example 13.6

Example

How many sequences A_{1}, \cdots, A_{k} are there for which
$A_{i} \subseteq\{1,2, \cdots, n\}, 1 \leq i \leq k$, and $\cup_{i=1}^{k} A_{i}=\{1,2, \cdots, n\}$?

Solution

- Since we wish to avoid that $j, 1 \leq j \leq n$, is not an element of the union of the A_{i} 's, we are tempted to use inclusion-exclusion.
- If we choose i elements from $\{1,2, \cdots, n\}$ and consider all sequences A_{1}, \cdots, A_{k} not containing any of these i elements, then we find $\left(2^{n-i}\right)^{k}$ sequences.
- So by Theorem 10.1, the solution to the problem is

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i} 2^{(n-i) k}=\left(2^{k}-1\right)^{n}
$$

Stirling number of the first kind

Definition

- Let $c(n, k)$ denote the number of permutations $\pi \in S_{n}$ with exactly k cycles.
- Furthermore define $c(0,0)=1$ and $c(n, k)=0$ if $n \leq 0$ or $k \leq 0,(n, k) \neq(0,0)$.
- The Stirling numbers of the first kind $s(n, k)$ are defined by

$$
\begin{equation*}
s(n, k) \triangleq(-1)^{n-k} c(n, k) \tag{2}
\end{equation*}
$$

Theorem 13.2

Theorem
The numbers $c(n, k)$ satisfy the recurrence relation

$$
\begin{equation*}
c(n, k)=(n-1) c(n-1, k)+c(n-1, k-1) . \tag{3}
\end{equation*}
$$

Theorem 13.2

Theorem
The numbers $c(n, k)$ satisfy the recurrence relation

$$
\begin{equation*}
c(n, k)=(n-1) c(n-1, k)+c(n-1, k-1) . \tag{3}
\end{equation*}
$$

Proof.

- If π is a permutation in S_{n-1} with k cycles, then there are $n-1$ positions where we can insert the integer n to produce a permutation $\pi^{\prime} \in S_{n}$ with k cycles.
- We can also adjoin (n) as a cycle to any permutation in S_{n-1} with $k-1$ cycles. This accounts for the two terms on the right-hand side of (3).

Theorem 13.3

Theorem
For $n \geq 0$, we have

$$
\begin{equation*}
\sum_{k=0}^{n} c(n, k) x^{k}=x(x+1) \cdots(x+n-1) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n} s(n, k) x^{k}=(x)_{n} \tag{5}
\end{equation*}
$$

where

$$
(x)_{n} \triangleq k(k-1) \ldots(k-n+1)=\frac{k!}{(k-n)!}
$$

Theorem 13.3

Proof.

- Write the right-hand side of (4) as

$$
F_{n}(x)=\sum_{k=0}^{n} b(n, k) x^{k} .
$$

- Clearly $b(0,0)=1$. Define $b(n, k) \triangleq 0$ if $n \leq 0$ or $k \leq 0$, $(n, k) \neq(0,0)$.
- Since

$$
\begin{aligned}
F_{n}(x) & =(x+n-1) F_{n-1}(x) \\
& =\sum_{k=1}^{n} b(n-1, k-1) x^{k}+(n-1) \sum_{k=0}^{n-1} b(b-1, k) x^{k}
\end{aligned}
$$

we see that the numbers $b(n, k)$ satisfy the same recurrence relation as the $c(n, k)$, namely (3).

Theorem 13.3

Proof(cont.)

- Since the numbers are equal if $n \leq 0$ or $k \leq 0$, they are equal for all n and k.
- To prove (5) replace x by $-x$ and use (2).

Stirling number of the second kind

Definition
Denote by $P(n, k)$ the set of all partitions of an n-set into k nonempty subsets (blocks). Then

$$
\begin{equation*}
S(n, k) \triangleq|P(n, k)| \tag{6}
\end{equation*}
$$

Again we have $S(0,0)=1$ and take the numbers to be 0 for all values of the parameters not covered by the previous definition.

Theorem 13.4

Theorem
The Stirling numbers of the second kind satisfy the relation

$$
\begin{equation*}
S(n, k)=k S(n-1, k)+S(n-1, k-1) . \tag{7}
\end{equation*}
$$

Theorem 13.4

Theorem
The Stirling numbers of the second kind satisfy the relation

$$
\begin{equation*}
S(n, k)=k S(n-1, k)+S(n-1, k-1) . \tag{7}
\end{equation*}
$$

Proof.
A partition of the set $\{1,2, \cdots, n-1\}$ can be made into a partition of $\{1,2, \cdots, n\}$

- by adjoining n to one of the blocks
- or by increasing the number of blocks by one by making $\{n\}$ a block.

Bell number

Definition (Bell number)
The Bell number $B(n)$ is the total number of partitions of an n-set, i.e.

$$
\begin{equation*}
B(n) \triangleq \sum_{k=1}^{n} S(n, k), \quad(n \geq 1) \tag{8}
\end{equation*}
$$

Theorem 13.5

Theorem

For $n \geq 0$ we have

$$
\begin{equation*}
x^{n}=\sum_{k=0}^{n} S(n, k)(x)_{k} \tag{9}
\end{equation*}
$$

Proof.

- by (6) the number of surjective mappings from an n-set to a k-set is $k!S(n, k)$
- by Example 10.2, we have

$$
\begin{equation*}
S(n, k)=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{k}\binom{k}{i}(k-i)^{n}=\frac{1}{k!} \sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i} i^{n} \tag{10}
\end{equation*}
$$

Theorem 13.5

Proof(cont.)

- let x be an integer.
- There are x_{n} mappings from the n-set $N \triangleq\{1,2, \cdots, n\}$ to the x-set $\{1,2, \cdots, x\}$.
- For any k-subset Y of $\{1,2, \cdots, x\}$, there are $k!S(n, k)$ surjections from N to Y.
- So we find

$$
x^{n}=\sum_{k=0}^{n}\binom{x}{k} k!S(n, k)=\sum_{k=0}^{n} S(n, k)(x)_{k} .
$$

Therom 13.6

Theorem

$$
\sum_{n \geq k} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k} \quad(k \geq 0)
$$

Therom 13.6

Theorem

$$
\sum_{n \geq k} S(n, k) \frac{x^{n}}{n!}=\frac{1}{k!}\left(e^{x}-1\right)^{k} \quad(k \geq 0)
$$

Proof.

- Let $F_{k}(x)$ denote the sum on the left-hand side.
- By (7) we have

$$
F_{k}^{\prime}(x)=k F_{k}(x)+F_{k-1}(x)
$$

The result now follows by induction.

- Since $S(n, 1)=1$, the assertion is true for $k=1$.
- The induction hypothesis yields a differential equation for F_{k}, which with the condition $S(k, k)=1$ has the right-hand side of the assertion as unique solution.

Theorem 13.7

Theorem

$$
\sum_{n=k}^{\infty} s(n, k) \frac{z^{n}}{n!}=\frac{1}{k!}(\log (1+z))^{k},
$$

Proof.

- Since

$$
(1+z)^{x}=e^{x \log (1+z)}=\sum_{k=0}^{\infty} \frac{1}{k!}(\log (1+z))^{k} x^{k}
$$

the right-hand side in the assertion is the coefficient of x^{k} in the expansion of $(1+z)^{x}$.

- On the other hand, we have for $|z|<1$,

$$
\begin{aligned}
(1+z)^{x} & =\sum_{0}^{\infty}\binom{x}{n} z^{n}=\sum_{n=0}^{\infty} \frac{1}{n!}(x)_{n} z^{n} \\
& =\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{r=0}^{n} s(n, r) x^{r}=\sum_{n=r}^{\infty} s(n, r) \frac{z^{n}}{n!}
\end{aligned}
$$

The Relation between two types of Stirling numbers

Proposition

$$
\sum_{k=m}^{n} S(n, k) s(k, m)=\delta_{m, n}
$$

where

$$
\delta_{m, n}= \begin{cases}1, & \text { if } m=n \\ 0, & \text { otherwise }\end{cases}
$$

Proof.
This follows immediately if we substitute (5) in (9).

