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Transportation network

Definition

By a transportation network, we will mean a finite directed graph
D together with two distinguished vertices s and t called the
source and the sink, respectively, and which is provided with a
function c associating to each edge e a nonnegative real number

c(e) called its capacity.
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Flow in networks
Definition
A flow in a transportation network is a function f assigning a real
number f(e) to each edge e such that:
» 0 < f(e) < c(e) for all edges e (the flow is feasible);
» for each vertex x (not the source or the sink), the sum of the
values of f on incoming edges equals the sum of the values of
f on outgoing edges (conservation of flow).

The sum of the values of a flow f on the edges leaving the source
is called the strength of the flow (denoted by |f]).



Flow in networks
Definition
A flow in a transportation network is a function f assigning a real
number f(e) to each edge e such that:
» 0 < f(e) < c(e) for all edges e (the flow is feasible);
» for each vertex x (not the source or the sink), the sum of the
values of f on incoming edges equals the sum of the values of
f on outgoing edges (conservation of flow).

The sum of the values of a flow f on the edges leaving the source
is called the strength of the flow (denoted by |f]).




Cut of a network

Definition

By a cut separating s and t (or simply a cut), we mean here a pair
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Capacity of any cut is an upper bound for the strengh of
any flow

Lemma

where f(A, B) denotes the sum of the value of f on all edges
directed from A to B.

Proof.

For x € V and e € E, define

—1 e is incoming to x
#(x,e) =< +1 e is outgoing from x

0 X is not incident with e.

The convervation law is equivalenct to

Z o(x,e)f(e) =0 for x # s, t.



Capacity of any cut is an upper bound for the strengh of
any flow

Cont.

1= d(s.e)f(e) =D D olx,e)f(e)

ecE xeX ecE

= fle)> (e, x)=F(X,Y)—f(Y,X).

ecE xeX

O



Capacity of any cut is an upper bound for the strengh of
any flow

Cont.

1= d(s.e)f(e) =D D olx,e)f(e)

ecE xeX ecE
= Z f(e) Z ¢(e,x) = f(Xa Y) - f(Y,X)
ecE xeX
L]
Remark

This lemma implies that for any flow f,
[l < e(X,Y)

for any cut (X, Y)withse X andte Y.



Max-flow min-cut theorem

Theorem (Ford and Fulkerson(1956))

In a transportation network, the maximum value of |f| over all

flows f is equal to the minimum value of c¢(X,Y') over all cuts
(X,Y).



Max-flow min-cut theorem

Theorem (Ford and Fulkerson(1956))

In a transportation network, the maximum value of |f| over all
flows f is equal to the minimum value of c¢(X,Y') over all cuts
(X, Y).

Proof.

> Fix a flow f.

» We shall say that the sequence xg, x1,- -+ , xk_1, Xx of distinct
vertices is a special path from xp to xi if for each i,1 < < k,
either

1. e =(xj_1,x;) is an edge with c(e) — f(e) > 0; (e is

unsaturated)
2. e =(x;,xi—1) is an edge with f(e) > 0.
» Suppose there exists such a special path from s to t. Define
a;j as c(e) — f(e) in the first case and as f(e) in the second
case and let « be the minimum of these positive numbers «;.



Max-flow min-cut theorem

Proof (cont.)

| 2

>

On each edge of type (i) increase the flow value by «, and on
each edge of type (ii) decrease the flow by «.

Clearly the new flow has strength |f| + «

Suppose that no special path from source to sink exists with
respect to some flow fy.

Let Xp be the set of vertices x which can be reached from s
by a special path, Yy the set of remaining vertices. In this way
we produce a cut.

If x € Xo, y € Yo and e = (x,y) is an edge, then e must be
saturated or we could adjoin y to a special path from s to x
to get a special path from s to y, contradicting the definitions
of Xp and Yj.

If, on the other hand, e = (y, x) is an edge, then, for a similar
reason, f(e) must be 0.
1



Max-flow min-cut theorem

Proof (cont.)

» In view of Lemma, we have then
ol = fo(Xo, Yo) — fo( Yo, Xo) = c(Xo, Y0).

> Now it is clear that not only can no stronger flow be obtained
by our method of special paths, but that no stronger flows
exist at all because |f| < ¢(Xo, Yo) for any flow f. If fy is
chosen to be a maximum flow, then surely no special paths
from s to t exist.

» Note that the constructed cut (Xo, Yp) is a minimum cut (i.e.
a cut of minimum capacity), since ¢(X, Y) > |fy| for any cut
(X,Y).

L]
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step « is an integer, so the next flow is integer valued too.
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Theorem
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Proof.

Start with the O-flow. The argument above provides a way to
increase the strength until a maximum flow is reached. At each
step « is an integer, so the next flow is integer valued too. O

Problem 7.1
Construct a maximum flow for the transportation network of Fig.

7.1



Theorem 7.3

Theorem

Let A be a b x v (0,1)-matrix with k ones per row and r ones per
column (so bk = vr). Let o be a rational number, 0 < « < 1,such
that k' = ak and r' = «ar are integers. Then there is a
(0,1)-matrix A’ of size b x v with k' ones per row and r’ ones per
column such that entries aj; of A" are 1 only if the corresponding
entries of A are 1, i.e. A’ can be obtained from A by changing
some ones into zeros.
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Theorem

Let A be a b x v (0,1)-matrix with k ones per row and r ones per
column (so bk = vr). Let o be a rational number, 0 < « < 1,such
that k' = ak and r' = «ar are integers. Then there is a
(0,1)-matrix A’ of size b x v with k' ones per row and r’ ones per
column such that entries aj; of A" are 1 only if the corresponding
entries of A are 1, i.e. A’ can be obtained from A by changing
some ones into zeros.

Proof.

» Construct a transportation network with vertices s(the
source), xi,- -+ ,Xp (corresponding to the rows of A),
yi, -, yv (corresponding to the columns of A), and t (the
sink).

> Edges are (s, x;) with capacity k,1 < i < b, (x;, y;) with
capacity 1 if and only if a;; = 1, and (y;, t) with capacity r,
1<j<v.



Theorem 7.3

Proof (cont.)
» The definition ensures that there is a maximum flow with all
edges saturated.

» Change the capacities of the edges from the source to k' and
those of the edges to the sink to r'.

» All the capacities are integers and clearly a maximum flow
exists for which the flows f((x;, y;)) are equal to a.

» By Theorem 7.2, there is also a maximum flow f* for which
all the flows are integers, i.e. f*((x;,y;)) =0 or 1.

» From this flow, we immediately find the required matrix A’.
Ol
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Definition
A circulation on a digraph D is a mapping f from E(D) to the
reals satisfying conservation of flow at every vertex.
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Circulation
Definition
A circulation on a digraph D is a mapping f from E(D) to the
reals satisfying conservation of flow at every vertex.

Theorem

Let f be a circulation on a finite digraph D. Then there exists an
integral circulation g such that for every edge e, g(e) is equal to
one of |f(e)| or [f(e)].

Proof.

» Given a circulation f, consider a circulation g that satisfies
[f(e)] < gl(e) < [f(e)] (1)
and for which the number of edges e with g(e) an integer is

as large as possible subject to (1).

» Let H be the spanning subgraph of D with edge set consisting
of those edges of D for which g(e) is not an integer, i.e. for
which strict inequality holds both times in (1).



Theorem 7.4
Proof (cont.)
» Conservation of flow implies that no vertex can have degree 1
in H, so if g is not integral, then H contains a polygon.
> Let P be a polygon in H and traverse P with a simple closed
path. Let A be the set of edges of P that are forward edges of
the path in D, and B the set of edges of P that are backward
edges in this path.
» For any constant ¢, we obtain a new circulation g’ by
gle)+c ifecA,
gle)—c ifeeB,

g(e) if e E(P)

L

g'(e)

» Now choose

¢ 2 min {min ([£(e)] — (e)) . min (&(e) — 7(e)]) }

ecA ecB

Then g’ still satisfies (1),.yet g’(e) is an integer for at least
one more edge, contradiction.

il



Corollary

Let f be an integral circulation on a finite digraph D and d any
positive integer. Then f can be written as the sum

g1+ & + -+ + gq of integral circulations such that for each index
J and each edge e,

[f(e)/d] < gj(e) < [f(e)/d]. ()



Matrix circulation
Definition
From an m x n matrix A of real numbers aj;, not necessarily
nonnegative or integers, we obtain a circulation f on a digraph
with m + n + 2 vertices and mn+ m+ n+ 1 edges.

| 2

>
>
>
>

v

There are vertices xi, - -+ , Xy, corresponding to the rows
vertices yi,-- -, yn corresponding to the columns,

two others called s and t.

there is an edge from x; to y; with circulation value aj;,

an edge from s to x; with circulation value equal to the i-th
row-sum rj,

an edge from y; to t with circulation value equal to the j-th
column-sum k;

and an edge from t to s with circulation value equal to the
sum of all entries of A



Matrix circulation
Definition
From an m x n matrix A of real numbers aj;, not necessarily
nonnegative or integers, we obtain a circulation f on a digraph
with m + n + 2 vertices and mn+ m+ n+ 1 edges.
P There are vertices x1, - - - , Xy corresponding to the rows

> vertices yi,-- - , ¥, corresponding to the columns,

» two others called s and t.

» there is an edge from x; to y; with circulation value aj;,
>

an edge from s to x; with circulation value equal to the i-th
row-sum rj,

v

an edge from y; to t with circulation value equal to the j-th
column-sum k;

» and an edge from t to s with circulation value equal to the
sum of all entries of A

Multiply f by any scalar a, apply Thm 7.4 to af, and reinterpret
the resulting integral circulation as a matrix, we obtain part (i) of
the following theorem. Part (ii) follows from the corollarv.



Theorem 7.5

Theorem

1. Given a matrix A and a real number «, there is an integral
matrix B so that the entries of B, the row-sums of B, the
column-sums of B, and the sum of all entries of B, are the
corresponding values for A rounded up or down.

2. If A is an integral matrix and d any positive integer, then
A:Bl+B2—‘r~--+Bd

where each B; is an integral matrix whose entries, row-sums,
column- sums, and sum of all entries, are those of (1/d)A,
rounded up or down.



