
Lecture 7, Flows in networks

Qi Chen, Jingliang Gao

Fall , 2023



Transportation network

Definition
By a transportation network, we will mean a finite directed graph
D together with two distinguished vertices s and t called the
source and the sink, respectively, and which is provided with a
function c associating to each edge e a nonnegative real number
c(e) called its capacity.
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Flow in networks
Definition
A flow in a transportation network is a function f assigning a real
number f (e) to each edge e such that:

I 0 ≤ f (e) ≤ c(e) for all edges e (the flow is feasible);

I for each vertex x (not the source or the sink), the sum of the
values of f on incoming edges equals the sum of the values of
f on outgoing edges (conservation of flow).

The sum of the values of a flow f on the edges leaving the source
is called the strength of the flow (denoted by |f |).
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Cut of a network

Definition
By a cut separating s and t (or simply a cut), we mean here a pair
(X ,Y ) of subsets of the vertex set V := V (D) which partition V
and such that s ∈ X and t ∈ Y . We define the capacity c(X ,Y )
of the cut to be the sum of the capacities of the edges directed
from X to Y .



Cut of a network

Definition
By a cut separating s and t (or simply a cut), we mean here a pair
(X ,Y ) of subsets of the vertex set V := V (D) which partition V
and such that s ∈ X and t ∈ Y . We define the capacity c(X ,Y )
of the cut to be the sum of the capacities of the edges directed
from X to Y .



Capacity of any cut is an upper bound for the strengh of
any flow

Lemma
|f | = f (X ,Y )− f (Y ,X )

where f (A,B) denotes the sum of the value of f on all edges
directed from A to B.

Proof.
For x ∈ V and e ∈ E , define

φ(x , e) =


−1 e is incoming to x

+1 e is outgoing from x

0 x is not incident with e.

The convervation law is equivalenct to∑
e∈E

φ(x , e)f (e) = 0 for x 6= s, t.
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Capacity of any cut is an upper bound for the strengh of
any flow

Cont.

|f | =
∑
e∈E

φ(s, e)f (e) =
∑
x∈X

∑
e∈E

φ(x , e)f (e)

=
∑
e∈E

f (e)
∑
x∈X

φ(e, x) = f (X ,Y )− f (Y ,X ).

Remark
This lemma implies that for any flow f ,

|f | ≤ c(X ,Y )

for any cut (X ,Y ) with s ∈ X and t ∈ Y .
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Max-flow min-cut theorem

Theorem (Ford and Fulkerson(1956))

In a transportation network, the maximum value of |f | over all
flows f is equal to the minimum value of c(X ,Y ) over all cuts
(X ,Y ).

Proof.
I Fix a flow f .
I We shall say that the sequence x0, x1, · · · , xk−1, xk of distinct

vertices is a special path from x0 to xk if for each i , 1 ≤ i ≤ k ,
either

1. e = (xi−1, xi ) is an edge with c(e)− f (e) > 0; (e is
unsaturated)

2. e = (xi , xi−1) is an edge with f (e) > 0.

I Suppose there exists such a special path from s to t. Define
αi as c(e)− f (e) in the first case and as f (e) in the second
case and let α be the minimum of these positive numbers αi .
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Max-flow min-cut theorem

Proof (cont.)

I On each edge of type (i) increase the flow value by α, and on
each edge of type (ii) decrease the flow by α.

I Clearly the new flow has strength |f |+ α

I Suppose that no special path from source to sink exists with
respect to some flow f0.

I Let X0 be the set of vertices x which can be reached from s
by a special path, Y0 the set of remaining vertices. In this way
we produce a cut.

I If x ∈ X0, y ∈ Y0 and e = (x , y) is an edge, then e must be
saturated or we could adjoin y to a special path from s to x
to get a special path from s to y , contradicting the definitions
of X0 and Y0.

I If, on the other hand, e = (y , x) is an edge, then, for a similar
reason, f (e) must be 0.



Max-flow min-cut theorem

Proof (cont.)

I In view of Lemma, we have then

|f0| = f0(X0,Y0)− f0(Y0,X0) = c(X0,Y0).

I Now it is clear that not only can no stronger flow be obtained
by our method of special paths, but that no stronger flows
exist at all because |f | ≤ c(X0,Y0) for any flow f . If f0 is
chosen to be a maximum flow, then surely no special paths
from s to t exist.

I Note that the constructed cut (X0,Y0) is a minimum cut (i.e.
a cut of minimum capacity), since c(X ,Y ) ≥ |f0| for any cut
(X ,Y ).



Theorem 7.2

Theorem
If all the capacities in a transportation network are integers, then
there is a maximum strength flow f for which all values f (e) are
integers.

Proof.
Start with the 0-flow. The argument above provides a way to
increase the strength until a maximum flow is reached. At each
step α is an integer, so the next flow is integer valued too.

Problem 7.1
Construct a maximum flow for the transportation network of Fig.
7.1.
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Theorem 7.3

Theorem
Let A be a b × v (0, 1)-matrix with k ones per row and r ones per
column (so bk = vr). Let α be a rational number, 0 < α < 1,such
that k ′ = αk and r ′ = αr are integers. Then there is a
(0, 1)-matrix A′ of size b × v with k ′ ones per row and r ′ ones per
column such that entries a′ij of A′ are 1 only if the corresponding
entries of A are 1, i.e. A′ can be obtained from A by changing
some ones into zeros.

Proof.
I Construct a transportation network with vertices s(the

source), x1, · · · , xb (corresponding to the rows of A),
y1, · · · , yv (corresponding to the columns of A), and t (the
sink).

I Edges are (s, xi ) with capacity k , 1 ≤ i ≤ b, (xi , yj) with
capacity 1 if and only if aij = 1, and (yj , t) with capacity r ,
1 ≤ j ≤ v .
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Theorem 7.3

Proof (cont.)

I The definition ensures that there is a maximum flow with all
edges saturated.

I Change the capacities of the edges from the source to k ′ and
those of the edges to the sink to r ′.

I All the capacities are integers and clearly a maximum flow
exists for which the flows f ((xi , yj)) are equal to α.

I By Theorem 7.2, there is also a maximum flow f ∗ for which
all the flows are integers, i.e. f ∗((xi , yj)) = 0 or 1.

I From this flow, we immediately find the required matrix A′.



Circulation

Definition
A circulation on a digraph D is a mapping f from E (D) to the
reals satisfying conservation of flow at every vertex.

Theorem
Let f be a circulation on a finite digraph D. Then there exists an
integral circulation g such that for every edge e, g(e) is equal to
one of bf (e)c or df (e)e.
Proof.
I Given a circulation f , consider a circulation g that satisfies

bf (e)c ≤ g(e) ≤ df (e)e (1)

and for which the number of edges e with g(e) an integer is
as large as possible subject to (1).

I Let H be the spanning subgraph of D with edge set consisting
of those edges of D for which g(e) is not an integer, i.e. for
which strict inequality holds both times in (1).
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Theorem 7.4
Proof (cont.)
I Conservation of flow implies that no vertex can have degree 1

in H, so if g is not integral, then H contains a polygon.

I Let P be a polygon in H and traverse P with a simple closed
path. Let A be the set of edges of P that are forward edges of
the path in D, and B the set of edges of P that are backward
edges in this path.

I For any constant c, we obtain a new circulation g ′ by

g ′(e) ,


g(e) + c if e ∈ A,

g(e)− c if e ∈ B,

g(e) if e 6∈ E (P)

I Now choose

c , min

{
min
e∈A

(df (e)e − g(e)) ,min
e∈B

(g(e)− bf (e)c) .
}

Then g ′ still satisfies (1), yet g ′(e) is an integer for at least
one more edge, contradiction.



Corollary

Let f be an integral circulation on a finite digraph D and d any
positive integer. Then f can be written as the sum
g1 + g2 + · · ·+ gd of integral circulations such that for each index
j and each edge e,

bf (e)/dc ≤ gj(e) ≤ df (e)/de. (2)



Matrix circulation
Definition
From an m × n matrix A of real numbers aij , not necessarily
nonnegative or integers, we obtain a circulation f on a digraph
with m + n + 2 vertices and mn + m + n + 1 edges.
I There are vertices x1, · · · , xm corresponding to the rows

I vertices y1, · · · , yn corresponding to the columns,

I two others called s and t.

I there is an edge from xi to yj with circulation value aij ,

I an edge from s to xi with circulation value equal to the i-th
row-sum ri ,

I an edge from yj to t with circulation value equal to the j-th
column-sum kj

I and an edge from t to s with circulation value equal to the
sum of all entries of A

Multiply f by any scalar α, apply Thm 7.4 to αf , and reinterpret
the resulting integral circulation as a matrix, we obtain part (i) of
the following theorem. Part (ii) follows from the corollary.
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Theorem 7.5

Theorem

1. Given a matrix A and a real number α, there is an integral
matrix B so that the entries of B, the row-sums of B, the
column-sums of B, and the sum of all entries of B, are the
corresponding values for αA rounded up or down.

2. If A is an integral matrix and d any positive integer, then

A = B1 + B2 + · · ·+ Bd

where each Bi is an integral matrix whose entries, row-sums,
column- sums, and sum of all entries, are those of (1/d)A,
rounded up or down.


