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2. if a< band b < c then a < ¢ (transitivity),
3. if a< band b < athen a= b (antisymmetry).
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Partially ordered set

Definition
A partially ordered set (also poset) is a set S with a binary relation
< (sometimes C is used) such that:

1. a< aforall ae S (reflexivity),

2. if a< band b < c then a < ¢ (transitivity),

3. if a< band b < athen a= b (antisymmetry).

Definition

If for any a and b in S, either a < b or b < a, then the partial
order is called a total order, or a linear order. If a < b and a # b,
then we also write a < b.

Definition
If a subset of S is totally ordered, it is called a chain. An antichain
is a set of elements that are pairwise incomparable.
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Theorem (Dilworth’s theorem)

Let P be a partially ordered finite set. The minimum number m of
disjoint chains which together contain all elements of P is equal to
the maximum number M of elements in an antichain of P.



Theorem 6.1

Theorem (Dilworth’s theorem)

Let P be a partially ordered finite set. The minimum number m of
disjoint chains which together contain all elements of P is equal to
the maximum number M of elements in an antichain of P.

Proof.

P [t is trivial that m > M . We prove m < M by induction on
|P.

» If |P| =0, there is nothing to prove.

» If |[P| > 0, assume for any P’ with |P’| < |P|, we have

m' < M’, where m’ is the minimum number of disjoint chains
which together contain all elements of P and M’ is the
maximum number of elements in an antichain of P’. Let C be
a maximal chain in P.

1. If every antichain in P\ C contains at most M — 1 elements,

we are done.
2. assume that {a, - ,am} is an antichain in P\ C.



Theorem 6.1

cont.

>

>

Now define S~ £ {x € P: Ji[x < a;]}, and define S+
analogously.
Since C is a maximal chain, the largest element in C is not in

S~ and hence by the induction hypothesis, the theorem holds
for S—.

Hence S~ is the union of M disjoint chains 5;,---,S,,,
where a; € 5.

Suppose x € S, and x > a;. Since there is a j with x < a;,
we would have a; < aj, a contradiction.

This shows that a; is the maximal element of the chain
S7,i=1,---,M. We do the same for S+.

By combining the chains, we construct a M disjoint chains
which together contain all elements of P. This proves m < M.

L]



Theorem 6.2
Theorem (Dual of Dilworth's theorem)

Let P be a partially ordered set. If P possesses no chain of m+ 1
elements, then P is the union of m antichains.



Theorem 6.2
Theorem (Dual of Dilworth's theorem)

Let P be a partially ordered set. If P possesses no chain of m+ 1
elements, then P is the union of m antichains.

Proof.

» For m =1, the theorem is trivial.

» Let m > 2 and assume that the theorem is true for m — 1.

> Let P be a partially ordered set that has no chain of m+1
elements.

» Let M be the set of maximal elements of P. M is an
antichain.

» Suppose x; < X2 < -+ < Xy, were a chain in P\ M. Then this
would also be a maximal chain in P and hence we would have
Xm € M, a contradiction. Hence P\ M has no chain of m
elements.

» By the induction hypothesis, P\ M is the union of m —1
antichains. This proves the theorem.



Theorem 6.3

Theorem (Sperner’s Theorem)

If A1, Ao, -+, Am are subsets of N 2 {1,2,---  n} such that A; is
not a subset of A; if i # j, then m < (|,7,)).

Proof.

» Consider the poset of subsets of N. A= {A1,---, Ay} is an
antichain in this poset.

» There are n! maximal chains.

» There are exactly k!(n — k)! maximal chains which contain a
given k-subset A of N.

» Now count the number of ordered pairs (A,C) such that
Ac A, Cis a maximal chain, and A €C.

» Since each maximal chain C contains at most one member of
an antichain, this number is at most n!.

> If we let ay denote the number of sets A € A with |A| = k,

then this number is >, a,k!(n — k)L



Theorem 6.3

cont.

» Thus .
> akl(n— k) < nl
k=0

or equivalently,

>
n o
my =L

k=0 k)

> Since (}) is maximal for k = [n/2] and Y aye = m, the result
follows.
[
Remark

Equality holds in Theorem 6.3 if we take all | n/2]-subsets of N as
the antichain.



Symmetric chain

Definition
The poset B, (with 2" elements) of the subsets of the n-set N,
ordered by inclusion is a boolean lattice of order n. Let A; denote

the set of all j-subset of N.

Definition

A symmetric chain in B, is a sequence Py, Pxt1,- -, Pp—k of
vertices such that P; € A; and P; C P;1 for

i=kk+1,--- ,n—k—1.



An algorithm splitting B, into symmetric chains.

Algorithm

1. Start with B;. Proceed by induction.

2. If By, has been split into symmetric chains, then for each such
symmetric chain Py, --- , P,_ define two symmetric chains in
Bhy1 , namely

> Pk+1, s 7Pn—k and
> Pk,PkU{n+1},Pk+1U{n+1},'~~ ,Pn_kU{n+1}.

Remark



A proof of Hall's theorem by Dilworth theorem

Proof.

>

>

| 2

Consider the bipartite graph G on X U Y. Let

I X|=n,|Y|=n">n.

Introduce a partial order by defining x; < y; if and only if
there is an edge from vertex x; to vertex y;.

Suppose that the largest antichain contains s elements. Let
this antichain be {x1, -+, xp,y1,* -+ , Yk}, where h+ k = s.
Since I'({x1,--- ,xn}) € Y\ {y1, -, ¥k}, we have

h<n — k. Hences < n'.

The partially ordered set is the union of s disjoint chains. This
will consist of a matching of size a, the remaining n — a
elements of X, and the remaining n’ — a elements of Y.
Therefore n+n' —a=s<n', i.e. a> n, which means that
we have a complete matching.

L]



Theorem 6.4

Theorem (Erdés-Ko-Rado)

Let A= {A;,---,Amn} be a collection of m distinct k-subsets of
{1,2,--- ,n}, where k < n/2, with the property that any two of
the subsets have a nonempty intersection. Then m < (Zj)

Proof.

» Place the integers 1 to n on a circle and consider the family
F 2 {F, -, F,} of all consecutive k-tuples on the circle, i.e.
Fi denotes {i,i+1,---,i+ k — 1} where the integers should
be taken mod n.

» Observe that | AN F| < k because if some F; equals A;, then
at most one of the sets {/,/+1,--- [+ k — 1},
{l—k,--- I =1} <l <i+k)isin A.

» The same assertion holds for the collection F™ obtained from
F by applying a permutation 7 to {1,2,--- , n}.

U



Theorem 6.4

cont.

» Theorefore
TEY JANFT| < k- nl
TES

» Count this sum by fixing A; € A, F; € F and observing that
there are k!(n — k)! permutations 7 such that F = A;.

» Hence ¥ = m- n- k!(n— k)! which implies
m-n-kl(n—k)<k-n!

or m < (7~1). The theorem is proved.



Theorem 6.5

Theorem

Let A={A1,--- ,An} be a collection of m subsets of

N £ {1,2,---,n} such that A; ¢ A; and AiN A; # 0 if i # j and
|Ai| < k < nj2foralli. Thenm < (}7]).



Theorem 6.5

Proof.

1. If all the subsets have size k, then we are done by Theorem

6.4.

2. Let A;, ..., As be the subsets with the smallest cardinality, say

I <
>

>

53— 1

Consider all the (/ + 1)-subsets B; of N that contain one or
more of the sets A;,1 </ <s.

Clearly, none of these is in A. Each of the sets A;,1 < i <s,is
in exactly n — / of the B;'s and each B; contains at most
I+ 1< n—1of the A;'s.

So by Theorem 5.1, we can pick s distinct sets, say

By, -+, Bs, such that A; C B;.

If we replace Ay, -+ ,As by By, -, Bs, then the new
collection A’ satisfies the conditions of the theorem and the
subsets of smallest cardinality now all have size > /.

By induction, we can reduce to case 1.



Theorem 6.6

Theorem
Let A= {A1,---,An} be a collection of m subsets of {1,2,--- , n}
such that AjVA; # 0 if i # j and |Ai] < k < n/2 for all i. Then

1
— <L
1 (|£;|31)

m
=

Proof.

» Let 7 be a permutation of {1,2,--- , n} placed on a circle and
let us say that A; € « if the elements of A; occur
consecutively somewhere on that circle.

» By the same argument as in the proof of Theorem 6.4 we see
that if A; € m, then A; € 7 for at most |A;| values of j.

» Now define
1 .
i) 2 {lAfl’ " A; &7

0 otherwise.




Theorem 6.6

cont.

> By the argument above Y~ ¢ >, f(m,i) < nl.

» Changing the order of summation we have to count, for a
fixed A;, the number of permutations 7 placed on a circle
such that A; € . The number is n- |A;|!(n — |Ai|).

» So we have

71
ZK n-|Ai|1(n— A < n!

i=1 "

which yields the result.



