Lecture 6, Dilworth's theorem and extremal set theory

Qi Chen, Jingliang Gao

Fall , 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Partially ordered set

Definition

A partially ordered set (also poset) is a set S with a binary relation \leq (sometimes \subseteq is used) such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1. $a \leq a$ for all $a \in S$ (reflexivity),
- 2. if $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity),
- 3. if $a \leq b$ and $b \leq a$ then a = b (antisymmetry).

Partially ordered set

Definition

A partially ordered set (also poset) is a set S with a binary relation \leq (sometimes \subseteq is used) such that:

- 1. $a \leq a$ for all $a \in S$ (reflexivity),
- 2. if $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity),
- 3. if $a \leq b$ and $b \leq a$ then a = b (antisymmetry).

Definition

If for any *a* and *b* in *S*, either $a \le b$ or $b \le a$, then the partial order is called a total order, or a linear order. If $a \le b$ and $a \ne b$, then we also write a < b.

Partially ordered set

Definition

A partially ordered set (also poset) is a set S with a binary relation \leq (sometimes \subseteq is used) such that:

- 1. $a \leq a$ for all $a \in S$ (reflexivity),
- 2. if $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity),
- 3. if $a \leq b$ and $b \leq a$ then a = b (antisymmetry).

Definition

If for any *a* and *b* in *S*, either $a \le b$ or $b \le a$, then the partial order is called a total order, or a linear order. If $a \le b$ and $a \ne b$, then we also write a < b.

Definition

If a subset of S is totally ordered, it is called a chain. An antichain is a set of elements that are pairwise incomparable.

Theorem (Dilworth's theorem)

Let P be a partially ordered finite set. The minimum number m of disjoint chains which together contain all elements of P is equal to the maximum number M of elements in an antichain of P.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Dilworth's theorem)

Let P be a partially ordered finite set. The minimum number m of disjoint chains which together contain all elements of P is equal to the maximum number M of elements in an antichain of P.

- It is trivial that $m \ge M$. We prove $m \le M$ by induction on |P|.
- If |P| = 0, there is nothing to prove.
- If |P| > 0, assume for any P' with |P'| < |P|, we have m' ≤ M', where m' is the minimum number of disjoint chains which together contain all elements of P and M' is the maximum number of elements in an antichain of P'. Let C be a maximal chain in P.
 - 1. If every antichain in $P \setminus C$ contains at most M 1 elements, we are done.
 - 2. assume that $\{a_1, \dots, a_M\}$ is an antichain in $P \setminus C$.

cont.

- ▶ Now define $S^- \triangleq \{x \in P : \exists i [x \leq a_i]\}$, and define S^+ analogously.
- Since C is a maximal chain, the largest element in C is not in S⁻ and hence by the induction hypothesis, the theorem holds for S⁻.
- ▶ Hence S^- is the union of M disjoint chains S_1^-, \cdots, S_M^- , where $a_i \in S_i^-$.
- Suppose x ∈ S⁻_i and x > a_i. Since there is a j with x ≤ a_j, we would have a_i < a_j, a contradiction.
- This shows that a_i is the maximal element of the chain S_i^- , $i = 1, \dots, M$. We do the same for S^+ .
- ▶ By combining the chains, we construct a *M* disjoint chains which together contain all elements of *P*. This proves *m* ≤ *M*.

Theorem (Dual of Dilworth's theorem)

Let P be a partially ordered set. If P possesses no chain of m + 1 elements, then P is the union of m antichains.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Dual of Dilworth's theorem)

Let P be a partially ordered set. If P possesses no chain of m + 1 elements, then P is the union of m antichains.

- For m = 1, the theorem is trivial.
- Let $m \ge 2$ and assume that the theorem is true for m-1.
- Let P be a partially ordered set that has no chain of m + 1 elements.
- Let M be the set of maximal elements of P. M is an antichain.
- Suppose x₁ < x₂ < ··· < x_m were a chain in P \ M. Then this would also be a maximal chain in P and hence we would have x_m ∈ M , a contradiction. Hence P \ M has no chain of m elements.
- By the induction hypothesis, P \ M is the union of m − 1 antichains. This proves the theorem.

Theorem (Sperner's Theorem) If A_1, A_2, \dots, A_m are subsets of $N \triangleq \{1, 2, \dots, n\}$ such that A_i is not a subset of A_j if $i \neq j$, then $m \leq \binom{n}{\lfloor n/2 \rfloor}$.

- Consider the poset of subsets of N. A ≜ {A₁, · · · , A_m} is an antichain in this poset.
- ▶ There are *n*! maximal chains.
- There are exactly k!(n k)! maximal chains which contain a given k-subset A of N.
- Now count the number of ordered pairs (A, C) such that A ∈ A, C is a maximal chain, and A ∈ C.
- Since each maximal chain C contains at most one member of an antichain, this number is at most n!.

cont.

$$\sum_{k=0}^{n} \alpha_k k! (n-k)! \le n!$$

or equivalently,

$$\sum_{k=0}^n \frac{\alpha_k}{\binom{n}{k}} \le 1.$$

Since $\binom{n}{k}$ is maximal for $k = \lfloor n/2 \rfloor$ and $\sum \alpha_k = m$, the result follows.

Remark

Equality holds in Theorem 6.3 if we take all $\lfloor n/2 \rfloor$ -subsets of N as the antichain.

Symmetric chain

Definition

The poset B_n (with 2^n elements) of the subsets of the *n*-set *N*, ordered by inclusion is a boolean lattice of order *n*. Let A_i denote the set of all *i*-subset of *N*.

Definition

A symmetric chain in B_n is a sequence $P_k, P_{k+1}, \dots, P_{n-k}$ of vertices such that $P_i \in A_i$ and $P_i \subseteq P_{i+1}$ for $i = k, k+1, \dots, n-k-1$.

An algorithm splitting B_n into symmetric chains.

Algorithm

- 1. Start with B_1 . Proceed by induction.
- 2. If B_n has been split into symmetric chains, then for each such symmetric chain P_k, \dots, P_{n-k} define two symmetric chains in B_{n+1} , namely

$$\begin{array}{l} \blacktriangleright \ P_{k+1}, \cdots, P_{n-k} \text{ and} \\ \blacktriangleright \ P_k, P_k \cup \{n+1\}, P_{k+1} \cup \{n+1\}, \cdots, P_{n-k} \cup \{n+1\}. \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

A proof of Hall's theorem by Dilworth theorem

Proof.

- Consider the bipartite graph G on $X \cup Y$. Let $|X| = n, |Y| = n' \ge n$.
- Introduce a partial order by defining x_i < y_j if and only if there is an edge from vertex x_i to vertex y_j.
- Suppose that the largest antichain contains s elements. Let this antichain be {x₁, · · · , x_h, y₁, · · · , y_k}, where h + k = s.
- Since $\Gamma(\{x_1, \dots, x_h\}) \subseteq Y \setminus \{y_1, \dots, y_k\}$, we have $h \leq n' k$. Hence $s \leq n'$.
- ► The partially ordered set is the union of *s* disjoint chains. This will consist of a matching of size *a*, the remaining *n* − *a* elements of *X*, and the remaining *n'* − *a* elements of *Y*.
- ▶ Therefore $n + n' a = s \le n'$, i.e. $a \ge n$, which means that we have a complete matching.

Theorem (Erdős-Ko-Rado)

Let $\mathcal{A} = \{A_1, \dots, A_m\}$ be a collection of m distinct k-subsets of $\{1, 2, \dots, n\}$, where $k \leq n/2$, with the property that any two of the subsets have a nonempty intersection. Then $m \leq \binom{n-1}{k-1}$.

Proof.

- Place the integers 1 to n on a circle and consider the family F ≜ {F₁, ..., F_n} of all consecutive k-tuples on the circle, i.e. F_i denotes {i, i + 1, ..., i + k − 1} where the integers should be taken mod n.
- Observe that |A ∩ F| ≤ k because if some F_i equals A_j, then at most one of the sets {I, I + 1, · · · , I + k − 1}, {I − k, · · · , I − 1}(i < I < i + k) is in A.</p>
- The same assertion holds for the collection F^π obtained from F by applying a permutation π to {1, 2, · · · , n}.

cont.

$$\Sigma \triangleq \sum_{\pi \in S_n} |\mathcal{A} \cap \mathcal{F}^{\pi}| \leq k \cdot n!$$

Count this sum by fixing A_j ∈ A, F_i ∈ F and observing that there are k!(n − k)! permutations π such that F^π_i = A_i.

• Hence $\Sigma = m \cdot n \cdot k!(n-k)!$ which implies

$$m \cdot n \cdot k!(n-k) \leq k \cdot n!$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

or $m \leq \binom{n-1}{k-1}$. The theorem is proved.

Theorem

Let $A = \{A_1, \dots, A_m\}$ be a collection of m subsets of $N \triangleq \{1, 2, \dots, n\}$ such that $A_i \notin A_j$ and $A_i \cap A_j \neq \emptyset$ if $i \neq j$ and $|A_i| \leq k \leq n/2$ for all i. Then $m \leq \binom{n-1}{k-1}$.

Proof.

- 1. If all the subsets have size k, then we are done by Theorem 6.4.
- 2. Let $A_1, ..., A_s$ be the subsets with the smallest cardinality, say $l \leq \frac{n}{2} 1$.
 - Consider all the (*I* + 1)-subsets B_j of N that contain one or more of the sets A_i, 1 ≤ i ≤ s.
 - Clearly, none of these is in A. Each of the sets A_i, 1 ≤ i ≤ s, is in exactly n − l of the B_j's and each B_j contains at most l + 1 ≤ n − l of the A_i's.
 - So by Theorem 5.1, we can pick *s* distinct sets, say B_1, \dots, B_s , such that $A_i \subseteq B_i$.
 - If we replace A₁, · · · , A_s by B₁, · · · , B_s, then the new collection A' satisfies the conditions of the theorem and the subsets of smallest cardinality now all have size > *I*.

L1 ののの 豆 〈豆〉〈豆〉〈豆〉〈豆〉〈口〉

By induction, we can reduce to case 1.

Theorem

Let $A = \{A_1, \dots, A_m\}$ be a collection of m subsets of $\{1, 2, \dots, n\}$ such that $A_i \cap A_j \neq \emptyset$ if $i \neq j$ and $|A_i| \leq k \leq n/2$ for all *i*. Then

$$\sum_{i=1}^{m} \frac{1}{\binom{n-1}{|A_i|-1}} \le 1.$$

- Let π be a permutation of {1, 2, · · · , n} placed on a circle and let us say that A_i ∈ π if the elements of A_i occur consecutively somewhere on that circle.
- By the same argument as in the proof of Theorem 6.4 we see that if A_i ∈ π, then A_j ∈ π for at most |A_i| values of j.
- Now define

$$f(\pi, i) \triangleq \begin{cases} \frac{1}{|A_i|}, & \text{if } A_i \in \pi \\ 0 & \text{otherwise.} \quad \text{otherwise.} \quad \text{otherwise.} \end{cases}$$

cont.

- By the argument above $\sum_{\pi \in S_n} \sum_{i=1}^m f(\pi, i) \le n!$.
- Changing the order of summation we have to count, for a fixed A_i, the number of permutations π placed on a circle such that A_i ∈ π. The number is n · |A_i|!(n − |A_i|)!.
- So we have

$$\sum_{i=1}^m \frac{1}{A_i} \cdot n \cdot |A_i|! (n - |A_i|!) \le n!$$

which yields the result.