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Partially ordered set

Definition
A partially ordered set (also poset) is a set S with a binary relation
≤ (sometimes ⊆ is used) such that:

1. a ≤ a for all a ∈ S (reflexivity),

2. if a ≤ b and b ≤ c then a ≤ c (transitivity),

3. if a ≤ b and b ≤ a then a = b (antisymmetry).
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If for any a and b in S , either a ≤ b or b ≤ a, then the partial
order is called a total order, or a linear order. If a ≤ b and a 6= b,
then we also write a < b.

Definition
If a subset of S is totally ordered, it is called a chain. An antichain
is a set of elements that are pairwise incomparable.



Partially ordered set

Definition
A partially ordered set (also poset) is a set S with a binary relation
≤ (sometimes ⊆ is used) such that:

1. a ≤ a for all a ∈ S (reflexivity),

2. if a ≤ b and b ≤ c then a ≤ c (transitivity),

3. if a ≤ b and b ≤ a then a = b (antisymmetry).

Definition
If for any a and b in S , either a ≤ b or b ≤ a, then the partial
order is called a total order, or a linear order. If a ≤ b and a 6= b,
then we also write a < b.

Definition
If a subset of S is totally ordered, it is called a chain. An antichain
is a set of elements that are pairwise incomparable.



Theorem 6.1

Theorem (Dilworth’s theorem)

Let P be a partially ordered finite set. The minimum number m of
disjoint chains which together contain all elements of P is equal to
the maximum number M of elements in an antichain of P.

Proof.

I It is trivial that m ≥ M . We prove m ≤ M by induction on
|P|.

I If |P| = 0, there is nothing to prove.
I If |P| > 0, assume for any P ′ with |P ′| < |P|, we have

m′ ≤ M ′, where m′ is the minimum number of disjoint chains
which together contain all elements of P and M ′ is the
maximum number of elements in an antichain of P ′. Let C be
a maximal chain in P.

1. If every antichain in P \ C contains at most M − 1 elements,
we are done.

2. assume that {a1, · · · , aM} is an antichain in P \ C .
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Theorem 6.1

cont.

I Now define S− , {x ∈ P : ∃i [x ≤ ai ]}, and define S+

analogously.

I Since C is a maximal chain, the largest element in C is not in
S− and hence by the induction hypothesis, the theorem holds
for S−.

I Hence S− is the union of M disjoint chains S−1 , · · · , S
−
M ,

where ai ∈ S−i .

I Suppose x ∈ S−i and x > ai . Since there is a j with x ≤ aj ,
we would have ai < aj , a contradiction.

I This shows that ai is the maximal element of the chain
S−i , i = 1, · · · ,M. We do the same for S+.

I By combining the chains, we construct a M disjoint chains
which together contain all elements of P. This proves m ≤ M.



Theorem 6.2
Theorem (Dual of Dilworth’s theorem)

Let P be a partially ordered set. If P possesses no chain of m + 1
elements, then P is the union of m antichains.

Proof.
I For m = 1, the theorem is trivial.

I Let m ≥ 2 and assume that the theorem is true for m − 1.

I Let P be a partially ordered set that has no chain of m + 1
elements.

I Let M be the set of maximal elements of P. M is an
antichain.

I Suppose x1 < x2 < · · · < xm were a chain in P \M. Then this
would also be a maximal chain in P and hence we would have
xm ∈ M , a contradiction. Hence P \M has no chain of m
elements.

I By the induction hypothesis, P \M is the union of m − 1
antichains. This proves the theorem.
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Theorem 6.3

Theorem (Sperner’s Theorem)

If A1,A2, · · · ,Am are subsets of N , {1, 2, · · · , n} such that Ai is
not a subset of Aj if i 6= j , then m ≤

( n
bn/2c

)
.

Proof.

I Consider the poset of subsets of N. A , {A1, · · · ,Am} is an
antichain in this poset.

I There are n! maximal chains.

I There are exactly k!(n − k)! maximal chains which contain a
given k-subset A of N.

I Now count the number of ordered pairs (A, C) such that
A ∈ A, C is a maximal chain, and A ∈ C.

I Since each maximal chain C contains at most one member of
an antichain, this number is at most n!.

I If we let αk denote the number of sets A ∈ A with |A| = k ,
then this number is

∑n
k=0 αkk!(n − k)!.



Theorem 6.3

cont.

I Thus
n∑

k=0

αkk!(n − k)! ≤ n!

or equivalently,

I
n∑

k=0

αk(n
k

) ≤ 1.

I Since
(n
k

)
is maximal for k = bn/2c and

∑
αk = m, the result

follows.

Remark
Equality holds in Theorem 6.3 if we take all bn/2c-subsets of N as
the antichain.



Symmetric chain

Definition
The poset Bn (with 2n elements) of the subsets of the n-set N,
ordered by inclusion is a boolean lattice of order n. Let Ai denote
the set of all i-subset of N.

Definition
A symmetric chain in Bn is a sequence Pk ,Pk+1, · · · ,Pn−k of
vertices such that Pi ∈ Ai and Pi ⊆ Pi+1 for
i = k , k + 1, · · · , n − k − 1.



An algorithm splitting Bn into symmetric chains.

Algorithm

1. Start with B1. Proceed by induction.

2. If Bn has been split into symmetric chains, then for each such
symmetric chain Pk , · · · ,Pn−k define two symmetric chains in
Bn+1 , namely
I Pk+1, · · · ,Pn−k and
I Pk ,Pk ∪ {n + 1},Pk+1 ∪ {n + 1}, · · · ,Pn−k ∪ {n + 1}.

Remark



A proof of Hall’s theorem by Dilworth theorem

Proof.

I Consider the bipartite graph G on X ∪ Y . Let
|X | = n, |Y | = n′ ≥ n.

I Introduce a partial order by defining xi < yj if and only if
there is an edge from vertex xi to vertex yj .

I Suppose that the largest antichain contains s elements. Let
this antichain be {x1, · · · , xh, y1, · · · , yk}, where h + k = s.

I Since Γ({x1, · · · , xh}) ⊆ Y \ {y1, · · · , yk}, we have
h ≤ n′ − k . Hence s ≤ n′.

I The partially ordered set is the union of s disjoint chains. This
will consist of a matching of size a, the remaining n − a
elements of X , and the remaining n′ − a elements of Y .

I Therefore n + n′ − a = s ≤ n′, i.e. a ≥ n, which means that
we have a complete matching.



Theorem 6.4

Theorem (Erdős-Ko-Rado)

Let A = {A1, · · · ,Am} be a collection of m distinct k-subsets of
{1, 2, · · · , n}, where k ≤ n/2, with the property that any two of
the subsets have a nonempty intersection. Then m ≤

(n−1
k−1
)
.

Proof.

I Place the integers 1 to n on a circle and consider the family
F , {F1, · · · ,Fn} of all consecutive k-tuples on the circle, i.e.
Fi denotes {i , i + 1, · · · , i + k − 1} where the integers should
be taken mod n.

I Observe that |A ∩ F| ≤ k because if some Fi equals Aj , then
at most one of the sets {l , l + 1, · · · , l + k − 1},
{l − k , · · · , l − 1}(i < l < i + k) is in A.

I The same assertion holds for the collection F π obtained from
F by applying a permutation π to {1, 2, · · · , n}.



Theorem 6.4

cont.

I Theorefore
Σ ,

∑
π∈Sn

|A ∩ Fπ| ≤ k · n!

I Count this sum by fixing Aj ∈ A,Fi ∈ F and observing that
there are k!(n − k)! permutations π such that F πi = Aj .

I Hence Σ = m · n · k!(n − k)! which implies

m · n · k!(n − k) ≤ k · n!

or m ≤
(n−1
k−1
)
. The theorem is proved.



Theorem 6.5

Theorem
Let A = {A1, · · · ,Am} be a collection of m subsets of
N , {1, 2, · · · , n} such that Ai * Aj and Ai ∩ Aj 6= ∅ if i 6= j and
|Ai | ≤ k ≤ n/2 for all i . Then m ≤

(n−1
k−1
)
.



Theorem 6.5

Proof.

1. If all the subsets have size k, then we are done by Theorem
6.4.

2. Let A1, ...,As be the subsets with the smallest cardinality, say
l ≤ n

2 − 1.
I Consider all the (l + 1)-subsets Bj of N that contain one or

more of the sets Ai , 1 ≤ i ≤ s.
I Clearly, none of these is in A. Each of the sets Ai , 1 ≤ i ≤ s, is

in exactly n − l of the Bj ’s and each Bj contains at most
l + 1 ≤ n − l of the Ai ’s.

I So by Theorem 5.1, we can pick s distinct sets, say
B1, · · · ,Bs , such that Ai ⊆ Bi .

I If we replace A1, · · · ,As by B1, · · · ,Bs , then the new
collection A′ satisfies the conditions of the theorem and the
subsets of smallest cardinality now all have size > l .

I By induction, we can reduce to case 1.



Theorem 6.6

Theorem
Let A = {A1, · · · ,Am} be a collection of m subsets of {1, 2, · · · , n}
such that Ai ∩ Aj 6= ∅ if i 6= j and |Ai | ≤ k ≤ n/2 for all i . Then

m∑
i=1

1( n−1
|Ai |−1

) ≤ 1.

Proof.

I Let π be a permutation of {1, 2, · · · , n} placed on a circle and
let us say that Ai ∈ π if the elements of Ai occur
consecutively somewhere on that circle.

I By the same argument as in the proof of Theorem 6.4 we see
that if Ai ∈ π, then Aj ∈ π for at most |Ai | values of j .

I Now define

f (π, i) ,

{
1
|Ai | , if Ai ∈ π
0 otherwise.



Theorem 6.6

cont.

I By the argument above
∑

π∈Sn
∑m

i=1 f (π, i) ≤ n!.

I Changing the order of summation we have to count, for a
fixed Ai , the number of permutations π placed on a circle
such that Ai ∈ π. The number is n · |Ai |!(n − |Ai |)!.

I So we have

m∑
i=1

1

Ai
· n · |Ai |!(n − |Ai |!) ≤ n!

which yields the result.


