Lecture 6, Dilworth's theorem and extremal set theory

Qi Chen, Jingliang Gao

Fall, 2023

Partially ordered set

Definition

A partially ordered set (also poset) is a set S with a binary relation \leq (sometimes \subseteq is used) such that:

1. $a \leq a$ for all $a \in S$ (reflexivity),
2. if $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity),
3. if $a \leq b$ and $b \leq a$ then $a=b$ (antisymmetry).

Partially ordered set

Definition

A partially ordered set (also poset) is a set S with a binary relation \leq (sometimes \subseteq is used) such that:

1. $a \leq a$ for all $a \in S$ (reflexivity),
2. if $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity),
3. if $a \leq b$ and $b \leq a$ then $a=b$ (antisymmetry).

Definition
If for any a and b in S, either $a \leq b$ or $b \leq a$, then the partial order is called a total order, or a linear order. If $a \leq b$ and $a \neq b$, then we also write $a<b$.

Partially ordered set

Definition

A partially ordered set (also poset) is a set S with a binary relation \leq (sometimes \subseteq is used) such that:

1. $a \leq a$ for all $a \in S$ (reflexivity),
2. if $a \leq b$ and $b \leq c$ then $a \leq c$ (transitivity),
3. if $a \leq b$ and $b \leq a$ then $a=b$ (antisymmetry).

Definition

If for any a and b in S, either $a \leq b$ or $b \leq a$, then the partial order is called a total order, or a linear order. If $a \leq b$ and $a \neq b$, then we also write $a<b$.

Definition

If a subset of S is totally ordered, it is called a chain. An antichain is a set of elements that are pairwise incomparable.

Theorem 6.1

Theorem (Dilworth's theorem)
Let P be a partially ordered finite set. The minimum number m of disjoint chains which together contain all elements of P is equal to the maximum number M of elements in an antichain of P.

Theorem 6.1

Theorem (Dilworth's theorem)

Let P be a partially ordered finite set. The minimum number m of disjoint chains which together contain all elements of P is equal to the maximum number M of elements in an antichain of P.

Proof.

- It is trivial that $m \geq M$. We prove $m \leq M$ by induction on $|P|$.
- If $|P|=0$, there is nothing to prove.
- If $|P|>0$, assume for any P^{\prime} with $\left|P^{\prime}\right|<|P|$, we have $m^{\prime} \leq M^{\prime}$, where m^{\prime} is the minimum number of disjoint chains which together contain all elements of P and M^{\prime} is the maximum number of elements in an antichain of P^{\prime}. Let C be a maximal chain in P.

1. If every antichain in $P \backslash C$ contains at most $M-1$ elements, we are done.
2. assume that $\left\{a_{1}, \cdots, a_{M}\right\}$ is an antichain in $P \backslash C$.

Theorem 6.1

cont.

- Now define $S^{-} \triangleq\left\{x \in P: \exists i\left[x \leq a_{i}\right]\right\}$, and define S^{+} analogously.
- Since C is a maximal chain, the largest element in C is not in S^{-}and hence by the induction hypothesis, the theorem holds for S^{-}.
- Hence S^{-}is the union of M disjoint chains $S_{1}^{-}, \cdots, S_{M}^{-}$, where $a_{i} \in S_{i}^{-}$.
- Suppose $x \in S_{i}^{-}$and $x>a_{i}$. Since there is a j with $x \leq a_{j}$, we would have $a_{i}<a_{j}$, a contradiction.
- This shows that a_{i} is the maximal element of the chain $S_{i}^{-}, i=1, \cdots, M$. We do the same for S^{+}.
- By combining the chains, we construct a M disjoint chains which together contain all elements of P. This proves $m \leq M$.

Theorem 6.2

Theorem (Dual of Dilworth's theorem)
Let P be a partially ordered set. If P possesses no chain of $m+1$ elements, then P is the union of m antichains.

Theorem 6.2

Theorem (Dual of Dilworth's theorem)
Let P be a partially ordered set. If P possesses no chain of $m+1$ elements, then P is the union of m antichains.

Proof.

- For $m=1$, the theorem is trivial.
- Let $m \geq 2$ and assume that the theorem is true for $m-1$.
- Let P be a partially ordered set that has no chain of $m+1$ elements.
- Let M be the set of maximal elements of $P . M$ is an antichain.
- Suppose $x_{1}<x_{2}<\cdots<x_{m}$ were a chain in $P \backslash M$. Then this would also be a maximal chain in P and hence we would have $x_{m} \in M$, a contradiction. Hence $P \backslash M$ has no chain of m elements.
- By the induction hypothesis, $P \backslash M$ is the union of $m-1$ antichains. This proves the theorem.

Theorem 6.3

Theorem (Sperner's Theorem)
If $A_{1}, A_{2}, \cdots, A_{m}$ are subsets of $N \triangleq\{1,2, \cdots, n\}$ such that A_{i} is not a subset of A_{j} if $i \neq j$, then $m \leq\left(\begin{array}{l}n / 2\rfloor\end{array}\right)$.
Proof.

- Consider the poset of subsets of $N . \mathcal{A} \triangleq\left\{A_{1}, \cdots, A_{m}\right\}$ is an antichain in this poset.
- There are n ! maximal chains.
- There are exactly $k!(n-k)$! maximal chains which contain a given k-subset A of N.
- Now count the number of ordered pairs (A, C) such that $A \in \mathcal{A}, \mathcal{C}$ is a maximal chain, and $A \in \mathcal{C}$.
- Since each maximal chain \mathcal{C} contains at most one member of an antichain, this number is at most $n!$.
- If we let α_{k} denote the number of sets $A \in \mathcal{A}$ with $|A|=k$, then this number is $\sum_{k=0}^{n} \alpha_{k} k!(n-k)!$.

Theorem 6.3

cont.

- Thus

$$
\sum_{k=0}^{n} \alpha_{k} k!(n-k)!\leq n!
$$

or equivalently,

$$
\sum_{k=0}^{n} \frac{\alpha_{k}}{\binom{n}{k}} \leq 1
$$

- Since $\binom{n}{k}$ is maximal for $k=\lfloor n / 2\rfloor$ and $\sum \alpha_{k}=m$, the result follows.

Remark

Equality holds in Theorem 6.3 if we take all $\lfloor n / 2\rfloor$-subsets of N as the antichain.

Symmetric chain

Definition

The poset B_{n} (with 2^{n} elements) of the subsets of the n-set N, ordered by inclusion is a boolean lattice of order n. Let \mathcal{A}_{i} denote the set of all i-subset of N.

Definition

A symmetric chain in B_{n} is a sequence $P_{k}, P_{k+1}, \cdots, P_{n-k}$ of vertices such that $P_{i} \in \mathcal{A}_{i}$ and $P_{i} \subseteq P_{i+1}$ for $i=k, k+1, \cdots, n-k-1$.

An algorithm splitting B_{n} into symmetric chains.

Algorithm

1. Start with B_{1}. Proceed by induction.
2. If B_{n} has been split into symmetric chains, then for each such symmetric chain P_{k}, \cdots, P_{n-k} define two symmetric chains in B_{n+1}, namely

- P_{k+1}, \cdots, P_{n-k} and
- $P_{k}, P_{k} \cup\{n+1\}, P_{k+1} \cup\{n+1\}, \cdots, P_{n-k} \cup\{n+1\}$.

Remark

A proof of Hall's theorem by Dilworth theorem

Proof.

- Consider the bipartite graph G on $X \cup Y$. Let $|X|=n,|Y|=n^{\prime} \geq n$.
- Introduce a partial order by defining $x_{i}<y_{j}$ if and only if there is an edge from vertex x_{i} to vertex y_{j}.
- Suppose that the largest antichain contains s elements. Let this antichain be $\left\{x_{1}, \cdots, x_{h}, y_{1}, \cdots, y_{k}\right\}$, where $h+k=s$.
- Since $\Gamma\left(\left\{x_{1}, \cdots, x_{h}\right\}\right) \subseteq Y \backslash\left\{y_{1}, \cdots, y_{k}\right\}$, we have $h \leq n^{\prime}-k$. Hence $s \leq n^{\prime}$.
- The partially ordered set is the union of s disjoint chains. This will consist of a matching of size a, the remaining $n-a$ elements of X, and the remaining $n^{\prime}-a$ elements of Y.
- Therefore $n+n^{\prime}-a=s \leq n^{\prime}$, i.e. $a \geq n$, which means that we have a complete matching.

Theorem 6.4

Theorem (Erdős-Ko-Rado)

Let $\mathcal{A}=\left\{A_{1}, \cdots, A_{m}\right\}$ be a collection of m distinct k-subsets of $\{1,2, \cdots, n\}$, where $k \leq n / 2$, with the property that any two of the subsets have a nonempty intersection. Then $m \leq\binom{ n-1}{k-1}$.

Proof.

- Place the integers 1 to n on a circle and consider the family $\mathcal{F} \triangleq\left\{F_{1}, \cdots, F_{n}\right\}$ of all consecutive k-tuples on the circle, i.e. F_{i} denotes $\{i, i+1, \cdots, i+k-1\}$ where the integers should be taken $\bmod n$.
- Observe that $|\mathcal{A} \cap \mathcal{F}| \leq k$ because if some F_{i} equals A_{j}, then at most one of the sets $\{I, I+1, \cdots, I+k-1\}$, $\{I-k, \cdots, I-1\}(i<I<i+k)$ is in \mathcal{A}.
- The same assertion holds for the collection F^{π} obtained from F by applying a permutation π to $\{1,2, \cdots, n\}$.

Theorem 6.4

cont.

- Theorefore

$$
\Sigma \triangleq \sum_{\pi \in S_{n}}\left|\mathcal{A} \cap \mathcal{F}^{\pi}\right| \leq k \cdot n!
$$

- Count this sum by fixing $A_{j} \in \mathcal{A}, F_{i} \in \mathcal{F}$ and observing that there are $k!(n-k)$! permutations π such that $F_{i}^{\pi}=A_{j}$.
- Hence $\Sigma=m \cdot n \cdot k!(n-k)!$ which implies

$$
m \cdot n \cdot k!(n-k) \leq k \cdot n!
$$

or $m \leq\binom{ n-1}{k-1}$. The theorem is proved.

Theorem 6.5

Theorem
Let $A=\left\{A_{1}, \cdots, A_{m}\right\}$ be a collection of m subsets of $N \triangleq\{1,2, \cdots, n\}$ such that $A_{i} \nsubseteq A_{j}$ and $A_{i} \cap A_{j} \neq \emptyset$ if $i \neq j$ and $\left|A_{i}\right| \leq k \leq n / 2$ for all i. Then $m \leq\binom{ n-1}{k-1}$.

Theorem 6.5

Proof.

1. If all the subsets have size k, then we are done by Theorem 6.4.
2. Let A_{1}, \ldots, A_{s} be the subsets with the smallest cardinality, say $I \leq \frac{n}{2}-1$.

- Consider all the $(I+1)$-subsets B_{j} of N that contain one or more of the sets $A_{i}, 1 \leq i \leq s$.
- Clearly, none of these is in A. Each of the sets $A_{i}, 1 \leq i \leq s$, is in exactly $n-l$ of the B_{j} 's and each B_{j} contains at most $I+1 \leq n-I$ of the A_{i} 's.
- So by Theorem 5.1, we can pick s distinct sets, say B_{1}, \cdots, B_{s}, such that $A_{i} \subseteq B_{i}$.
- If we replace A_{1}, \cdots, A_{s} by B_{1}, \cdots, B_{s}, then the new collection \mathcal{A}^{\prime} satisfies the conditions of the theorem and the subsets of smallest cardinality now all have size $>I$.
- By induction, we can reduce to case 1 .

Theorem 6.6

Theorem

Let $A=\left\{A_{1}, \cdots, A_{m}\right\}$ be a collection of m subsets of $\{1,2, \cdots, n\}$ such that $A_{i} \cap A_{j} \neq \emptyset$ if $i \neq j$ and $\left|A_{i}\right| \leq k \leq n / 2$ for all i. Then

$$
\sum_{i=1}^{m} \frac{1}{\binom{n-1}{\left|A_{i}\right|-1}} \leq 1
$$

Proof.

- Let π be a permutation of $\{1,2, \cdots, n\}$ placed on a circle and let us say that $A_{i} \in \pi$ if the elements of A_{i} occur consecutively somewhere on that circle.
- By the same argument as in the proof of Theorem 6.4 we see that if $A_{i} \in \pi$, then $A_{j} \in \pi$ for at most $\left|A_{i}\right|$ values of j.
- Now define

$$
f(\pi, i) \triangleq \begin{cases}\frac{1}{\left|A_{i}\right|}, & \text { if } A_{i} \in \pi \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 6.6

cont.

- By the argument above $\sum_{\pi \in S_{n}} \sum_{i=1}^{m} f(\pi, i) \leq n!$.
- Changing the order of summation we have to count, for a fixed A_{i}, the number of permutations π placed on a circle such that $A_{i} \in \pi$. The number is $n \cdot\left|A_{i}\right|!\left(n-\left|A_{i}\right|\right)!$.
- So we have

$$
\sum_{i=1}^{m} \frac{1}{A_{i}} \cdot n \cdot\left|A_{i}\right|!\left(n-\left|A_{i}\right|!\right) \leq n!
$$

which yields the result.

