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Matchings for a bipartite graph

Definition (matching)

Consider a bipartite graph G (V ,E ) with vertex set V = X ∪ Y
(every edge has one endpoint in X and one in Y ). A matching in
G is a subset M ⊂ E of the edge set such that no vertex is
incident with more than one edge in M.

Definition (complete matching)

A complete matching from X to Y is a matching such that every
vertex in X is incident with an edge in M.
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Marriage theorem

Theorem
A necessary and sufficient condition for there to be a complete
matching from X to Y in G is that |Γ(A)| ≥ |A| for every A ⊆ X .

Hall’s condition
That |Γ(A)| ≥ |A| for every A ⊆ X is called Hall’s condition, or
property H.
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Marriage theorem

Proof 1.

I It is obvious that Hall’s condtion is necessary.

I We prove the sufficiency of the theorem by induction on
n := |X |.

I When n = 1, it is obviously true.
I Assume the theorem is true for all integer k < n, we will prove

it is true for n. We consider the following two cases.

1. For any A ⊂ X , |Γ(A)| ≥ |A|+ 1. We pick x ∈ X and a
neighbor y ∈ Y of x , and put edge {x , y} in the matching.
The remaining graph (X \ {X},Y \ {y}) satisfies the condition
and by inductive hypothesis, it has a complete matching M ′,
thus M = M ′ ∪ {{x , y}}.

2. There is set A with |Γ(A)| = |A|. By induction, (A, Γ(A)) has a
complete matching MA. For any B ⊆ X \ A,
|Γ(B) \ Γ(A)| ≥ |B|. Then by induction (X \ A,Y \ Γ(A)) has
a complete matching MB . Let M = MA ∪MB .



Perfect matching

Definition
A perfect matching in a graph G is a matching so that each vertex
of G is incident with one edge of the matching.

Problem 5A

1. Show that a finite regular bipartite graph (regular of degree
d > 0) has a perfect matching.

2. Suppose G is bipartite with vertices X ∪ Y . Further assume
that every vertex in X has the same degree s > 0 and every
vertex in Y has the same degree t. Prove: If |X | ≤ |Y |
(equivalently, if s ≥ t), then there is a complete matching M
of X into Y .
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A game of card playing

Example

The game

A parlor trick involving a standard deck of 52 cards is as follows.
You are dealt five cards at random. You keep one and put the
other four (in a specific order) into an envelope which is taken to
your partner in another room. Your partner looks at these and
announces the name of the fifth card, that you had retained.

Solution

I Let X be family of the
(N
5

)
5-element subsets of the N cards.

I Let Y be the set of N(N − 1)N(N − 2)(N − 3) ordered
4-tuples of distinct cards.

I Let G be a bipartite graph with vertices X ∪ Y , and edges
between X and Y if S ∈ X contains (c1, c2, c3, c4) ∈ Y .

I For N ≤ 124, |X | ≤ |Y |. Then by Problem 5A(2), there exists
a complete matching from X to Y .
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System of distinct representatives

Definition
Consider subsets A0,A1, · · · ,An−1 of a finite set S . We shall say
that this collection has property H (Hall’s condition) if (for all k)
the union of any k-tuple of subsets Ai has at least k elements. If
the union of some k-tuple of subsets contains exactly k elements
(0 < k < n), then we call this k-tuple a critical block.

Definition
A system of distinct representatives (SDR) of the sets
A0,A2, · · · ,An−1 is a sequence of n distinct elements a0, · · · , an−1
with ai ∈ Ai , 0 ≤ i ≤ n − 1.
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Lemma 5.2

A function
Let m0 ≤ m1 ≤ · · · ≤ mn−1. We define

Fn(m0,m1, · · · ,mn−1) ,
n−1∏
i=0

(mi − i)∗,

where (a)∗ , max{1, a}.

Lemma
For n ≥ 1, let fn : Zn → N be defined by

fn(a0, a1, · · · , an−1) , Fn(m0,m1, · · · ,mn−1)

if (m0,m1, · · · ,mn−1) is a nondecreasing rearrangement of the
n-tuple (a0, · · · , an−1). Then fn is nondecreasing with respect to
each of the variables ai .
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A lower bound for the number of SDRs

Let N(A0, · · · ,An−1) be the number of SDRs of (A0, · · · ,An−1).

Theorem
Let (A0, · · · ,An−1) be a sequence of subsets of a set S . Let
mi , |Ai |(i = 0, · · · , n − 1) and let m0 ≤ m1 ≤ · · · ≤ mn−1. If the
sequence has property H, then

N(A0, · · · ,An−1) ≥ Fn(m0, · · · ,mn−1)
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Theorem 5.3

Theorem
Let (A0, · · · ,An−1) be a sequence of subsets of a set S . Let
mi , |Ai |(i = 0, · · · , n − 1) and let m0 ≤ m1 ≤ · · · ≤ mn−1. If the
sequence has property H, then

N(A0, · · · ,An−1) ≥ Fn(m0, · · · ,mn−1).

Proof.
The proof is by induction. Clearly the theorem is true for n = 1.

1. There is no critical block.
I Choose any element a of A0 as its representative and then

remove a from all the other sets.
I This yields A1(a), · · · ,An−1(a), and for these sets property H

still holds.



Theorem 5.3

cont.

1. I By the induction hypothesis and by Lemma 5.2, we find

N(A0, · · · ,An−1) ≥
∑
a∈A0

fn−1(|A1(a)|, · · · , |An−1(a)|)

≥
∑
a∈A0

fn−1(m1 − 1, · · · ,mn−1 − 1)

= m0fn−1(m1 − 1, · · · ,mn−1 − 1)

= Fn(m0,m1, · · · ,mn−1)

2. There is a critical block (Aν0 , · · · ,Aνk−1
) with

ν0 < · · · < νk−1 and 0 < k < n.
I Delete all elements of (Aν0 , · · · ,Aνk−1

) from all the other sets
Ai which produces (A′µ0

, · · · ,A′µl−1
), where

{ν0, · · · , νk−1, µ0, · · · , µl−1} = {0, 1, · · · , n − 1}, k + l = n.



Theorem 5.3

I Now both (Aν0 , · · · ,Aνk−1
) and (A′µ0 , · · · ,A

′
µl−1

) satisfy
property H and SDRs of the two sequences are always disjoint.

I By the induction hypothesis and the lemma, we have

N(A0, · · · ,An−1) = N(Aν0 , · · · ,Aνk−1
)N(A′µ0 , · · · ,A

′
µl−1

)

≥ fk(mν0 , · · · ,mνk−1
)fl(|A′µ0 |, · · · , |A

′
µl−1
|)

≥ fk(mν0 , · · · ,mνk−1
)fl(mµ0 − k , · · · ,mµl−1

− k)

≥ fk(m0, · · · ,mk−1)fl(mµ0 − k , · · · ,mµl−1
− k).

I Since
mνk−1

≤ |Aν0 ∪ · · · ∪ Aνk−1
| = k,

we have
(mr − r)∗ = 1 if k ≤ r ≤ νk−1

and
(mµi − k − i)∗ = 1 if µi ≤ νk−1



Theorem 5.3

cont.

I It implies that

fk(m0, · · · ,mk−1) =
∏

0≤i≤νk−1

(mi − i)∗

and

fl(mµ0 − k , · · · ,mµl − k) =
∏

νk−1<j<n

(mi − i)∗

whose product proves the results.



König’s theorem

Definition
For a (0, 1)-matrix A, by a line, we mean a row or a column of A.

Theorem
The minimum number of lines of A that contain all the 1’s of A is
equal to the maximum number of 1’s in A, no two on a line.

Proof.

I Let m be the minimum number of lines of A containing all the
1’s of A.

I Let M be the maximum number of 1’s, no two on a line.

I Clearly m ≥ M.

I Let the minimum covering by lines consist of r rows and s
columns (r + s = m). Without loss of generality, these are the
first r rows and the first s columns.
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König’s theorem

cont.

I Define sets Ai , 1 ≤ i ≤ r , by Ai , {j > s : aij = 1}.
I We claim Ai ’s satisfy property H. Assume it is not true. Then

some k-tuple of the Ai ’s contained less than k elements. We
could replace the corresponding k rows by k − 1 columns, still
covering all the 1’s. Contradiction.

I So the Ai ’s have an SDR. This means that there are r 1’s, no
two on a line, in the first r rows and not in the first s columns.

I By the same argument there are s 1’s, no two on a line, in the
first s columns and not in the first r rows.

I This shows that M ≥ r + s = m.



Birkhoff Theorem

Theorem
Let A = (aij) be an n × n matrix with nonnegative integers as
entries, such that every row and column of A has sum l . Then A is
the sum of l permutation matrices.

Proof.

I Define Ai , 1 ≤ i ≤ n, by Ai , {j : aij > 0}.
I We claim that Ai satisfy property H.

I For any k-tuple of Ai , the sum of the corresponding rows of A
is kl . Since every column of A has sum l , the nonzero entries
in the chosen k rows must be in at least k columns.

I An SDR of the Ai ’s corresponds to a permutation matrix
P = (pij) such that aij > 0 if pij = 1.

I Then A− P is a matrix with both row sum and column sum
l − 1. The theorem follows by induction on l .




