Lecture 2, Trees

Qi Chen, Jingliang Gao

Fall , 2023

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Trees with label

Theorem (Cayley)

There are n^{n-2} different labeled trees on n vertices.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Trees with label

Theorem (Cayley)

There are n^{n-2} different labeled trees on n vertices.

Example

Here are the 16 labeled trees on four vertices:

Nonisomorphic trees

Example

There are the three nonisomorphic trees on five vertices:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Nonisomorphic trees

Example

There are the three nonisomorphic trees on five vertices:

Proposition

The number of labeled trees on n vertices isomorphic to a specific tree T is $\frac{n!}{|\operatorname{Aut}(T)|}$, where $\operatorname{Aut}(T)$ is the automorphism group of T.

Forest, spanning tree and weighted graph

Definition

A graph with no circles as subgraphs is called a forest. Each component C_1, C_2, \dots, C_k of a forest G is a tree, so if a forest with n vertices has k components, it has n - k edges

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Forest, spanning tree and weighted graph

Definition

A graph with no circles as subgraphs is called a forest. Each component C_1, C_2, \dots, C_k of a forest G is a tree, so if a forest with n vertices has k components, it has n - k edges

Definition

A spanning tree of a connected graph G is a spanning subgraph of G that is a tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Forest, spanning tree and weighted graph

Definition

A graph with no circles as subgraphs is called a forest. Each component C_1, C_2, \dots, C_k of a forest G is a tree, so if a forest with n vertices has k components, it has n - k edges

Definition

A spanning tree of a connected graph G is a spanning subgraph of G that is a tree.

Definition

A weighted graph is a graph G together with a function associating a real number c(e) (usually nonnegative) to each edge e, called its length or cost according to context.

Cost of a spanning tree

$$c(T) = \sum_{e \in T} c(e)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Greedy algorithm for searching a spanning tree with minimum cost

Definition

A set S of edges of a graph G is called independent when the spanning subgraph with edge set S (denoted G : S) is a forest.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Greedy algorithm for searching a spanning tree with minimum cost

Definition

A set S of edges of a graph G is called independent when the spanning subgraph with edge set S (denoted G : S) is a forest.

Greedy algorithm(Kruskal)

Let G be a connected weighted graph with n vertices.

- 1. For i = 0, let S_0 be the empty graph with *n* vertices
- 2. For each *i*, let $S_i = \{e_1, e_2, \dots, e_i\}$ be independent edges so that $G : S_i$ has n i component.
- 3. If i < n 1, let e_{i+1} be an edge with ends in different components of G of $G : S_i$ and whose cost is minimum.
- 4. Stop when we have chosen n-1 edges.

Theorem 2.2

Theorem

With e_1, \dots, e_{n-1} chosen as above, the spanning tree $T_0 := G : \{e_1, \dots, e_{n-1}\}$ has the property that $c(T_0) \le c(T)$ for any spanning tree T.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem 2.2

Proof.

- ▶ Let $\{a_1, a_2, \dots, a_{n-1}\}$ be the edge set of a tree *T*, numbered so that $c(a_1) \leq c(a_2) \leq \dots, \leq c(a_{n-1})$.
- We claim that $c(e_i) \leq c(a_i)$ for each $i = 1, 2, \cdots, n-1$.
- If this is false, then

$$c(e_k) > c(a_k) \ge c(a_{k-1}) \ge \cdots \ge c(a_1)$$

for some k.

- ► Each a_i, i = 1, 2, ··· , k should has both ends in the same components of G : S_{k-1}.
- ▶ the number of components of G : {a₁, a₂, · · · , a_k} is at least the number n − k + 1 of the components of G : S_{k−1}
- It contradicts the fact that G: {a₁, a₂, · · · , a_k} is independent.

Depth-first search and breadth-first search in a rooted tree

A tree with a distinguished vertex-the root-is called a rooted tree.

(日)

Depth-first search and breadth-first search in a rooted tree

A tree with a distinguished vertex-the root-is called a rooted tree.

In a depth-first search, one search along the walk abdidjdbebfk . . . Ihca

in a breadth-first search, one search alphabetically in the above figure.

Depth-first search tree of a finite connected graph G

Construction of the depth-first search tree T of G

- 1. Pick a virtex v_0 and start with the tree T_0 with vertex v_0 and no edges.
- 2. Proceed inductively: once vertices $v_0, v_1, v_2, \dots, v_k$ and a tree T_k with exactly those vertices and some of the edges of G have been chosen, let I be the largest index $\leq k$ so that v_l is adjacent to some vertex not in T_k .
- 3. Call that new vertex v_{k+1} and add it and the edge $\{v_l, v_{k+1}\}$ to T_k to obtain a tree T_{k+1} .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

4. Stop when T_k is a spanning tree of G and let $T = T_k$.

Ancestors and descendants in a rooted tree

Definition

Given a vertex x of a rooted tree with root v_0 , the ancestors of x are the vertices traversed by the (unique) path from x to the root v_0 . The first vertex other than x on that path is the parent of x. If x is an ancestor of y, we also say that y is a descendant of x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition 2.3

Proposition

If vertices x and y are adjacent in G, then one of them is a descendant of the other in any depth-first search tree T of G.

Proof.

- Asumme $x = v_k$ and $y = v_l$ with $k \le l$.
- If *l* = *k* + 1, done.
- Otherwise, inductively, for all v_{k'} with k < k' < l must be descendant(s) of x.</p>

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► Then T_l is obtained by adding $\{v_{k'}, y\}$ to T_{l-1} , where $k \leq k' < l$.

Isthmus

Definition

An isthmus (or a bridge) of a connected graph G is an edge whose deletion results in a disconnected graph.

Remark

Note that every edge in a tree is an isthmus.

Proposition 2.4

Proposition

Let $\{x, y\}$ be an edge of T which is not an isthmus in G; say x is the parent of y. Then there is an edge in G, but not in T joining some descendant a of y and some ancestor b of x.

Proof.

- Let D be the set of descendants of y which including y itself, so x ∉ D and y ∈ D.
- As {x, y} is not an isthmus, there exist another edge {a, b} of G with a ∈ D and b ∉ D, and {a, b} ∉ T
- According to Prop 2.3, *a* is a descendant of *b*.
- The unique path from a to v₀ must pass through y, x and b, which implies that b is an ancestor of x.

• Then $\{a, b\}$ is what we want.

Strongly connectedness

Definition

- Any directed graph obtained from an undirected graph G by assigning a direction to each edge of G is called an orientation of G.
- A walk in a digraph D may be called strong when each edge is traversed by the walk according to its direction, i.e. from its tail to its head.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The digraph D is strongly connected when for any two vertices x, y, there is a strong walk from x to y.

Theorem 2.5

Theorem

Let G be a finite connected graph without isthmuses. Then G admits a strong orientation, i.e. an orientation that is a strongly connected digraph D.

Construction of D from G.

- Find a depth-first search tree T of G and numbering $\{v_1, v_2, \cdots, v_n\}$ of the vertices of G.
- ▶ If $\{v_i, v_j\}$ is in T, direct it from v_i to v_j , i.e., (v_i, v_j) is an edge of D.
- ▶ If $\{v_i, v_j\}$ is not in T, direct it from v_j to v_i , i.e., (v_j, v_i) is an edge of D.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof of Theorem 2.5

Proof of the strongly connectedness of D.

- There is a strong walk from v_0 to any vertex x of D, say v_k .
- ► For any v_k, by Prop. 2.4, there exists an edge (a, b) with descendant a of v_k and ancestor b of v_k. Let b = v_i, then i < k.</p>
- Appending the strong walk from v_k to a and (a, v_i), we obtain a strong walk from v_k to v_i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• If i = 0, done. Otherwise, repeat until reach v_0 .

Thank you!

・ロト・(四)・(日)・(日)・(日)・(日)