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Trees with label

Theorem (Cayley)

There are nn−2 different labeled trees on n vertices.

Example

Here are the 16 labeled trees on four vertices:
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Nonisomorphic trees

Example

There are the three nonisomorphic trees on five vertices:

Proposition

The number of labeled trees on n vertices isomorphic to a specific
tree T is n!

|Aut(T )| , where Aut(T ) is the automorphism group of T .
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Forest, spanning tree and weighted graph

Definition
A graph with no circles as subgraphs is called a forest. Each
component C1,C2, · · · ,Ck of a forest G is a tree, so if a forest
with n vertices has k components, it has n − k edges

Definition
A spanning tree of a connected graph G is a spanning subgraph of
G that is a tree.

Definition
A weighted graph is a graph G together with a function
associating a real number c(e) (usually nonnegative) to each edge
e, called its length or cost according to context.

Cost of a spanning tree

c(T ) =
∑
e∈T

c(e).
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Greedy algorithm for searching a spanning tree with
minimum cost

Definition
A set S of edges of a graph G is called independent when the
spanning subgraph with edge set S (denoted G : S) is a forest.

Greedy algorithm(Kruskal)

Let G be a connected weighted graph with n vertices.

1. For i = 0, let S0 be the empty graph with n vertices

2. For each i , let Si = {e1, e2, · · · , ei} be independent edges so
that G : Si has n − i component.

3. If i < n − 1, let ei+1 be an edge with ends in different
components of G of G : Si and whose cost is minimum.

4. Stop when we have chosen n − 1 edges.
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Theorem 2.2

Theorem
With e1, · · · , en−1 chosen as above, the spanning tree
T0 := G : {e1, · · · , en−1} has the property that c(T0) ≤ c(T ) for
any spanning tree T .



Theorem 2.2

Proof.

I Let {a1, a2, · · · , an−1} be the edge set of a tree T , numbered
so that c(a1) ≤ c(a2) ≤ · · · ,≤ c(an−1).

I We claim that c(ei ) ≤ c(ai ) for each i = 1, 2, · · · , n − 1.

I If this is false, then

c(ek) > c(ak) ≥ c(ak−1) ≥ · · · ≥ c(a1)

for some k .

I Each ai , i = 1, 2, · · · , k should has both ends in the same
components of G : Sk−1.

I the number of components of G : {a1, a2, · · · , ak} is at least
the number n − k + 1 of the components of G : Sk−1

I It contradicts the fact that G : {a1, a2, · · · , ak} is
independent.



Depth-first search and breadth-first search in a rooted tree

A tree with a distinguished vertex-the root-is called a rooted tree.

I In a depth-first search, one search along the walk
abdidjdbebfk . . . lhca

I in a breadth-first search, one search alphabetically in the
above figure.
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Depth-first search tree of a finite connected graph G

Construction of the depth-first search tree T of G

1. Pick a virtex v0 and start with the tree T0 with vertex v0 and
no edges.

2. Proceed inductively: once vertices v0, v1, v2, · · · , vk and a tree
Tk with exactly those vertices and some of the edges of G
have been chosen, let l be the largest index ≤ k so that vl is
adjacent to some vertex not in Tk .

3. Call that new vertex vk+1 and add it and the edge {vl , vk+1}
to Tk to obtain a tree Tk+1.

4. Stop when Tk is a spanning tree of G and let T = Tk .



Ancestors and descendants in a rooted tree

Definition
Given a vertex x of a rooted tree with root v0, the ancestors of x
are the vertices traversed by the (unique) path from x to the root
v0. The first vertex other than x on that path is the parent of x . If
x is an ancestor of y, we also say that y is a descendant of x .



Proposition 2.3

Proposition

If vertices x and y are adjacent in G , then one of them is a
descendant of the other in any depth-first search tree T of G .

Proof.

I Asumme x = vk and y = vl with k ≤ l .

I If l = k + 1, done.

I Otherwise, inductively, for all vk ′ with k < k ′ < l must be
descendant(s) of x .

I Then Tl is obtained by adding {vk ′ , y} to Tl−1, where
k ≤ k ′ < l .



Isthmus

Definition
An isthmus (or a bridge) of a connected graph G is an edge whose
deletion results in a disconnected graph.

Remark
Note that every edge in a tree is an isthmus.



Proposition 2.4

Proposition

Let {x , y} be an edge of T which is not an isthmus in G ; say x is
the parent of y . Then there is an edge in G , but not in T joining
some descendant a of y and some ancestor b of x .

Proof.

I Let D be the set of descendants of y which including y itself,
so x /∈ D and y ∈ D.

I As {x , y} is not an isthmus, there exist another edge {a, b} of
G with a ∈ D and b /∈ D, and {a, b} /∈ T

I According to Prop 2.3, a is a descendant of b.

I The unique path from a to v0 must pass through y , x and b,
which implies that b is an ancestor of x .

I Then {a, b} is what we want.



Strongly connectedness

Definition

I Any directed graph obtained from an undirected graph G by
assigning a direction to each edge of G is called an orientation
of G .

I A walk in a digraph D may be called strong when each edge is
traversed by the walk according to its direction, i.e. from its
tail to its head.

I The digraph D is strongly connected when for any two
vertices x , y , there is a strong walk from x to y .



Theorem 2.5

Theorem
Let G be a finite connected graph without isthmuses. Then G
admits a strong orientation, i.e. an orientation that is a strongly
connected digraph D.

Construction of D from G .

I Find a depth-first search tree T of G and numbering
{v1, v2, · · · , vn} of the vertices of G .

I If {vi , vj} is in T , direct it from vi to vj , i.e., (vi , vj) is an
edge of D.

I If {vi , vj} is not in T , direct it from vj to vi , i.e., (vj , vi ) is an
edge of D.



Proof of Theorem 2.5

Proof of the strongly connectedness of D .

I There is a strong walk from v0 to any vertex x of D, say vk .

I For any vk , by Prop. 2.4, there exists an edge (a, b) with
descendant a of vk and ancestor b of vk . Let b = vi , then
i < k .

I Appending the strong walk from vk to a and (a, vi ), we obtain
a strong walk from vk to vi .

I If i = 0, done. Otherwise, repeat until reach v0.



Thank you!


