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PREFACE

This book gives a present-day account of Marston Morse's theory of

the calculus of variations in the large. However, there have been im-

portant developments during the past few years which are not mentioned.

Let me describe three of these

R. Palais and S. Smale nave studied Morse theory for a real-valued

function on an infinite dimensional manifold and have given direct proofs

of the main theorems, without making any use of finite dimensional ap-

proximations. The manifolds in question must be locally diffeomorphic

to Hilbert space, and the function must satisfy a weak compactness con-

dition. As an example, to study paths on a finite dimensional manifold

M one considers the Hilbert manifold consisting of all absolutely con-

tinuous paths w: (0,11 - M with square integrable first derivative. Ac-

counts of this work are contained in R. Palais, Morse Theory on Hilbert

Manifolds, Topology, Vol. 2 (1963), pp. 299-340; and in S. Smale, Morse

Theory and a Non-linear Generalization of the Dirichlet Problem, Annals

of Mathematics, Vol. 8o (1964), pp. 382_396.

The Bott periodicity theorems were originally inspired by Morse

theory (see part IV). However, more elementary proofs, which do not in-

volve Morse theory at all, have recently been given. See M. Atiyah and

R. Bott, On the Periodicity Theorem for Complex Vector Bundles, Acts,

Mathematica, Vol. 112 (1964), pp. 229_247, as well as R. Wood, Banach

Algebras and Bott Periodicity, Topology, 4 (1965-66), pp. 371-389.

Morse theory has provided the inspiration for exciting developments

in differential topology by S. Smale, A. Wallace, and others, including

a proof of the generalized Poincare hypothesis in high dimensions. I

have tried to describe some of this work in Lectures on the h-cobordism

theorem, notes by L. Siebenmann and J. Sondow, Princeton University Press,

1965.

Let me take this opportunity to clarify one term which may cause con-

fusion. In §12 I use the word "energy" for the integral

v
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E = s u at II
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0

along a path w(t). V. Arnol'd points out to me that mathematicians for

the past 200 years have called E the "action"integral. This discrepancy

in terminology is caused by the fact that the integral can be interpreted,

in terms of a physical model, in more than one way.

Think of a particle P which moves along a surface M during the time

interval 0 < t < 1. 'Tie action of the particle during this time interval

is defined to be a certain constant times the integral E. If no forces

act on P (except for the constraining forces which hold it within M), then

the "principle of least action" asserts that E will be minimized within

the class of all paths joining w(0) to w(1), or at least that the first

variation of E will be zero. Hence P must traverse a geodesic.

But a quite different physical model is possible. Think of a rubber

band which is stretched between two points of a slippery curved surface.

If the band is described parametrically by the equation x = w(t), 0 < t

< 1, then the potential energy arising from tension will be proportional

to our integral E (at least to a first order of approximation). For an

equilibrium position this energy must be minimized, and hence the rubber

band will describe a geodesic.

The text which follows is identical with that of the first printing

except for a few corrections. I am grateful to V. Arnol'd, D. Epstein

and W. B. Houston, Jr. for pointing out corrections.

J.W.M.

Los Angeles, June 1968.
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PART I

NON-DEGENERATE SMOOTH FUNCTIONS ON A MANIFOLD.

§1. Introduction.

In this section we will illustrate by a specific example the situ-

ation that we will investigate later for arbitrary manifolds. Let us con-

sider a torus M, tangent to the plane V, as indicated in Diagram 1.

Diagram 1.

Let f: M -f R (R always denotes the real numbers) be the height

above the V plane, and let Ma be the set of all points x e M such that

f(x) < a. Then the following things are true:

(1) If a < 0 = f(p), then Ma is vacuous.

(2) If f(p) < a < f(q), then Ma is homeomorphic to a 2-cell.

(3)' If f(q) < a < f(r), then Ma is homeomorphic to a cylinder:

(4) If f(r) < a < f(s), then Ma is homeomorphic to a compact

manifold of genus one having a circle as boundary:

1



2 I. NON-DEGENERATE FUNCTIONS

(5) If f(s) < a, then Ma' is the full torus.

In order to describe the change in Ma as a passes through one

of the points f(p),f(q),f(r),f(s) it is convenient to consider homotopy

type rather than homeomorphism type. In terms of homotopy types:

(1) is the operation of attaching a 0-cell. For as far as

homotopy type is concerned, the space Ma, f(p) < a < f(q), cannot be dis-

tinguished from a 0-cell:

Here means "is of the same homotopy type as."

(2) -* (3) is the operation of attaching a 1-cell:

(3) - (4) is again the operation of attaching a 1-cell:

(4) -. (5) is the operation of attaching a 2-cell.

The precise definition of "attaching a k-cell" can be given as

follows. Let Y be any topological space, and let

ek = {x ERk : 1xII < 1)

be the k-cell consisting of all vectors in Euclidean k-space with length < 1.
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The boundary

ek = (x E Rk IIxII =
1)

will be denoted by Sk-1. If g:
Sk-1 -+ Y is a continuous map then

Y .gek

(Y with a k-cell attached by g) is obtained by first taking the topologi-

cal sum (= disjoint union) of Y and ek, and then identifying each

x E Sk-1 with g(x) E Y. To tale care of the case k = 0 let eo be a

point and let 60 = S-1 be vacuous, so that Y with a 0-cell attached is

just the union of Y and a disjoint point.

As one might expect, the points p,q,r and s at which the homo-

topy type of Ma' changes, have a simple characterization in terms of f.

They are the critical points of the function. If we choose any coordinate

system (x,y) near these points, then the derivatives and y are
(Tx

both zero. At p we can choose (x,y) so that f = x2 + y2, at s so

that f = constant -x2 - y2, and at q and r so that f = constant +

x y . Note that the number of minus signs in the expression for f at2 - 2

each point is the dimension of the cell we must attach to go from Ma to

Mb, where a < f(point) < b. Our first theorems will generalize these

facts for any differentiable function on a manifold.

REFERENCES

For further information on Morse Theory, the following sources are

extremely useful.

M. Morse, "The calculus of variations in the large," American

Mathematical Society, New York, 1934.

H. Seifert and W. Threlfall, "Variationsrechnung its Grossen,"

published in the United States by Chelsea, New York, 1951.

R. Bott, The stable homotopy of the classical groups, Annals of

Mathematics, Vol. 70 (1959), pp. 313-337.

R. Bott, Morse Theory and its application to homotopy theory,

Lecture notes by A. van de Ven (mimeographed), University of

Bonn, 1960.
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§2. Definitions and Lemmas.

The words "smooth" and "differentiable" will be used interchange-

ably to mean differentiable of class C". The tangent space of a smooth

manifold M at a point p will be denoted by TMp. If g: M -+ N is a

smooth map with g(p) = q, then the induced linear map of tangent spaces

will be denoted by g,: TMp TNq.

Now let f be a smooth real valued function on a manifold M. A

point p e M is called a critical point of f if the induced map

f*: TMp -T Rf(p) is zero. If we choose a local coordinate system

(x',...,xn) in a neighborhood U of p this means that

of
J (P) _ ... = of

(p) = 0 .

ax axn

The real number f(p) is called a critical value of f.

We denote by Ma the set of all points x e M such that f(x) < a.

If a is not a critical value of f then it follows from the implicit

function theorem that Ma is a smooth manifold-with-boundary. The boundary

f- I(a) is a smooth submanifold of M.

A critical point p is called non-degenerate if and only if the

matrix

a2f
(p))

axiaxj

is non-singular. It can be checked directly that non-degeneracy does not

depend on the coordinate system. This will follow also from the following

intrinsic definition.

If p is a critical point of f we define a symmetric bilinear

functional f** on TMp, called the Hessian of f at p. If v,w c TMp

then v and w have extensions v and w to vector fields. We let *

f**(v,w) = vp(w(f)), where
VP

is, of course, just v. We must show that

this is symmetric and well-defined. It is symmetric because

vp(w(f)) - wp(v(f)) _ [v,w]p(f) = 0

where [v,wl is the Poisson bracket of and w, and where [v,w] (f) = 0

Here w(f) denotes the directional derivative of f in the direction w.
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since f has p as a critical point.

Therefore f** is symmetric. It is now clearly well-defined since

vp(w(f)) = v(w(f)) is independent of the extension v of v, while

(v(f)) is independent of w.wp

If (x1,...,xn) is a local coordinate system and v = E a.
a

p,
1 axi

w = E bj a-.Ip we can take w = E bj aj where bj now denotes a con-
ax ax

stant function. Then

f**(v,w) = v(w(f))(p) = v(E b af) = Z a b
f

(p)
i axj i j i i ax

I
arespect to the basis ,...,

aX p axn p

We can now talk about the index and the nullity of the bilinear

functional ff* on TMp. The index of a bilinear functional H, on a vec-

tor space V, is defined to be the maximal dimension of a subspace of V

on which H is negative definite; the nullity is the dimension of the null-

space, i.e., the subspace consisting of all v E V such that H(v,w) = 0

for every w e V. The point p is obviously a non-degenerate critical

point of f if and only if f** on TMp has nullity equal to 0. The

index of f** on TMp will be referred to simply as the index of f at p.

The Lemma of Morse shows that the behaviour of f at p can be completely

described by this index. Before stating this lemma we first prove the

following:

LEMMA 2.1. Let f be a C°° function in a convex neigh-

borhood V of 0 in Rn, with f(o) = 0. Then

n

f(x1,...,xn) _ xigi(x1,...,xn)

i=t

for some suitable C" functions gi defined in V, with

gi(o) = )f (o).
i

PROOF:

f
df(tx1,...,txn) 1 I of

f(xt,...,xn) = J dt = tx1,...,txn) xi dt

0 0 i=1
i

1

Therefore we can let gi(x1...,xn) = f (tx1,...,txn) dt

0 i
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LEMMA 2.2 (Lemma of Morse). Let p be a non-degenerate

critical point for f. Then there is a local coordinate

system (y1,...,yn) in a neighborhood U of p with

yi(p) = 0 for all i and such that the identity

f - f(p) - (Y1)2- ... -
(y% 2 + (yk+1)2

+ ... + (yn)2

holds throughout U, where is the index of f at p.

PROOF: We first show that if there is any such expression for f,

then X must be the index of f at p. For any coordinate system

(z1,...,zn), if

f(q) = f(p) - (z1(q))2- ... - (ZX(q))2 + (z11+1(9.))2 + ... + (Zn(q))2

then we have

-2 if i = j < x , ,

f (p) = 2 if i = J> X
az1 azj

0 otherwise ,

which shows that the matrix representing f*,* with respect to the basis

a Ip,...,
azn IP

is

Therefore there is a subspace of TMp of dimension l where f** is nega-

tive definite, and a subspace V of dimension n-X where f** is positive

definite. If there were a subspace of TMp of dimension greater than X

on which f** were negative definite then this subspace would intersect V,

which is clearly impossible. Therefore X is the index of f**.

We now show that a suitable coordinate system (y1,...,yn) exists.

Obviously we can assume that p is the origin of Rn and that f(p) = f(o) = 0.

By 2.1 we can write

f(x1,...,xn) _ xi gg(x1,...,xn)
J= 1

for (x1,...,xn) in some neighborhood of 0. Since 0 is assumed to be a

critical point:

go (o) = a (0) = 0
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Therefore, applying 2.1 to the gj we have

n

gj(x1)...,xn) _ xihij(x1) ...,xn)

i=1

for certain smooth functions hij. It follows that

n

f(x1) ...,xn) _ xixjhij(x1,...,xn)

i,j=1

We can assume that hij = hji, since we can write hij = '-2(hij+ hji),

and then have hij = Fiji and f = E xixjhij . Moreover the matrix (hij(o))

2

is equal to ( 2 (o)), and hence is non-singular.
ax aX7

There is a non-singular transformation of the coordinate functions

which gives us the desired expression for f, in a perhaps smaller neigh-

borhood of 0. To see this we just imitate the usual diagonalization proof

for quadratic forms. (See for example, Birkhoff and MacLane, "A survey of

modern algebra," p. 271.) The key step can be described as follows.

Suppose by induction that there exist coordinates u1, ...,un in

a neighborhood U1 of 0 so that

f + (u1)2 + ... + (uY_1)2 + uiujHij(u1,...,un)

i,j>r
throughout U1; where the matrices (Hij(u1,...,un)) are symmetric. After

a linear change in the last n-r+1 coordinates we may assume that Hr,r(o) o.

Let g(u1,...,un) denote the square root of 1Hr,r(u1,...,un)I. This will

be a smooth, non-zero function of u1,...,un throughout some smaller neigh-

borhood U2 C U1 of 0. Now introduce new coordinates vl,...,vn by

vi=ui fori#r

vr(u1)...,un) = g(u1,...,un)[ur,
+

uiHir(u1,...,un)/Hr,r,(u1,...sun)]'

i> r

It follows from the inverse function theorem that v1, ...,vn will serve as

coordinate functions within some sufficiently small neighborhood U3 of 0.

It is easily verified that f can be expressed as

f = + (vi)2 + vivjHij(v1,...,vn)

i<r i,j>r
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throughout U3. This completes the induction; and proves Lemma 2.2.

COROLLARY 2.3 Non-degenerate critical points are isolated.

Examples of degenerate critical points (for functions on R and

R2) are given below, together with pictures of their graphs.

(a) f(x) = x3. The origin (b) F(x) = e-1/X2 Sin2(,/X)

is a degenerate critical point. The origin is a degenerate, and

non-isolated, critical point.

(c) f(x,y) = x3 - 3xy2 = Real part of (x + iy)3.

(o.o) is a degenerate critical point (a "monkey saddle").
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(d) f(x,y) = x2. The set of critical points, all of which

are degenerate, is the x axis, which is a sub-manifold of R 2.

(e) f(x,y) = x2y2. The set of critical points, all of which are

degenerate, consists of the union of the x and y axis, which is

not even a sub-manifold of R2.

We conclude this section with a discussion of 1-parameter groups of

diffeomorphisms. The reader is referred to K. Nomizu,"Lie Groups and Differ-

ential Geometry;'for more details.

A 1-parameter group of diffeomorphisms of a manifold M is a C00

map

W: R x M - M
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such that

1) for each t E R the map cpt: M -+ M defined by

cpt(q) = (p(t,q) is a diffeomorphism of M onto itself,

2) for all t,s c R we have
pt+s = Ipt ° ''s

Given a 1-parameter group cp of diffeomorphisms of M we define

a vector field X on M as follows. For every smooth real valued function

f let

lim f((Ph(q.)) - f(q)
Xq(f) =h - o h

This vector field X is said to generate the group p.

LEMMA 2.4. A smooth vector field on M which vanishes

outside of a compact set K C M generates a unique 1-

parameter group of diffeomorphisms of M.

PROOF: Given any smooth curve

t - c(t) E M

it is convenient to define the velocity vector

c TMc(t)

by the identity (f) = h
yme fc(t+hh-fc(t) (Compare §8.) Now let

be a 1-parameter group of diffeomorphisms, generated by the vector field X.

Then for each fixed q the curve

t -" pt(9)

satisfies the differential equation

dcpt(q)pct Xrot(q)

with initial condition cpe(q) = q. This is true since

dcpt(_q) (f)
=

rlim Q f (Tt+h(q)) - f(cwt(9)) lim o f (roh(p) ) - f(p)
X(f)h h p

where p = cpt(q). But it is well known that such a differential equation,

locally, has a unique solution which depends smoothly on the initial condi-

tion. (Compare Graves, "The Theory of Functions of Real Variables," p. 166.

Note that, in terms of local coordinates u1,...,un, the differential equa-
i

tion takes on the more familiar form: dam- = x1(ul,...,un), i = 1,...,n.)
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Thus for each point of M there exists a neighborhood U and a

number s > 0 so that the differential equation

dpt(q)
- = Xcpt(q), CPO(q) = q

has a unique smooth solution for q e U, It! < e.

The compact set K can be covered by a finite number of such

neighborhoods U. Let e0 > 0 denote the smallest of the corresponding

numbers e. Setting pt(q) = q for q # K, it follows that this differen-

tial equation has a unique solution (pt(q) for It, <
E0

and for all

q e M. This solution is smooth as a function of both variables. Further-

more, it is clear that cpt+s = Wt ° q>s providing that 1tj,1s1,1t+s1 < eo.

Therefore each such cpt is a diffeomorphism.

It only remains to define cpt for Iti > so. Any number t can

be expressed as a multiple of e0/2 plus a remainder r with Irk < eo/2

If t = k(so/2) + r with k > 0, set

Nt = 9PE0/2 ° CPEo/2 ° ... ° cpe0/2 ° 'Pr

where the transformation cpE /2 is iterated k times. If k < 0 it is
0

only necessary to replace ke /2 by (p_E /2 iterated -k times. Thus (pt

0 0

is defined for all values of t. It is not difficult to verify that Tt is

well defined, smooth, and satisfies the condition (pt+s = Tt G (ps This

completes the proof of Lemma 2.4

REMARK: The hypothesis that X vanishes outside of a compact set

cannot be omitted. For example let M be the open unit interval (0,1) C R,

and let X be the standard vector field d on M. Then X does not
_ff

generate any 1-parameter group of diffeomorphisms of M.
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§3. Homotopy Type in Terms of Critical Values.

Throughout this section, if f is a real valued function on a

manifold M, we let

Ma = f-1(- .,a] = (p e M : f(p) < a) .

THEOREM 3.1. Let f be a smooth real valued function

on a manifold M. Let a < b and suppose that the set

f-1[a,b], consisting of all p e M with a < f(p) < b,

is compact, and contains no critical points of f. Then

Ma is diffeomorphic to Mb. Furthermore, Ma is a de-

formation retract of Mb, so that the inclusion map

Ma Mb is a homotopy equivalence.

The idea of the proof is to push Mb down to Ma along the orthogo-

nal trajectories of the hypersurfaces f = constant. (Compare Diagram 2.)

Diagram 2.

Choose a Riemannian metric on M; and let < X,Y > denote the

inner product of two tangent vectors, as determined by this metric. The

gradient of f is the vector field grad f on M which is characterized

by the identity*

<X, grad f> = X(f)

(= directional derivative of f along X) for any vector field X. This

vector field grad f vanishes precisely at the critical points of f. If

* In classical notation, in terms of local coordinates u1,...,un, the

gradient has components E gij f
j au3
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c: R M is a curve with velocity vector
'dE

note the identity

d grad f -
d(dam

Let p: M -+ R be a smooth function which is equal to

1/ < grad f, grad f > throughout the compact set f-1[a,bl; and which vanishes

outside of a compact neighborhood of this set. Then the vector field X,

defined by

Xq = p(q) (grad f)q

satisfies the conditions of Lemma 2.4. Hence X generates a 1-parameter

group of diffeomorphisms

CPt: M - M.

For fixed q E M consider the function t f(cpt(q)). If Wt(q)

lies in the set f-1[a,bl, then

df(cpt(q)) dcpt(q)
dt _ < d , grad f > = < X, grad f > = + 1 .

Thus the correspondence

t - f(Wt(q.))

is linear with derivative +1 as long as f(cpt(q)) lies between a and b.

Now consider the diffeomorphism cpb_a: M M. Clearly this carries

Ma diffeomorphically onto Mb. This proves the first half of 3.1.

Define a 1-parameter family of maps

rt: Mb . Mb

by

rt(q) = J
q if f(q) < a

''t(a-f(q))(q) if a < f(q) < b

Then re is the identity, and r1 is a retraction from Mb to ma. Hence

m' is a deformation retract of Mb. This completes the proof.

REMARK: The condition that f-1[a,b] is compact cannot be omitted.

For example Diagram 3 indicates a situation in which this set is not compact.

The manifold M does not contain the point p. Clearly Ma is not a de-

formation retract of Mb.
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Diagram 3.

THEOREM 3.2. Let f: M-+ R be a smooth function, and let

p be a non-degenerate critical point with index X. Set-

ting f(p) = c, suppose that f-1[c-e,c+el is compact,

and contains no critical point of f other then p, for

some s > 0. Then, for all sufficiently small e, the set

MC+e has the homotopy type of
Mc-e

with a %-cell attached.

The idea of the proof of this theorem is indicated in Diagram 4,

for the special case of the height function on a torus. The region

Mc-e

= f-1(-co,c-e1

is heavily shaded. We will introduce a new function F: M -+ R which

coincides with the height function f except that F < f in a small neigh-

borhood of p. Thus the region F-1will consist of Mc-e to-

gether with a region H near p. In Diagram 4, H is the horizontally

shaded region.

MC+E

Diagram it.
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Choosing a suitable cell e% C H, a direct argument (i.e., push-

ing in along the horizontal lines) will show that Mc-EU ex is a deformation

retract of
Mc-E U H. Finally, by applying 3.1 to the function F and the

region F-1[c-E,c+E1 we will see that
Mc-e u H is a deformation retract

of
Mc+E. This will complete the proof.

Choose a coordinate system u1,.... un in a neighborhood U of p

so that the identity

f = c - (u1)2- ... - (uX)2 + (ut`+1)2+... + (un)2

holds throughout U. Thus the critical point p will have coordinates

u1(p) = ... = un(p) = 0 .

Choose e > 0 sufficiently small so that

(1) The region f-1[c-E,c+E1 is compact and contains no critical

points other than p.

(2) The image of U under the diffeomorphic imbedding

(u...... un): U --'Rn

contains the closed ball.

((u1,...,un): E (u')2 < 2E)

Now define eX to be the set of points in U with

1 ... X 2 X+1(u)2++ (u)< e and u= ... = un = 0.

The resulting situation is illustrated schematically in Diagram 5.

Diagram 5.
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The coordinate lines represent the planes u11+1= ... = un = 0 and

u1 = ... = ux = 0 respectively; the circle represents the boundary of the

ball of radius; and the hyperbolas represent the hypersurfaces f-1(c-e)

and f-1(c+e). The region
M0-e

is heavily shaded; the region f-1[c-e,cl

is heavily dotted; and the region f-1[c,c+el is lightly dotted. The hori-

zontal dark line through p represents the cell e

Note that e
X

n
M°-e

is precisely the boundary ex, so that e

is attached to Mc-e as required. We must prove that Mc-eu eX is a de-

formation retract of Mc+e

Construct a new smooth function F: M -'f R as follows. Let

µ:R-pR
be a C" function satisfying the conditions

µ(o) > E

µ(r) 0 for r > 2e
-1 < µ'(r) < 0 for all r,

where µ'(r) = dµ
. Now let F coincide with f outside of the coordinate

neighborhood U, and let

F = f - µ((u1)2+. ..+(u2 + 2(uX+1 )2+...+2(un)2

within this coordinate neighborhood. It'is easily verified that F is a

well defined smooth function throughout M.

It is convenient to define two functions

t,11: U--i [0,oo)

by

_ (u1)2 + ... + (uX ) 2

{u?'+1) 2 + ... + (un) 2

Then f = c - t + q; so that:

for all q e U.

F(q) = c - (q) + q(q) - u(t(q) + 2q(q))

ASSERTION 1. The region F-1(-oo,c+el coincides with the region

Mc+e = f-1(- oo,c+el.

PROOF: Outside of the ellipsoid g + 2q < 2e the functions f and
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F coincide. Within this ellipsoid we have

F < f = c-g+q < c+ 2g+q < c+e

This completes the proof.

ASSERTION 2. The critical points of F are the same as those of f.

PROOF: Note that

Since

aF
Tq- 1 - 2µ'(g+2q) > 1 .

dF dg + dq

where the covectors dg and dq are simultaneously zero only at the origin,

it follows that F has no critical points in U other than the origin.

Now consider the region F-1[c-e,c+e]. By Assertion 1 together

with the inequality F < f we see that

F-1[C-e,C+e] C f-1[C-e,c+e]

Therefore this region is compact. It can contain no critical points of F

except possibly p. But

F(p) =c-µ(o) <c - e .

Hence F-1[c-e,c+e] contains no critical points. Together with 3.1 this

proves the following.

ASSERTION 3. The region F-1is a deformation retract of
Mc+e

It will be convenient to denote this region F-1(-.,c-e] by
Mc-e

u H; where H denotes the closure of F-1(-co,c-El -
Mc-e

REMARK: In the terminology of Smale, the region Mc-e v H is

described as Mc-e with a "handle" attached. It follows from Theorem 3.1

that the manifold-with-boundary
MC-e

U H is diffeomorphic to Mc+e This

fact is important in Smale's theory of differentiable manifolds. (Compare

S. Smale, Generalized Poincare's conjecture in dimensions greater than four,

Annals of Mathematics, Vol. 74 (1961), pp. 391-4o6.)
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Now consider the cell e
X consisting of all points q with

t(q) < e, TI(q) = 0.

Note that eX is contained in the "handle" H. In fact, since < 0,

we have

F(q) < F(p) < c-e

but f(q) > c-e for q e ex.

Diagram 6.

The present situation is illustrated in Diagram 6. The region

Mc-E is heavily shaded; the handle H is shaded with vertical arrows;

and the region F-1[c-e,c+e3 is dotted.

ASSERTION I+.
Mc-e

u ex is a deformation retract of
Mc-e

u H.

PROOF: A deformation retraction rt:
Mc-e u H - Me-E

u H is

indicated schematically by the vertical arrows in Diagram 6. More precisely

let rt be the identity outside of U; and define rt within U as fol-

lows. It in necessary to distinguish three cases as indicated in Diagram 7.

CASE 1. Within the region g < e let rt correspond to the trans-

formation

(u1,...,un) _ (u1,...,ux,tu%+1,...,tun) .
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CASE 2 CASE 2

Diagram 7.

Thus r1 is the identity and r0 maps the entire region into e The

fact that each rt maps F-1(-oo,c-el into itself, follows from the in-

equality > 0.
Tq_

CASE 2. Within the region e < g < n + e let rt correspond to

the transformation

(u1,...Iun) -+ (ul,...,ux,stux+l,...,Stun)

where the number st e [0,11 is defined by

St = t + ( 1 -t) 1 /2

Thus r1 is again the identity, and r0 maps the entire region into the

hypersurface f-1(c-e). The reader should verify that the functions stu1

remain continuous as g -+ e, -' 0. Note that this definition coincides

with that of Case 1 when g = e.

CASE . Within the region q + e < g (i.e., within MC-e) let

rt be the identity. This coincides with the preceeding definition when

g = q + e.
This completes the proof that MC-eu ex is a deformation retract

of F-1(-co,c+el. Together with Assertion 3, it completes the proof of

Theorem 3.2.

REMARK 3.3. More generally suppose that there are k non-degenerate

critical points pi,...,pk with indices x1,...,xk in f-1(c). Then a
x x

similar proof shows that MC+e has the homotopy type of MC-eu a 1u...u e k
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REMARK .4. A simple modification of the proof of 3.2 shows that

the set Mc is also a deformation retract of Mc+e. In fact Mc is a

deformation retract of F-1which is a deformation retract of Mc+e

(Compare Diagram 8.) Combining this fact with 3.2 we see easily that
Mc-E

, et` is a deformation retract of MCI.

Diagram 8: Mc is heavily shaded, and F-1[c,c+e] is dotted.

THEOREM 3.5. If f is a differentiable function on a manifold

M with no degenerate critical points, and if each Ma is

compact, then M has the homotopy type of a CW-complex, with

one cell of dimension X for each critical point of index X.

(For the definition of CW-complex see J. H. C. Whitehead, Combin-

atorial Homotopy I, Bulletin of the American Mathematical Society, Vol. 55,

(1949), pp. 213-245.)

The proof will be based on two lemmas concerning a topological

space X with a cell attached.

LEMMA 3.6. (Whitehead) Let Wo
and cp1 be homotopic maps

from the sphere et' to X. Then the identity map of X ex-

tends to a homotopy equivalence

k:Xue%-*XueX
'P0 CP 1
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PROOF: Define k by the formulas

k(x) = x for x E X

k(tu) = 2tu for 0 < t < 2 u E

k(tu) = CP2_2t(u) for < t < 1, u E

Here 9t denotes the homotopy between Wo
and 91; and to denotes the

product of the scalar t with the unit vector u. A corresponding map

f: X u e -+ X u ex
W1 0

is defined by similar formulas. It is now not difficult to verify that the

compositions kF and fk are homotopic to the respective identity maps.

Thus k is a homotopy equivalence.

For further details the reader is referred to, Lemma 5 of J. H. C.

Whitehead, On Simply Connected 4-Dimensional Polyhedra, Commentarii Math.

Helvetici, Vol. 22 (1949), pp. 48-92.

LEMMA 3.7. Let W: e1''-+ X be an attaching map. Any

homotopy equivalence f: X -+ Y extends to a homotopy

equivalence

F : X uT eX -+ Y ..f(p eX.

PROOF: (Following an unpublished paper by P.Hilton.) Define F

by the conditions

FIX = f

Fled' = identity

Let g: Y -r X be a homotopy inverse to f and define

G: Y . e
fq) gfp

by the corresponding conditions GAY = g, identity.

Since gfp is homotopic to W, it follows from 3.6 that there is

a homotopy equivalence

k: X u e

gfp W

We will first prove that the composition

kGF: X u ex X u ex
W T

is homotopic to the identity map.
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Let ht be a homotopy between gf and the identity. Using the

specific definitions of k, G, and F, note that

kGF(x) = gf(x) for x E X,

kGF(tu) = 2tu for'O < t < 2 u e

11F(tu) h2-2t(P(u) for 2 < t < 1, u e

The required homotopy

q
T
: X sex X.e

is now defined by the formula

qT(x) = hT(x) for x e X ,

gT(tu) 1
to for o < t < ,2T

, u

gT(tu) = h2-2t+TW(u) for 12
< t < t, u e

Therefore F has a left homotopy inverse.

The proof that F is a homotopy equivalence will now be purely

formal, based on the following.

ASSERTION. If a map F has a left homotopy inverse L and a

right homotopy inverse R, then F is a homotopy equivalence; and

R (or L) is a 2-sided homotopy inverse.

PROOF: The relations

imply that

Consequently

LF ti identity, FR ti identity,

L-' L(FR) _ (LF)R ti R.

RF ti IF ti identity ,

which proves that R is a 2-sided inverse.

The proof of Lemma 3.7 can now be completed as follows. The rela-

tion

kGF ti identity

asserts that F has a left homotopy inverse; and a similar proof shows that

G has a left homotopy inverse.

Step 1. Since k(GF) identity, and k is known to have a left

inverse, it follows that (GF)k a identity.
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Step 2. Since G(Fk) a identity, and G is known to have a left

inverse, it follows that (Fk)G ti identity.

Step 3. Since F(kG) a identity, and F has kG as left inverse

also, it follows that F is a homotopy equivalence. This completes the

proof of 3.7.

PROOF OF THEOREM 3.5. Let c1 < c2 < c3 < ... be the critical

values of f: M - R. The sequence (ci) has no cluster point since each

Ma is compact. The set Ma is vacuous for a < c1. Suppose

a c1,c21C31... and that Ma is of the homotopy type of a OW-complex.

Let c be the smallest ci > a. By Theorems 3.1, 3.2, and 3.3, Mc+e has
X %

the homotopy type of MC-cu e1 u...u e3(c) for certain maps q)1,.

T1 'J (c)

when e is small enough, and there is a homotopy equivalence h:
Mc-e - Ma.

We have assumed that there is a homotopy equivalence h': Ma K, where K

is a OW-complex.

Then each h' o h o Tj is homotopic by cellular approximation to

a map

>Vj: 6 J -+ (), j-1) - skeleton of K.

Then K u
e u...u ei(c) is a OW-complex, and has the same homotopy

`1 ''j (c)

type as Mc+e, by Lemmas 3.6, 3.7.

By induction it follows that each Ma' has the homotopy type of a

OW-complex. If M is compact this completes the proof. If M is not com-

pact, but all critical points lie in one of the compact sets Ma, then a

proof similar to that of Theorem 3.1 shows that the set Ma is a deformation

retract of M, so the proof is again complete.

If there are infinitely many critical points then the above con-

struction gives us an infinite sequence of homotopy equivalences

Mat C Ma2 C Ma3 C ...

f I f

K1 C K2 C K3 C ... ,

each extending the previous one. Let K denote the union of the Ki in the

direct limit topology, i.e., the finest possible compatible topology, and
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let g: M -r K be the limit map. Then g induces isomorphisms of homotopy

groups in all dimensions. We need only apply Theorem 1 of Combinatorial

homotopy I to conclude that g is a homotopy equivalence. [Whitehead's

theorem states that if M and K are both dominated by CW-complexes, then

any map M -+ K which induces isomorphisms of homotopy groups is a homotopy

equivalence. Certainly K is dominated by itself. To prove that M is

dominated by a CW-complex it is only necessary to consider M as a retract

of tubular neighborhood in some Euclidean space.] This completes the proof

of Theorem 3.5.

REMARK. We have also proved that each Ma has the homotopy type

of a finite CW-complex, with one cell of dimension X for each critical

point of index X in Ma. This is true even if a is a critical value.

(Compare Remark 3.4.)
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§4. Examples.

As an application of the theorems of §3 we shall prove:

THEOREM 4.1 (Reeb). If M is a compact manifold and f

is a differentiable function on M with only two critical

points, both of which are non-degenerate, then M is

homeomorphic to a sphere.

PROOF: This follows from Theorem 3.1 together with the Lemma of

Morse (§2.2). The two critical points must be the minimum and maximum

points. Say that f(p) = 0 is the mimimum and f(q) = 1 is the maximum.

If s is small enough then the sets Ms = f_1[0,e) and f_1[1-e,11 are

closed n-cells by §2.2. But Me is homeomorphic to M1-E by §3.1. Thus

M is the union of two closed n-cells, M1-E and f-1[1-e,1), matched

along their common boundary. It is now easy to construct a homeomorphism

between M and Sn.

REMARK 1. The theorem remains true even if the critical points are

degenerate. However, the proof is more difficult. (Compare Milnor, Differ-

ential topology, in "Lectures on Modern Mathematics II," ed. by T. L:.Saaty

(Wiley, 1964), pp. 165-183; Theorem 1'; or R. Rosen, A weak form of the

star conjecture for manifolds, Abstract 570-28, Notices Amer. Math Soc.,

Vol. 7 (1960), p. 380; Lemma 1.)

REMARK 2. It is not true that M must be diffeomorphic to Sn with

its usual differentiable structure.(Compare: Milnor, On manifolds homeomor-

phic to the 7-sphere, Annals of Mathematics, Vol. 64 (1956), pp. 399-405.

In this paper a 7-sphere with a non-standard differentiable structure is

proved to be topologically S7 by finding a function on it with two non-
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degenerate critical points.)

As another application of the previous theorems we note that if an

n-manifold has a non-degenerate function on it with only three critical

points then they have index 0, n and n/2 (by Poincare duality), and the

manifold has the homotopy type of an n/2-sphere with an n-cell attached.

See J. Eells and N. Kuiper, Manifolds which are like projective planes,

Inst. des Hautes Etudes Sci., Publ. Math. 14, 1962. Such a function exists

for example on the real or complex projective plane.

Let CPn be complex projective n-space. We will think of CPn as

equivalence classes of (n+1)-tuples (z0,...,zn) of complex numbers, with

EIzj12 = 1. Denote the equivalence class of (z0,...,zn) by (z0:z1:...:zn).

Define a real valued function f on CPn by the identity

f(z0:z1:...:zn) = I cj1zjl2

where c0,c1,...,cn are distinct real constants.

In order to determine the critical points of f, consider the

following local coordinate system. Let U0 be the set of (zo:z1:...:zn)

with z0 0, and set
I Za I

zo
= x+ iyjZj

Then

x1,y1,...,xn,yn: U0 - R

are the required coordinate functions, mapping U0 diffeomorphically onto

the open unit ball in R 2ri. Clearly

zjI2 = xj2 + yj2
Izol2

= 1 - E (xj2 + yj2)

so that

f = c0
j=1

throughout the coordinate neighborhood U0. Thus the only critical point of

f within U. lies at the center point

p0 = (1:0:0:...:0)

of the coordinate system. At this point f is non-degenerate; and has

index equal to twice the number of j with cj < co,

Similarly one can consider other coordinate systems centered at the

points

p1 = (0:1:0: ...:0),...,Pn = (0:0:...:0:1)
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It follows that p0,pi,...,pn are the only critical points of f. The

index of f at pk is equal to twice the number of j with cj < ck.

Thus every possible even index between 0 and 2n occurs exactly once.

By Theorem 3.5:

C Pn has the homotopy type of a CW-complex of the form

e° u e2 u e4 u...u e2n

It follows that the integral homology groups of CPn are given by

Fii(CPn;Z) Z for i = 0,2,4,...,2n

l 0 for other values of i
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§5. The Morse Inequalities.

In Morse's original treatment of this subject, Theorem 3.5 was not

available. The relationship between the topology of M and the critical

points of a real valued function on M were described instead in terms of

a collection of inequalities. This section will describe this original

point of view.

DEFINITION: Let S be a function from certain pairs of spaces to

the integers. S is subadditive if whenever XD Y: )Z we have S(X,Z) <

S(X,Y) + S(Y,Z). If equality holds, S is called additive.

As an example, given any field F as coefficient group, let

RX(X,Y) = Xth Betti number of (X,Y)

= rank over F of HX(X,Y;F)

for any pair (X,Y) such that this rank is finite. RX is subadditive, as

is easily seen by examining the following portion of the exact sequence for

(X,Y,Z):

... -+ HX(Y,Z) HX(X,Z) - HX(X,Y) -+ ...

The Euler characteristic X(X,Y) is additive, where X(X,Y) _

E (-1)X RX(X,Y).

LEMMA 5.1. Let S be subadditive and let X0C...C Xn.

Then S(Xn,XO)< S(Xi,Xi_,). If S is additive then

equality holds. 1

PROOF: Induction on n. For n = 1, equality holds trivially and

the case n = 2 is the definition of [sub] additivity.
n-1

If the result is true for n - 1, then S(Xn_1,XO) < S(Xi,Xi_1).

}
Therefore S(Xn,X0) < S(Xn_1,Xa) + S(Xn,Xn_1) < 2; S(Xi,X1_1) and the result

1

is true for n.

Let S(X,o) = S(X). Taking X. = 0 in Lemma 5.1, we have

n

(1) S(Xn) <
S(Xi,Xi-1)

with equality if S is additive.
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Let M be a compact manifold and f a differentiable function

on M with isolated, non-degenerate, critical points. Let a1 <...< ak

be such that Mai contains exactly i critical points, and Mak = M.

Then

H*(Mat Mat-1) = H (Mai-1 e% 1 Mai-1)

where is the index of the

critical point,
.X. ),

H*(e 1,e 1) by excision,

coefficient group in dimension Xi

0 otherwise.

Applying (1) to 0 = Mo C...C M k = M with S = R. we havea a

k
R),(Ma1,Ma1-1)

= CX;

i=1

where C. denotes the number of critical points of index X. Applying this

formula to the case S = X we have

k

x(M) = X(Ma1,Ma1-1) = C0 - C1 + C2 -+...+ Cn

i=1

Thus we have proven:

argument.

THEOREM 5.2 (Weak Morse Inequalities). If Cx denotes the

number of critical points of index X on the compact mani-

fold M then

RX(M) < CX , and

E (-1)" RX(M) (-1)X CX

Slightly sharper inequalities can be proven by the following

LEMMA 5.3. The function S. is subadditive, where

SX(X,Y) = RX(X,Y) - Rx_1(X,Y) + Rx_2(X,Y) - +...+ R0(X,Y)

PROOF: Given an exact sequence

h+A' B Ck... ...-+D-+0
of vector spaces note that the rank of the homomorphism h plus the rank

of i is equal to the rank of A. Therefore,
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rank h = rank A - rank i

= rank A - rank B + rank j

= rank A - rank B + rank C - rank k

= rank A - rank B + rank C - +...+ rank D .

Hence the last expression is > 0. Now consider the homology exact sequence

of a triple X J Y J Z. Applying this computation to the homomorphism

Hx+1 (X,Y)
a

H,,(Y,Z)

we see that

rank 3 = RX(Y,Z) - RX(X,Z) + RX(X,Y) - Rx_1(Y,Z) + ... > o

Collecting terms, this means that

S,(Y,Z) - S (X,Z) + SX(X,Y) > o

which completes the proof.

Applying this subadditive function S1, to the spaces

0 C Mat C Mat C...C Mak

we obtain the Morse inequalities:

or

Sx(M) <

k

a aX(Mi'Mi-1) = CX - CX-1 +-...+ Co

i=1

(40 R>(M) - RX_1(M) +-...+ Ro(M) < CX - CX_1+ -...+ Co.

These inequalities are definitely sharper than the previous ones.

In fact, adding (4x) and (4,_1), one obtains (2x); and comparing (40

with (4,_1) for x> n one obtains the equality (3).

As an illustration of the use of the Morse inequalities, suppose

that C,+1 = 0. Then R,+1 must also be zero. Comparing the inequalities

(4.) and (41,+1), we see that

RX - R)6_1 +-...+ Ro = C% - C1'_1 -...± Co .

Now suppose that C.-1 is also zero. Then R._1 = 0, and a similar argu-

ment shows that

Rx-2 - Rx-3 +-...± Ro = Cx-2
-
Cx-3 +-...± Co .
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Subtracting this from the equality above we obtain the following:

COROLLARY 5.4. If Cx+1 = CX_1 = 0 then R. = C. and

R)L+1 = RX_1 = 0.

31

(Of course this would also follow from Theorem 3.5.) Note that

this corollary enables us to find the homology groups of complex projective

space (see §4) without making use of Theorem 3.5.
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§6. Manifolds in Euclidean Space.

Although we have so far considered, on a manifold, only functions

which have no degenerate critical points, we have not yet even shown that

such functions always exist. In this section we will construct many func-

tions with no degenerate critical points, on any manifold embedded in Rn.

In fact, if for fixed p c Rn define the function LP: M - R by LL(q) _

lip-gII2. It will turn out that for almost all p, the function Lp has

only non-degenerate critical points.

Let M C Rn be a manifold of dimension k < n, differentiably em-

bedded in Rn. Let N C M x Rn be defined by

N = ((q,v): q e M, v perpendicular to M at q).

It is not difficult to show that N is an n-dimensional manifold

differentiably embedded in R2ri. (N is the total space of the normal

vector bundle of M.)

Let E: N -+ Rn be E(q,v) = q + v. (E is the "endpoint" map.)

E(4,v)

DEFINITION. e E Rn is a focal point of (M,q) with multiplicity

µ if e = q + v where (q,v) E N and the Jacobian of E at (q,v) has

nullity µ > 0. The point e will be called a focal point of M if e is

a focal point of (M,q) for some q e M.

Intuitively, a focal point of M is a point in Rn where nearby

normals intersect.

We will use the following theorem, which we will not prove.
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THEOREM 6.1 (Sard). If M1 and M2 are differentiable

manifolds having a countable basis, of the same dimension,

and f: M1 M2 is of class C1, then the image of the

set of critical points has measure 0 in M2-

A critical point of f is a point where the Jacobian of f is

singular. For a proof see de Rham, "Variotes Differentiables," Hermann,

Paris, 1955, p. 10.

COROLLARY 6.2. For almost all x e Rn, the point x is

not a focal point of M.

PROOF: We have just seen that N is an n-manifold. The point x

is a focal point iff x is in the image of the set of critical points of

E: N -s Rn. Therefore the set of focal points has measure 0.

For a better understanding of the concept of focal point, it is con-

venient to introduce the "second fundamental form" of a manifold in Euclidean

space. We will not attempt to give an invariant definition; but will make

use of a fixed local coordinate system.

Let u1,...,uk be coordinates for a region of the manifold M C R.

Then the inclusion map from M to Rn determines n smooth functions

1 k 1 kx1(u ,...,u ),...,xn(u '...,u)

These functions will be written briefly as x(u1,...,uk) where x =

(x1,...,xn). To be consistent the point q e M C Rn will now be denoted by

q.

The first fundamental form associated with the coordinate system is

defined to be the symmetric matrix of real valued functions

(gij) _ (3ui - j) .

The second fundamental form on the other hand, is a symmetric matrix (ij)

of vector valued functions.
2-'

It is defined as follows. The vector a- at a point of M can
u aukk

be expressed as the sum of a vector tangent to M and a vector normal to M.
2-

Define T.. to be the normal component of
au

x . Given any unit vector
au

v which is normal to M at q the matrix

(v ) _ (v i.auJ 1j
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can be called the "second fundamental form of M at q in the direction

v."

It will simplify the discussion to assume that the coordinates

have been chosen to that gi3, evaluated at q, is the identity matrix.

Then the eigenvalues of the matrix ( v are called the principal

curvatures K1,...,KK of M at -1 in the normal direction v. The re-

ciprocals of these principal curvatures are called the princi-

)pal radii of curvature. Of course it may happen that the matrix (v .7
ii

is singular. In this case one or more of the Ki will be zero; and hence

the corresponding radii Kit will not be defined.

Now consider the normal line 2 consisting of all q + tv, where

v is a fixed unit vector orthogonal to M at q

LEMMA 6.3. The focal points of (M q) along f are pre-

cisely the points _q -1 _V,q+ Ki v where 1 < i< k, Ki / o.

Thus there are at most, k focal points of (M,q) along

f, each being counted with its proper multiplicity.

1 k 1 kPROOF: Choose n-k vector fields w1(u ,...,u ),...,wn_k(u ,...,u )

along the manifold so that w1,...;wn_k are unit vectors which are orthogo-

nal to each other and to M. We can introduce coordinates (u1,...,uk,

t1,...Itn-k) on the manifold N C M x e as follows. Let (u1,...,uk,t1,..

to-k) correspond to the point
n-k

\
(x(u1,...,uk), to wa(u1,...,uk)1 e N

a=1

Then the function

E : N -. Rn

gives rise to the correspondence

1 k 1 n-k e' 1 k a -+ 1 k(ll ,...,U ,t ,...,t ) X(u ,...,u ) +
J t wa(u ,...,u ) ,

with partial derivatives

aB aX + to awa

aul au1 aul

ae
a a

Taking the inner products of these n-vectors with the linearly independent
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vectors axl, axk, w1'...;wn_k we will obtain an nxn matrix whose
au au

rank equals the rank of the Jacobian of E at the corresponding point.

This nxn matrix clearly has the following form

y
ax aX +

to
awa

ax \1 to awa w 1 1
au auj aul 0 / (

a TIT S

0 identity

matrix
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Thus the nullity is equal to the nullity of the upper left hand block. Using

the identity

o=
7'T

( W ax
=

aWa ax + W x
1

a
auk au1 auk

a
2)u1auj

we see that this upper left hand block is just the matrix

-.( gig ta wa Iii
a

Thus:

ASSERTION 6.4. q + tv is a focal point of (M,q) with multiplicity

µ if and only if the matrix

(*) (gig - tv Iii )
is singular, with nullity P.

Now suppose that (gij) is the identity matrix. Then (*) is singu-

lar if and only if -f is an eigenvalue of the matrix (v ) Further-

more the multiplicity µ is equal to the multiplicity of - as eigenvalue.

This completes the proof of Lemma 6.3.

Now for fixed p E Rn let us study the function

Ip = f : M - R
where

f(x(u1,...,uk)) = Ij-X(u1,...,uk) - pII2 = x x - 2x p + p p .

We have

of = 2 ax
(x - p)

aul TIT

Thus f has a critical point at q if and only if q - p is normal to M

at q
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The second partial derivatives at a critical point are given by

2f_
= 2( ax , ax

+
x

. lX

au au aul auk a 3

Setting p = x + tv, as in the proof of Lemma 6.3, this becomes

2(gi. - tv
au auk

Therefore:

LEMMA 6.5. The point q e M is a degenerate critical point

of f = L5- if and only if p is a focal point of (M,q).

The nullity of q as critical point is equal to the multi-

plicity of p as focal point.

Combining this result with Corollary 6.2 to Sari's theorem, we

immediately obtain:

THEOREM 6.6. For almost all p e Rn (all but a set of
measure 0) the function

LL: M -+R

has no degenerate critical points.

This theorem has several interesting consequences.

COROLLARY 6.7. On any manifold M there exists a dif-

ferentiable function, with no degenerate critical points,

for which each Ma is compact.

PROOF: This follows from Theorem 6.6 and the fact that an n-dimen-

sional manifold M can be embedded differentiably as.a closed subset of

R2n+1
(see Whitney, Geometric Integration Theory, p. 113).

APPLICATION 1. A differentiable manifold has the homotopy type of

a CW-complex. This follows from the above corollary and Theorem 3.5.

APPLICATION 2. On a compact manifold M there is a vector field

X such that the sum of the indices of the critical points of X equals

x(M), the Euler characteristic of M. This can be seen as follows: for

any differentiable function f on M we have x(M) = E (-1)x Cx where C.

is the number of critical points with index X. But (-1)x is the index of

the vector field grad f at a point where f has index x.
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It follows that the sum of the indices of any vector field on M

is equal to x(M) because this sum is a topological invariant (see Steen-

rod, "The Topology of Fibre Bundles," §39.7).

The preceding corollary can be sharpened as follows. Let k > 0

be an integer and let K C M be a compact set.

COROLLARY 6.8. Any bounded smooth function f: M -+ R can

be uniformly approximated by a smooth function g which

has no degenerate critical points. Furthermore g can be

chosen so that the i-th derivatives of g on the compact

set K uniformly approximate the corresponding derivatives

of f, for i < k.

(Compare M. Morse, The critical points of a function of n vari-

ables, Transactions of the American Mathematical Society, Vol. 33 (1931),

pp. 71-91.)

PROOF: Choose some imbedding h: M -+ Rn of M as a bounded sub-

set of some euclidean space so that the first coordinate h1 is precisely

the given function f. Let c be a large number. Choose a point

p = (-C+e1,e2,..., En)

close to (-C,0,...,o) E Rn so that the function LP: M -+ R is non-

degenerate; and set
(x) - C2

g(x) 2C

Clearly g is non-degenerate. A short computation shows that

g(x) = f(x) + I hi(x)2/2c - eihi(x)/c + ei2/2c

1 1 1

Clearly, if c is large and the ei are small, then g will approximate

f as required.

The above theory can also be used to describe the index of the

function

at a critical point.

LEMMA 6.9. (Index theorem for Lp.) The index of Lp

at a non-degenerate critical point q e M is equal to

the number of focal points of (M,q) which lie on the

segment from q to p; each focal point being counted

with its multiplicity.
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An analogous statement in Part III (the Morse Index Theorem) will

be of fundamental importance.

PROOF: The index of the matrix

a2

2(gij - tv ij)
au au

is equal to the number of negative eigenvalues. Assuming that (gij) is

the identity matrix, this is equal to the number of eigenvalues of (v lid)

which are >

7
. Comparing this statement with 6.3, the conclusion follows.
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§7. The Lefschetz Theorem on Hyperplane Sections.

As an application of the ideas which have been developed, we will

prove some results concerning the topology of algebraic varieties. These

were originally proved by Lefschetz, using quite different arguments. The

present version is due to Andreotti and Frankel*.

THEOREM 7.1. If M C Cn is a non-singular affine alge-

braic variety in complex n-space with real dimension 2k,

then

Hi(M;Z) = 0 for i > k.

This is a consequence of the stronger:

THEOREM 7.2. A complex analytic manifold M of complex

dimension k, bianalytically embedded as a closed subset

of Cn has the homotopy type of a k-dimensional CW-complex.

The proof will be broken up into several steps. First consider a

quadratic form in k complex variables

Q(z1,...,zk) = I
bhj

zhzi .

If we substitute xh + iyh for zh, and then take the real part of Q we

obtain a real quadratic form in 2k real variables:

Q'(x1,...,xk,yt,...,yk) = real part of bhj(xh+iyh)(x3+iy3)

ASSERTION 1. If e is an eigenvalue of Q' with multiplicity µ,

then -e is also an eigenvalue with the same multiplicity µ.

PROOF. The identity Q(iz1,...,izk) = -Q(z1,...,zk) shows that

the quadratic form Q' can be transformed into -Q' by an orthogonal

change of variables. Assertion 1 clearly follows.

11

See S. Lefschetz, "L'analysis situs et la geometrie algebrique," Paris,

1921+; and A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane

sections, Annals of Mathematics, Vol. 69 (1959), pp. 713-717.
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Now consider a complex manifold M which is bianalytically imbed-

ded as a subset of Cn. Let q be a point of M.

ASSERTION 2. The focal points of (M,q) along any normal line 2

occur in pairs which are situated symmetrically about q.

In other words if q + tv is a focal point, then q - tv is a

focal point with the same multiplicity.

PROOF. Choose complex coordinates z1,...,zk for M in a neigh-

borhood of q so that z1(q) = ... = zk(q) = 0. The inclusion map M-+ Cn

determines n complex analytic functions

WC, wa(z1 ,...,zk ), a = 1, ..,n.

Let v be a fixed unit vector which is orthogonal to M at q. Consider

the Hermitian inner product

wava = wa(z1,...,zk)va

of w and v. This can be expanded as a complex power series

I wa(z1,...,zk)va = constant + Q(z1,...,zk) + higher terms,

where Q denotes a homogeneous quadratic function. (The linear terms van-

ish since v is orthogonal to M.)

Now substitute xh + iyh for zh so as to obtain a real coordinate

system for M; and consider the real inner product

w v = real part of wava .

This function has the real power series expansion

w- v = constant + Q1(x1 xk 1 k
,Y higher terms.

Clearly the quadratic terms Q' determine the second fundamental form of

M at q in the normal direction v. By Assertion 1 the eigenvalues of

Q' occur in equal and opposite pairs. Hence the focal points of (M,q)

along the line through q and q + v also occur in symmetric pairs. This

proves Assertion 2.

We are now ready to prove 7.2. Choose a point p e Cn so that the

squared-distance function
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Y M -+ R

has no degenerate critical points. Since M is a closed subset of Cn, it

is clear that each set

Ma =

is compact. Now consider the index of Lp at a critical point q. Accord-

ing to 6.9, this index is equal to the number of focal points of (M,q)

which lie on the line segment from p to q. But there are at most 2k

focal points along the full line through p and q; and these are distri-

buted symmetrically about q. Hence at most k of them can lie between p

and q.

Thus the index of Lp at q is < k. It follows that M has the

homotopy type of a OW-complex of dimension < k; which completes the proof

of 7.2.

COROLLARY 7.3 (Lefschetz). Let V be an algebraic variety

of complex dimension k which lies in the complex projective

space CPn. Let P be a hyperplane in CPn which contains

the singular points (if any) of V. Then the inclusion map

V n P-V
induces isomorphisms of homology groups in dimensions less

than k-1. Furthermore, the induced homomorphism

Hk_1(V n P;Z) Hk-l(V;Z)

is onto.

PROOF. Using the exact sequence of the pair (V,V n P) it is

clearly sufficient to show that H1,(V,V n P;Z) = 0 for r < k-1. But the

Lefschetz duality theorem asserts that

Hr,(V,V n P;Z) = H2k-r(V -(V n P) ;Z)

But V -(V n P) is a non-singular algebraic variety in the affine space

CPn - P. Hence it follows from 7.2 that the last group is zero for r < k-1.

This result can be sharpened as follows:

THEOREM 7.4 (Lefschetz). Under the hypothesis of the

preceding corollary, the relative homotopy group

Trr(V,V n P) is zero for r < k.
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PROOF. The proof will be based on the hypothesis that some neigh-

borhood U of V n P can be deformed into V n P within V. This can be

proved, for example, using the theorem that algebraic varieties can be tri-

angulated.

In place of the function LP: V - V n P -+ R we will use f: V -+ R

where

f(x)
ro for x e V n P

t/Lp(x) for x j P.

Since the critical points of Lp have index < k it follows that

the critical points of f have index > 2k - k = k. The function f has

no degenerate critical points with s < f < co. Therefore V has the

homotopy type of Ve = f-1[o,e] with finitely many cells of dimension > k

attached.

Choose e small enough so that VE C U. Let Ir denote the unit

r-cube. Then every map of the pair (Ir,Ir) into (V,V n P) can be deform-

ed into a map

(Ir,Ir) - (V-,V n P) C (U,V n P) ,

since r < k, and hence can be deformed into V n P. This completes the

proof.



PART II

A RAPID COURSE IN RIEMANNIAN GEOMETRY

§8. Covariant Differentiation

The object of Part II will be to give a rapid outline of some basic

concepts of Riemannian geometry which will be needed later. For more infor-

mation the reader should consult Nomizu, "Lie groups and differential geo-

metry. Math. Soc. Japan, 1956; Helgason, "Differential geometry and sym-

metric spaces," Academic Press, 1962; Sternberg, "Lectures on differential

geometry," Prentice-Hall, 1964; or Laugwitz, "Differential and Riemannian

geometry," Academic Press, 1965.

Let M be a smooth manifold.

DEFINITION. An affine connection at a point p E M is a function

which assigns to each tangent vector Xp E TMp and to each vector field Y

a new tangent vector

Xp - Y E TMp

called the covariant derivative of Y in the direction Xp. This is re-

quired to be bilinear as a function of Xp and Y. Furthermore, if

f: M- R
is a real valued function, and if fY denotes the vector field

(fY)q = f(q)Yq

'then h is required to satisfy the identity

Xp I- (fY) = (Xpf)Yp + f(p)Xp I- Y .

Note that our X F Y coincides with Nomizu's Vxy. The notation is in-

tended to suggest that the differential operator X acts on the vector field

Y.
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(As usual, Xpf denotes the directional derivative of f in the direction

XP.)

A global affine connection (or briefly a connection) on M is a

function which assigns to each p e M an affine connection Fp at p,

satisfying the following smoothness condition.

1) If X and Y are smooth vector fields on M then the vector

field X F Y, defined by the identity

(X FY)p=Xp FpY ,

must also be smooth.

Note that:

(2) X F Y is bilinear as a function of X and Y

(3) (fX) F Y = f(X F Y) ,

(4) (X F (fY) = (Xf)Y + f(X F Y)

Conditions (1), (2), (3), (4) can be taken as the definition of

a connection.

In terms of local coordinates ul,...,un defined on a coordinate

neighborhood U C M, the connection F is determined by n3 smooth real

valued functions ik on U, as follows. Let ak denote the vector

field on U. Then any vector field X on U can be expressed
au

uniquely as

X = k xkak
k=1

where the xk are real valued functions on U. In particular the vector

field ai F ai can be expressed as

(5) ai F a _
rij k

These functions i, determine the connection completely on U.

In fact given vector fields X = x'ai and Y = yJaj one can

expand X F Y by the rules (2), (3), (4); yielding the formula

(6) X F Y = xiyki)ak
k i
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where the symbol yki stands for the real valued function

y'i = aiyk + ij y
j

Conversely, given any smooth real valued functions ik on U,

one can define X F Y by the formula (6). The result clearly satisfies

the conditions (1), (2), (3), (4), (5).

Using the connection F one can define the covariant derivative of

a vector field along a curve in M. First some definitions.

A parametrized curve in M is a smooth function c from the real

numbers to M. A vector field V along the curve c is a function which

assigns to each t e R a tangent vector

Vt E TMc(t)

This is required to be smooth in the following sense: For any smooth func-

tion f on M the correspondence

t Vtf

should define a smooth function on R.

As an example the velocity vector field of the curve is the(if
vector field along c which is defined by the rule

do d
UE -

c* T£

Here
Tdt

denotes the standard vector field on the real numbers, and

c*: TRt TMc(t)

denotes the homomorphism of tangent spaces induced by the map c. (Compare

Diagram 9.)
de

Diagram 9
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Now suppose that M is provided with an affine connection. Then

any vector field V along c determines a new vector field DV along c

called the covariant derivative of V. The operation

V DV
ffu

is characterized by the following three axioms.

a) D(V+W)
= ur+-Tf-

D(fV) _ V + f DV
.

c) If V is induced by a vector field Y on M, that is if

Vt
Yc(t)

for each t, then DV is equal to F Y
_CTE

(= the covariant derivative of Y in the direction of the

velocity vector of c)

LEMMA 8.1. There is one and only one operation V -+ DV

which satisfies these three conditions.

PROOF: Choose a local coordinate system for M, and let

u1(t),. .,un(t) denote the coordinates of the point c(t). The vector

field V can be expressed uniquely in the form

V = I v4j

where v1,...,vn are real valued functions on R (or an appropriate open

subset of R), and a1,...1an are the standard vector fields on the co-

ordinate neighborhood. It follows from (a), (b), and (c) that

i

dam- + = ri vi, ak
3

k i,j

Conversely, defining DV by this formula, it is not difficult to verify

that conditions (a), (b), and (c) are satisfied.

A vector field V along c is said to be a parallel vector field

if the covariant derivative is identically zero.CT:E
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LEMMA 8.2. Given a curve c and a tangent vector V
0

at the point c(o), there is one and only one parallel

vector field V along c which extends Vo.

PROOF. The differential equations

dvk
+ du' r k vi = 0iji,j

47

have solutions vk(t) which are uniquely determined by the initial values

vk(o). Since these equations are linear, the solutions can be defined for

all relevant values of t. (Compare Graves, "The Theory of Functions of

Real Variables," p. 152.)

The vector Vt is said to be obtained from V0 by parallel trans-

lation along c.

Now suppose that M is a Riemannian manifold. The inner product

of two vectors Xp, Yp will be denoted by < Xp, Yp > .

DEFINITION. A connection F on M is compatible with the Rieman-

nian metric if parallel translation preserves inner products. In other words,

for any parametrized curve c and any pair P, P' of parallel vector fields

along c, the inner product < P,P' > should be constant.

LEMMA 8.3. Suppose that the connection is compatible with

the metric. Let V, W be any two vector fields along c.

Then

E < V,W > _ <Ur,W> + <V, UE> .

PROOF: Choose parallel vector fields P1,...,Pn along c which

are orthonormal at one point of c and hence at every point of c. Then

the given fields V and W can be expressed as I v1Pi and wiPj respec-

tively (where v1 = < V,Pi > is a real valued function on R). It fol-

lows that < V,W > _ >, v'w' and that

DV dv1 DW dwJ
Pi, T£ _

P

Therefore
< ,W> + <VrUT

_
d i

wi + v1 d i \
_dT ) =

d
<V,W>

which completes the proof.
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COROLLARY 8.4. For any vector fields Y,Y' on M and any
vector XP e TMp:

Xp <Y,Y' > _ <Xp F Y,YY> + <Yp,Xp F Y' > .

PROOF. Choose a curve c whose velocity vector at t = 0 is Xp;

and apply 8.3.

DEFINITION 8.5. A connection F is called symmetric if it satis-

fies the identity*

(X F Y) - (Y F X) = [X,Y] .

(As usual, [X,Y] denotes the poison bracket [X,Y]f = X(Yf) - Y(Xf) of

two vector fields.) Applying this identity to the case X = ai, Y = aJ,

since [ai,ajl = 0 one obtains the relation

rij - rjk = o.

Conversely if ik = rji then using formula (6) it is not difficult to

verify that the connection F is symmetric throughout the coordinate neigh-

borhood.

LEMMA 8.6. (Fundamental lemma of Riemannian geometry.)

A Riemannian manifold possesses one and only one sym-

metric connection which is compatible with its metric.

(Compare Nomizu p. 76, Laugwitz p. 95.)

PROOF of uniqueness. Applying 8.4 to the vector fields ai,a3,ak,

and setting < aj,ak > = gjk one obtains the iaentity

ai gjk = < ai F apak > + < aj,ai F ak > .

Permuting i,j, and k this gives three linear equations relating the

*
The following reformulation may (or may not) seem more intuitive. Define

The "covariant second derivative" of a real valued function f along two

vectors XpYp to be the expression

Xp(Yf) - (Xp F Y)f

where Y denotes any vector field extending Yp. It can be verified that

this expression does not depend on the choice of Y. (Compare the proof of

Lemma 9.1 below.) Then the connection is symmetric if this second deriva-

tive is symmetric as a function of Xp and Yp.
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three quantities

< i F aj,akKaj k'ai>, and <ak F aj>

(There are only three such quantities since ai F 3j = aj F ai .) These

equations can be solved uniquely; yielding the first Christoffel identity

ai F aj,ak > = 2 (aigjk + ajgik - akgij) .

The left hand side of this identity is equal to rij gkk . Multiplying

P

by the inverse (g' ) of the matrix (gQk) this yields the second Christof-

fel identity

r j = 2 \ai gjk + aj gik - ak gij) gk¢

k

Thus the connection is uniquely determined by the metric.

Conversely, defining rl by this formula, one can verify that the

resulting connection is symmetric and compatible with the metric. This

completes the proof.

An alternative characterization of symmetry will be very useful

later. Consider a "parametrized surface" in M: that is a smooth function

s: R2 - M

By a vector field V along s is meant a function which assigns to each

(x,y) a R2 a tangent vector

V(x,Y) c TM5(x,Y)

As examples, the two standard vector fields

x
and TV give rise to vec-

tor fields s, . and s* along s. These will be denoted briefly by-jV

Jx and y ; and called the "velocity vector fields" of s.

For any smooth vector field V along s the covariant derivatives

and are new vector fields, constructed as follows. For each fixedTy-

yo, restricting V to the curve

x s(x,Y0)

one obtains a vector field along this curve. Its covariant derivative with

respect to x is defined to be ()(x
Y) This defines along-DV
'o

the entire parametrized surface s.

As examples, we can form the two covariant derivatives of the two
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vector fields as and as The derivatives D as and D as are
cTx 3y Tx cTy cTy

simply the acceleration vectors of suitable coordinate curves. However,

the mixed derivatives and D cannot be described so simply.

LEMMA 8.7. If the connection is symmetric then D as
=

D as
ax ay ay ax

PROOF. Express both sides in terms of a local coordinate system,

and compute.
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§9. The Curvature Tensor

The curvature tensor R of an affine connection F measures the

extent to which the second covariant derivative ai F () j F Z) is sym-

metric in i and j. Given vector fields X,Y,Z define a new vector field

R(X,Y)Z by the identity*

R(X,Y) Z = -X F (Y F Z) + Y F (X F Z) + [X,Y1 F Z

LEMMA 9.1. The value of R(X,Y)Z at a point p E M

depends only on the vectors Xp,Yp,Zp at this point

p and not on their values at nearby points. Further-

more the correspondence

Xp,Yp,Zp R(Xp,Yp)Zp

from TMp x TMp x TMp to TMp is tri-linear.

Briefly, this lemma can be expressed by saying that R is a "tensor."

PROOF: Clearly R(X,Y)Z is a tri-linear function of X,Y, and Z.

If X is replaced by a multiple fX then the three terms -X F (Y F Z),

Y F (X F Z), [X,Y] F Z are replaced respectively by
i) - fX F (Y F Z) ,

ii) (Yf) (X F Z) + fY F (X F Z)

iii) - (Yf)(X F Z) + f[X,Y1 F Z

Adding these three terms one obtains the identity

R(fX,Y) Z = fR(X,Y) Z .

Corresponding identities for Y and Z are easily obtained by similar

computations.

Now suppose that X = xiai, Y = y'aj , and Z = zk)k.

Then

R(X,Y)Z = R(xiai,yjaj)(zk) k)

xiy i
z
k R(ai)aj)ak

*
Nomizu gives R the opposite sign. Our sign convention has the advan-

tage that (in the Riemannian case) the inner product < Ro hl)i)aj,ak

coincides with the classical symbol Rhijk
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Evaluating this expression at p one obtains the formula

(R(X,Y)Z)p = x1(p)yj(p)zk(p)(R(ai,aj)ak)p

which depends only on the values of the functions xi,yJ,zk at p, and

not on their values at nearby points. This completes the proof.

Now consider a parametrized surface

s: R2,M
Given any vector field V along s. one can apply the two covariant dif-

ferentiation operators -& and D to V. In general these operators will

not commute with each other.

LEMMA 9.2. cTy 3x V Tx rTy V - R( TX_,Ty) V

PROOF: Express both sides in terms of a local coordinate system,

and compute, making use of the identity

a1 F (ai F ak) - ai F (ai F ak) = R(ai,ai )ak .

[It is interesting to ask whether one can construct a vector field

P along s which is parallel, in the sense that

_ 5 _ X _

P = - P = 0,

and which has a given value P(0 0) at the origin. In general no such
,

vector field exists. However, if the curvature tensor happens to be zero

then P can be constructed as follows. Let P(x,o) be a parallel vector

field along the x-axis, satisfying the given initial condition. For each

fixed x0 let
P(xo,y)

be a parallel vector field along the curve

y - s(x0,y) ,

having the right value for y = 0. This defines P everywhere along s.

Clearly P is identically zero; and ZX P is zero along the x-axis.

Now the identity

D D D D ( as as
3yTxP TxF = R \3x'T P = 0

P = 0. In other words, the vector field D P isimplies that y zx-
parallel along the curves

y s(x0,y)
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Since (3Dx P)(x 0) = 0, this implies that -x P is identically zero;
o

and completes the proof that P is parallel along s.]

Henceforth we will assume that M is a Riemannian manifold, pro-

vided with the unique symmetric connection which is compatible with its

metric. In conclusion we will prove that the tensor R satisfies four

symmetry relations.

LEMMA 9.3. The curvature tensor of a Riemannian manifold

satisfies:

(1) R(X,Y)Z + R(Y,X)Z = 0

(2) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0
(3) <R(X,Y)Z,W> + <R(X,Y)W,Z> = 0
(4) <R(X,Y)Z,W> _ <R(Z,W)X,Y>

PROOF: The skew-symmetry relation (1) follows immediately from the

definition of R.

Since all three terms of (2) are tensors, it is sufficient to

prove (2) when the bracket products [X,Y], [X,ZI and [Y,Z1 are all

zero. Under this hypothesis we must verify the identity

X F (Y F Z) + Y F (X F Z)

Y F (Z F X) + Z F (Y F X)

Z F (X FY) + X F (Z FY) = o .

But the symmetry of the connection implies that

Y FZ - Z FY = [Y,ZI = 0 .

Thus the upper left term cancels the lower right term. Similarly the re-

maining terms cancel in pairs. This proves (2).

To prove (3) we must show that the expression < R(X,Y)Z,W > is

skew-symmetric in Z and W. This is clearly equivalent to the assertion

that

<R(X,Y)Z,Z> = 0

for all X,Y,Z. Again we may assume that [X,YI = 0, so that

R(X,Y)Z,Z > is equal to

- X F (Y F Z) + Y F (X F Z),Z> .
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In other words we must prove that the expression

<Y F (X F Z),Z>

is symmetric in X and Y.

Since [X,Y] = 0 the expression YX < Z,Z > is symmetric in X

and Y. Since the connection is compatible with the metric, we have

X < Z,Z > = 2 <X F Z,Z >

hence

YX <Z,Z> = 2 <Y F(X F Z),Z> + 2 <X F Z,Y F Z>
But the right hand term is clearly symmetric in X and Y. Therefore

Y F (X F Z),Z > is symmetric in X and Y; which proves property (3).

Property (4) may be proved from (1), (2), and (3) as follows.

<R(X,Y)Z,W>

<R (Z,W)X,Y>

Formula (2) asserts that the sum of the quantities at the vertices

of shaded triangle W is zero. Similarly (making use of (1) and (3)) the

sum of the vertices of each of the other shaded triangles is zero. Adding

these identities for the top two shaded triangles, and subtracting the

identities for the bottom ones, this means that twice the top vertex minus

twice the bottom vertex is zero. This proves (4), and completes the proof.
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§10. Geodesics and Completeness

Let M be a connected Riemannian manifold.

DEFINITION. A parametrized path

y: I -+ M,

where I denotes any interval of real numbers, is called a geodesic if the

acceleration vector field UE is identically zero. Thus the velocity
Tdf

identity
_d£ af, , = 2 < UE ,

dy
0

shown that the length uu
of the velocity vector isH _H

constant along y. Introducing the arc-length function

s(t) = \ DD IIdt + constant

This statement can be rephrased as follows: The parameter t along a

geodesic is a linear function of the arc-length. The parameter t is actu-

ally equal to the arc-length if and only if Idyll
= 1.

In terms of a local coordinate system with coordinates u1,...,un

a curve t-+ y(t) e M determines n smooth functions u1(t),...,un(t).

The equation -aE UE for a geodesic then takes the form

d2uk + r k (u1 un) dul duJ
- o

i,J=1

The existence of geodesics depends, therefore, on the solutions of a certain

system of second order differential equations.

More generally consider any system of equations of the form

-11 =
dt2

Here u stands for (ul,...,un) and FI stands for an n-tuple of C°°

functions, all defined throughout some neighborhood U of a point

en
(u1,v1) a R
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EXISTENCE AND UNIQUENESS THEOREM 10.1. There exists a

neighborhood W of the point (u1,-v1) and a number

e > o so that, for each (u0V0) E W the differen-

tial equation

dt2(u' at)

has a unique solution t -; u(t) which is defined for

Iti < e, and satisfies the initial conditions
y

u(0) u0, - (0) v0

Furthermore, the solution depends smoothly on the in-

itial conditions. In other words, the correspondence

(u0,v0,t) -' u(t)
from W x (-e,e) to R n is a C°° function of all

2n+1 variables.

i
PROOF: Introducing the new variables vi = 3T this system of n

second order equations becomes a system of 2n first order equations:

du
= V

dv =(u,V)_df

The assertion then follows from Graves, "Theory of Functions of Real Vari-

ables," p. 166. (Compare our §2.4.)

Applying this theorem to the differential equation for geodesics,

one obtains the following.

LEMMA 10.2. For every point p0 on a Riemannian

manifold M there exists a neighborhood U of p0

and a number e > 0 so that: for each p c U and

each tangent vector v E TMp with length < e

there is a unique geodesic

7v: M

satisfying the conditions

dYv7 (o) = p, -- (0) = v

PROOF. If we were willing to replace the interval (-2,2) by an

arbitrarily small interval, then this statement would follow immediately

from 10.1. To be more precise; there exists a neighborhood U of p0 and
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numbers E1,e2 > 0 so that: for each p E U and each v E TMp with

11vII < 51 there is a unique geodesic

yv: (-252,252) - M

satisfying the required initial conditions.

To obtain the sharper statement it is only necessary to observe that

the differential equation for geodesics has the following homogeneity pro-

perty. Let c be any constant. If the parametrized curve

t -F y(t)

is a geodesic, then the parametrized curve

t - y(ct)
will also be a geodesic.

Now suppose that e is smaller than 5152. Then if ilvil < e and

Iti < 2 note that

IIv/5211 < 51 and le2tl <252 .

Hence we can define yv(t) to be yv/e2(e2t) . This proves 10.2.

This following notation will be convenient. Let V E TMq be a

tangent vector, and suppose that there exists a geodesic

y: [0,11 M

satisfying the conditions

y(o) = q, -(o) = v.

Then the point y(1) E M will be denoted by expq(v) and called the

exponential of the tangent vector v. The geodesic y can thus be des-

cribed by the formula

y(t) = expq(ty) .

The historical motivation for this terminology is the following. If M

is the group of all n x n unitary matrices then the tangent space TMI

at the identity can be identified with the space of n x n skew-Hermitian

matrices. The function

expl: TMI -. M

as defined above is then given by the exponential power series

expl(A) = I + A + 2 A2 +
1

A3 + ...
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Lemma 10.2 says that expq(v) is defined providing that IIvjj is small enough.

In general, expq(v) is not defined for large vectors v. However, if

defined at all, expq(v) is always uniquely defined.

DEFINITION. The manifold M is geodesically complete if expq(v)

is defined for all q E M and all vectors v E TMq. This is clearly equiva-

lent to the following requirement:

For every geodesic segment yo: [a,b] - M it should be possible

to extend 70 to an infinite geodesic

y : R - M .

We will return to a study of completeness after proving some local results.

Let TM be the tangent manifold of M, consisting of all pairs

(p,v) with p E M, v E TMp. We give TM the following COO structure:

if (u1,...,un) is a coordinate system in an open set U C M then every

tangent vector at q E U can be expressed uniquely as t1 a1 +...+ tnan,

where ai
I

Then the functions uconstitute
au q

a coordinate system on the open set TU C TM.

Lemma 10.2 says that for each p E M the map

(q,v) - expq(v)

is defined throughout a neighborhood V of the point (p,o) E TM. Further-

more this map is differentiable throughout V.

Now consider the smooth function F: V - M x M defined by

F(q,v) = (q, expq(v)). We claim that the Jacobian of F at the point

(p,o) is non-singular. In fact, denoting the induced coordinates on

U x U C M x M by u 2), we have

a a
F(

au _ +u2

a a
F* T =

au?

Thus the Jacobian matrix of F at (p,o) has the form ( o I 1 , and

hence is non-singular.

It follows from the implicit function theorem that F maps some

neighborhood V' of (p,o) E TM diffeomorphically onto some neighborhood
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of (p,p) e M X M. We may assume that the first neighborhood v, consists

of all pairs (q,v) such that q belongs to a given neighborhood U' of

p and such that livII < s. Choose a smaller neighborhood W of p so that

F(V') D W x W. Then we have proven the following.

LEMMA 10.3. For each p e M there exists a neighborhood

W and a number e > 0 so that:

(1) Any two points of W are joined by a unique

geodesic in M of length < e.

(2) This geodesic depends smoothly upon the two

points. (I.e., if t -r exp q1(tv), 0 < t < 1, is the

geodesic joining q1 and q2, then the pair (q1,v) e

TM depends differentiably on (g1,g2).)

(3) For each q e W the map expq maps the open

e-ball in TMq diffeomorphically onto an open set

Uq) W.

REMARK. With more care it would be possible to choose W so that

the geodesic joining any two of its points lies completely within W. Com-

ptre J. H. C. Whitehead, Convex regions in the geometry of paths, Quarter-

ly Journal of Mathematics (Oxford) Vol. 3, (1932), pp. 33-42.

Now let us study the relationship between geodesics and arc-length.

THEOREM 10.4. Let W and e be as in Lemma 10.3. Let

y: [0,1]- M
be the geodesic of length < e joining two points of W,

and let
w: [0,1]- M

be any other piecewise smooth path joining the same two

points. Then,
1 1

SlI IIdt< SII Udt

0 0

where equality can hold only if the point set w([o,1])

coincides with y([0,1]).

Thus y is the shortest path joining its end points.

The proof will be based on two lemmas. Let q = y(o) and let Uq

be as in 10.3.



6o II. RIEMANNIAN GEOMETRY

LEMMA 10.5. In Uq, the geodesics through q are

the orthogonal trajectories of hypersurfaces

expq(v) : v e TMq, IIvii = constant}

PROOF: Let t -+ v(t) denote any curve in TMq with 11v(t)II 1.

We must show that the corresponding curves

t -+ expq(rov(t) )

in Uq, where 0 < ro < e, are orthogonal to the radial geodesics

r -+ expq(rv(t0)) .

In terms of the parametrized surface f given by

f(r,t) = expq(rv(t)), 0 < r < e ,

we must prove that

<T,> =o-5 E

for all (r,t).

Now

a of of D of of of D of
Fr Nr,a't> _ < cTr cTr'3f> + <Tr'Tr ; E> .

The first expression on the right is zero since the curves

r -+ f(r,t)
are geodesics. The second expression is equal to

of D of > a of of = 0<i,-JE .> = 2 aE
since IIII = IIv(t) II = 1. Therefore the quantity <,> is indepen-CTF -H

dent of r. But for r = o we have

f(o,t) = expq(0) = q

hence M(0,t) = 0. Therefore < , > is identically zero, which com-Fr- 7E
pletes the proof.

Now consider any piecewise smooth curve

CO: [a,bl -+ Uq - (q)
Each point w(t) can be expressed uniquely in the form expq(r(t)v(t)) with

o < r(t) < e, and IIv(t) II = 1, v(t) e TMq.

LEMMA 10.6. The length IIdII dt is greater than or
a

equal to Ir(b) - r(a)I, where equality holds only if the

function r(t) is monotone, and the function v(t) is constant.
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Thus the shortest path joining two concentric spherical shells

around q is a radial geodesic.

Then

Since

PROOF: Let f(r,t) expq(rv(t)), so that m(t) = f(r(t),t)

dm afr,(t) +af
CIE = cTr 3E

the two vectors on the right are mutually orthogonal, and since

1, this gives

II II2
= Ir'(t)12 +

II
II2 > Ir'(t)12

where equality holds only if = 0; hence only if dv = 0. Thus

b b

S -Ildt > S Ir'(t) Idt > Ir(b) - r(a) I
a a

where equality holds only if r(t) is monotone and v(t) is constant.

This completes the proof.

The proof of Theorem 10.4 is now straightforward. Consider any

piecewise smooth path m from q to a point

q' = expq(rv) E Uq

where 0 < r < e, IvIi = 1. Then for any s > o the path m must con-

tain a segment joining the spherical shell of radius s to the spherical

shell of radius r, and lying between these two shells. The length of this

segment will be > r - s; hence letting s tend to 0 the length of m

will be > r. If m([0,1]) does not coincide with y([0,1)), then we

easily obtain a strict inequality. This completes the proof of 10.4.

An important consequence of Theorem 1o.4 is the following.

COROLLARY 10.7. Suppose that a path co: [o,A] - M, para-

metrized by arc-length, has length less than or equal to

the length of any other path from m(0) to m(A). Then m

is a geodesic.

PROOF: Consider any segment of co lying within an open set W, as

above, and having length < e. This segment must be a geodesic by Theorem

10.4. Hence the entire path m is a geodesic.

DEFINITION. A geodesic y: [a,b] -r M will be called minimal if
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its length is less than or equal to the length of any other piecewise smooth

path joining its endpoints.

Theorem 10.4 asserts that any sufficiently small segment of a

geodesic is minimal. On the other hand a long geodesic may not be minimal.

For example we will see shortly that a great circle arc on the unit sphere

is a geodesic. If such an arc has length greater than n, it is certainly

not minimal.

In general, minimal geodesics are not unique. For example two anti-

podal points on a unit sphere are joined by infinitely many minimal geodesics.

However, the following assertion is true.

Define the distance p(p,q) between two points p,q e M to be the

greatest lower bound for the arc-lengths of piecewise smooth paths joining

these points. This clearly makes M into a metric space. It follows

easily from 10.4 that this metric is compatible with the usual topology of M.

COROLLARY 10.8. Given a compact set K C M there exists

a number 6 > 0 so that any two points of K with dis-

tance less than s are joined by a unique geodesic of

length less than s. Furthermore this geodesic is minimal;

and depends differentiably on its endpoints.

PROOF. Cover K by open sets Wa, as in 10.3, and let s be

small enough so that any two points in K with distance less than s lie

in a common Wa. This completes the proof.

Recall that the manifold M is geodesically complete if every geo-

desic segment can be extended indifinitely.

THEOREM 10.9 (Hopf and Rinow*). If M is geodesically

complete, then any two points can be joined by a minimal

geodesic.

PROOF. Given p,q e M with distance r > 0, choose a neighborhood

Up as in Lemma 10.3. Let S C Up denote a spherical shell of radius s < a

Compare p. 341 of G. de Rham, Sur la r6ductibilite d'un espace de

Riemann, Commentarii Math. Helvetici, Vol. 26 (1952); as well as H. Hopf and

W. Rinow, Ueber den Begriff der-vollstandigen differentialgeometrischen Flache,

Commentarii,Vol. 3 (1931), pp. 209-225.
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about p. Since S is compact, there exists a point

p0 = expp(sv) , 11V II = 1,

on S for which the distance to q is minimized. We will prove that

expp(rv) = q.

This implies that the geodesic segment t -+ y(t) = expp(tv), 0 < t < r,

is actually a minimal geodesic from p to q.

The proof will amount to showing that a point which moves along the

geodesic y must get closer and closer to q. In fact for each t e [s,r]

we will prove that

(it) p(y(t),q) = r-t .

This identity, for t = r, will complete the proof.

First we will show that the equality (18) is true. Since every

path from p to q must pass through S, we have

p(p,q) = Min (p(p,s) + p(s,q)) = s + p(po,q)
se S

Therefore p(p0,q) = r - s. Since p0 = y(s), this proves (1s).

Let t0 e [6,r] denote the supremum of those numbers t for which

(it) is true. Then by continuity the equality (it ) is true also.
0

If to < r we will obtain a contradiction. Let S' denote a small spheri-

cal shell of radius s' about the point y(to); and let pp e S' be a

point of S' with minimum distance from q. (Compare Diagram 10.) Then

p(Y(t0),q) = p(s,q)) = 6' + p(pp,q)

hence

(2) p(po,q) = (r - t0) - 6'

We claim that po is equal to y(to + s'). In fact the triangle

inequality states that

p(p,pp') > p(p,q) - p(pp,q) = to + s'

(making use of (2)). But a path of length precisely to + s' from p to

po is obtained by following y from p to y(to), and then following

a minimal geodesic from y(t0) to po. Since this broken geodesic has

minimal length, it follows from Corollary 10.7 that it is an (unbroken)
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geodesic, and hence coincides with y.

Thus y(to + s') = pp. Now the equality (2) becomes

(1 to+s')
0(y(to + ,'),q) = r - (to + s')

This contradicts the definition of t0; and completes the proof.

Diagram 10.

As a consequence one has the following.

COROLLARY 10.10. If M is geodesically complete then

every bounded subset of M has compact closure. Con-

sequently M is complete as a metric space (i.e., every

Cauchy sequence converges).

PROOF. If X C M has diameter d then for any p E X the map

expp: TMp -+ M maps the disk of radius d in TMp onto a compact subset

of M which (making use of Theorem 10.9) contains X. Hence the closure

of X is compact.

Conversely, if M is complete as a metric space, then it is not

difficult, using Lemma 10.3, to prove that M is geodesically complete.

For details the reader is referred to Hopf and Rinow. Henceforth we will

not distinguish between geodesic completeness and metric completeness, but

will refer simply to a complete Riemannian manifold.
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FAMILIAR EXAMPLES OF GEODESICS. In Euclidean n-space, Rn, with

the usual coordinate system x1,...,xn and the usual Riemannian metric

dx®® dx1 +...+ dxn ® dxn we have ri = 0 and the equations for a geo-

desic y, given by t- (x1(t),...,xn(t) become

d2xi

dt '

whose solutions are the straight lines. This could also have been seen as

follows: it is easy to show that the formula for arc length

S ( \ 2dt
i=1

coincides with the usual definition of aru length as the least upper bound

of the lengths of inscribed polygons; from this definition it is clear that

straight lines have minimal length, and are therefore geodesics.

The geodesics on Sn are precisely the great circles, that is, the

intersections of Sn with the planes through the center of Sn.

PROOF. Reflection through a plane E2 is an isometry I: Sn -+ Sn

whose fixed point set is C = Sn n E2. Let x and y be two points of C

with a unique geodesic C' of minimal length between them. Then, since I

is an isometry, the curve I(C') is a geodesic of the same length as C'

between I(x) = x and I(y) = y. Therefore C' = I(C'). This implies that

C' C C.

Finally, since there is a great circle through any point of Sn in

any given direction, these are all the geodesics.

Antipodal points on the sphere have a continium of geodesics of

minimal length between them. All other pairs of points have a unique geo-

desic of minimal length between them, but an infinite family of non-minimal

geodesics, depending on how many times the geodesic goes around the sphere

and in which direction it starts.

By the same reasoning every meridian line on a surface of revolution

is a geodesic.

The geodesics on a right circular cylinder Z are the generating

lines, the circles cut by planes perpendicular to the generating lines, and
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the helices on Z.

PROOF: If L is a generating line of Z then we can set up an

isometry I: Z - L - R2 by rolling Z onto R2:

a 1

The geodesics on Z are just the images under I-1 of the straight lines

in R. Two points on Z have infinitely many geodesics between them.2



PART III

THE CALCULUS OF VARIATIONS APPLIED TO GEODESICS

§11. The Path Space of a Smooth Manifold.

Let M be a smooth manifold and let p and q be two (not neces-

sarily distinct) points of M. By a piecewise smooth path from p to q

will be meant a map w: [0,1] - M such that

1) there exists a subdivision 0 = to < t1 < ... < tk = 1 of

[0,1] so that each wl[ti_1,ti] is differentiable of class C

2) w(o) = p and w(1) = q.

The set of all piecewise smooth paths from p to q in M will be denoted

by 0(M;p,q), or briefly by 0(M) or 11.

Later (in §16) 0 will be given the structure of a topological

space, but for the moment this will not be necessary. We will think of a

as being something like an "infinite dimensional manifold." To start the

analogy we make the following definition.

By the tangent space of a at a path w will be meant the vector

space consisting of all piecewise smooth vector fields W along w for

which W(0) = 0 and W(1) = 0. The notation TOW will be used for this

vector space.

If F is a real valued function on 0 it is natural to ask what

F*: TQw - TRF(w) ,

the induced map on the tangent space, should mean. When F is a function

which is smooth in the usual sense, on a smooth manifold M, we can define

F*: TMp - T RKp) as follows. Given X E TMp choose a smooth path

u - a(u) in M, which is defined for -e < u < e , so that

a(0) = p, moo) = X
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Then F*(X) is equal to
d(F(a(u))I multiplied by the basis vectorTu u=o'

d
Uf )F (P) E TRF(p)

In order to carry out an analogqus construction for F: a - R,

the following concept is needed.

DEFINITION. A variation of m (keeping endpoints fixed) is a

function

a: (-e,e) -. 0,

for some e > o, such that

1) &(o) = m

2) there is a subdivision 0 = to < t1 < ... < tk = 1

of [0,11 so that the map

a: (-e,e) x [0,11 -+ M

defined by a(u,t) = &(u)(t) is C°° on each strip (-e,e) x [ti-1,ti

i = 1,...,k.

Since each &(u) belongs to Q = 0(M;p,q), note that:

3) a(u,o) = p, a(u,1) = q for all u e (-e,e) .

We will use either a or a to refer to the variation. More

generally if, in the above definition, (-e,e) is replaced by a neighbor-

hood U of 0 in Rn, then a (or a) is called an n-parameter varia-

tion of m.

Now a may be considered as a "smooth path" in 11. Its "velocity

vector" d. (o) e Tom is defined to be the vector field W along m givencTu

by

Wt = m(o)t =(o,t)
Clearly W E T11m. This vector field W is also called the variation vec-

tor field associated with the variation a.

Given any W E Tom note that there exists a variation

(-e,e) - 11 which satisfies the conditions a(o) = to, mo(o) = W.

In fact one can set

&(u) (t) = expm(t)(u Wt) .

By analogy with the definition given above, if F is a real valued
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function on a, we attempt to define

F* : TO -+ TRF(m)

as follows. Given W e Tow choose a variation a: (-E,e) - 0 with

69

a(o) = w, mo(o) = W

and set F*(W) equal to d(F())lu=o multiplied by the tangent vector
CLU

d Of course without hypothesis on F there is no guarantee that
F(n)'

this derivative will exist, or will be independent of the choice of a.

We will not investigate what conditions F must satisfy in order for F*

to have these properties. We have indicated how F* might be defined only

to motivate the following.

DEFINITION. A path w is a critical path for a function

F: 0 -+ R if and only if dF( u I is zero for every variation a of
u=o

w.

EXAMPLE. If F takes on its minimum at a path mo, and if the

derivatives are all defined, then clearly mo is a critical path.(
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§12. The Energy of a Path.

Suppose now that M is a Riemannian manifold. The length of a vec-
i

for v E TMp will be denoted by IlvOO _ < v,v >2. For a e a define the

energy of co from a to b (where o < a < b < 1) as

Ea(m) =SI1-df
a

We will write E for E.

This can be compared with the arc-length from a to b given by

b

Lab ces) = S II IIdt
a

as follows. Applying Schwarz's inequality

with f(t) =

b
l2

b b
lS fgdt) < \ S f 2dt') ( .S g2dt)

a a a

1 and g(t) = IIdo)

II

we see that

(Lb < (b - a)Ea ,

where equality holds if and only if g is constant; that is if and only if

the parameter t is proportional to arc-length.

Now suppose that there exists a minimal geodesic y from p = m(o)

to q = m(1). Then

E(y) = L ( - / ) L ( w ) .

Here the equality L(y)2 = L(m)2 can hold only if m is also a minimal

geodesic, possibly reparametrized. (Compare §10.7.) On the other hand

the equality L(w)2 = E(m) can hold only if the parameter is proportional

to arc-length along w. This proves that E(y) < E(m) unless a is also

a minimal geodesic. In other words:

LEMMA. 12.1. Let M be a complete Riemannian manifold

and let p,q e M have distance d. Then the energy

function

E: a(M;p,q) - R
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takes on its minimum d2 precisely on the set of minimal

geodesics from p to q.

We will now see which paths m e 9 are critical paths for the

energy function E.

(o,t)Let a: (-e,e) - 2 be a variation of m, and let Wt =
Tu-

be the associated variation vector field. Furthermore, let:

Vt =

UE
= velocity vector of m

At DcT - = acceleration vector of m

otv = Vt. - Vt_ = discontinuity in the velocity vector at t,

where 0 < t < 1 .

Of course otV = 0 for all but a finite number of values of t.

THEOREM 12.2 (First variation formula). The derivative

1 dE(a(u))
is equal to2 - u=o 1

- <Wt,AtV> - S <Wt,At> dt
t 0

PROOF: According to Lemma 8.3, we have

as as D as as
Tu <-cf,ZT > = 2 < Tu Z'

Therefore

dE(a(u)) d ( 2 as, as
TU- < as, as dt < D_ J > ) -3 -Z > dt

0 0

By Lemma 8.7 we can substitute D as
for

D as in this last formula.3ETu 3u 3T
Choose 0 = t0 < t1 <...< tk = 1 so that a is differentiable on

each strip (-e,e) x [ti_1,ti1. Then we can "integrate by parts" on

[ti_1,til, as follows. The identity

as as D as as as D as
-ate <uT

,
> +

<au,

-3y >

implies that

ti

S 3E 3u ,3T > dt = < aa, aaTu3t>
ti-1

(ti
,1 <Tu, D )a

, 2T) 3E>dt
ti-1
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Adding up the corresponding formulas for i = 1,...,k; and using the fact

that u = o for t = 0 or 1, this gives

k-1 1

1 dE(a(u)) as as as D as
2 u L < U, pti ] - < y.-, ZE ZE > dt

i=1 0

Setting u = 0, we now obtain the required formula

2 dE a (o) < W,AtV > - S < W,A > dt
t 0

This completes the proof.

Intuitively, the first term in the expression for da(0) shows

that varying the path w in the direction of decreasing "kink," tends to

decrease E; see Diagram 11.

The second term shows that varying the curve in the direction of its

acceleration vector () tends to reduce E.

Recall that the path w e 0 is called a geodesic if and only if

w is C`° on the whole interval [0,11, and the acceleration vector -(

of w is identically zero along w.

COROLLARY 12.3. The path w is a critical point for the

function E if and only if co is a geodesic.
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PROOF: Clearly a geodesic is a critical point. Let m be a

critical point. There is a variation of m with W(t) = f(t)A(t) where

f(t) is positive except that it vanishes at the ti. Then

2 mo(o) _ - f(t) < A(t),A(t) > dt.
0

This is zero if and only if A(t) = 0 for all t. Hence each nI[ti,ti+1]

is a geodesic.

Now pick a variation such that W(ti) = Ati V. Then

2 (0) _ - < AtiV,AtiV > . If this is zero then all AtV are 0, and

m is differentiable of class C1, even at the points ti. Now it follows

from the uniqueness theorem for differential equations that m is C°°

everywhere: thus co is an unbroken geodesic.
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§13. The Hessian of the Energy Function at a Critical Path.

Continuing with the analogy developed in the preceding section, we

now wish to define a bilinear functional

E**: TOY x TOy - R

when y is a critical point of the function E, i.e., a geodesic. This

bilinear functional will be called the Hessian of E at y.

If f is a real valued function on a manifold M with critical

point p, then the Hessian

f**: TM p x TMp -+ R

can be defined as follows. Given X1,X2 E TMp choose a smooth map

(u1,u2) a(u1,u2) defined on a neighborhood of (0,0) in R2, with

values in M, so that

a(o,o) = p, X1(0,0) = x1 X2(0,0) = x2

Then

f**(X1,X2) =
2f(a(u1,u2))

au1 au2
(0,0)

This suggests defining E** as follows. Given vector fields W1,W2 e Tsar

choose a 2-parameter variation

a: U x [ 0 , 1 1 - M

where U is a neighborhood of (0,0) in R2, so that

a(o,o,t) = y(t), (o,o,t) = W1(t), au (0,0,t) = W2(t)
1 2

(Compare §11.) Then the Hessian E**(W1,W2) will be defined to be the

second partial derivative

2E(a(ut,u2))I

auI au2
(0 0),

where a(u1,u2) e 0 denotes the path a(u1,u2)(t) = a(u1,u2,t) . This

second derivative will be written briefly as o u2(0,0)
1 2

The following theorem is needed to prove that E** is well defined.
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THEOREM 13.1 (Second variation formula). Let &: U -+sa

be a 2-parameter variation of the geodesic y with

variation vector fields

Wi = x,(0,0) e Tay, i = 1,2

Then the second derivative

function is equal to

1 a"E
(0,0)2 u3 you

< W21

Therefore

0

C
D as D as > dt< cTu1 Tu2 ) 3T 'R

0

Let us evaluate this expression for (u1,u2) = (0,0).

an unbroken geodesic, we have

as
At 3T =

0,
D as

WE ZT

so that the first and third terms are zero.

(13.2)

where V = d denotes the velocity vector field and where

DW

- <W2(t),AtUU1> -S
t 0

ofd _(t+) -(t )
DW

denotes the jump in at one of its finitely many-dy

points of discontinuity in the open unit interval.

PROOF: According to 12.2 we have
1

1 aE
<

as as as D as At
2 3u2 = - cTu2,t > - S <Tu2, WE 3T >t 0

1 a2E D as ac
f u1 u2 = - < cTu1 3T > -t t

Rearranging the second term, we obtain

1 6 E 0 0)2 W2 At aE W1

In order to interchange the two operators D
1

bring in the curvature formula,

D 2W
I + R(V,W1)V > dt

of the energy

75

as D as >2 P 1 At 'R

as D D as
37

0

Since y = &(0,0) is

e

-
)

< W2, 1 -RV > dt
0

and 3 , we need to

dt.

1
)V = R(V,W1)V1 D V - A 1V = R( 4,Tu-
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Together with the identity V = 3U T_ =
_CTU

W1 this yields
1 1

DST
(13.3) 1 D V =

d
+ R(V,W1)V

_3T
ff

Substituting this expression into (13.2) this completes the proof of 13.1.
2

COROLLARY 13.1+. The expression E**(W1,W2) = )E
-2(0,0)

is a well defined symmetric and bilinear function of W

and W2.

PROOF: The second variation formula shows that ua u 7-0, 0)
1 2

depends only on the variation vector fields W1 and W2, so that

E**(W1,W2) is well defined. This formula also shows that E** is bilinear.

The symmetry property

E**(W1,W2) = E**(W2, W1)

is not at all obvious from the second variation formula; but does follow

immediately from the symmetry property aE =
6 E

u1 u2 uc 7 1

REMARK 13.5. The diagonal terms E**(W,W) of the bilinear pairing

E** can be described in terms of a 1-parameter variation of y. In fact

E**(W,W) = d E a(o)

where a: (-e,e) -+s1 denotes any variation of y with variation vector

field T- (o) equal to W. To prove this identity it is only necessary to

introduce the two parameter variation

(u1,u2) = a(u1 + u2)

and to note that

a9 da a2E ° d2E ° au=ci' ut = d2
As an application of this remark, we have the following.

LEMMA 13.6. If y is a minimal geodesic from p to q

then the bilinear pairing E** is positive semi-definite.

Hence the index X of E** is zero.

PROOF: The inequality E(a(u)) > E(y) = E(a(o)) implies that

d2E(a( , evaluated at u = 0, is > 0. Hence E**(W,W) > 0 for all W.
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§14. Jacobi Fields: The Null Space of E**

A vector field J along a geodesic y is called a Jacobi field

if it satisfies the Jacobi differential equation

2

D + R(V,J)V = o
dt

77

where V = Ur . This is a linear, second order differential equation.

[It can be put in a more familiar form by choosing orthonormal parallel vec-

tor fields P1,...,Pn along y. Then setting J(t) = E fi(t)Pi(t), the

equation becomes

2 ida
+ L a'(t)fj(t) = o, i = 1,..., n;

j=1

where a3 = < R(V,Pj)V,Pi > .] Thus the Jacobi equation has 2n linearly

independent solutions, each of which can be defined throughout y. The

solutions are all C°°-differentiable. A given Jacobi field J is com-

pletely determined by its initial conditions:

J(o), uE(o) e TM
'Y(0)

Let p = y(a) and q = y(b) be two points on the geodesic y,

with a b.

DEFINITION. p and q are conjugate* along y if there exists a

non-zero Jacobi field J along y which vanishes for t = a and t = b.

The multiplicity of p and q as conjugate points is equal to the dimen-

sion of the vector space consisting of all such Jacobi fields.

Now let y be a geodesic in S2 = S0(M;p,q). Recall that the null-

space of the Hessian

E**: TOY x TOy--. R

is the vector space consisting of those W1 e TOy such that E**(W1,W2) = 0

*
If y has self-intersections then this definition becomes ambiguous.

One should rather say that the parameter values a and b are conjugate

with respect to y.
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for all W2. The nullity v of E** is equal to the dimension of this

null space. E** is degenerate if v > 0.

THEOREM 14.1. A vector field W1 e TOy belongs to the

null space of E** if and only if W1 is a Jacobi field.

Hence E** is degenerate if and only if the end points

p and q are conjugate along y. The nullity of E** is

equal to the multiplicity of p and q as conjugate points.

PROOF: (Compare the proof of 12.3.) If J. is a Jacobi field which

vanishes at p and q, then J certainly belongs to TOO. The second

variation formula (§13.1) states that

Cl

t 0

Hence J belongs to the null space.

Conversely, suppose that W1 belongs to the null space of E**.

Choose a subdivision o = t0 < t1 <...< tk = 1 of [0,11 so that

W1l[ti_1,ti1 is smooth for each i. Let f: [0,11 -+ [0,11 be a smooth

function which vanishes for the parameter values t0,t1,...,tk and is

positive otherwise; and let

D
2W

W2(t) = f(t)( 2 + R(VW1)V)t
dt

Then

2W 21

E + R(V,W1)VII dt- 2E**(W1,W2)
=

0 + f(t)t1
o

Since this is zero, it follows that W1j[ti-1,ti1 is a Jacobi field for

each i.

I

Now let W2 e TOOy be a field such that W2(ti)
DW1

= At -- for
i

i = 1,2,...,k-1. Then

- 2E**(W1,WI)

k-1

i=1

DW1
Ati .-

2 1

+ 0 dt = 0
0

DW1
Hence -cTE has no jumps. But a solution W1 of the Jacobi equation is

completely determined b the vectors W and
DW1

by 1(ti) Ur-(ti). Thus it fol-

lows that the k Jacobi fields W11[ti_1,ti1, i = 1,...,k, fit together

to give a Jacobi field W1 which is C`°-differentiable throughout the
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entire unit interval. This completes the proof of 14.1.

It follows that the nullity v of E** is always finite. For

there are only finitely many linearly independent Jacobi fields along y.

REMARK 14.2. Actually the nullity v satisfies 0 < v < n. Since

the space of Jacobi fields which vanish for t = 0 has dimension

precisely n, it is clear that v < n. We will construct one

example of a Jacobi field which vanishes for t = 0, but not for

t = 1. This will imply that v < n. In fact let Jt = tVt where

V = 7 denotes the velocity vector field. Then

DJ
(IT

1 V+ t DV = V

2

(Since

Uy
= o), hence = 0. Furthermore R(V,J)V = tR(V,V)V

dt7
= 0 since R is skew symmetric in the first two variables. Thus

J satisfies the Jacobi equation. Since J0 = 0, J1 # 0, this

completes the proof.

EXAMPLE 1. Suppose that M is "flat" in the sense that the curva-

ture tensor is identically zero. Then the Jacobi equation becomes

dt2 = 0. Setting J(t) =) fi(t)Pi(t) where Pi are parallel,

2 i
this becomes ddf7 = 0. Evidently a Jacobi field along y can have

at most one zero. Thus there are no conjugate points, and E** is

non-degenerate.

EXAMPLE 2. Suppose that p and q are antipodal points on the

unit sphere Sn, and let y be a great circle arc from p to q.

Then we will see that p and q are conjugate with multiplicity

n-1. Thus in this example the nullity v of E** takes its

largest possible value. The proof will depend on the following

discussion.

Let a be a 1-parameter variation of y, not necessarily keeping

the endpoints fixed, such that each &(u) is a geodesic. That is, let

a: x [0,11 -+ M

be a COO map such that a(o,t) = y(t), and such that each a(u) [given

by &(u)(t) = a(u,t)] is a geodesic.
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LEMMA 14.3. If a is such a variation of y through

geodesics, then the variation vector field W(t) _(O,t)

is a Jacobi field along Y.

PROOF: If a is a variation of y through geodesics, then
D as
dT3£

is identically zero. Hence

D D as D D as R( as as \ as
0 ° Tu3-E3y - 3TTu 3T + CTU ZE

D2 as as a(X ) as

+ R\.t'Tu at

(Compare §13.3.) Therefore the variation vector field Y is a Jacobi

field.

Thus one way of obtaining Jacobi fields is to move geodesics around.

Now let us return to the example of two antipodal points on a unit

n-sphere. Rotating the sphere, keeping p and q fixed, the variation

vector field along the geodesic y will be a Jacobi field vanishing at p

and q. Rotating in n-1 different directions one obtains n-1 linearly

independent Jacobi fields. Thus p and q are conjugate along y with

multiplicity n-1.
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LEMMA 14.4. Every Jacobi field along a geodesic y: [0,11-+ M

may be obtained by a variation of y through geodesics.

PROOF: Choose a neighborhood U of y(o) so that any two points

of U are joined by a unique minimal geodesic which depends differentiably

on the endpoints. Suppose that y(t) e U for 0 < t < s. We will first

construct a Jacobi field W along yl[o,s] with arbitrarily prescribed

values at t = 0 and t = s. Choose a curve a: (-e,E) -+ U so that

a(o) = y(o) and so that mo(o) is any prescribed vector in TM y(0).

Similarly choose b: (-E,E) -+ U with b(0) y(s) and T(o) arbitrary.

Now define the variation

a: (-E,E) x [o,s] -+ M

by letting a(u): M be the unique minimal geodesic from a(u)

to b(u). Then the formula t -+(o,t) defines a Jacobi field with the
(TU

given end conditions.

Any Jacobi field along yl[o,s] can be obtained in this way: If

7(y) denotes the vector space of all Jacobi fields W along y, then the

formula W (W(0), W(s)) defines a linear map

f: 7(y) -+ TMY(0) X TM7(s)
We have just shown that f is onto. Since both vector spaces have the same

dimension 2n it follows that f is an isomorphism. I.e., a Jacobi field

is determined by its values at y(o) and y(s). (More generally a Jacobi

field is determined by its values at any two non-conjugate points.) There-

fore the above construction yields all possible Jacobi fields along

yl[o,s1.

The restriction of a(u) to the interval 10,81 is not essential.

If u is sufficiently small then, using the compactness of [0,11, a(u)

can be extended to a geodesic defined over the entire unit interval [0,11.

This yields a variation through geodesics:

a&: (-E',E') X [0,11 -+ M

with any given Jacobi field as variation vector.

REMARK 14.5. This argument shows that in any such neighborhood U

the Jacobi fields along a geodesic segment in U are uniquely determined
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by their values at the endpoints of the geodesic.

REMARK 14.6. The proof shows also, that there is a neighborhood

(-S,s) of 0 so that if t e (-s,s) then y(t) is not conjugate to

y(o) along y. We will see in §15.2 that the set of conjugate points to

y(o) along the entire geodesic y has no cluster points.
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§15. The Index Theorem.

The index % of the Hessian

E**: TOy x TOy-+ R

is defined to be the maximum dimension of a subspace of Tay on which E**

is negative definite. We will prove the following.

THEOREM 15.1 (Morse). The index X of E** is equal

to the number of points y(t), with 0 < t < 1, such

that y(t) is conjugate to y(o) along y; each such

conjugate point being counted with its multiplicity.

This index . is always finite*.

As an immediate consequence one has:

COROLLARY 15.2. A geodesic segment y: [0,11 - M can

contain only finitely many points which are conjugate

to y(o) along y.

In order to prove 15.1 we will first make an estimate for ) by

splitting the vector space Tay into two mutually orthogonal subspaces, on

one of which E** is positive definite.

Each point y(t) is contained in an open set U such that any two

points of U are joined by a unique minimal geodesic which depends differ-

entiably on the endpoints. (See §10.) Choose a subdivision

o = to < t1 ..< tk = 1 of the unit interval which is sufficiently fine

so that each segment y[ti_i,til lies within such an open set U; and so

that each yl[ti_1,tiI is minimal.

Let TOy(to,tl,t2,...,tk) C TOy be the vector space consisting of

all vector fields W along y such that

1) WI[ti_i,til is a Jacobi field along yl[ti_1,tiI for each i;

2) W vanishes at the endpoints t = 0, t = 1.

Thus T11y(t0,tl,...,tk) is a finite dimensional vector space consisting of

broken Jacobi fields along y.

*
For generalization of this result see: W. Ambrose, The index theorem in

Riemannian geometry, Annals of Mathematics, Vol. 73 (1961), pp. 49-86.
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Let T' C Tsar be the vector space consisting of all vector fields

W E TOY for which W(t0) = 0, W(t1) = 0, W(t2) = 0,..., W(tk) = o.

LEMMA 15.3. The vector space Tsar splits as the direct

sum TOy(to,t,,...,tk) ® T'. These two subspaces are

mutually perpendicular with respect to the inner product

E**. Furthermore, E** restricted to T' is positive

definite.

PROOF: Given any vector field W E TOY let W1 denote the unique

"broken Jacobi field" in TOy(t0,t1,...,tk) such that W1(ti) = W(ti) for

i = 0,1,...,k. It follows from §14.5 that W1 exists and is unique.

Clearly W - W1 belongs to T'. Thus the two subspaces, Tsay(to,t1,...,tk)

and T' generate Tsar, and have only the zero vector field in common.

If W1 belongs to Tsay(to)tl,...,tk) and W2 belongs to T',

then the second variation formula (13.1) takes the form

1

LW

-liE**(Wj
<W2(t),pt -1 > - <W2,o > dt = 0

t 0

Thus the two subspaces are mutually perpendicular with respect to E**

For any W E TO the Hessian E**(W,W) can be interpreted as the
2

second derivative d E

y

2 a (0); where &: (-s,e) is any variation of7,

y with variation vector field mo(o) equal to W. (Compare 13.5.) If

W belongs to T' then we may assume that & is chosen so as to leave the

points y(to),y(t1),...,y(tk) fixed. In other words we may assume that

a(u)(ti) = y(ti) for i = 0,1,...,k.

Proof that E**(W,W) > 0 for W e T'. Each a(u) e 0 is a piece-

wise smooth path from y(o) to y(t1) to y(t2) to ... to y(1). But

each yl[ti_1,ti] is a minimal geodesic, and therefore has smaller energy

than any other path between its endpoints. This proves that

E(a(u)) > E(y) = E(a(o)) .

Therefore the second derivative, evaluated at u = 0, must be > 0.

Proof that E**(W,W) > 0 for W E T', W 0. Suppose that

E**(W,W) were equal to 0. Then W would lie in the null space of E**.

In fact for any W1 e T0y(t0,t1,...,tk) we have already seen that

E**(W1,W) = 0. For any W2 e T' the inequality
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0 < E**(W + c W2, W + c W2) = 2c E**(W2,W) + C
2
E**(W2,W2)

for all values of c implies that E**(W2,W) = 0. Thus W lies in the

null space. But the null space of E** consists of Jacobi fields. Since

T' contains no Jacobi fields other than zero, this implies that W = 0.

Thus the quadratic form E** is positive definite on T'. This

completes the proof of 15.3.

An immediate consequence is the following:

LEMMA 15.4. The index (or the nullity) of E** is equal

to the index (or nullity) of E** restricted to the space

TOy(t0,t1,...,tk) of broken Jacobi fields. In particular

(since To
7
(t0,tl,...,tk) is a finite dimensional vector

space) the index X is always finite.

The proof is straightforward.

Let yT denote the restriction of y to the interval [O,T].

Thus yT: [O,T] -+ M is a geodesic from y(o) to y(T). Let ?(T) denote

the index of the Hessian ( Eo )** which is associated with this geodesic.

Thus X(1) is the index which we are actually trying to compute. First

note that:

ASSERTION (1). X(T) is a monotone function of T.

For if T < T' then there exists a X(T) dimensional space P of

vector fields along yT which vanish at y(o) and y(T) such that the

Hessian ( Eo )** is negative definite on this vector space. Each vector

field in '' extends to a vector field along yT' which vanishes identically

between y(T) and y(T'). Thus we obtain a X(T) dimensional vector space

of fields along yT,

%(T) <

on which
Eoi

)** is negative definite. Hence

ASSERTION (2). T.(-T) = 0 for small values of T.

For if T is sufficiently small then yT is a minimal geodesic,

hence X(T) = 0 by Lemma 13.6.

Now let us examine the discontinuities of the function X(T). First

note that X(T) is continuous from the left:

ASSERTION (3). For all sufficiently small e > 0 we have

A.(T-E) = X(T).
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PROOF. According to 15.3 the number x(1) can be interpreted as

the index of a quadratic form on a finite dimensional vector space

T0y(to,t1,...,tk). We may assume that the subdivision is. chosen so that

say ti < T < ti+1. Then the index X(T) can be interpreted as the index

of a corresponding quadratic form HT on a corresponding vector space of

broken Jacobi fields along yT. This vector space is to be constructed

using the subdivision 0 < t1 < t2 <... < ti < T of [0,T1. Since a

broken Jacobi field is uniquely determined by its values at the break points

y(ti), this vector space is isomorphic to the direct sum

E = TMy(t1) ® TMy(t2) ® ... ® TMy(ti) .

Note that this vector space E is independent of T. Evidently the quad-

ratic form H. on E varies continuously with T.

Now HT is negative definite on a subspace V C E of dimension

X(T). For all r' sufficiently close to T it follows that HT, is

negative definite on V. Therefore X(T') > But if T' = T - e < T

then we also have ?V(T-e) < >,(T) by Assertion 1. Hence 'X(T-e) _ X(T).

ASSERTION (4). Let v be the nullity of the Hessian ( Eo ).

Then for all sufficiently small e > 0 we have

.l.(T+e) = x(T) + V

Thus the function x(t) jumps by v when the variable t passes

a conjugate point of multiplicity v; and is continuous otherwise. Clearly

this assertion will complete the proof of the index theorem.

PROOF that a(T+e) < X(T) + v . Let HT and E be as in the proof

of Assertion 3. Since dim E = ni we see that H. is positive definite on

some subspace )' C Z of dimension ni - X(T) - v. For all T' sufficient-

ly close to T, it follows that HT, is positive definite on n". Hence

X(T') < dim E - dime" l.(T) + v

PROOF that X(T+e) > X(T) + v. Let W1,-..,wx(T) be X(T) vector

fields along yT, vanishing at the endpoints, such that the matrix

( Ep )+ (Wi,Wj) 1
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is negative definite. Let J1,...,J, be v linearly independent Jacobi

fields along yT, also vanishing at the endpoints. Note that the v

vectors
DJh
-HE('r) E TMY(T)

are linearly independent. Hence it is possible to choose v vector fields

X1, ... ,X, along YT+E' vanishing at the endpoints of rT + E, so that

(
DJh \\

dt

is equal to the v x v identity matrix. Extend the vector fields Wi and

Jh over yT+E by setting these fields equal to 0 for T < t < T + E.

Using the second variation formula we see easily that

Toe
Eo )**

Jh' WO = o

Eo+EI**( Jh' Xk) = 2shk (Kronecker delta).

Now let c be a small number, and consider the X(T) + v vector fields

W1,...,Wx(T),
c_1

J1 - c X1,..., c
_1
Jv - c Xv

along YT+E' We claim that these vector fields span a vector space of

dimension )(T) + v on which the quadratic form ( E"'),, is negative

definite. In fact the matrix of (Eo+E)** with respect to this basis is

ET )**( WI,W c A

c At -4I+ c 2
B /

where A and B are fixed matrices. If c is sufficiently small, this

compound matrix is certainly negative definite. This proves Assertion (4).

The index theorem 15.1 clearly follows from the Assertions (2),(3),

and (4) .
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§16. A Finite Dimensional Approximation to 0c

Let M be a connected Riemannian manifold and let p and q be

two (not necessarily distinct) points of M. The set a = 0(M;p,q) of

piecewise C°° paths from p to q can be topologized as follows. Let p

denote the topological metric on M coming from its Riemann metric. Given

w, W' e n with arc-lengths s(t), s'(t) respectively,define the distance

d(W,W') to be
1 i2

Max p(a(t), W'(t)) +
L

C r .ds'\ dt]
z

0< t< 1 \ / L J0 \ 1

(The last term is added on so that the energy function

2

Eb(W) = ( d
dt

a

will be a continuous function from a to the real numbers.) This metric

induces the required topology on D.

Given c > 0 let 0c denote the closed subset E-1([O,cl) C n

and let Int Sac denote the open subset E-1([o,c)) (where E = E1: n - R

is the energy function). We will study the topology of nc by construct-

ing a finite dimensional approximation to it.

Choose some subdivision 0 = to< t1 <...< tk = I of the unit inter-

val. Let Sa(to,t1,...,tk) be the subspace of a consisting of paths

W: (0,11 - M such that
1) a(o) = p and a)(1) =q
2) ml[ti-1,ti) is a geodesic for each i = 1,...,k.

Finally we define the subspaces

n(to,t1,...,tk)c = nc n n(to,t1,...,tk)

Int n(to,t1,...,tk)c = (Int 0c) n n(to,...,tk)

LEMMA 1"6.1. Let M be a complete Riemannian manifold;

and let c be a fixed positive number such that Dc / 0.

Then for all sufficiently fine subdivisions (to,tl,...,tk)

of [0,11 the set Int n(to,tl,...,tk)c can be given the

structure of a smooth finite dimensional manifold in a

natural way.
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PROOF: Let S denote the ball

{x E M : o(x,p) < %r-c1

Note that every path w E sac lies within this subset S C M. This follows

from the inequality L2 < E < c .

Since M is complete, S is a compact set. Hence by 10.8 there

exists e > 0 so that whenever x, y E S and p(x,y) < s there is a

unique geodesic from x to y of length < e; and so that this geodesic

depends differentiably on x and y.

Choose the subdivision (t0,t1,...,tk) of [0,11 so that each

difference ti - ti-1 is less than e2/c. Then for each broken geodesic

w E o(t0,t1,...,tk)c

we have

ti 2 ti
Lti-1 cu) = (ti - ti_1) ( Eti-1 cu) < (ti (E w)

< (ti - ti_1)c < e2

Thus the geodesic mj[ti_1,ti1 is uniquely and differentiably determined by

the two end points.

The broken geodesic w is uniquely determined by the (k-1)-tuple

0)(t1), w(t2),...,w(tk_1) E M X M x...x M.

Evidently this correspondence

w --F (cu(t1),...,aa(tk-1))

defines a homeomorphism between Int 0(t0,t1,...,tk)c and a certain open

subset of the (k-1)-fold product M x...x M. Taking over the differentiable

structure from this product, this completes the proof of 16.1.

To shorten the notation, let us denote this manifold

Int 0(t0,t1,...,tk)c of broken geodesics by B. Let

E': B -'R
denote the restriction to B of the energy function E : 0 - it.
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THEOREM 16.2. This function E': B R is smooth.

Furthermore, for each a < c the set Ba = (E')-1[o,a]

is compact, and is a deformation retract* of the cor-

responding set 0a. The critical points of E' are

precisely the same as the critical points of E in

Int 0c: namely the unbroken geodesics from p to q

of length less than '. The index or the nullity]

of the Hessian E'** at each such critical point y

is equal to the index [ or the nullity ] of E** at y.

Thus the finite dimensional manifold B provides a faithful model

for the infinite dimensional path space Int no. As an immediate conse-

quence we have the following basic result.

THEOREM 16.3. Let M be a complete Riemannian manifold

and let p,q e M be two points which are not conjugate

along any geodesic of length < %ra. Then as has the

homotopy type of a finite CW-complex, with one cell of

dimension X for each geodesic in 0a at which E**

has index X.

(In particular it is asserted that na contains only finitely many

geodesics.)

PROOF. This follows from 16.2 together with §3.5.

PROOF of 16.2. Since the broken geodesic w e B depends smoothly

on the (k-1)-tuple

w(t1),w(t2),...,w(tk-1) E M x...x M

it is clear that the energy El(w) also depends smoothly on this (k-1)-

tuple. In fact we have the explicit formula

k

E'(w) p(w(ti_1),a(ti))2/(ti _ ti_1)

i=1

Similarly B itself is a deformation retract of Int sac.
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For a < c the set Ba is homeomorphic to the set of all (k-1)-

tuples (p1,...Pk_1) e S X S x...X S such that

k

p(pi_1,pi)2/(ti - ti_1) < a

91

i=1

(Here it is to be understood that po = p, pk = q.) As a closed subset

of a compact set, this is certainly compact.

A retraction r: Int 0c , B is defined as follows. Let r(e)

denote the unique broken geodesic in B such that each r(w)I[ti_1,ti] is

a geodesic of length < e from w(ti_1) to w(ti). The inequality

p(p,w(t))2

< (L e)2 < E w < c

implies that w[o,1] C S. Hence the inequality

2 t.
p(w(t1_1),w(ti)) < (ti - ti_1)( Et' w) < . c =

i-
e2

implies that r(w) can be so defined.

Clearly E(r(a)) < E(e) < c. This retraction r fits into a 1-

parameter family of maps

ru : Int 0c -+ Int sa c

as follows. For t1-1 < U < ti let

ru(e)I[o,ti_1I = r(e)I[o,ti-1]
,

ru(w)I[ti_1 u] = minimal geodesic from e(ti_1) to e(u)
,

ru(w)I[u,1] = eI[u,1] .

Then ro is the identity map of Int 0c, and r1 = r. It is easily veri-

fied that ru(w) is continuous as a function of both variables. This proves

that B is a deformation retract of Int Sac.

Since E(ru(w)) < E(w) it is clear that each Ba is also a defor-

mation retract of saa.

Every geodesic is also a broken geodesic, so it is clear that every

"critical point" of E in Int sac automatically lies in the submanifold B.

Using the first variation formula (§12.2) it is clear that the critical

points of E' are precisely the unbroken geodesics.

Consider the tangent space TBy to the manifold B at a geodesic

Y. This will be identified with the space T0y(to)tt,...,tk) of broken
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Jacobi fields along y, as described in §15. This identification can be

justified as follows. Let

B

be any variation of y through broken geodesics. Then the corresponding

variation vector field (o,t) along y is clearly a broken Jacobi field.

(Compare §14.3)

Now the statement that the index (or the nullity) of E** at y

is equal to the index (or nullity) of E,* at y is an immediate conse-

quence of Lemma 15.4. This completes the proof of 16.2.

REMARK. As one consequence of this theorem we obtain an alternative

proof of the existence of a minimal geodesic joining two given points p,q

of a complete manifold. For if oa(p,q) is non-vacuous, then the corres-

ponding set Ba will be compact and non-vacuous. Hence the continuous

function E': Ba _ R will take on its minimum at some point y E Ba. This

y will be the required minimal geodesic.
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§17. The Topology of the Full Path Space.

Let M be a Riemannian manifold with Riemann metric g, and let

p be the induced topological metric. Let p and q be two (not neces-

sarily distinct) points of M.

In homotopy theory one studies the space 0* of all continuous

paths

w: [0,11 -M
from p to q, in the compact open topology. This topology can also be

described as that induced by the metric

M x plw(t),w'(t)t

On the other hand we have been studying the space 0 of piecewise C°°

paths from p to q with the metric

r
1 i

dc°,w') = d*(°, ) + L S (dT - ')2 dt I 2
0 J

Since d > d* the natural map

is continuous.

THEOREM 17.1. This natural map i is a homotopy equiva-

lence between 0 and f*.

[Added June 1968. The following proof is based on suggestions by

W. B. Houston, Jr., who has pointed out that my original proof of 17.1 was

incorrect. The original proof made use of an alleged homotopy inverse

S2* O which in fact was not even continuous.]

PROOF: We will use the fact that every point of M has an open

neighborhood N which is "geodesically convex" in the sense that any two

points of N are joined by a unique minimal geodesic which lies completely

within N and depends differentiably on the endpoints. (This result is due

to J. H. C. Whitehead. See for example Bishop and Crittenden, "Geometry of
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manifolds," p. 246; Helgason, "Differential geometry and symmetric spaces,"

p. 53; or Hicks, "Notes on differential geometry," p. 134.)

Choose a covering of M by such geodesically convex open sets Na

Subdividing the interval [0,1] into 2k equal subintervals [(j-l)/2k,j/2k],

let Qk denote the set of all continuous paths w

isfy the following condition: the image under m

[(j-l)/2 k,j/2k] should be contained

p to

from p to q which sat-

of each subinterval

in one of the sets

Clearly each C1 is an open subset of the space

q, and clearly C2 is the union of the sequence

SLR C C2 C 0 C

Similarly the corresponding sets

"k = i-1(C1 )

are open subsets of 0 with union equal to 0.

We will first show that the natural map

(iIC<) "k -3 'k

Na of the covering.

S2* of all paths

of open subsets

from

is a homotopy equivalence. For each w E OO let h(w) E S2k be the broken

geodesic which coincides with w for the parameter values t = j/2k,

j = 0,1,2,...,2k, and which is a minimal geodesic within each intermediate

interval [(j-1)/2k, j/2k). This construction defines a function

h : 0 -* 0k

and it is not difficult to verify that h is continuous.

Just as in the proof of 16.2 on page 91, it can be verified that the

composition (ilCak) ° h is homotopic to the identity map of Ck and that the

composition h e (iI0k) is homotopic to the identity map of cc. This proves

that ilQlc is a homotopy equivalence.

To conclude the proof of 17.1 we appeal to the Appendix. Using Ex-

ample 1 on page 149 note that the space 0 is the homotopy direct limit of

the sequence of subsets S. Similarly note that 4* is the homotopy direct

limit of the sequence of subsets Sc. Therefore, Theorem A (page 150) shows

that i : 0-* S3* is a homotopy equivalence. This completes the proof.
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It is known that the space st* has the homotopy type of a OW-

complex. (See Milnor, On spaces having the homotopy type of a CW-complex,

Trans. Amer. Math. Soc., Vol. 9o (1959), pp. 272-280.) Therefore

COROLLARY 17.2. 0 has the homotopy type of a CW-

complex.

This statement can be sharpened as follows.

THEOREM 17.3. (Fundamental theorem of Morse Theory.)

Let M be a complete Riemannian manifold, and let

p,q E M be two points which are not conjugate along

any geodesic. Then 0(M;p,q) (or 0*(M;p,q)) has the

homotopy type of a countable CW-complex which contains

one cell of dimension % for each geodesic from p

to q of index X.

The proof is analogous to that of 3.5. Choose a sequence

a0 < a1 < a2 < ... of real numbers which are not critical values of the

energy function E, so that each interval (a1_1,ai) contains precisely

one critical value. Consider the sequence

0ao C ,al C ,a2 C ... ;

a
where we may assume that st o is vacuous. It follows from 16.2 together

with 3.3 and 3.7 that each 0
ai

has the homotopy type of 9
ai-1

with a

finite number of cells attached: one %-cell for each geodesic of index %

in E-1(a1_1,ai). Now, just as in the proof of 3.5, one constructs a se-

quence K0 C K1 C K2 C ... of CW-complexes with cells of the required

description, and a sequence

,a0 C
stal

C ;tae C ...
I 1 1

K0 C K1 C K2 C ...

of homotopy equivalences. Letting f: 0 - K be the direct limit mapping,

it is clear that f induces isomorphisms of homotopy groups in all dimen-

sions. Since 0 is known to have the homotopy type of a OW-complex (17.2)

it follows from Whitehead's theorem that f is a homotopy equivalence. This

completes the proof. [For a different proof, not using 17.2, see p. 149.1

EXAMPLE. The path space of the sphere Sn. Suppose that p and q

are two non-conjugate points on Sn. That is, suppose that a / p,p'

where p' denotes the antipode of p. Then there are denumerably many
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geodesics yo'y1' 2' from p to q, as follows. Let yo denote the

short great circle arc from p to q; let y1 denote the long great

circle are pq'p'q; let y2 denote the arc pgp'q'pq; and so on. The

subscript k denotes the number of times that p or p' occurs in the

interior of yk.

The index x(yk) = µ1 +...+ µk is equal to k(n-1), since each

of the points p or p' in the interior is conjugate to p with multi-

plicity n-1. Therefore we have:

COROLLARY 17.4. The loop space st(Sf) has the homotopy

type of a CW-complex with one cell each in the dimensions

0, n-1, 2(n-1), 3(n-1),...

For n > 2 the homology of Q(Sn) can be computed immediately

from this information. Since Q(Sn) has non-trivial homology in infinite-

ly many dimensions, we can conclude:

COROLLARY 17.5. Let M have the homotopy type of Sn,

for n > 2. Then any two non-conjugate points of M are

joined by infinitely many geodesics.

This follows since the homotopy type of o*(M) (and hence of

0(M)) depends only on the homotopy type of M. There must be at least one

geodesic in 0(M) with index 0, at least one with index n-1, 2(n-1),

3(n-1), and so on.
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REMARK. More generally if M is any complete manifold which is

not contractible then any two non-conjugate points of M are joined by

infinitely many geodesics. Compare p. 484 of J. P. Serre, Homologie

singuliere des espaces fibres, Annals of Math. 54 (1951), pp. 425-505.

As another application of 17.4, one can give a proof of the Freuden-

thal suspension theorem. (Compare §22.3.)
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§.18. Existence of Non-Conjugate Points.

Theorem 17.3 gives a good description of the space O(M;p,q) pro-

viding that the points p and q are not conjugate to each other along any

geodesic. This section will justify this result by showing that such non-

conjugate points always exist.

Recall that a smooth map f: N - M between manifolds of the same

dimension is critical at a point x e N if the induced map

f.: TNx - TMf(x)

of tangent spaces is not 1-1. We will apply this definition to the ex-

ponential map

exp = expp: TMp M .

(We will assume that M is complete, so that exp is everywhere defined;

although this assumption could easily be eliminated.)

THEOREM 18.1. The point exp v is conjugate to p along

the geodesic yv from p to exp v if and only if the

mapping exp is critical at v.

PROOF: Suppose that exp is critical at v e TMp. Then exp*(X)

0 for some non-zero X E T(TMP)v, the tangent space at v to TMp,

considered as a manifold. Let u-. v(u) be a path in TMp such that

v(0) = v and mo(o) = X. Then the map a defined by a(u,t) = exp tv(u)

is a variation through geodesics of the geodesic yv given by t-* exp tv.

Therefore the vector field W given by t -(exp tv(u))u-o is a Jacob'

field along yv. Obviously W(O) = 0. We also have

W(1) = .(exp v(u))I = exp dvu)(0) = exp*X = 0.
u=o

But this field is not identically zero since

dT(o) ` TU_ 3£ (exp tv(u))I(0,0) = v(u)Iu=o o

So there is a non-trivial Jacobi field along 7v from p to exp v,

vanishing at these points; hence p and exp v are conjugate along 7v
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Now suppose that exp* is non-singular at v. Choose n independ-

ent vectors X1,...,Xn in T(TMP)v. Then exp*(X1),..., exp.(Xn) are

linearly independent. In T)Mp choose paths u - v1(u),...,u -' vn(u)
dvi(u)

with vi(o) = v and -emu (0) = Xi

Then a1,...,an, constructed as above, provide n Jacobi fields

W1,...,Wn along yv, vanishing at p. Since the Wi(1) = exp.(Xi) are

independent, no non-trivial linear combination of the Wi can vanish at

exp v. Since n is the dimension of the space of Jacobi fields along yV,

which vanish at p, clearly no non-trivial Jacobi field along yv vanishes

at both p and exp v. This completes the proof.

COROLLARY 18.2. Let p e M. Then for almost all q E M,

p is not conjugate to q along any geodesic.

PROOF. This follows immediately from 18.1 together with Sard's

theorem (§6.1).
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§19. Some Relations Between Topology and Curvature.

This section will describe the behavior of geodesics in a manifold

with "negative curvature" or with "positive curvature."

LEMMA 19.1. Suppose that < R(A,B)A,B > < 0 for

every pair of vectors A,B in the tangent space

TMp and for every p E M. Then no two points of

M are conjugate along any geodesic.

PROOF. Let y be a geodesic with velocity vector field V; and

let J be a Jacobi field along y. Then

D2
J + R(V,J)V = 0

dt2

so that

Therefore

DJ , J> < R(V,J)V,J > > 0.
dt

2JJ> _ < 7.7 , J> + DJ
CTE

2

> 0

Thus the function < , J > is monotonically increasing, and strictly
CTE

so if d / 0.

If J vanishes both at 0 and at to > 0, then the function

DJ, J > also vanishes at 0 and to, and hence must vanish identically

throughout the interval [o,t01. This implies that

J(o) = dt(o)
0,

so that J is identically zero. This completes the proof.

REMARK. If A and B are orthogonal unit vectors at p then the

quantity K R(A,B)A,B > is called the sectional curvature determined by

A and B. It is equal to the Gaussian curvature of the surface

(u1,u2) expp(u1A + u2B)

spanned by the geodesics through p with velocity vectors in the subspace

spanned by A and B. (See for example, Laugwitz "Differential-Geometrie,"

p. 101.)
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[Intuitively the curvature of a manifold can be described in terms

of "optics" within the manifold as follows. Suppose that we think of the

geodesics as being the paths of light rays. Consider an observer at p

looking in the direction of the unit vector U towards a point q = exp(rU).

A small line segment at q with length L, pointed in a direction corre-

sponding to the unit vector W e TMP, would appear to the observer as a

line segment of length

L(1 + - < R(U,W)U,W > + (terms involving higher powers of r))

Thus if sectional curvatures are negative then any object appears shorter

than it really is. A small sphere of radius e at q would appear to be

an ellipsoid with principal radii e(1 + r2
-K1 + ...), ..., e(1 + r2

67Kn + ...)

where K1)K2,...,Kn denote the eigenvalues of the linear transformation

W - R(U,W)U. Any small object of volume v would appear to have volume
2

v(1 + -(K1 + K2 +...+ Kn) + (higher terms)) where K1 +...+ Kn is equal

to the "Ricci curvature" K(U,U), as defined later in this section.]

Here are some familiar examples of complete manifolds with curva-

ture < 0:

(1) The Euclidean space with curvature 0.

(2) The paraboloid z = x2 - y2, with curvature < 0.

(3) The hyperboloid of rotation x2 + y2 - z2 = 1, with curva-

ture < 0.

(4) The helicoid x cos z + y sin z = 0, with curvature < 0.

(REMARK. In all of these examples the curvature takes values arbi-

trarily close to o. Of. N. V. Efimov, Impossibility of a complete surface

in 3-space whose Gaussian curvature has a negative upper bound, Soviet Math.,

Vol. 4 (1963), pp. 843-846.)

A famous example of a manifold with everywhere negative sectional

curvature is the pseudo-sphere

z = - 1 - x2 - y2 + sech 1 Jx2 + y2, z > 0

with the Riemann metric induced from R3. Here the Gaussian curvature has

the constant value -1.

No geodesic on this surface has conjugate points although two geo-

desics may intersect in more than one point. The pseudo-sphere gives a
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non-Euclidean geometry, in which the sum of the angles of any triangle is

< it radians. This manifold is not complete. In fact a theorem of Hilbert

states that no complete surface of constant negative curvature can be

imbedded in R3. (See Blaschke, "Differential Geometric I," 3rd edn., §96;

or Efimov, ibid.)

However, there do exist Riemannian manifolds of constant negative

curvature which are complete. (See for example Laugwitz, "Differential

and Riemannian geometry," §12.6.2.) Such a manifold can even be compact;

for example, a surface of genus > 2. (Compare Hilbert and Cohn-Vossen,

"Geometry and the imagination," p. 259.)

THEOREM 19.2 (Cartan*). Suppose that M is a simply

connected, complete Riemannian manifold, and that the

sectional curvature KR(A,B)A,B > is everywhere < 0.

Then any two points of M are joined by a unique geo-

desic. Furthermore, M is diffeomorphic to the

Euclidean space Rn.

PROOF: Since there are no conjugate points, it follows from the

index theorem that every geodesic from p to q has index X = 0. Thus

Theorem 17.3 asserts that the path space 0(M;p,q) has the homotopy type

of a 0-dimensional CW-complex, with one vertex for each geodesic.

The hypothesis that M is simply connected implies that Q(M;p,q)

is connected. Since a connected 0-dimensional CW-complex must consist of

a single point, it follows that there is precisely one geodesic from p to

q.
*

See E. Cartan, "Lecons sur la Geometrie des Espaces de Riemann," Paris,

1926 and 1951.
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Therefore, the exponential map expp: TMp - M is one-one and

onto. But it follows from 18.1 that expp is non-critical everywhere;

so that expp is locally a diffeomorphism. Combining these two facts, we

see that expp is a global diffeomorphism. This completes the proof of

19.2.

More generally, suppose that M is not simply connected; but is

complete and has sectional curvature < 0. (For example M might be a

flat torus S1 X S1, or a compact surface of genus > 2 with constant

negative curvature.) Then Theorem 19.2 applies to the, universal covering
ti

space M of M. For it is clear that M inherits a Riemannian metric

from M which is geodesically complete, and has sectional curvature < 0.

Given two points p,q E M, it follows that each homotopy class of

paths from p to q contains precisely one geodesic.

The fact that M is contractible puts strong restrictions on the

topology of M. For example:

COROLLARY 19.3. If M is complete with <R(A,B)A,B

< 0 then the homotopy groups ai(M) are zero for

i > 1; and a1(M) contains no element of finite order

other than the identity.

PROOF: Clearly ai(M) = j(M) = 0 for i > 1. Since M is

contractible the cohomology group 11k(M) can be identified with the co-

homology group Hk(a1(M)) of the group a1(M). (See for example pp. 200-

202 of S. T. Hu "Homotopy Theory," Academic Press, 1959.) Now suppose

that a1(M) contains a non-trivial finite cyclic subgroup G. Then for a

suitable covering space M of M we have a1(M) = G; hence

Hk(G) = Hk(M) = 0 for k > n .

But the cohomology groups of a finite cyclic group are non-trivial in arbi-

trarily high dimensions. This gives a contradiction; and completes the

proof.
Now we will consider manifolds with "positive curvature." Instead

of considering the sectional curvature, one can obtain sharper results in

this case by considering the Ricci tensor (sometines called the "mean curva-

ture tensor").
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DEFINITION. The Ricci tensor at a point p of a Riemannian mani-

fold M is a bilinear pairing

K: TMp x TMp R

defined as follows. Let K(U1,U2) be the trace of the linear transforma-

tion

W R(U1,W)U2

from TMp to TMp. (In classical terminology the tensor K is obtained

from R by contraction.) It follows easily from §9.3 that K is symmetric:

K(U1,U2) = K(U2,U1).

The Ricci tensor is related to sectional curvature as follows. Let

U1,U2,...,Un be an orthonormal basis for the tangent space TMp.

ASSERTION. K(Un,Un) is equal to the sum of the sectional curva-

tures < R(Un,Ui)Un,Ui > for i = 1,2,...,n-1.

PROOF: By definition K(Un,Un) is equal to the trace of the matrix

( K R(Un,Ui)Un,Uj > ) . Since the n-th diagonal term of this matrix is

zero, we obtain a sum of n-1 sectional curvatures, as asserted.

THEOREM 19.4 (Myers*). Suppose that the Ricci curvature

K satisfies

K(U,U) > (n-1)/r2

for every unit vector U at every point of M; where r

is a positive constant. Then every geodesic on M of

length > Ar contains conjugate points; and hence is not

minimal.

PROOF: Let y: [0,11 - M be a geodesic of length L. Choose

parallel vector fields P1,...,Pn along y which are orthonormal at one

point, and hence are orthonormal everywhere along y. We may assume that

Pn points along y, so that

DP
V = = L Pn , and i

Let Wi(t) _ (sin at) Pi(t). Then

= 0

See S. B. Myers, Riemann manifolds with positive mean curvature, Duke

Math. Journal, Vol. 8 (1941), pp. 4o1-404.
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1 D2W.

2E**i,Wi) _ - $ < Wi, dt2 + R(V,Wi)V > dt

0
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1

S
(sin at)2

(a2
- L2 < R(Pn,PI)Pn,Pi > ) dt.

0

Summing for i = 1,...,n-1 we obtain

1 7- )> dt2 L2 K(P P)t 2 ic - n((n-1 n,(sin n )

0

Now if K(Pn,Pn) > (n-1)/r2 and L > ar then this expression is

< o. Hence E**(Wi,Wi) < 0 for some i. This implies that the index of

y is positive, and hence, by the Index Theorem, that y contains conju-

gate points.

It follows also that y is not a minimal geodesic. In fact if

a is a variation with variation vector field Wi then

dE(a(u))
=- d2E(a(u))

CTU_

0,

du
2

< o

for u = 0. Hence E(a(u)) < E(y) for small values of u # 0. This com-

pletes the proof.

EXAMPLE. If M is a sphere of radius r then every sectional

curvature is equal to 1/r2. Hence K(U,U) takes the constant value

(n-1)/r2. It follows from 19.4 that every geodesic of length > ar con-

tains conjugate points: a best possible result.

COROLLARY 19.5. If M is complete, and K(U,U) >

(n-1) /r2 > o for all unit vectors U, then M is

compact, with diameter < ar.

PROOF. If p,q e M let y be a minimal geodesic from p to q.

Then the length of y must be < ar. Therefore, all points have distance

< ar. Since closed bounded sets in a complete manifold are compact, it

follows that M itself is compact.

This corollary applies also to the universal covering space M of

M. Since M is compact, it follows that the fundamental group a1(M) is

finite. This assertion can be sharpened as follows.
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THEOREM 19.6. If M is a compact manifold, and if the

Ricci tensor K of M is everywhere positive definite,

then the path space 11(M;p,q) has the homotopy type of

a CW-complex having only finitely many cells in each

dimension.

PROOF. Since the space consisting of all unit vectors U on M

is compact, it follows that the continuous function K(U,U) > 0 takes on

a minimum, which we can denote by (n-1)/r2 > 0. Then every geodesic

y E 0(M;p,q) of length > ar has index X > 1.

More generally consider a geodesic y of length > kirr. Then a

similar argument shows that y has index >v > k. In fact for each

i = 1,2,...,k one can construct a vector field Xi along y which vanishes

i-1 ioutside of the interval ( ,

k
), and such that E**(Xi,Xi) < 0.

Clearly E**(Xi,Xi ) = 0 for i j; so that X1,...,Xk span a k -

dimensional subspace of TOy on which E** is negative definite.

Now suppose that the points p and q are not conjugate along any

geodesic. Then according to § 16.3 there are only finitely many geodesics

from p to q of length < ksr. Hence there are only finitely many geo-

desics with index < k. Together with §17.3, this completes the proof.

REMARK. I do not know whether or not this theorem remains true if

M is allowed to be complete, but non-compact. The present proof certainly

breaks down since, on a manifold such as the paraboloid z = x2 + y2, the

curvature K(U,U) will not be bounded away from zero.

It would be interesting to know which manifolds can carry a metric

so that all sectional curvatures are positive. An instructive example is

provided by the product Sm X Sk of two spheres; with m,k > 2. For this

manifold the Ricci tensor is everywhere positive definite. However, the

sectional curvatures in certain directions (corresponding to flat tori

S1 X S1 C Sm X Sk) are zero'. It is not known whether or not Sm x Sk can

be remetrized so that all sectional curvatures are positive. The following

partial result is known: If such a new metric exists, then it can not be

invariant under the involution (x,y) -+ (-x,-y) of Sm x Sk. This follows

from a theorem of Synge. (See J. L. Synge, On the connectivity of spaces
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of positive curvature, Quarterly Journal of Mathematics (Oxford), Vol. 7

(1936), pp. 316-320.

For other theorems relating topology and curvature, the following

sources are useful.

K. Yano and S. Bochner, "Curvature and Betti Numbers," Annals

Studies, No 32, Princeton, 1953.

S. S. Chern, On curvature and characteristic classes of a Riemann

manifold, Abh. Math. Sem., Hamburg, Vol. 20 (1955), pp. 117-126.

M. Berger, Sur certaines varietes Riemanniennes a courbure positive,

Comptes Rendus Acad. Sci., Paris, Vol. 247 (1958), pp. 1165-1168.

S. I. Goldberg, "Curvature and Homology," Academic Press, 1962.
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PART IV.

APPLICATIONS TO LIE GROUPS AND SYMMETRIC SPACES

§20. Symmetric Spaces.

A symmetric space is a connected Riemannian manifold M such that,

for each p e M there is an isometry I
p

: M M which leaves p fixed

and reverses geodesics through p, i.e., if y is a geodesic and y(0) = p

then Ip(y(t)) = y(-t).

LEMMA 20.1 Let y be a geodesic in M, and let

p = y(o) and q = y(c). Then IgIp(y(t)) = y(t + 2c)

(assuming y(t) and y(t + 2c) are defined). More-

over, Iqlp preserves parallel vector fields along y

PROOF: Let y'(t) = y(t + c). Then y' is a geodesic and

y'(o) = q. Therefore IgIp(y(t)) = Iq(y(-t)) = Iq(y'(-t - c)) =

y'(t + c) = y(t + 2c).

If the vector field V is parallel along y then Ip*(V) is

parallel (since Ip is an isometry) and Ip*V(o) = -V(o); therefore

Ip*V(t) = -V(-t). Therefore Iq* Ip*(V(t)) = V(t + 2c).

COROLLARY 20.2. M is complete.

Since 20.1 shows that geodesics can be indefinitely extended.

COROLLARY 20.3. 1P is unique.

Since any point is joined to p by a geodesic.

COROLLARY 20.4. If U,V and W are parallel vector
fields along y then R(U,V)W is also a parallel

field along y.

PROOF. If X denotes a fourth parallel vector field along y,

note that the quantity < R(U,V)W,X > is constant along y. In fact,
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given p = y(o), q = y(c), consider the isometry T = Iy(c/2)Ip which

carries p to q. Then

<R(Uq,Vq)Wq,Xq> = < R(T*UU,T*VV)T. WW,T. Xp>

by 20.1. Since T is an isometry, this quantity is equal to

< R(UJ,VV)WW,Xp> . Thus <R(U,V)W,X> is constant for every parallel

vector field X. It clearly follows that R(U,V)W is parallel.

Manifolds with the property of 20.4 are called locally symmetric.

(A classical theorem, due to Cartan states that a complete, simply connected,

locally symmetric manifold is actually symmetric.)

In any locally symmetric manifold the Jacobi differential equations

have simple explicit solutions. Let y: R - M be a geodesic in a local-

ly symmetric manifold. Let V = mo(o) be the velocity vector at p = y(o).

Define a linear transformation

TM__KV: TMp -+ TM

by KV(W) = R(V,W)V. Let el,...,en denote the eigenvalues of Kv.

THEOREM 20.5. The conjugate points to p along y

are the points y(ak/e) where k is any non-zero

integer, and ei is any positive eigenvalue of KV.

The multiplicity of y(t) as a conjugate point is

equal to the number of ei such that t is a mul-

tiple of n/ e .

PROOF: First observe that KV is self-adjoint:

KV(W),W'> = <W,Kv(W')

This follows immediately from the symmetry relation

R(V,W)V',W' > = KR(V',W')V,W

Therefore we may choose an orthonormal basis U1, ...,Un for Mp so that

Kv.(Ui) = eiUi ,

where e1, ... ,en are the eigenvalues. Extend the Ui to vector fields

along y by parallel translation. Then since M is locally symmetric,

KV should not be confused with the Ricci tensor of §19.
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the condition

R(V,Ui)V = eiUi

remains true everywhere along y. Any vector field W along y may be

expressed uniquely as

W(t) = w1(t)U1(t) +...+ wn(t)Un(t) .

2

Then the Jacobi equation + KV(W) = 0 takes the form
Tt

d2w

L dt2 Ui + eiwiUi = 0.

Since the Ui are everywhere linearly independent this is equivalent to

the system of n equations

d2wi

et
+ eiw1 0

We are interested in solutions that vanish at t = 0. If ei > 0 then

wi(t) = ci sin (f t), for some constant ci.

Then the zeros of wi(t) are at the multiples of t = n/qre-i

If ei = o then wi(t) = cit and if ei < 0 then

wi(t) = ci sinh (41 for some constant ci. Thus if ei < 0, wi(t)

vanishes only at t = 0. This completes the proof of 20.5.
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§21. Lie Groups as Symmetric Spaces.

In this section we consider a Lie group G with a Riemannian metric

which is invariant both under left translations

LT: G -* G, LT(a) = T a

and right translation, RT(a) = aT. If G is commutative such a metric

certainly exists. If G is compact then such a metric can be constructed

as follows: Let <> be any Riemannian metric on G, and Let .t denote

the Haar measure on G. Then .t is right and left invariant. Define a

new inner product <<, >> on G by

<< V,W >> = S < La*RT*(V), La*RT*(W) > du(a) du(T)

GxG

Then <<,>> is left and right invariant.

LEMMA 21.1 If G is a Lie group with a left and right

invariant metric, then G is a symmetric space. The

reflection IT in any point T E G is given by the

formula IT(a) = Ta-1 T.

PROOF: By hypothesis LT and RT are isometries. Define a map

Ie: G G by

Ie(a) =

Then Ie*: TGe TGe reverses the tangent space of e; so is certainly

an isometry on this tangent space. Now the identity

Ie = R1IeLa_1

shows that Ie*: TGa --) TGa-1 is an isometry for any a E G. Since Ie

reverses the tangent space at e, it reverses geodesics through e.

Finally, defining IT(a) = Ta-1T, the identity I. = RTIeRT1

shows that each IT is an isonetry which reverses geodesics through T.

A 1-parameter subgroup of G is a C°° homomorphism of R into

G. It is well known that a 1-parameter subgroup of G is determined by

its tangent vector at e. (Compare Chevalley, "Theory of Lie Groups,"

Princeton, 1946.)
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LEMMA 21.2. The geodesics y in G with y(O) = e

are precisely the one-parameter subgroups of G.

PROOF: Let y: R - G be a geodesic with y(o) = e. By Lemma 20.1

the map Iy(t)Ie takes y(u) into y(u + 2t). Now Iv(t)Ie(a) = y(t)a y(t)

so y(t)y(u)y(t) = y(u + 2t). By induction it follows that y(nt) = y(t)n

for any integer n. If t'/t" is rational so that t' = nit and t" = n"t
"

for some t and some integers n' and n" then y(t' + t") = y(t)n +n =

y(t')y(t"). By continuity y is a hor..omorphism.

Now let y: R G be a 1-parameter subgroup. Let y' be the

geodesic through e such that the tangent vector of y' at e is the tan-

gent vector of y at e. We have just seen that 7 is a 1-parameter sub-

group. Hence y' = y. This completes the proof.

A vector field X on a Lie group G is called left invariant if

and only if (La)*(Xb) = Xa,b for every a and b in G. If X and Y

are left invariant then [X,Y] is also. The Lie algebra g of G is the

vector space of all left invariant vector fields, made into an algebra by

the bracket [ 1.

g is actually a Lie algebra because the Jacobi identity

[[x,Y],Z] + [[Y,Z],x] + [[Z,X],Y] = 0

holds for all (not necessarily left invariant) vector fields X,Y and Z.

THEOREM 21.3. Let G be a Lie group with a left and

right invariant Riemannian metric. If X,Y,Z and W
are left invariant vector fields on G then:

a) <[X,YI,Z> = <X,[Y,ZI>
b) R(X,Y)Z = - [[X,Y],ZI
c) < R(X,Y)Z,W > < [X,YI,[Z,W1 >

PROOF: As in §8 we will use the notation X F Y for the covariant

derivative of Y in the direction X. For any left invariant X the iden-

tity

x FX = 0

is satisfied, since the integral curves of X are left translates of 1-

parameter subgroups, and therefore are geodesics.
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Therefore

is zero; hence

On the other hand

(X + Y) F (X + Y) = (X F X) + (X F Y)

+ (Y F X) + (Y F Y)

X F Y+ Y F X = 0.

X FY -Y FX = [X,Y]

by §8.5. Adding these two equations we obtain:

d) 2X F Y = [X,Y]

Now recall the identity

Y (X,Z> = <Y F X,Z> + <X,Y F Z > .

(See §8.4.) The left side of this equation is zero, since <X,Z > is

constant. Substituting formula (d) in this equation we obtain

0 = < [Y,X] , Z> + <X, [Y, Z] > .

Finally, using the skew commutativity of [Y,X], we obtain the required

formula

(a) <[X,Y],Z> _ <X,[Y,Z]>

By definition, R(X,Y)Z is equal to

- X F (Y F Z) + Y F (X F Z) + [X,Y] F Z.

Substituting formula (d), this becomes

- -[X,[Y,Z]] + -[Y,[X,Z]] + 2[[X,Y],Z]

Using the Jacobi identity, this yields the required formula

(b) R(X,Y)Z = 7[[X,Y],Z] .

The formula (c) follows from (a) and (b) .

It follows that the tri-linear function X,Y,Z -+ <IX,Y],Z > is skew-

symmetric in all three variables. Thus one obtains a left invariant differ-

ential 3-form on G, representing an element of the de Rham cohomology group

H3(G). In this way Cartan was able to prove that H3(G) # 0 if G is a

non-abelian compact connected Lie group. (See E. Cartan, "La Topologie des

Espaces Representatives des Groupes de Lie," Paris, Hermann, 1936.)
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COROLLARY 21.4. The sectional curvature < R(X,Y)X,Y

K [X,Y],[X,Y] > is always > 0. Equality holds if and

only if [X,Y] = 0.

Recall that the center c of a Lie algebra g is defined to be

the set of X E g such that [X,Y] = 0 for all Y E g.

COROLLARY 21.5. If G has a left and right invariant

metric, and if the Lie algebra g has trivial center,

then G is compact, with finite fundamental group.

PROOF: This follows from Meyer's theorem (§19). Let X1 be any

unit vector in g and extend to a orthonormal basis X1,...,Xn. The Ricci

curvature

K(X1,X1) _ 2. (R(X1,Xi)X1,Xi
i=1

must be strictly positive, since [X1,Xi) / 0 for some i. Furthermore

K(X1,X1) is bounded away from zero, since the unit sphere in g is compact.

Therefore, by Corollary 19.5, the manifold G is compact.

This result can be sharpened slightly as follows.

COROLLARY 21.6. A simply connected Lie group G with left

and right invariant metric splits as a Cartesian product

G' x Rk where G' is compact and Rk denotes the additive

Lie group of some Euclidean space. Furthermore, the Lie

algebra of G' has trivial -center.

Conversely it is clear that any such product G' x Rk possesses a

left and right invariant metric.

PROOF. Let c be the center of the Lie algebra g and let

g' _ (X E g : <X, C> = 0 for all C E c )

be the orthogonal complement of c. Then g' is a Lie sub-algebra. For

if X,Y E g' and C E c then

[X,Y],C > = <X, 1Y,C1 > = o;

hence [X,Y] E g'. It follows that g splits as a direct sum g' ® C of

Lie algebras. Hence G splits as a Cartesian product G' x G"; where G'

is compact by 21.5 and G" is simply connected and abelian, hence isomorphic
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to some Rk. (See Chevalley, "Theory of Lie Groups.") This completes the

proof.

THEOREM 21.7 (Bott). Let G be a compact, simply con-

nected Lie group. Then the loop space 0(G) has the

homotopy type of a CW-complex with no odd dimensional

cells, and with only finitely many X-cells for each

even value of X.

Thus the x-th homology groups of 01(G) is zero for . odd, and is

free abelian of finite rank for a. even.

REMARK 1. This CW-complex will always be infinite dimensional. As

an example, if G is the group S3 of unit quaternions, then we have seen

that the homology group Hi01(S3) is infinite cyclic fqr all even values of i.

REMARK 2. This theorem remains true even for a non-compact group.

In fact any connected Lie group contains a compact subgroup as deformation

retract. (See K. Iwasawa, On some types of topological groups, Annals of

Mathematics 50 (1949), Theorem 6.)

PROOF of 21.7. Choose two points p and q in G which are not

conjugate along any geodesic. By Theorem 17.3, Q(G;p,q) has the homotopy

type of a CW-complex with one cell of dimension X for each geodesic from

p to q of index X. By §19.4 there are only finitely many %-cells for

each X. Thus it only remains to prove that the index X of a geodesic is

always even.

Consider a geodesic y starting at p with velocity vector

V = mo(o) e TGp = g .

According to §20.5 the conjugate points of p on y are determined by the

eigenvalues of the linear transformation

KV : TGp - TGp ,

defined by

KV(W) = R(V,W)V = 7[[V,w],V]

Defining the adjoint homomorphism

Ad V: S1 9
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by

we have

Ad V(W) _ [V,W]

KV = - - (Ad V) o (Ad V)

The linear transformation Ad V is skew-symmetric; that is

Ad V(W),W' > _ - < W,Ad V(W') > .

This follows immediately from the identity 21.3a. Therefore we can choose

an orthonormal basis for (4 so that the matrix of Ad V takes the form

-a2

It follows that the composite linear transformation (Ad V)o(Ad V) has

matrix

0 a2

2 2

a2

Therefore the non-zero eigenvalues of KV - --(Ad V)2 are positive, and

occur in pairs.

It follows from 20.5 that the conjugate points of p along y also

occur in pairs. In other words every conjugate point has even multiplicity.

Together with the Index Theorem, this implies that the index ? of any

geodesic from p to q is even. This completes the proof.
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§22. Whole Manifolds of Minimal Geodesics.

So far we have used a path space o(M;p,q) based on two points

p,q c M which are in "general position." However, Bott has pointed out

that very useful results can be obtained by considering pairs p,q in some

special position. As an example let M be the unit sphere Sn+1,

and

let p,q be antipodal points. Then there are infinitely many minimal geo-

desics from p to q. In fact the space saa of minimal geodesics forms

a smooth manifold of dimension n which can be identified with the equator

Sn C Sn+1. We will see that this space of minimal geodesics provides a

fairly good approximation to the entire loop space 0(Sn+1)

Let M be a complete Riemannian manifold, and let p,q c M be two

points with distance p(p,q) =-,r-d.

THEOREM 22.1. If the space Std of minimal geodesics from

p to q is a topological manifold, and if every non-minimal

geodesic from p to q has index > Xo, then the relative

homotopy group ai(o,Std) is zero for 0 < i < X0.

It follows that the inclusion homomorphism

ai(rid - ai(a)
is an isomorphism for i < Xo - 2. But it is well known that the homotopy

group ai(Sc) is isomorphic to ai+1(M) for all values of i. (Compare

S. T. Hu, "Homotopy Theory," Academic Press, 1959, p. 111; together with

§17.1.)
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Thus we obtain:

COROLLARY 22.2. With the same hypotheses, ei(od) is

isomorphic to a1+1(M) for 0 < i < Xo - 2.

Let us apply this corollary to the case of two antipodal points on

the (n+1)-sphere. Evidently the hypotheses are satisfied with 1`0 = 2n.

For any non-minimal geodesic must wind one and a half times around
Sn+1;

and contain two conjugate points, each of multiplicity n, in its interior.

This proves the following.

COROLLARY 22.3. (The Freudenthal suspension theorem.)

The homotopy group ,ri(Sn) is isomorphic to
"i+1(Sn+1)

for i < 2n-2.

Theorem 22.1 also implies that the homology groups of the loop

space 0 are isomorphic to those of S;d in dimensions < %0 - 2. This

fact follows from 22.1 together with the relative Hurewicz theorem. (See

for example Hu, p. 306. Compare also J. H. C. Whitehead, Combinatorial

homotopy I, Theorem 2.)

The rest of §22 will be devoted to the proof of Theorem 22.1. The

proof will be based on the following lemma, which asserts that the condition

"all critical points have index > %o" remains true when a function is

jiggled slightly.

Let K be a compact subset of the Euclidean space Rn; let U be

a neighborhood of K; and let

f: U R

be a smooth function such that all critical points of f in K have index

)o.

LEMMA 22.4. If g: U R is any smooth function which

is "close" to f, in the sense that

la
_ of I

<3xi '3i E a2g _ a2f
xT 8x c)xi

uniformly throughout K, for some sufficiently small constant s

then all critical points of g in K have index > Xo.

,

(Note that f is allowed to have degenerate critical points. In

the application, g will be a nearby function without degenerate critical

points.)
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PROOF of 22.4. The first derivatives of g are roughly described

by the single real valued function

kg(x)
= mo f

> o
1

on U; which vanishes precisely at the critical points of g. The second

derivatives of g can be roughly described by n continuous functions

eg,..., eg: U - R

as follows. Let

e11(x) < e2(x) <... < eg(x)
9 9

2
denote the n eigenvalues of the matrix ( x ) . Thus a critical point

x of g has index > ? if and only if the number eg(x) is negative.

The continuity of the functions eg follows from the fact that the

X-th eigenvalue of a symmetric matrix depends continuously on the matrix*.

This can be proved, for example, using the fact that the roots of a complex

polynomial of degree n vary continuously with the coefficient of the poly-

nomial. (Rouche's theorem.)

Let mg(x) denote the larger of the two numbers kg(x) and -e g W.

Similarly let mf(x) denote the larger of the corresponding numbers kf(x)

and -ef (x). The hypothesis that all critical points of f in K have

index > X0 implies that -ef (x) > 0 whenever kf(x) = 0. In other words

mf(x) > 0 for all x E K.

Let s > 0 denote the minimum of mf on K. Now suppose that g

is so close to f that

(*) kg(x) - kf(x) I < e, leg (x) - of (x)I < e

for all x E K. Then mg(x) will be positive for x E K; hence every

critical point of g in K will have index > X0.

This statement can be sharpened as follows. Consider two nxn symmetric

matrices. If corresponding entries of the two matrices differ by at most

e, then corresponding eigenvalues differ by at most ne. This can be

proved using Courant's minimax definition of the X-th eigenvalue. (See

§1 of Courant, Uber die Abhangigkeit der Schwingungszahlen einer Membran...,

Nachrichten, Kbniglichen Gesellschaft der Wissenschaften zu Gottingen, Math.

Phys. Klasse 1919, pp. 255-264.)
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To complete the proof of 22.4, it is only necessary to show that

the inequalities (*) will be satisfied providing that

g 2g 2
`zi - 4i l < E and I xcc1 x x1c 6x < E

for sufficiently small a. This follows by a uniform continuity argument

which will be left to the reader (or by the footnote above ).

We will next prove an analogue of Theorem 22.1 for real valued

functions on a manifold.

Let f: M -+ R be a smooth real valued function with minimum o,

such that each Me = f-1[o,c] is compact.

LEMMA 22.5. If the set M0 of minimal points is a manifold,

and if every critical point in M - M0 has index > Xo,

then ar(M,M°) = 0 for 0 < r < X0.

PROOF: First observe that Mo is a retract of some neighborhood

U C M. In fact Hanner has proved that any manifold M0 is an absolute

neighborhood retract. (See Theorem 3.3 of 0. Hanner, Some theorems on

absolute neighborhood retracts, Arkiv for Matematik, Vol. 1 (1950), pp.

389-408.) Replacing U by a smaller neighborhood if necessary, we may

assume that each point of U is joined to the corresponding point of M0

by a unique minimal geodesic. Thus U can be deformed into Mo within M.

Let Ir denote the unit cube of dimension r < Xp, and let

h: (Ir,Ir) _ (M,MO)

be any map. We must show that h is homotopic to a map h' with

h'(Ir) C Mo.

Let c be the maximum of f on h(Ir). Let 35 > 0 be the mini-

mum of f on the set M - U. (The function f has a minimum on M - U

since each subset Mc - U is compact.)

Now choose a smooth function

g:
Mc+2s R

which approximates f closely, but has no degenerate critical points. This

is possible by §6.8. To be more precise the approximation should be so

close that:

(1) Jf(x) - g(x)l < s for all x E Mc+2s. and
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(2) The index of g at each critical point which lies in the com-

pact set f-1[8,c+28] is > x0.

It follows from Lemma 22.4 that any g which approximates f

sufficiently closely, the first and second derivatives also being approxi-

mated, will satisfy (2). In fact the compact set f-'[8,0+281 can be

covered by finitely many compact set Ki, each of which lies in a coordi-

nate neighborhood. Lemma 22.4 can then be applied to each Ki.

The proof of 22.5 now proceeds as follows. The function g is

smooth on the compact region g 1[25,c+s] C f 1[s,c+2sl, and all critical

points are non-degenerate, with index > ).0. Ience the manifold

g
-1

(--,c+bl has the homotopy type of g 1(-oo,2s] with cells of dimension

> X0 attached.

Now consider the map

h:
Ir jr Mc,MO

C g 1(-oo,c+s],MO

Since r < X
0

it follows that h is homotopic within g1(-oo,c+s],M0 to

a map

h': Ir,Ir -y g-1 (--22812M 0 .

But this last pair is contained in (U,MO); and U can be deformed into

MO within M. It follows that h' is homotopic within (M,MO) to a map

h": Ir,Ir - MO,M0. This completes the proof of 22.5.

The original theorem, 22.1, now can be proved as follows. Clearly

it is sufficient to prove that

si(Int 0c,fd) = o

for arbitrarily large values of c. As in §16 the space Int 0c contains

a smooth manifold Int ac(to,t1,...,tk) as deformation retract. The space

sad of minimal geodesics is contained in this smooth manifold.

The energy function E: a --' R, when restricted to

Int sac(t0,t1,...,tk), almost satisfies the hypothesis of 22.5. The only

difficulty is that E(m) ranges over the interval d < E < c, instead of

the required interval [o,oo). To correct this, let

F. [d,c) - [o,o)

be any diffeomorphism.
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Then

F ° E: Int oc(tc,t1,...,tk) R

satisfies the hypothesis of 22.5. Hence

si(Int cc(tp,...,tk),12d) = ni(Int fc,0d)

is zero for i < Xc. This completes the proof.
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§23. The Bott Periodicity Theorem for the Unitary Group.

First a review of well known facts concerning the unitary group.

Let C n be the space of n-tuples of complex numbers, with the usual Her-

mitian inner product. The unitary group U(n) is defined to be the group

of all linear transformations
S. Cn -Cn which preserve this inner

product. Equivalently, using the matrix representation, U(n) is the

group of all n x n complex matrices S such that S S* = I; where S*

denotes the conjugate transpose of S.

For any n x n complex matrix A the exponential of A is defined

by the convergent power series expansion

exp A = I+A+ 1 A2+1A3 + ...

The following properties are easily verified:

(1) exp (A*) = (exp A)*; exp (TAT-1) = T(exp A)T-1.

(2) If A and B commute then

exp (A + B) _ (exp A)(exp B). In particular:

(3) (exp A)(exp -A) = I

(4) The function exp maps a neighborhood of 0 in the space of

n x n matrices diffeomorphically onto a neighborhood of I.

If A is skew-Hermitian (that is if A + A* = 0), then it fol-

lows from (1) and (3) that exp A is unitary. Conversely if exp A is

unitary, and A belongs to a sufficiently small neighborhood of 0, then

it follows from (1), (3), and (4) that A + A* = 0. From these facts one

easily proves that:

(5) U(n) is a smooth submanifold of the space of n x n matrices;

(6) the tangent space TU(n)I can be identified with the space of

n x n skew-Hermitian matrices.

Therefore the Lie algebra g of U(n) can also be identified with

the space of skew-Hermitian matrices. For any tangent vector at I extends

uniquely to a left invariant vector field on U(n). Computation shows that

the bracket product of left invariant vector fields corresponds to the

product [A,B] = AB - BA of matrices.
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Since U(n) is compact, it possesses a left and right invariant

Riemannian metric. Note that the function

exp: TU(n) I - U(n)

defined by exponentiation of matrices coincides with the function exp de-

fined (as in §10) by following geodesics on the resulting Riemannian mani-

fold. In fact for each skew-Hermitian matrix A the correspondence

t - exp(t A)

defines a 1-parameter subgroup of U(n) (by Assertion (2) above); and

hence defines a geodesic.

A specific Riemannian metric on U(n) can be defined as follows.

Given matrices A,B e g let <A,B > denote the real part of the complex

number

trace (AB*) = Aij$ij .

1,3

Clearly this inner product is positive definite on g .

This inner product on g determines a unique left invariant

Riemannian metric on U(n). To verify that the resulting metric is also

right invariant, we must check that it is invariant under the adjoint

action of U(n) on g .

DEFINITION of the adjoint action. Each S E U(n) determines an

inner automorphism

X - S X S-1
= (LSRS-1 )X

of the group U(n). The induced linear mapping

(LSRS-1)*: TU(n)I --. TU(n)I

is called Ad(S). Thus Ad(s) is an automorphism of the Lie algebra of

U(n). Using Assertion (1) above we obtain the explicit formula

Ad(S)A = SAS 1 ,

for A E g, S E U(n).

The inner product <A,B> is invariant under each such automorphism

Ad(S). In fact if Al = Ad(S)A, B1 = Ad(S)B then the identity

A1B1*
= SAS-1(SBS 1)* =

SAB*S-1
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implies that

trace (A1B1*) = trace (SAB*S 1) = trace (AB*) ;

and hence that

KA1,B1 > = < A,B

It follows that the corresponding left invariant metric on U(n) is also

right invariant.

Given A c g we know by ordinary matrix theory that there exists

T E U(n) so that TAT 1 is in diagonal form

TAT-1

=

ia2

where the ails are real. Also, given any S E U(n), there is a T E U(n)

such that

TST-1

=
ian

e

where again the ails are real. Thus we see directly that exp: g -iJ(n)

is onto.

One may treat the special unitary group SU(n) in the same way.

SU(n) is defined as the subgroup of U(n) consisting of matrices of de-

terminant 1. If exp is regarded as the ordinary exponential map of

matrices, it is easy to show, using the diagonal form, that

det (exp A) = etrace A

Using this equation, one may show that g' , the Lie algebra of SU(n) is

the set of all matrices A such that A + A* = 0 and trace A = 0.

In order to apply Morse theory to the topology of U(n) and SU(n),

we begin by considering the set of all geodesics in U(n) from I to -I.

In other words, we look for all A E TU(n)1 = g such that exp A = -I.

Suppose A is such a matrix; if it is not already in diagonal form, let

T E U(n) be such that TAT-1

is in diagonal form. Then

exp TAT-1 = T(exp A)T-1

= T(-I)T-1 = -I
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so that we may as well assume that A is already in diagonal form

/ ia1

1
e

ian
e

so that exp A = -I if and only if A has the form

/ k1 in
I

k2in.

for some odd integers k1,...,kn.

Since the length of the geodesic t -+ exp to from t = 0 to t = 1

is JAI = tJ r AA*, the length of the geodesic determined by A is

it k'1 +...+ kn. Thus A determines a minimal geodesic if and only if each

ki equals + 1, and in that case, the length is n f-n. Now, regarding

such an A as a linear map of Cn to Cn observe that A is completely

determined by specifying Eigen(in), the vector space consisting of all

v E Cn such that Av = inv; and Eigen(-in), the space of all v E Cn

such that Av = -inv. Since Cn splits as the orthogonal sum Eigen(in)

Eigen(-in), the matrix A is then completely determined by Eigen(in),

which is an arbitrary subspace of Cn. Thus the space of all minimal geo-

desics in U(n) from I to -I may be identified with the space of all

sub-vector -spaces of C

Unfortunately, this space is rather inconvenient to use since it

has components of varying dimensions. This difficulty may be removed by

replacing U(n) by SU(n) and setting n = 2m. In this case, all the

above considerations remain valid. But the additional condition that

a1 +...+ a2m = 0 with ai = + n restricts Eigen(in) to being an arbi-

trary m dimensional sub-vector-space of C. This proves the following:2m

/ is
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LEMMA 23.1. The space of minimal geodesics from I to -I

in the special unitary group SU(2m) is homeomorphic to the

complex Grassmann manifold Gm(C2m), consisting of all m

dimensional vector subspaces of
C2m.

We will prove the following result at the end of this section.

LEMMA 23.2. Every non-minimal geodesic from I to -I

in SU(2m) has index > 2m+2.

Combining these two lemmas with §22 we obtain:

THEOREM 23.3 (Bott). The inclusion map Gm(CM) _

ci(SU(2m); 1,-I) induces isomorphisms of homotopy groups

in dimensions < 2m. Hence

tti Gm(CSm) - tti+1SU(2m)

for i<2m.

On the other hand using standard methods of homotopy theory one

obtains somewhat different isomorphisms.

LEMMA 23.4. The group ttiGm(C2m) is isomorphic to

tti-t U(m) for i < 2m. Furthermore,

U(m) = I(
i-1

U(m+1) = I(
i-1

U(m+2) = ..

for i < 2m; and

for j X 1.
ttj U(m) = ttj SU(m)

PROOF. First note that for each m there exists a fibration

U(m) - U(m+1)-wS2m+1

From the homotopy exact sequence

-F tti 2m+1 2m+1g xi-1 U(m) -if,-, U(m+1) -1(i-1 S ...
of this fibration we see that

tti-1 U(m) - tti_1 U(m+t) for i < 2m.

(Compare Steenrod, "The Topology of Fibre Bundles," Princeton, 1951, p. 35

and p. 9o.) It follows that the inclusion homomorphisms

tti-1 U(m) -+ 5i_1 U(m+t) -+ tti_1 U(m+2) -- ...

are all isomorphisms for i < 2m. These mutually isomorphic groups are
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called the (i-1)-st stable homotopy group of the unitary group. They will

be denoted briefly by ai-1 U.

The same exact sequence shows that, for i = 2m+1, the homomorphism

n2M U(m) - a2m U(m+1) n2m U is onto.
The complex Stiefel manifold is defined to be the coset space

U(2m)/U(m). From the exact sequence of the fibration

U(m) -'U(2m) -U(2m)/U(m)

we see that ni(U(2m)/ U(m)) = 0 for i < 2m.

The complex Grassmann manifold Gm(C2m) can be identified with

the coset space U(2m)/ U(m) x U(m). (Compare Steenrod §7.) From the exact

sequence of the fibration

U(m) --F U(2m) / U(m) . Gm(C2m)

we see now that

niGm(C2m)
ai_l U(m)

for i < 2m.

Finally, from the exact sequence of the fibration

SU(m) -+ U(m) -+ S1 we see that ni SU(m) = ai U(m) for j / 1. This

completes the proof of Lemma 23.4.

Combining Lemma 23.4 with Theorem 23.3 we see that

ni-1 U = ai-1 U(m) = AiGm(C2m) = ni+1 SU(2m) = ni+1 U

for 1 < i < 2m. Thus we obtain:

PERIODICITY THEOREM. ni-1 U ni+1 U for i > 1.

To evaluate these groups it is now sufficient to observe that U(1)

is a circle; so that

n0 U = no U(1) = 0

n1 U = n1 U(1) = Z (infinite cyclic).

As a check, since SU(2) is a 3-sphere, we have:

n2 U = n2 SU(2) = 0

n3 U = n3 SU(2) = Z
Thus we have proved the following result.
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THEOREM 23.5 (Bott). The stable homotopy groups rti U

of the unitary groups are periodic with period 2. In

fact the groups
n0 U = a2 U = n4 U

are zero, and the groups

n1U 3U =55U =...
are infinite cyclic.

The rest of §23 will be concerned with the proof of Lemma 23.2. We

must compute the index of any non-minimal geodesic from I to -I on

SU(n), where n is even. Recall that the Lie algebra

g' = T(SU(n))I

consists of all n x n skew-Hermitian matrices with trace zero. A given

matrix A e g' corresponds to a geodesic from I to -I if and only if

the eigenvalues of A have the form isk1,...,iakn where k1,...,kn are

odd integers with sum zero.

We must find the conjugate points to I along the geodesic

t -h exp (tA) .

According to Theorem 20.5 these will be determined by the positive eigen-

values of the linear transformation

K
A

: g 1 -. g'

where

KA(W) = R(A,W)A = -- [[A,W),A] .

(Compare §21.7.)

We may assume that A is the diagonal matrix

inks

iskn

with k1 > k2 > ... > kn. If W = (wjQ) then a short computation shows

that

hence

[A,W1 = (ia(kj - kQ)wjf) ,

(A,[A,W]) = (-a2(kj - kp)2 wjQ) ,
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and
2

KA(W)
it (kj - kp) 2 wj f)

Now we find a basis for g' consisting of eigenvectors of KAY as follows:

1) For each j < P the matrix Ej, with +1 in the (j4)-th

place, -1 in the (ej)-th place and zeros elsewhere, is in g'

and is an eigenvector corresponding to the eigenvalue

2

"(kj - kf)2
2) Similarly for each j < P the matrix E,', with +i in the

(jfl -th place and +i in the (.j)-th place is an eigenvector,

also with eigenvalue !(k. - kk)2

3) Each diagonal matrix in g' is an eigenvector with eigenvalue o.

Thus the non-zero eigenvalues of KA are the numbers (kj - k1) 2

with kj > kk. Each such eigenvalue is to be counted twice.

Now consider the geodesic y(t) = exp tA. Each eigenvalue

e = 1 (kj - kj)2 > 0 gives rise to a series of conjugate points along y

corresponding to the values

t = a/*, 2r[/,Te-, 3a/Ve-, ...

(See §20.5.) Substituting in the formula for e, this gives

t
-

2 4 6kj - k , k - k , k -k ,

The number of such values of t in the open interval (0,1) is evidently
k . - kR

equal to j 2 - 1.

Now let us apply the Index Theorem. For each j,P with k. > kQ
2

we obtain two copies of the eigenvalue (kj - kR)2, and hence a contri-

bution of

2(
-kp - 1)l 2

to the index. Adding over all j,P this gives the formula

X _ (kj-kR-2)
kj > kR

for the index of the geodesic Y.

As an example, if y is a minimal geodesic, then all of the kj
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are equal to + 1 . Hence x = 0, as was to be expected.

Now consider a non-minimal geodesic. Let n = 2m.

CASE 1. At least m+1 of the ki's are (say) negative. In this

case at least one of the positive ki must be > 3, and we have

m+1

- (-1) - 2) = 2(m+1) .

CASE 2. m of the ki are positive and m are negative but not

all are + 1. Then one is > 3 and one is < -3 so that

m-1 m-1

> (3 - (-1) - 2) + (1 - (-3) - 2) + (3 - (-3) - 2)
1 1

4m > 2(m+1)

Thus in either case we have X > 2m+2. This proves Lemma 23.2,

and therefore completes the proof of the Theorem 23.3.
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§24. The Periodicity Theorem for the Orthogonal Group.

This section will carry out an analogous study of the iterated loop

space of the orthogonal group. However the treatment is rather sketchy, and

many details are left out. The point of view in this section was suggested

by the paper Clifford modules by M. Atiyah, R. Bott, and A. Shapiro,

which relates the periodicity theorem with the structure of certain Clifford

algebras. (See Topology, Vol. 3, Supplement 1 (1964), pp. 3-38.)

Consider the vector space Rn with the usual inner product. The

orthogonal group 0(n) consists of all linear maps

T : Rn Rn

which preserve this inner product. Alternatively 0(n) consists of all

real n x n matrices T such that T T* = I. This group 0(n) can be

considered as a smooth subgroup of the unitary group U(n); and therefore

inherits a right and left invariant Riemannian metric.

Now suppose that n is even.

DEFINITION. A complex structure J on Rn is a linear transfor-

mation J : Rn belonging to the orthogonal group, which satisfies

the identity J2 = -I. The space consisting of all such complex structures

on Rn will be denoted by St1(n).

We will see presently (Lemma 24.4) that R1(n) is a smooth sub-

manifold of the orthogonal group 0(n).

REMARK. Given some fixed J1 E,Q1(n) let U(n/2) be the subgroup

of 0(n) consisting of all orthogonal transformations which commute with

J1. Then fl1(n) can be identified with the quotient space 0(n)/U(n/2).

LEMMA 24.1. The space of minimal geodesdcs from I to -I

on 0(n) is homeomorphic to the space n1(n) of complex

structures on Rn.

PROOF: The space 0(n) can be identified with the group of n x n

orthogonal matrices. Its tangent space g= T O(n)I can be identified with

the space of n x n skew-symmetric matrices. Any geodesic y with
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y(o) = I can be written uniquely as

y(t) = exp (et A)

for some A E g.

Let n = 2m. Since A is skew-symmetric, there exists an element

T E 0(n) so that

1

TAT-1 =

o a
2

-a2 0

o am
-am o

with a1,a2,...,am > 0. A short computation shows that T(exp it
A)T-1

is

equal to

cos na1 sin aa1 0 0

-sin oat cos rta1 0 0

0 0 cos na2 sin aa2

-a1 0

0 -sin na2 cos na2

Thus exp(aA) is equal to -I if and only if a1,a2,...,a, are odd integers.

The inner product < A,A> is easily seen to be 2(a? + a2 +...+am).

Therefore the geodesic y(t) = exp(nt A) from I to -I is minimal if

and only if a1 = a2 = ... = am = 1.

If y is minimal then

A2 =
T-1

0 1 2
-1 0

0 1

-1 0 T = -I

hence A is a complex structure.

Conversely, let J be any complex structure. Since J is orthogo-

nal we have

J J* = I
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where J* denotes the transpose of J. Together with the identity

J J = -I this implies that J = -J. Thus J is skew-symmetric. Hence

T J T-1
=

/ o a
1

1-a 01

for some a1,a2,...,am > 0 and some T. Now the identity J2 = -I implies

that a1 = ... = ah1 = 1; and hence that exp itJ = -I. This completes the

proof.

LEMMA 24.2. Any non-minimal geodesic from I to -I

in O(2m) has index > 2m-2.

The proof is similar to that of 23.2. Suppose that the geodesic has

the form t -+ exp(at A) with

A =

where a1 > a2 > ... > am > 0 are odd integers. Computation shows that the

non-zero eigenvalues of the linear transformation KA = - -147 (Ad A) 2 are

1) for each i < j the number (ai + aj)2/ 4, and

2) for each i < j with ai # aj the number (ai - aj)2/ 4.

Each of these eigenvalues is to be counted twice. This leads to the formula

I (a + aj - 2) + I (ai - aj - 2)
i<j ai>aj

For a minimal geodesic we have a1 = a2 = ... = am = 1 so that

>v = 0, as expected. For a non-minimal geodesic we have a1 > 3; so that

(3+1-2) + 0 = 2m - 2.

This completes the proof.

Now let us apply Theorem 22.1. The two lemmas above, together with
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the statement that SL1(n) is a manifold imply the following.

THEOREM 24.3 (Bott). The inclusion map 111(n) -+ o 0(n)

induces isomorphisms of homotopy groups in dimensions

< n-4. Hence

Ai a, (n) = ni+1 0(n)
for i < n-4.

Now we will iterate this procedure, studying the space of geodesics

from J to -J in f1(n); and so on. Assume that n is divisible by a

high power of 2.

Let J1,...,Jk-1 be fixed complex structures on Rn which anti-

commute *, in the sense that

iris
+ Jsir = 0

for r s. Suppose that there exists at least one other complex structure

J which anti-commutes with J1,...,Jk-1'

DEFINITION. Let SLk(n) denote the set of all complex structures J

on Rn which anti-commute with the fixed structures J1,...,Jk-1'

Thus we have

SLk(n) C SLk-1 (n) C ... C SL1 (n) C 0(n)

Clearly each SLk(n) is a compact set. To complete the definition it is

natural to define n0(n) to be 0(n)

LEMMA 24.4. Each SLk(n) is a smooth, totally geodesic**

submanifold of 0(n). The space of minimal geodesics from

JR to -JR in SLR(n) is homeomorphic to SLR+1(n), for

0<R <k.

It follows that each component of SLk(n) is a symmetric space.

For the isometric reflection of 0(n) in a point of SLk(n) will automati-

cally carry ilk(n) to itself.

These structures make Rn into a module over a suitable Clifford algebra.

However, the Clifford algebras will be suppressed in the following presen-

tation.

** A submanifold of a Riemannian manifold is called totally geodesic if

each geodesic in the submanifold is also a geodesic in larger manifold.
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PROOF of 24.4. Any point in 0(n) close to the identity can be

expressed uniquely in the form exp A, where A is a "small," skew-

symmetric matrix. Hence any point in 0(n) close to the complex structure

J can be expressed uniquely as J exp A; where again A is small and

skew.

ASSERTION 1. J exp A is a complex structure if and only if A

anti-commutes with J.

PROOF: If A anti-commutes with J, then J-1A J = -A hence

I = exp(J-1A J) exp A =
J-1 (exp A)J exp A

Therefore (J exp A)2 = -I. Conversely if (J exp A)2 = -I then the

above computation shows that

exp(J-1A J) exp A = I

Since A is small, this implies that

J-1A J = -A

so that A anti-commutes with J.

ASSERTION 2. J exp A anti-commutes with the complex structures

J1,...,Jk-1 if and only if A commutes with J1,...,Jk-1'

The proof is similar and straightforward.

Note that Assertions I and 2 both put linear conditions on A.

Thus a neighborhood of J in Qk(n) consists of all points J exp A where

A ranges over all small matrices in a linear subspace of the Lie algebra g.

This clearly implies that SLk(n) is a totally geodesic submanifold of

0(n).
Now choose a specific point Jk E SLl(n), and assume that there

exists a complex structure J which anti-commutes with J1,...,Jk. Setting

J = JkA we see easily that A is also a complex structure which anti-

commutes with Jk. However, A comutes with J1,...,Jk-1. Hence the

formula

t -Jk exp(st A)

defines a geodesic from Jk to -Jk in Sbk(n). Since this geodesic is

minimal in 0(n), it is certainly minimal in SLk(n).
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Conversely, let y be any minimal geodesic from Jk to -Jk in

ak(n). Setting y(t) = Jk exp(st A), it follows from 24.1 that A is

a complex structure, and from Assertions 1,2 that A commutes with

J1,...,Jk-1 and anti-commutes with Jk. It follows easily that JA

belongs to fk+1(n). This completes the proof of 24.4.

REMARK. The point JkA enk+1(n) which corresponds to a given

geodesic y has a very simple interpretation: it is the midpoint y(z)

of the geodesic.

In order to pass to a stable situation, note that Ilk(n) can be

imbedded in nk(n+n') as follows. Choose fixed anti-commuting complex

structures J e Slk(n) determines a complex

structure J ® Jk on Rn ®Rn' which anti-commutes with Ja E) J.1, for

a = 1,...,k-1.

DEFINITION. Let 12k denote the direct limit as n--' w of the

spaces ak(n), with the direct limit topology. (I.e., the fine topology.)

The space 0 =110 is called the infinite orthogonal group.

It is not difficult to see that the inclusions 11k+1(n) - n ak(n)

give rise, in the limit, to inclusions 11k+1 -+ nil
k '

THEOREM 24.5. For each k > 0 this limit map 1k+1

nllk is a homotopy equivalence. Thus we have isomorphisms

nh 0 = nh-1 111 ah-2112 = ... - "1 ah_l
The proof will be given presently.

Next we will give individual descriptions of the manifolds llk(n)

for k = 0,1,2,...,8.

n0(n) is the orthogonal group.

a1(n) is the set of all complex structures on Rn

Given a fixed complex structure J1 we may think of Rn as being a vector

space CnJ2 over the complex numbers.

n2(n) can be described as the set of "quaternionic structures" on

the complex vector space C2. Given a fixed J. e 112(n) we may think ofn/
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Cn/2 as being a vector space He/4 over the quaternions H. Let Sp(n/4)

be the group of isometries of this vector space onto itself. Then SL 2(n)

can be identified with the quotient space U(n/2)/ Sp(n/4).

Before going further it will be convenient to set n = 16r.

LEMMA 24.6 - (3). The space l3(16r) can be identified

with the quaternionic Grassmann manifold consisting of

all quaternionic subspaces of H4r

PROOF: Any complex structure J3 E a3(16r) determines a splitting

of H4r = R16r into two mutually orthogonal subspaces V1 and V2 as fol-

lows. Note that J1J2J3 is an orthogonal transformation with square

J1J2J3J1J2J3 equal to + I. Hence the eigenvalues of J1J2J3 are + 1.

Let V1 C R16r be the subspace on which J1J2J3 equals + I; and let V.

be the orthogonal subspace on which it equals -I. Then clearly

R16r = V1 ® V2. Since J1J2J3 commutes with J1 and J2 it is clear

that both V1 and V2 are closed under the action of J1 and J2.

Conversely, given the splitting H4r = V1 (D V2 into mutually

orthogonal quaternionic subspaces, we can define J3 E a3(16r) by the

identities

J3IV1
=

-J1J2lV1

J3IV2 = J1J21V2

This proves Lemma 24.6 -(3).

The space a3(16r) is awkward in that it contains components of

varying dimension. It is convenient to restrict attention to the component

of largest dimension: namely the space of 2r-dimensional quaternionic sub-

spaces of H4r. Henceforth, we will assume that J3 has been chosen in

this way, so that dimes V1 = dimes V2 = 2r.

LEMMA 24.6 - (4). The space n4(16r) can be identified

with the set of all quaternionic isometries from V1 to

V2. Thus Sl4(16r) is diffeomorphic to the symplectic

group Sp(2r).

PROOF: Given J4 E n4(16r) note that the product J3J4 anti-

commutes with J1J2J3 . Hence J3J4 maps V1 to V2 (and V2 to V1).
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Since J3J4 commutes with J1 and J2 we see that

J3J4fV1 : V1 - V2

is a quaternionic isomorphism. Conversely, given any such isomorphism

T : V1 -. V2 it is easily seen that J4 is uniquely determined by the

identities:

J4IV1 = J31 T

J4IV2 = -T-1 J3

This proves 24.6 - (4).

LEMMA 24.6 - (5). The space Sl5(16r) can be identified

with the set of all vector spaces W C V1 such that

(1) W is closed under J1 (i.e., W is a complex

vector space) and

(2) V1 splits as the orthogonal sum W ® J2 W.

PROOF: Given J5 ea5(16r) note that the transformation J1J4J5

commutes with J1J2J3 and has square + I. Thus J1J4J5 maps V1 into

itself; and determines a splitting of V1 into two mutually orthogonal sub-

spaces. Let W C V1 be the subspace on which J1J4J5 coincides with + I.

Since J2 anti-commutes with J1J4J5, it follows that J2W C V1 is

precisely the orthogonal subspace, on which J1J4J5 equals -I. Clearly

J1W = W.

Conversely, given the subspace W, it is not difficult to show that

J5 is uniquely determined.

REMARK. If U(2r) C Sp(2r) denotes the group of quaternionic auto-

morphisms of V1 keeping W fixed, then the quotient space Sp(2r)/ U(2r)

can be identified with a5(16r).

LEMMA 24.6 - (6). The space Sl6(16r) can be identified

with the set of all real subspaces X C W such that W

splits as the orthogonal sum X ® J1X.

PROOF. Given J6 e a6(16r) note that the transformation J2J4J6

commutes both with J1J2J3 and with J1J4J5. Hence J2J4J6 maps W into

itself. Since (J2J4J6)2 = I, it follows that J2J4J6 determines a
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splitting of W into two mutually orthogonal subspaces. Let X C W be the

subspace on which J2J4J6 equals +I. Then J1X will be the orthogonal

subspace on which it equals -I.

Conversely, given X C W, it is not hard to see that J6 is unique-

ly determined.

REMARK. If O(2r) C U(2r) denotes the group of complex automor-

phisms of W keeping X fixed, then the quotient space U(2r)/ O(2r) can

be identified with a 6(16r).

LEMMA 24.6 - (7). The space Sl7(16r) can be identified

with the real Grassmann manifold consisting of all real

subspaces of X = R2r.

PROOF: Given J7, anti-commuting with J1, ... ,J6 note that

J1J6J7 commutes with J1J2J3, with J1J4J5, and with J2J4J6; and has

square +I. Thus J1J6J7 determines a splitting of X into two mutually

orthogonal subspaces: X1 (where J1J6J7 equals +I) and X2 (where

J1J6J7 equals -I). Conversely, given X1 C X it can be shown that J7

is uniquely determined.

This space 117(16r), like J1 3(16r), has components of varying dimen-

sion. Again we will restrict attention to the component of largest dimen-

sion, by assuming that

Thus we obtain:

dim X1 = dim X2 = r.

ASSERTION. The largest component of a7(16r) is diffeomorphic to

the Grassmann manifold consisting of r-dimensional subspaces of R2r.

LEMMA 24.6 - (8). The space fl8(16r) can be identified

with the set of all real isometries from X1 to X2.

PROOF. If J8 e j8(16r) then the orthogonal transformation
J7`T8

commutes with J1J2J3, J1J4J5, and J2J4J6; but anti-commutes with J,J6J7.

Hence J7J8 maps X1 isomorphically onto X2. Clearly this isomorphism

determines J8 uniquely.

Thus we see that d18(16r) is diffeomorphic to the orthogonal
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group* 0(r).

Let us consider this diffeomorphism Sl8(16r) - 0(r), and pass to

the limit as r -+ -. It follows that Sl8 is homeomorphic to the infinite

orthogonal group O. Combining this fact with Theorem 24.5, we obtain the

following.

THEOREM 24.7 (Bott). The infinite orthogonal group 0 has

the same homotopy type as its own 8-th loop space. Hence

the homotopy group ai 0 is isomorphic to "i+8 0 for i > 0.

If Sp =114 denotes the infinite symplectic group, then the above

argument also shows that 0 has the homotopy type of the 4-fold loop space

0000 Sp, and that Sp has the homotopy type of the 4-fold loop space
0000 O. The actual homotopy groups can be tabulated as follows.

i modulo 8 ni O ni Sp

0 Z2 0

1 Z2 0

2 0 0

3 Z Z

4 0 Z2

5 0 Z2
6 0 0

7 Z Z

The verification that these groups are correct will be left to the reader.

(Note that Sp(1) is a 3-sphere, and that S0(3) is a projective 3-space.)

The remainder of this section will be concerned with the proof of

Theorem 24.5. It is first necessary to prove an algebraic lemma.

Consider a Euclidean vector space V with anti-commuting complex

structures J1,...,Jk.

*
For k > 8 it can be shown that dlk(16r) is diffeomorphic to Slk_8(r).

In fact any additional complex structures J9,J10,...,Jk on R16r give

rise to anti-commuting complex structures J8J9, J8J10, J8J111...,J81k on

X1; and hence to an element of fl k_8(r). However, for our purposes it

will be sufficient to stop with k = B.
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DEFINITION. V is a minimal (J1,...,Jk)-space if no proper, non-

trivial subspace is closed under the action of J1,..., and Jk. Two such

minimal vector spaces are isomorphic if there is an isometry between them

which commutes with the action of J1,...,Jk.

LEMMA 24.8 (Bott and Shapiro). For k 3 (mod 4), any

two minimal (J1,...,Jk) vector spaces are isomorphic.

The proof of 24.8 follows that of 24.6. For k = 0,1, or 2 a

minimal space is just a 1-dimensional vector space over the re als, the

complex numbers or the quaternions. Clearly any two such are isomorphic.

For k = 3 a minimal space is still a 1-dimensional vector space

over the quaternions. However, there are two possibilities, according as

J3 is equal to +J1J2 or -J1J2. This gives two non-isomorphic minimal

spaces, both with dimension equal to 4. Call these H and H'.

For k = 4 a minimal space must be isomorphic to H ® H', with

J3J4 mapping H to H'. The dimension is equal to 8.

For k = 5,6 we obtain the same minimal vector space H ® H'. The

complex structures J5,J6 merely determine preferred complex or real sub-

spaces. For k = 7 we again obtain the same space, but there are two

possibilities, according as J7 is equal to +J1J2J3J4J5J6 or to

-J1J2J3J4J5J6. Thus in this case there are two non-isomorphic minimal

vector spaces; call these L and L'.

For k = 8 a minimal vector space must be isomorphic to L ® L',

with J7J8 mapping L onto L'. The dimension is equal to 16.

For k > 8 it can be shown that the situation repeats more or less

periodically. However, the cases k < 8 will suffice for our purposes.

Let mk denote the dimension of a minimal (J1,...,Jk)-vector space.

From the above discussion we see that:

m0 = 1, m1 = 2, m2 = m3 = 4,

m4 = m5 = m6 = m7 = 8, m8 = 16.

For k > 8 it can be shown that mk = 16mk-8.

REMARK. These numbers mk are closely connected with the problem

of constructing linearly independent vector fields on spheres. Suppose for

example that J1,...,Jk are anti-commuting complex structures on a vector
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space V of dimension rmk. Here r can be any positive integer. Then

for each unit vector u E V the k vectors J1u, J2u,..., Jku are perpen-

dicular to each other and to u. Thus we obtain k linearly independent

vector fields on an (rmk 1)-sphere. For example we obtain 3 vector

fields on a (4r-1)-sphere; 7 vector fields on an (8r-1)-sphere; 8 vector

fields on a (16r-1)-sphere; and so on. These results are due to Hurwitz

and Radon. (Compare B. Eckmann, Gruppentheoretischer Beweis des Satzes von

Hurwitz-Radon..., Commentarii Math. Hely. Vol. 15 (1943), pp. 358-366.) J.

F. Adams has recently proved that these estimates are best possible.

PROOF of Theorem 24.5 for k V 2 (mod 4). We must study non-

minimal geodesics from J to -J in 11k(n). Recall that the tangent space

of 11k(n) at J consists of all matrices J A where

1) A is skew

2) A anti-commutes with J

3) A commutes with J1,".,Jk-1'

Let T denote the vector space of all such matrices A. A given A E T

corresponds to a geodesic t - J exp (at.4) from J to -J if and only if

its eigenvalues are all odd multiples of i.

Each such A E T determines a self-adjoint transformation

KA: T - T. Since a k(n) is a totally geodesic submanifold of 0(n), we

can compute KA by the formula

KAB = -1 [A,[A,B1] _ (-A2B + 2ABA - BA2)/4 ,

just as before. We must construct some non-zero eigenvalues of KA so as

to obtain a lower bound for the index of the corresponding geodesic

t - J exp(irt A) .

Split the vector space Rn as a direct sum M1 ® M2 ® ... ® Ms of

mutually orthogonal subspaces which are closed and minimal under the action

of J1,...,Jk-1, J and A. Then the eigenvalues of A on Mh must be

all equal, except for sign.* For otherwise Mh would split as a sum of

*
We are dealing with the complex eigenvalues of a real, skew-symmetric

transformation. Hence these eigenvalues are pure imaginary; and occur in

conjugate pairs.
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eigenspaces of A; and hence would not be minimal. Let + iah be the two

eigenvalues of AIMh; where a1,...,as are odd, positive integers.

Now note that J' = ah1JAIMh; is a complex structure on Mh which

anti-commutes with J1,...,Jk-1, and J. Thus Mh is (J1,...,Jk-1,J,J')-

minima].. Hence the dimension of Mh is mk+1 Since k + 1 3 (mod 4)

we see that M1,M2,...,Ms are mutually isomorphic.

For each pair h,j with h j we can construct an eigenvector

B: Rn _Rn of the linear transformation KA: T - T as follows. Let

BIM, be zero for f / h,j. Let BIMh be an isometry from Mh to Mj

which satisfies the conditions

BJa = J0B for a = 1,...,k-1;

BJ = -JB and BJ' = +J'B .

In other words BIMh is an isomorphism from Mh to Mj; where the bar in-

dicates that we have changed the sign of J on Mj. Such an isomorphism

exists by 24.8. Finally let BIMj be the negative adjoint of BIMh.

Proof that B belongs to the vector space T. Since

<Bv,w> = Kv,- Bw> for v E Mh, w E Mj

it is clear that B is skew-symmetric. It is also clear that BIMh com-

mutes with J1,...,Jk-1 and anti-commutes with J. It follows easily that

the negative adjoint BIMj also commutes with J1,...,Jk-1 and anti-

commutes with J. Thus B E T.

We claim that B is an eigenvector of KA corresponding to the

eigenvalue (ah + aj)2/4. For example if v e Mh then

(KAB)v = (-A2B + 2ABA - BA2)v

7
2ajBahv + Bahv)

_ (aj + ah) 2 By
-IT

and a similar computation applies for v E Mj.

Now let us count. The number of minimal spaces Mh C Rn is given

by s = n/mk+1' For at least one of these the integer ah must be > 3.

For otherwise we would have a minimal geodesic. This proves the following

(always for k 2 (mod 4)):

ASSERTION. KA has at least s-1 eigenvalues which are

> (3+1)2/4 = 4. The integer s = n/mk+1 tends to infinity with n.
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Now consider the geodesic t -+ J exp(at A). Each eigenvalue e2

of KA gives rise to conjugate points along this geodesic for

t = e-1, 2e-1, 3e-1,... by 20.5. Thus if e2 > 4 then one obtains at

least one interior conjugate point. Applying the index theorem, this proves

the following.

ASSERTION. The index of a non-minimal geodesic from J to -J in

Slk(n) is > n/mk+1- 1.

It follows that the inclusion map

ak+1(n) -+ o nk(n)

induces isomorphisms of homotopy groups in dimensions < n/mk+1 - 3. This

number tends to infinity with n. Therefore, passing to the direct limit

as n -+ co, it follows that the inclusion map i : S?,k+1 -i a S).k induces

isomorphisms of homotopy groups in all dimensions. But it can be shown

that both SZk+1 and a Dk have the homotopy type of a CW-complex. There-

fore, by Whitehead's theorem, it follows that i is a homotopy equivalence.

This completes the proof of 24.5 providing that k 0 2 (mod 4).

PROOF of 24.5 for k e 2 (mod 4). The difficulty in this case may

be ascribed to the fact. that dlk(n) has an infinite cyclic fundamental

group. Thus nilk(n) has infinitely many components, while the approximat-

ing subspace fk+1(n) has only finitely many.

To describe the fundamental group allk(n) we construct a map

f : dlk(n) -o S1 C C

as follows. Let J1,...,Jk-1 be the fixed anti-commuting complex struc-

ture on R. Make Rn into an (n/2)-dimensional complex vector space by

defining

iv = J1 J2 ... Jk-1v

for v e Rn; where i = 47-1 E C. The condition k 2 (mod 4) guarantees

that i2 = -1, and that J1,J21...IJk-1 commute with i.

Choose a base point J e llk(n) . For any J' e Slk(n) note that the
composition J-1J' commutes with i. Thus J-1J' is a unitary complex

linear transformation, and has a well defined complex determinant which will

be denoted by f(J').
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Now consider a geodesic

t J exp(sctA)

from J to -J in 1Zk(n). Since A commutes with i = J1J2 ... Jk-1

(compare Assertion 2 in the proof of 24.4) we may think of A also as a

complex linear transformation. In fact A is skew-Hermitian; hence the

trace of A is a pure imaginary number. Now

f(J exp(stA)) = determinant (exp(stA)) = ent trace A

Thus f maps the given geodesic into a closed loop on S1 which is com-

pletely determined by the trace of A. It follows that this trace is in-

variant under homotopy of the geodesic within the path space n(11k(n);J,-J).

The index % of this geodesic can be estimated as follows. As

before split Rn into an orthogonal sum M1 ® ... ® Mr where each Mh

is closed under the action of J1,...,Jk-1,J, and A; and is minimal.

Thus for each h, the complex linear transformation AIMh can have only

one eigenvalue, say iah. For otherwise Mh would split into eigenspaces.

Thus AIMh coincides with ahJlJ2 ... Jk-1IMh. Since Mh is minimal under

the action of J1,...,Jk-1, and J; its complex dimension is mk/2.

Therefore the trace of A is equal to i(a1+...+ar)mk/2.

Now for each h X j an eigenvector B of the linear transforma-

tion

B -+ KAB = (-A2B + 2ABA - BA2) /4

can be constructed much as before. Since Mh and Mj are (J1,...,Jk-1,J)-

minimal it follows from 24.8 that there exists an isometry

BIMh : Mh-> Mj

which commutes with J1,...,Jk-1 and anti-commutes with J. Let BIMj be

the negative adjoint of BIMh; and let BIM1 be zero for e / h,j. Then

an easy computation shows that

KAB = (ah - aj) 2B/4

Thus for each ah > aj we obtain an eigenvalue (ah - aj)2/4 for KA.

Since each such eigenvalue makes a contribution of (ah - aj)/2 - 1

towards the index x, we obtain the inequality

2 ) , > (ah- aj - 2)
ah > aj
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Now let us restrict attention to some fixed component of Q ak(n).

That is let us look only at matrices A such that trace A = icmk/2 where

c is some constant integer.

Thus the integers al,...ar satisfy

1) a, a a2 = ... = ar (mod 2), (since exp(aA) = -I),

2) al +...+ ar = c, and

3) Max lahi > 3 (for a non-minimal geodesic).
h

Suppose for example that some ah is equal to -3. Let p be the sum of

the positive ah and -q the sum of the negative ah. Thus

p-q = c, p+q>r ,

hence 2p > r + c. Now

2X > (ah - a - 2) > (ah - (-3) - 3) = p
ah>a3 ah>o

hence 4X > 2p > r + c; where r = n/mk tends to infinity with n. It

follows that the component of C 11k(n) is approximated up to higher and

higher dimensions by the corresponding component of Sk+l(n), as n - C .

Passing to the direct limit, we obtain a homotopy equivalence on each com-

ponent. This completes the proof of 24.5.
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APPENDIX. THE HOMOTOPY TYPE OF A MONOTONE UNION

The object of this appendix will be to give an alternative version

for the final step in the proof of Theorem 17.3 (the fundamental theorem

of Morse theory). Given the subsets oao C a1 C saa2 C ... of the path
a

space o = o(M;p,q), and given the information that each o i has the

homotopy type of a certain CW-complex, we wish to prove that the union 0

also has the homotopy type of a certain CW-complex.

More generally consider a topological space X and a sequence

X0 C X1 C X2 C ... of subspaces. To what extent is the homotopy type of

X determined by the homotopy types of the Xi?

It is convenient to consider the infinite union

X£ = X0 x[0,1] v X
1
X (1,2] u X2 X(2,31 u ...

This is to be topologized as a subset of X x R.

DEFINITION. We will say that X is the homotopy direct limit of

the sequence (Xi) if the projection map p : X£ - X, defined by

p(x,T) = x, is a homotopy equivalence.

EXAMPLE 1. Suppose that each point of X lies in the interior of

some Xi, and that X is paracompact. Then using a partition of unity one

can construct a map

f : X- R

so that f(x) > i+1 for x Xi, and f(x) > 0 for all x. Now the corres-

pondence x - (x,f(x)) maps X homeomorphically onto a subset of X. which

is clearly a deformation retract. Therefore p is a homotopy equivalence;

and X is a homotopy direct limit.

EXAMPLE 2. Let X be a CW-complex, and let the Xi be subcomplexes

with union X. Since p : X£ - X induces isomorphisms of homotopy groups

in all dimensions, it follows from Whitehead's theorem that X is a homotopy

direct limit.
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EXAMPLE 3. The unit interval [0,1] is not the homotopy direct

limit of the sequence of closed subsets [o] v [1/i,1].

The main result of this appendix is the following.

THEOREM A. Suppose that X is the homotopy direct

limit of [X.1 and Y is the homotopy direct limit

of {Yi). Let f: X Y be a map which carries each

Xi into Yi by a homotopy equivalence. Then f

itself is a homotopy equivalence.

Assuming Theorem A, the alternative proof of Theorem 17.3 can be

given as follows. Recall that we bad constructed a commutative diagram

S2ao C saa, C saa2 C ...

Ko C K1 C K2 C ...

a
of homotopy equivalences. Since 1a = U o i and K = U Ki are homotopy

direct limits (compare Examples I and 2 above), it follows that the limit

mapping 0- K is also a homotopy equivalence.

PROOF of Theorem A. Define f£ : XX -* YY by f£(x,t) = (f(x),t).

It is clearly sufficient to prove that f£ is a homotopy equivalence.

CASE 1. Suppose that Xi = Yi and that each map fi : Xi-.. Yi

(obtained by restricting f) is homotopic to the identity. We must prove

that f£ is a homotopy equivalence.

REMARK. Under these conditions it would be natural to conjecture

that f. must actually be homotopic to the identity. However counter-

examples can be given.

For each n let

Xn Xn

be a one-parameter family of mappings, with hn fn, hn = identity.

Define the homotopy

h : Xz - X&
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as follows (where it is always to be understood that 0 < t < 1, and

n = 0,1,2,...).

(hu(x),n+2t) for 0 < t < z

hu(x,n+t) (h(3-4t)u (x),n+1) for z < t < -T

0,,n+
3

(x),n+1)
for < t < 1

Taking u = 0 this defines a map h0 : XE X£ which is clearly homotopic

to fE. The mapping h1 : XE XE on the other hand has the following

properties:

h1(x,n+t) = (x,n+2t) for 0 < t < z

+1 x[n+11 for 2 < t < 1h1(x,n+t) e 71,

We will show that any such map h1 is a homotopy equivalence. In fact a

homotopy inverse g : XE - XE can be defined by the formula

(
(x,n+2t) 0 < t <

g(x,n+t) = j - -
1 < t < 1l h (x,n 2- t) 2

This is well defined since

h1(x,n+2) = h1(x,n+1) = (x,n+1) .

Proof that the composition h1g is homotopic to the identity map

of XE. Note that

(x,n+4t) 0 < t < 4

h1g(x,n+t) = h1(x,n+2t) 4 < t < 2

h1 (X,ri 2 - t) 2 < t < 1

Define a homotopy Hu : XE XE as follows. For 0 < u < z let

h1g(x,n+t) for 0 < t < (1-u)/2

Hu(x,n+t) = and for z+u < t < 1

h1(x,n+1-u) for (1-u)/2 < t < z + U.
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This is well defined since

h1g(x,n+(1-u)/2) = h1g(x,n+2+u) = h1(x,n+1-u).

Now Ho is equal to h1g and Hiz is given by

1(x,n+4t) 0 < t < 4

Hi(x,n+t)
z =

(x,n+1) < t < 1

Clearly this is homotopic to the identity.

Thus h1g is homotopic to the identity; and a completely analogous

argument shows that gh1 is homotopic to the identity. This completes the

proof in Case 1.

CASE 2. Now let X and Y be arbitrary. For each n let

gn : Yn -+ Xn be a homotopy inverse to fn. Note that the diagram

griYn Xn

Iin tin
gYl+ 1

Yn+1 Xn+1

(where in and in denote inclusion maps) is homotopy commutative. In

fact

1ngn ti gnifn+tingn = gn+tjnfngn - gn+1jn

Choose a specific homotopy hu : Yn--' Xn+1 with ho = ingn, h, gn+1Jn;

and define G : Y£ X£ by the formula

(gn(y),n+2t) 0 < t <

G(y,n+t)

(h2t-1(y),n+1) < t < 1

We will show that the composition Gf£ : X£ -+ X. is a homotopy equivalence.

Let X£ denote the subset of XE consisting of all pairs (x,T) with

T < n. (Thus X£ = X0 x[o,11 ... Xn_1 x [n-1 n] u Xn x[n].) The compo-

sition Gf£ carries X2 into itself by a mapping which is homotopic to the

identity. In fact X£ contains Xn x[n] as deformation retract; and the

mapping GfE restricted to Xn x[n] can be identified with gnfn, and

hence is homotopic to the identity. Thus we can apply Case 1 to the sequence
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(X£n} and conclude that Gf£ is a homotopy equivalence.

This proves that f. has a left homotopy inverse. A similar

argument shows that f£G : Y£ - Y. is a homotopy equivalence, so that

f£ has a right homotopy inverse. This proves that f£ is a homotopy

equivalence (compare page 22) and completes the proof of Theorem A.

COROLLARY. Suppose that X is the homotopy direct

limit of (Xi). If each Xi has the homotopy type

of a OW-complex, then X itself has the homotopy

type of a OW-complex.

The proof is not difficult.
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