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PREFACE

This book gives a present-day account of Marston Morse’s theory of
the calculus of variations in the large. However, there have been im-
portant developments during the past few years which are not mentioned .
Let me describe three of these

R. Palais and S. Smale have studied Morse theory for a real-valued
function on an infinite dimensional manifold and have given direct proofs
of the main theorems, without making any use of finite dimensional ap-
proximations. The manifolds in question must be locally diffeomorphic
to Hilbert space, and the function must satisfy a weak compactness con-
dition. As an example, to study paths on a finite dimensional manifold
M one considers the Hilbert manifold consisting of all absolutely con-
tinuous paths o: [0,1] - M with square integrable first derivative. Ac-

counts of this work are contained in R. Palais, Morse Theory on Hilbert

Manifolds, Topology, Vol. 2 (1963), pp. 299-340; and in S. Smale, Morse

Theory and a Non-linear Generalization of the Dirichlet Problem, Annals

of Mathematics, Vol. 80 (1964), pp. 382-396.

The Bott periodicity theorems were originally inspired by Morse
theory (see part IV). However, more elementary proofs, which do not in-
volve Morse theory at all, have recently been given. See M. Atiyah and

R. Bott, On the Periodicity Theorem for Complex Vector Bundles, Acta

Mathematica, Vol. 112 (1964), pp. 229-247, as well as R. Wood, Banach
Algebras and Bott Periodicity, Topology, 4 (1965-66), pp. 371-389.

Morse theory has provided the inspiration for exciting developments
in differential topology by S. Smale, A. Wallace, and others, including
a proof of the generalized Poincaré hypothesis in high dimensions. I

have tried to describe some of this work in Lectures on the h-cobordism

theorem, notes by L. Siebenmann and J. Sondow, Princeton University Press,
1965.
Let me take this opportunity to clarify one term which may cause con-

fusion. In §l2 I use the word "energy' for the integral

v
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along a path w(t). V. Arnol’d points out to me that mathematicians for
the past 200 years have called E the "action'integral. This discrepancy
in terminology is caused by the fact that the integral can be interpreted,
in terms of a physical model, in more than one way.

Think of a particle P which moves along a surface M during the time
interval 0 <t < 1. The action of the particle during this time interval
is defined to be a certain constant times the integral E. If no forces
act on P (except for the constraining forces which hold it within M), then
the "'principle of least action" asserts that E will be minimized within
the class of all paths joining »(0) to o(l), or at least that the first
variation of' E will be zero. Hence P must traverse a geodesic.

But a quite different physical model is possible. Think of a rubber
band which is stretched between two points of a slippery curved surface.
If the band is described parametrically by the equation x = w(t), 0 <t
< 1, then the potential energy arising from tension will be proportional
to our integral E (at least to a first order of approximation). For an
equilibrium position this energy must be minimized, and hence the rubber
band will describe a geodesic.

The text which follows is identical with that of the first printing
except for a few corrections. I am grateful to V. Arnol’d, D. Epstein

and W. B. Houston, Jr. for pointing out corrections.

J.W.M.

Los Angeles, June 1968.
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PART I

NON-DEGENERATE SMOOTH FUNCTIONS ON A MANIFOLD.

§1. Introduction.

In this section we will illustrate by a specific example the situ-
ation that we will investigate later for arbitrary manifolds. Iet us con-

sider a torus M, tangent to the plane V, as indicated in Diagram 1.

S

Diagram 1.

ILet f: M=R (R always denotes the real numbers) be the height
above the V plane, and let M* be the set of all points x € M such that
f(x) < a. Then the following things are true:

(1) If a<o0 =f(p), then M* is vacuous.

(2) If f(p) < a< f(q), then M* is homeomorphic to a 2-cell.

(3)" If f(q) < a < f(r), then M* is homeomorphic to a cylinder:

(4) If f(r) < a< f(s), then M is homeomorphic to a compact
manifold of genus one having a circle as boundary:
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(5) If f(s) <a, then M* is the full torus.

In order to describe the change in M as a passes through one
of the points f(p),f(q),f(r),f(s) it is convenient to consider homotopy
type rather than homeomorphism type. In terms of homotopy types:

(1) = (2) is the operation of attaching a 0-cell. For as far as

homotopy type is concerned, the space Ma, f(p) < a < £f(q), cannot be dis-
tinguished from a O-cell:

Here "~" means "is of the same homotopy type as."

(2) = (3) is the operation of attaching a 1-cell:

<

(3) = (4) 1is again the operation of attaching a 1-cell:

© C©

(4¥) = (5) 1is the operation of attaching a 2-cell.

The precise definition of "attaching a k-cell" can be given as
follows. ILet Y be any topological space, and let

o€ - (x eR¥ : |x| <1}

be the k-cell consisting of all vectors in Euclidean k-space with length < 1.
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The boundary
K - (xeR¥: x| =1
will be denoted by skl 1f g: s¥°' 5 ¥ is a continuous map then
k
Yo
g ©

(Y with a k-cell attached by g) is obtained by first taking the topologi-
cal sum (= disjoint union) of Y and ek, and then identifying each

(¢

x € K1 with g(x) € Y. To talke care of the case k=0 let e° be a

O=S-'|

point and let é be vacuous, so that Y with a 0-cell attached is
just the union of Y and a disjoint point.

As one might expect, the points p,q,r and s at which the homo-
topy type of M changes, have a simple characterization in terms of f.
They are the critical points of the function. If we choose any coordinate
system (x,y) near these points, then the derivatives %)—I; and %—; are
both zero. At p we can choose (x,y) =so that f = x2 + y2, at s so
that f - constant -x° - y°, and at q and r so that f - constant +
x2 - ye. Note that the number of minus signs in the expression for f at
each point is the dimension of the cell we must attach to go from M® to
Mb , where a < f(point) < b. Our first theorems will generalize these

facts for any differentiable function on a manifold.

REFERENCES
For further information on Morse Theory, the following sources are
extremely useful.

M. Morse, "The calculus of variations in the large," American
Mathematical Society, New York, 193k.

H. Seifert and W. Threlfall, "Variationsrechnung im Grossen,"
published in the United States by Chelsea, New York, 1951.

R. Bott, The stable homotopy of the classical groups, Annals of

Mathematics, Vol. 70 (1959), pp. 313-337.
R. Bott, Morse Theory and its application to homotopy theory,

Lecture notes by A. van de Ven (mimeographed), University of

Bonn, 1960.
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§2. Definitions and Lemmas.

The words "smooth" and "differentiable" will be used interchange-
ably to mean differentiasble of class C”. The tangent space of a smooth
manifold M at a point p will be denoted by TMp. If g: M— N 1is a
smooth map with g(p) = q, then the induced linear map of tangent spaces
will be denoted by g,: TMp - TNq.

Now let f be a smooth real valued function on a manifold M. A
point p € M 1is called a critical point of f if the induced map
Tyt TMp T Rf(p) is zero. If we choose a local coordinate system
(x1 seee ,Xn) in a neighborhood U of p this means that

df of
Z(P) = v.. =22 (p) =0 .
ax1p ax?

The real number f(p) is called a critical value of f.

We denote by M* the set of all points x € M such that f(x) < a.
If a 1is not a critical value of f then it follows from the implicit
function theorem that M* is a smooth manifold-with-boundary. The boundary
f“’(a) is a smooth submanifold of M.

A critical point p 1is called non-degenerate if and only if the
matrix »

( bxibij ®)
is non-singular. It can be checked directly that non-degeneracy does not
depend on the coordinate system. This will follow also from the following
intrinsic definition.

If p 1is a critical point of f we define a symmetric bilinear
functional fy, on TMp, called the Hessian of f at p. If v,w € TMp
then v and w have extensions ¥ and ¥ to vector fields. We let -

Fex (V,W) = Vp(ﬁ(f)), where ¥_ is, of course, just v. We must show that

1Y
this is symmetric and well-defined. It is symmetric because

YD) - TN = 9,V (0) = 0

o~ o~

where [¥,¥] is the Poisson bracket of ¥ and W, and where [V,W]p(f) =0

Here W(f) denotes the directional derivative of f in the direction W#.
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since f has p as a critical point.
Therefore fy, 1s symmetric. It is now clearly well-defined since
(}-‘p(&(f)) = v(W¥(f)) is independent of the extension ¥ of v, while
v"fp(\'}'(f)) is independent of W.
Ir (x’,...,xn) is a local coordinate system and v = I a 3

i > i p’
d d X
W=2Lby, —r we can take W = L b. —r where b. now denotes a con-
J 3x3|P J 3xd J
stant function. Then
Fex (v, ) = V(WD) (D) = v(Zb; D) - T & b, —?Lij (»)
J axd 1j J axtax
3%
so the matrix ( P (p)) represents the bilinear function fy,, with
X OX!
respect to the basis ﬁ-a .o -
> [P’ T xR |P

We can now talk about the index and the nullity of the bilinear
functional fy, on TMP' The index of a bilinear functional H, on a vec-
tor space V, 1s defined to be the maximal dimension of a subspace of V
on which H 1is negative definite; the nullity is the dimension of the null-
space, i.e., the subspace consisting of all v € V such that H(v,w) = 0
for every w € V. The point p 1s obviously a non-degenerate critical
point of f if and only if f,, on TMp has nullity equal to 0. The
index of fy, on TMp will be referred to simply as the index of f at p.
The Lemma of Morse shows that the behaviour of f at p can be completely
described by this index. Before stating this lemma we first prove the
following:

IEMMA 2.1. Iet f be a C” function in a convex neigh-
borhood V of o0 in R®, with f£(0) = 0. Then
n
f(x1 yee .,xn) = z xigi(x1 yee .,xn)
i=1
for some suitable C* functions g; defined in V, with

g (0) - %i(o).

PROOF: 1

AF(tx, ..., tx) !l a
£(Xy,000,%)) =f ——}fridt =f z %}f-; (tx,,...,tx) % dt .
) 0 11

1
Therefore we can let g.(X;,...,X ) = of (tx,,...,tx.) dt .
14X *n 3%, 1 Xn
0
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IEMMA 2.2 (Lemma of Morse). Let p be a non-degenerate
critical point for f. Then there is a local coordinate
system (y1,...,yn) in a neighborhood U of p with
yH(p) = 0 for all i and such that the identity

2
£t - (3% - P DR e D
holds throughout U, where A 1is the index of f at bp.

PROOF: We first show that if there is any such expression for £,
then A must be the index of f at p. For any coordinate system
(z1,...,zn), if

£(Q) = £(p) - (2 (@)%~ ... - (2@ + @B+ L+ ()P
then we have
-2 if i
3°r
(p) = 2 if i
dz

J<r,,
J>k,

0 otherwise ,

]

d

which shows that the matrix representing f,, with respect to the basis

d d
gf p,..o,‘g;ﬁ D is

Therefore there is a subspace of TMp of dimension A where fy, 1is nega-
tive definite, and a subspace V of dimension n-» where f,, 1is positive
definite. If there were a subspace of TMp of dimension greater than
on which f,, were negative definite then this subspace would intersect V,
which 1s clearly impossible. Therefore » 1is the index of f .

We now show that a suitable coordinate system (y1 sese ,y’n) exists.
Obviously we can assume that p is the origin of RY and that f£(p) = £(0)

By 2.1 we céan write
n

LC AN =Z xjgj(x“...,xn)
j=1

for (x1,...,xn) in some neighborhood of 0. Since 0 1s assumed to be a

critical point: 5
i
g:(0) = —s(0) =0 .
J 3xY
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Therefore, applying 2.1 to the gj we have
n

gj(x1,...,xn) = Z xihij(x1,...,xn)

for certain smooth functions hij‘ It follows that

g

T(XyseeesXy) = xixjhij(xl""’xn)

1,3=1
1
We can assume that hiJ = hji’ since we can write ﬁij = §(hij+ hji)’
and then have ﬁij = Eji and f = 2 xixjﬁij . Moreover the matrix (ﬁij(o))

is equal to ( ! —iTJr(O)), and hence is non-singular.

There is a non-singular transformation of the coordinate functions
which gives us the desired expression for f, in a perhaps smaller neigh-
borhood of 0. To see this we just imitate the usual diagonalization proof
for quadratic forms. (See for example, Birkhoff and Maclane, "A survey of
modern algebra," p. 271.) The key step can be described as follows.

Suppose by induction that there exist coordinates Uy,eee,Uy in
a neighborhood U, of 0 so that

f=i(u1)2:...:(ur_1)2+ z uiujHij(u1,...,un)
i,JZr

throughout U where the matrices (H; ,un)) are symmetric. After

1 H
a linear change in the last n-r+1 coordinates we may assume that Hrr(o) £ 0.
Let g(u;,...,u,) denote the square root of lHrr»(u1 yee .,un) |. This will

be a smooth, non-zero function of wu,,.. Uy

borhood U, C U, of 0. Now introduce new coordinates ViseeesVpy by

throughout some smaller neigh-

Vo= for 1 £ r

V(U ,eee,u) = g(u1,...,un)[ur + Z uiH:i_r(u1"“’un)/Hrr(uP“"un)]‘
i>r

It follows from the inverse function theorem that wv,,...,v, will serve as

coordinate functions within some sufficiently small neighborhood U, of 0.

3
It is easily verified that f can be expressed as

2
f = z i'-(vi) + Z iJiJ(V1""’V)
ilr i,i>r
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throughout U3. This completes the induction; and proves Lemma 2.2.
COROLLARY 2.3 Non-degenerate critical points are isolated.

Examples of degenerate critical points (for functions on R and
2
R°) are given below, together with pictures of their graphs.

/’
s
vd
'

—//
3 -1/x2 . 2

(a) f(x) = x°. The origin (b) F(x) = e 8in?(1/x)

is a degenerate critical point. The origin is a degenerate, and

non-isolated, critical point.

(¢) f(x,y) = % - 3xy2 = Real part of (x + iy)3.

(0.0) is a degenerate critical point (a "monkey saddle").
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(a) f(x,y) = x2. The set of critical points, all of which
are degenerate, is the x axis, which is a sub-manifold of RZ,

T TS

(e) f(x,y) = xgyg. The set of critical points, all of which are

degenerate, consists of the union of the x and y axis, which is

not even a sub-manifold of RE.

We conclude this section with a discussion of 1-parameter groups of
diffeomorphisms. The reader is referred to K. Nomizu,'"ILie Groups and Differ-

ential Geometry,' for more details.

A 1-parameter group of diffeomorphisms of a manifold M is a ¢%

map
o: RxM =M
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such that
1) for each t € R the map 9.2 M — M defined by
<pt(q) = ¢(t,q) 1is a diffeomorphism of M onto itself,
2) for all t,s € R we have Pp,g = Pp ° P

Given a 1-parameter group ¢ of diffeomorphisms of M we define
a vector field X on M as follows. For every smooth real valued function

f let

o, (@) - £(q)
11 h
X0 = 5 B

This vector field X is said to generate the group o.

ILEMMA 2.4, A smooth vector field on M which vanishes
outside of a compact set K C M generates a unique 1-
parameter group of diffeomorphisms of M.

PROOF: Given any smooth curve

t = c(t) e M

it is convenient to define the velocity vector

dc
It € TMc(t)

. de 1lim fe(t+h)-fc(t)
by the identity E[f(f) “hoo —— 1 —— - (Compare §8.) Now let o
be a 1-parameter group of diffeomorphisms, generated by the vector field X.

Then for each fixed q the curve
t = o.(a)

satisfies the differential equation
do, (q)
= X
at Py (Q) 2

with initial condition cpo(q) = q. This is true since

=h=o0 h = h=o0 h =Xp(f)’

— (D

where p = ‘Pt(q) . But it 1s well known that such a differential equation,
locally, has a unique solution which depends smoothly on the initial condi-

tion. (Compare Graves, "The Theory of Functions of Real Variables,)' p. 166.

Note that, in terms of local coordinates u e ,un, the differential equa-
aud
u- n
aE -

tion takes on the more familiar form: xi(u1,...,u ), i=1,...,n.)
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Thus for each point of M there exists a neighborhood U and a

number € > 0 so that the differential equation
doy(q) X .
—gqr— = q,t(q), ‘-PO(Q) =q

has a unique smooth solution for q € U, |t} <e.

The compact set K can be covered by a finite number of such
neighborhoods U. Let €y > 0 denote the smallest of the corresponding
numbers €. Setting :pt(q) =q for q ¢ K, it follows that this differen-
tial equation has a unique solution cpt(q) for |t] < e, and for all
q € M, This solution is smooth as a function of both variables. Further-
more, it is clear that ¢, = 9, ° ¢, providing that 1t],1s], |tes]| < gge
Therefore each such Py is a diffeomorphism.

It only remains to define Oy for |t > &g Any number t can
be expressed as a multiple of 50/2 plus a remainder r with |r| < 50/2 .

If t=k(ey/2) + v with k>0, set
P = 9 ° 9 ° ee. %O ° 9
t ey/2 ey/2 ey/2 r

where the transformation 9 /2 is iterated k times. If k<0 it is
0

only necessary to replace Q:so /2 by cp_so /2 iterated -k times. Thus L

is defined for all values of t. It is not difficult to verify that oy 1is
well defined, smooth, and satisfies the condition Pp,g = P ° Og - This
completes the proof of Lemma 2.k

REMARK: The hypothesis that X vanishes outside of a compact set
cannot be omitted. For example let M be the open unit interval (0,1) CR,
and let X be the standard vector field ad% on M, Then X does not

generate any 1-parameter group of diffeomorphisms of M,
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§3. Homotopy Type in Terms of Critical Values.

Throughotut this section, if f 1is a real valued function on a

manifold M, we let

s

M - T (- w,al = (p e M: f(p) < al

THEOREM 3.1. Let f be a smooth real valued function
on a manifold M. Iet a < b and suppose that the set
f"[a,b], consisting of all p e M with a < f(p) < b,
is compact, and contains no critical points of f. Then
M is diffeomorphic to MP. Furthermore, M* is a de-
formation retract of Mb, so that the inclusion map

ME - Mb is a homotopy equivalence.

The idea of the proof is to push Mb down to M® along the orthogo-
nal trajectories of the hypersurfaces f = constant., (Compare Diagram 2.)

:111:1;11141

Diagram 2.

Choose a Riemannian metric on M; and let <X,Y> denote the
inner product of two tangent vectors, as determined by this metric. The
gradient of f 1is the vector field grad f on M which is characterized
by the identity

<X, grad £> = X(f)
(= directional derivative of f along X) for any vector field X. This
vector field grad f vanishes precisely at the critical points of f. If

In classical notation, in terms of local coordinates u' seve ,un, the

gradient has components X gij X
J dud
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c:R—=+M is a curve with velocity vector g% note the identity

<cal_§_ , grad ©> - d(foc)

Iet p: M= R be a smooth function which is equal to
1/ < grad f, grad £> throughout the compact set £ [a,b]l; and which vanishes
outside of a compact neighborhood of this set. Then the vector field X,
defined by

Xy = (@) (grad 1)
satisfies the conditions of Lemma 2.4. Hence X generates a 1-parameter
group of diffeomorphisms
I M — M.

For fixed q € M consider the function t — f(mt(q)). If ¢t(q)

lies in the set f '[a,bl, then

af( ) do(
;vgiq_) =<—¢1d3-ti)-,gradf>=<x,gt’adf>=+1.

Thus the correspondence
t = fo.(2)
is linear with derivative +1 as long as f(cpt(q)) lies between a and b.
Now consider the diffeomorphism gt M= M. Clearly this carries
e diffeomorphically onto Mb. This proves the first half of 3.1.
Define a 1-parameter family of maps

ry: M- M
by
if f(q) < a
ry(q) = )
Pt(a-r(q)) (P 1f 2 < (@ <b .
Then r, is the identity, and r, is a retraction from Mb to M*. Hence

o}
M* 1is a deformation retract of Mb. This completes the proof.

REMARK: The condition that 7' (a,b] is compact cannot be omitted.
For example Diagram 3 indicates a situation in which this set is not compact.
The manifold M does not contain the point p. Clearly M® is not a de-

formation retract of Mb.
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Diagram 3.

THEOREM 3.2, Iet f: M—R be a smooth function, and let
p be a non-degenerate critical point with index M. Set-
ting f(p) = ¢, suppose that f"[c-e,c+e] is compact,
and contains no critical point of f other then p, for
some € > 0. Then, for all sufficiently small e, the set
MC*®  has the homotopy type of MC®™® with a r-cell attached.

The idea of the proof of this theorem is indicated in Diagram k4,

for the special case of the height function on a torus. The region
Mee f'1(-oo,c-e]

is heavily shaded. We will introduce a new function F: M — R which
coincides with the height function f except that F < f in a small neigh-
borhood of p. Thus the region F '(-»,c-e] will consist of M°™® to-
gether with a region H near p. In Diagram 4, H 1is the horizontally
shaded region.

Mc+€

Diagram k4.
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Choosing a suitable cell et ¢ H, a direct argument (i.e., push-

» is a deformation

ing in along the horizontal lines) will show that M Ey e
retract of M€ u H. Finally, by applying 3.1 to the function F and the
region F [c-e,c+e] we will see that M®® UH is a deformation retract
of M°*®, This will complete the proof.

Choose a coordinate system u! Y ..,ur1 in a neighborhood U of p
so that the identity
e,

f=c-(u Lo WM @WMH%L s (2

holds throughout U. Thus the critical point p will have coordinates

w(p) = ... =up) =0 .

Choose e > 0 sufficiently small so that

(1) The region ! [c-e,c+e] 1is compact and contains no critical
points other than p.

(2) The image of U under the diffeomorphic imbedding

(u1,...,un): Uy —R"
contains the closed ball.
(™ 2 hZ<ee) .

» to be the set of points in U with

Now define e

(% ...+ (u)‘)2§s and WMo ... =R - o,

The resulting situation is illustrated schematically in Diagram 5.

WML u -axis

(U, ..., uM)- axis

Diagram 5.
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The coordinate lines represent the planes u>‘+1= oo =u =0 and

u' = cee = ut = o regpectively; the circle represents the boundary of the
ball of radius ~2e; and the hyperbolas represent the hypersurfaces £! (c-€)
and £~ (c+e). The region M°™® 4is heavily shaded; the region £ [c-g,c]

is heavily dotted; and the region £ [c,c+e] 1s lightly dotted. The hori-

zontal dark line through p represents the cell e)“ .

Note that e n M™% is precisely the boundary 8 so that o

2
is attached to M°® as required. We must prove that M€y e 1is a de-

formation retract of MC*E,
Construct a new smooth function F: M —— R as follows. Let
p:R—R

be a C° function satisfying the conditions

r(0) > e
p(r) =0 for r> 2¢
-1 < p'(r) <0 forall r,
where wr'(r) = %-% . Now let F coincide with f outside of the coordinate
neighborhood U, and let
F=fFf- Pl((u1)2+...+(u)")2 + 2(u)‘+1)2+...+2(un)2)

within this coordinate neighborhood. It is easily verified that F is a
well defined smooth function throughout M.
It is convenient to define two functions
£,0: U—— [0,x)
by
t = (u1)2 + oeee + (u)“)2
n= (M2, s (u)?
Then f =c¢ - ¢ + n; 8o that:
F(a) = ¢ - £(q) + n(a) - w(e(a) + 21(q))
for all q € T.

ASSERTION 1. The region F~ (-»,c+e] coincides with the region

MC*e - £71(- w,ceel.

PROOF: Outside of the ellipsoid ¢ + 2n < 2¢ the functions f and
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F coincide. Within this ellipsoid we have
FLF = c-t+n < C+ -12—§+1]Sc+e .
This completes the proof.

ASSERTION 2. The critical points of F are the same as those of f.
PROOF: Note that

-1 - w(ee2n) <0
oF
O = 1 - 2u'(E+2q) > 1 .

Since

oF oF
dF=3Td§+*aFdl‘]

where the covectors d¢ and dn are simultaneously zero only at the origin,
it follows that F has no critical points in U other than the origin.
Now consider the region F'1[c—s,c+s]. By Assertion 1 together

with the inequality F < f we see that
F'lc-e,c4el C £ c-e,cee] .

Therefore this region is compact. It can contain no critical points of F
except possibly p. But
F(p) =¢c - u(0) <c -¢ .

Hence F'1[c-e,c+s] contains no critical points. Together with 3.1 this
proves the following.

ASSERTION 3. The region F_1(-w,c-e] is a deformation retract of
MC*E

It will be convenient to denote this region F'l(-w,c-s] by

M°® _ H; where H denotes the closure of F'1(-m,c—e] Y

REMARK: 1In the terminology of Smale, the region M®E L H is
described as M®™® with a "handle" attached. It follows from Theorem 3.1
that the manifold-with-boundary M°™® o H is diffeomorphic to M®*®. This
fact is important in Smale's theory of differentiable manifolds. (Compare

S. Smale, Generalized Poincaré's conjecture in dimensions greater than four,

Annals of Mathematics, Vol. 74 (1961), pp. 391-Lk06.)
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Now consider the cell e consisting of all points q with

£(a) <&, n(@) =o.

Note that e is contained in the "handle" H. In fact, since %-1:- <o,

we have
F(q) < F(p) < c-¢

but f(q) > c-e for q € o™

Diagram 6.

The present situation is illustrated in Diagram 6. The region
MC™® is heavily shaded; the handle H is shaded with vertical arrows;
and the region F! [c-e,cte] 1is dotted.

ASSERTION 4. MC™% o e 1is a deformation retract of M™% y H.

PROOF: A deformation retraction r: MC® vH -M8 y H is
indicated schematically by the vertical arrows in Diagram 6. More precisely
let ry be the identity outside of U; and define re within U as fol-
lows. It in necessary to distinguish three cases as indicated in Diagram 7.

CASE 1. Within the region ¢ < e 1let re correspond to the trans-

formation

1

1 bl 1 A A+ !
(u',..u) = (u,...,u,tu" ,...,tu") .
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CASE 3
CASE 2
Diagram 7.
Thus r, is the identity and r, maps the entire region into e)”. The
fact that each r, maps F'1(—oo,c-e] into itself, follows from the in-

equality g%- > 0.

CASE 2. Within the region & < ¢ < 7 +¢& 1let T correspond to
the transformation

1 n 1 2 A+ ot
(u',...,u) =+ (u,...,u FEFC LT i

where the number s, € [0 ,11 1is defined by
s =t (1-8) ((s-e) /) 172

Thus r is again the identity, and r, maps the entire region into the

1 0
hypersurface f"(c-s) . The reader should verify that the functions stui
remain continuous as ¢ — e, n — 0. Note that this definition coincides
with that of Case 1 when ¢ = €.

CASE 2. Within the region 1 + e < ¢ (i.e., within MC8)  1let
re be the identity. This coincides with the preceeding definition when
E=1n+ €.

2

This completes the proof that MC 8y e is a deformation retract

of F"](-oo,c+e]. Together with Assertion 3, it completes the proof of

Theorem 3.2.

REMARK 3.3. More generally suppose that there are k non-degenerate

critical points DPyseresPy with indices Mseeesdyp in £ (c). Then a
A

M k

C+€  pas the homotopy type of M°%ue 'u...ue <.

similar proof shows that M
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REMARK 3.4. A simple modification of the proof of 3.2 shows that

the set M® 1is also a deformation retract of M°*®. Tn fact M® is a

deformation retract of F'1(—w,c], which is a deformation retract of MC*E,

(Compare Diagram 8.) Combining this fact with 3.2 we see easily that

MC™€ o e 1is a deformation retract of MC.

Diagram 8: M® is heavily shaded, and F"1[c,c+s] is dotted.

THEOREM 3.5. If f 4is a differentiable function on a manifold
M with no degenerate critical points, and if each M is

compact, then M has the homotopy type of a CW-complex, with
one cell of dimension X for each critical point of index \A.

(For the definition of CW-complex see J. H. C. Whitehead, Combin-
atorial Homotopy I, Bulletin of the American Mathematical Society, Vol. 55,
(19%9), pp. 213-245.)

The proof will be based on two lemmas concerning a topological

space X with a cell attached.

IEMMA 3.6. (Whitehead) Let 9, &nd o, be homotopic maps
from the sphere & to X. Then the identity map of X ex-
tends to a homotopy equivalence

k:Xuvu ex-» Xu eX .

P0 ?4
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PROOF: Define k by the formulas

k(x) = x for x € X
k(tu) = 2tu for 0<t< %, ue &
k(tu) = o,_p¢ (1) for 1?5 t <1, ueé.

Here Py denotes the homotopy between P, and P4 and tu denotes the
product of the scalar t with the unit vector u. A corresponding map

Q: Xu(p e)"'*Xu e)“

1 %o
is define;i by similar formulas. It is now not difficult to verify that the
compositions k¢ and £k are homotopic to the respective identity maps.
Thils k 1s a homotopy equivalence.
For further details the reader is referred to, Lemma 5 of J. H. C.
Whitehead, On Simply Connected 4-Dimensional Polyhedra, Commentarii Math.

Helvetici, Vol. 22 (1949), pp. 48-92.

IEMMA 3.7. Let o: 6 > X be an attaching map. Any
homotopy equivalence f: X =Y extends to a homotopy

equivalence

FiX o e’“—»Yvﬁp e,

PROOF: (Following an unpublished paper by P.Hilton.) Define F
by the conditions
FIX f
Fle* - identity .

Iet g: Y — X be a homotopy inverse to f and define

G:Yue)“->Xue

fo gfo
by the corresponding conditions G|Y = g, Gle)‘ = identity.

A

Since gfp 1s homotopic to ¢, it follows from 3.6 that there is

a homotopy equivalence

2

k: X v e —>Xue)"

gfp ®
We will first prove that the composition
kGF: X v e)" =X v e)"
® o

is homotopic to the identity map.
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Let h, be a homotopy between gf and the identity. Using the
specific definitions of k, G, and F, mnote that

kGP(x) = gf(x) for x € X,
kGF(tu)
KGF(tu) = h, ,.o(u) for %—5 t<1, uee

2tu for'o_<_t_<_%, ueé,

The required homotopy

Ayt X v e)L -+ X v el’
? P
is now defined by the formula
qT(x) = hT(x) for x e€X,
q,r(tu)=1—-f—?tu for O_ts%—t, ueé
L
Q(tu) = hy o c0(u) for —1-;-_<_ t<1, uee” .

Therefore F has a left homotopy inverse.
The proof that F 1is a homotopy equivalence will now be purely
formal, based on the following.

ASSERTION. If a map F has a left homotopy inverse L and a
right homotopy inverse R, then F 1is a homotopy equivalence; and
R (or L) is a 2-sided homotopy inverse.

PROOF: The relations
IF =~ identity, FR > identity,

imply that
L >~ L(FR)

(LF)R > R.
Consequently

RF ~ IF 2~ identity ,
which proves that R 1s a 2-sided inverse.

The proof of Lemma 3.7 can now be completed as follows. The rela-
tion
kGF ~ identity
asserts that F has a left homotopy inverse; and a similar proof shows that
G has a left homotopy inverse.
Step 1. Since k(GF) = identity, and k 1is known to have a left
inverse, it follows that (GF)k = identity.
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Step 2. Since G(Fk) X identity, and G 1is known to have a left
inverse, it follows that (Fk)G ~ identity.

Step 3. Since F(kG) = identity, and F has kG as left inverse
also, it follows that F 1is a homotopy equivalence. This completes the
proof of 3.T7T.

PROOF OF THEOREM 3.5. Let ¢y < e < cs < ... be the critical

values of f: M —R. The sequence (cil has no cluster point since each

M* is compact. The set M® is vacuous for a < e Suppose

a f C15CpsC3seee and that M* is of the homotopy type of a CW-complex.
Let c¢ be the smallest c; > a. By Theorems 3.1, 3.2, and 3.3, M°*®  has
2 A
the homotopy type of MC 8y e ! V..o € i(e) for certain maps q>1,...,q)j(c)
1 ®i(e)

when e is small enough, and there is a homotopy equivalence h: MCE - M2,
We have assumed that there is a homotopy equivalence h': M - K, where K
is a CW-complex.

Then each h' o h o o 3 is homotopic by cellular approximation to

a map
¥y é)vj - (xj—l) - skeleton of K.
Then K u e)v1 V.eeou ekj(c) is a CW-complex, and has the same homotopy
Y1 ¥ie)
type as M°*®, by Lemmas 3.6, 3.7.

By induction it follows that each Ma' has the homotopy type of a
CW-complex. If M dis compact this completes the proof. If M 1is not com-
pact, but all critical points lie in one of the compact sets M2 , then a
proof similar to that of Theorem 3.1 shows that the set M® is a deformation
retract of M, so the proof is again complete.

If there are infinitely many critical points then the above con-

struction gives us an infinite sequence of homotopy equivalences
a a, a
M'lcmM2cuM3c..
bl
K1 CK, C K3 ... ,
each extending the previous one. ILet K denote the union of the Ki in the

direct 1limit topology, i.e., the finest possible compatible topology, and
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let g: M — K be the limit map. Then g induces isomorphisms of homotopy
groups in all dimensions. We need only apply Theorem 1 of Combinatorial
homotopy I to conclude that g 1s a homotopy equivalence. [Whitehead's
theorem states that if M and K are both dominated by CW-complexes, then
any map M — K which induces isomorphisms of homotopy groups is a homotopy
equivalence. Certainly K is dominated by itself. To prove that M is
dominated by a CW-complex it is only necessary to consider M as a retract
of tubular neighborhood in some Euclidean space.] This completes the proof

of Theorem 3.5.

REMARK. We have also proved that each M® has the homotopy type
of a finite CW-complex, with one cell of dimension X for each critical
point of index A in M*. This is true even if a is a critical value.

(Compare Remark 3.4.)
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§k. Exemples.

As an application of the theorems of §3 we shall prove:

THEOREM 4.1 (Reeb). If M 1is a compact manifold and f
is a differentiable function on M with only two critical
points, both of which are non-degenerate, then M 1is
homeomorphic to a sphere.

PROOF: This follows from Theorem 3.1 together with the Lemma of
Morse (§2.2). The two critical points must be the minimum and maximum
points. Say that f(p) = 0 1s the mimimum and f(q) = 1 1s the maximum.
If e is small enough then the sets M® = £ '[0,e] and f '[1-e,1] are
closed n-cells by §2.2. But M is homeomorphic to M€ by §3.1. Thus

"¢ and £ '[1-e,1], matched

M is the union of two closed n-cells, M
along their common boundary. It is now easy to construct a homeomorphism

between M and SP.

REMARK 1. The theorem remains true even if the critical points are
degenerate. However, the proof is more difficult. (Compare Milnor, Differ~
ential topology, in "Lectures on Modern Mathematics II," ed. by T. L: Saaty
(Wiley, 1964), pp. 165-183; Theorem 1'; or R. Rosen, A weak form of the

star conjecture for manifolds, Abstract 570-28, Notices Amer. Math Soc.,

Vol. 7 (1960), p. 380; Lemma 1.)

REMARK 2. It is not true that M must be diffeomorphic to s? with

its usual differentiable structure.(Compare: Milnor, On manifolds homeomor-

phic to the T-sphere, Annals of Mathematics, Vol. 6k (1956), Pp. 399-405.

In this paper a 7-sphere with a non-standard differentiable structure is

proved to be topologically S7 by finding a function on it with two non-
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degenerate critical points.)

As another application of the previous theorems we note that if an
n-manifold has a non-degenerate function on it with only three critical
points then they have index 0, n and n/2 (by Poincaré duality), and the
manifold has the homotopy type of an n/2-sphere with an n-cell attached.
See J. Eells and N. Kuiper, Manifolds which are like projec.tive planes,

Inst. des Hautes Etudes Sci., Publ. Math. 1k, 1962. Such a functlion exists
for example on the real or complex projective plane.
Let CPn be complex projective n-space. We will think of C.Pn as

equivalence classes of (n+1)-tuples (zo,...,zn) of complex numbers, with

2
lejl = 1. Denote the equivalence class of (zy,...,z)) by (z5:z,:...:2.).
Define a real valued function f on C.Pn by the identity
f(z,:2,: :z) =z c |z.|2
0 Byt i2y 3125
where CysCqys---,Cy are distinct real constants.

In order to determine the critical points of f, consider the
following local coordinate system. Let Uo be the set of (zo:z1 HN :zn)
with 2z, # 0, and set Z;

BN z - X5+ iyj

Then
X390 X, ¥yt Uy R

are the required coordinate functions, mapping U, diffeomorphically onto

0
the open unit ball in R°D, Clearly
|2 2

2 2 2 2
= X5+ Yy |z0|.1—2(xj +yj\

n
c, +Z (cj - co)(xj2 + yje\
j=1

throughout the coordinate neighborhood Uo' Thus the only critical point of

2y

so that

H
]

f within U0 lies at the center point
P, = (1:0:0:...:0)
of the coordinate system. At this point f is non-degenerate; and has
index equal to twice the number of j with ¢ j < ey
Similarly one can consider other coordinate systems centered at the

points
D, = (0:1:0:...:0),...’,pr1 = (0:0:...:0:1)
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It follows that py,p,,... )b, are the only critical points of f. The
index of f at Py is equal to twice the number of J with c‘j < Cy
Thus every possible even index between 0 and 2n occurs exactly once.

By Theorem 3.5:

C.Pn has the homotopy type of a CW-complex of the form

eO v e2 ueh U...u e2n

It follows that the integral homology groups of CPn are given by

for 1 =0,2,4,...,20n
(CP;Z)={Z SR
Hi n 0 for other values of i .
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§5. The Morse Inequalities.

In Morse's original treatment of this subject, Theorem 3.5 was not
available. The relationship between the topology of M and the critical
points of a real valued function on M were described instead in terms of
a collection of inequalities. This section will describe this original

point of view.

DEFINITION: Iet S Dbe a function from certain pairs of spaces to
the integers. S 1s subadditive if whenever XD YD Z we have B3(X,Z) <
3(X,Y) + S(Y,Z). If equality holds, S is called additive.

As an example, given any field F as coefficient group, let

R, (X,Y) = rth Betti number of (X,Y)
rank over F of H (X,¥;F) ,

for any pair (X,Y) such that this rank is finite. R, is subadditive, as

py
is easily seen by examining the following portion of the exact sequence for
(X,Y,2):
-~ H(Y,2) - H (X,2) > (XY > ...
The Euler characteristic X(X,Y) is additive, where x(X,Y) =

Z (-0 R (X, D).

IEMMA 5.1. ILet S be subadditive and let XOC...C X

Then S(X,,X)< 2 S(X;,X;_,). If S is additive then
equality holds.='

PROOF: Induction on n. For n = 1, equality holds trivially and
the case n = 2 1is the definition of [subl] additivity.

If the result is true for n - 1, then S(Xn_1,

n-1
Xo) < T 8(Ky, %y ).
Therefore 3(X,,X,) < S(X,_;,X,) + 3(X,,X,-1) £ ? S<X1’X1_1) and the result
is true for n.

Let S(X,#) = 3(X). Taking X, = # in Lemma 5.1, we have
n
(1) S(X) < ) S(Xy,X; )
1

with equality if S 1is additive.
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ILet M be a compact manifold and f a differentiable function
on M with isolated, non-degenerate, critical points. Let a, <...< ay
be such that M T >
Then

contains exactly i critical points, and M L

a, a a A; A
H, (M i,M 1—1) = H (M i-1 6 i,M 1-1)
where A is the index of the
critical point,
MoM
= Hy(e 7, 7) by excision,
{ coefficient group in dimension 2

0 otherwise.

& e
Applying (1) to ¢ M~ C...CM" =M with S = R, we have

R, (M) < i RM I M Lo
3 > Y 4 =
i=1
where Cx denotes the number of critical points of index M. Applying this

formula to the case S =X we have

N e R P
X (M) = z X(M ~,M ) = CO - C1 + 02 ~+...+ C
i=1

n

Thus we have proven:

THEOREM 5.2 (Weak Morse Inequalities). If Cx denotes the
number of critical points of index M on the compact mani-
fold M then

(2) R, (M) < C, ,
(3) Z(-n*RM =T (-n* ¢

Slightly sharper inequalities can be proven by the following
argument.

and

LEMMA 5.3. The function 8, is subadditive, where

S\(X,Y) = Ry(X,Y) - Ry, _,(X,Y) + R, ,(X,¥) - +...+ Ry(X,Y)

PROOF: Given an exact sequence

Lo d gk ..oD=>o0

of vector spaces note that the rank of the homomorphism h plus the rank
of i 1is equal to the rank of A. Therefore,
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rank h = rank A - rank i
= rank A - rank B + rank J
= rank A - rank B + rank C - rank k

= rank A - rank B + rank C - +...+ rank D
Hence the last expression is > 0. Now consider the homology exact sequence

of a triple X DY D Z. Applying this computation to the homomorphism
d
Hx+1 (xX,Y) — H,V(Y, Z)

we see that
rank d = RX(Y,Z) - RX(X,Z) + RX(X,Y) - Rx_1(Y,Z) + ...20

Collecting terms, this means that

8,(Y,2) - 8,(X,2) + 8, (X,¥) >0 ,

which completes the proof.
Applying this subadditive function Sx to the spaces
a a a
FCM'CM2C...CMK

we obtain the Morse inequalities:

Xk
S, (M Z s rinily so _o c
(M < A =V T V-1 *eect by
ji=1
or

(4 RX(M) - Rx_1(M) Foeeet RO(M) < Cx - Cx_1+ -t CO'

)
These inequalities are definitely sharper than the previous ones.
In fact, adding (hx) and (“x-1)’ one obtains (2x); and comparing (hx)
with (hx-1) for X > n one obtains the equality (3).
As an 1llustration of the use of the Morse inequalities, suppose
that Cx+1 = 0. Then Rx+1 must also be zero. Comparing the inequalities
(%) and (%, ,), we see that

Ry - BRy_q +=+-x Ry = C, - Cy_; +-...+ Cy .

Now suppose that Cx-1 is also zero. Then Rx-1 = 0, and a similar argu-
ment shows that

Ry s - Rx_3 +-...+ Ry = C
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Subtracting this from the equality above we obtain the following:

COROLLARY 5.4. If C =C_,=0 then R, =C, and

A+ A A

(Of course this would also follow from Theorem 3.5.) Note that
this corollary enables us to find the homology groups of complex projective
space (see §4) without making use of Theorem 3.5.
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§6. Manifolds in Euclidean Space.

Although we have so far consider'ed, on a manifold, only functions
which have no degenerate critical points, we have not yet even shown that
such functions always exist. In this section we will construct many func-
tions with no degenerate critical points, on any manifold embedded in RD.
In fact, if for fixed p e€R® define the function Lp: M —- R by Lp(q) =
||p-q||2. It will turn out that for almost all p, the function T“p has
only non-degenerate critical points.

Let M CR™ be a manifold of dimension k < n, differentiably em-
bedded in R™. Let N C M xR® be defined by

N = ((q,v): 9 € M, v perpendicular to M at qj}.

It is not difficult to show that N is an n-dimensional manifold
differentiably embedded in R2n. (N is the total space of the normal
vector bundle of M.)

Iet E: N—»R™ be E(q,v) =q +v. (E is the "endpoint" map.)

E(q,v)

DEFINITION. e e R! 1is a focal point of (M,q) with multiplicity

p if e =q + v where (q,v) € N and the Jacobian of E at (q,v) has
nullity p > 0. The point e will be called a focal point of M if e is
a focal point of (M,q) for some q € M.

Intuitively, a focal point of M is a point in R where nearby

normals intersect.

We will use the following theorem, which we will not prove.
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THEOREM 6.1 (Sard). If M, and M, are differentiable

manifolds having a countable basis, of the same dimension,

and f: M, = M, 1s of class Cl, then the image of the

set of critical points has measure 0 in M,.

A critical point of f 1is a point where the Jacobian of f 1is
singular. For a proof seede Rham, "Variétés Différentiables," Hermann,

Paris, 1955, p. 10.

COROLIARY 6.2. For almost all X € Rn, the point x 1is
not a focal point of M.

PROOF: We have just seen that N is an n-manifold. The point x
is a focal point iff x is in the image of the set of critical points of
E: N — R®., Therefore the set of focal points has measure O.

For a better understanding of the concept of focal point, it is con-
venient to introduce the "second fundamental form" of a manifold in Euclidean
space. We will not attempt to give an invariant definition; but will make
use of a fixed local coordinate system.

1 k

Iet u,...,u be coordinates for a region of the manifold M C R™.

Then the inclusion map from M to R™ determines n smooth functions

1
x1(u1,...,uk),...,xn(u ,...,uk)

These functions will be written briefly as 3(’(1,11 yene ,uk) where X =

(x1 g .,xn) . To be consistent the point q e M C RY will now be denoted by

—

q.
The first fundamental form associated with the coordinate system is

defined to be the symmetric matrix of real valued functions

() - (£-8) .

The second fundamental form on the other hand, is a symmetric matrix (Zij)

of vector valued functions.

2=
It is defined as follows. The vector aax at a point of M can
du~ou
be expressed as the sum of a vector tangent to M and a vector normal to M.
2=
x .
Define Yij to be the normal component of m . Given any unit vector

v which is normel to M at '@{ the matrix

(_‘;‘ﬁ%) = (_"Tij)
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can be called the "second fundamental form of M at q in the direction
v."

It will simplify the discussion to assume that the coordinates
have been chosen to that 8i3s evaluated at _cf, is the identity matrix.
Then the eigenvalues of the matrix ( v - ?i j) are called the principal
curvatures K,,.. "KK of M at d in the normal direction V. The re-
ciprocals K;1 yooe ,K[El
pal radii of curvature. Of course it may happen that the matrix (_\; . ?i j)

of these principal curvatures are called the princi-

is singular. 1In this case one or more of the Ig_ will be zero; and hence

the corresponding radii K? will not be defined.

Now consider the normal line ¢ consisting of all g + t-\';, where

— . —
v 1is a fixed unit vector orthogonal to M at ¢ .

LEMMA 6.3. The focal points of (M,_CI) along { are pre-
cisely the points q + K_IL1 V, where 1< 1 <k, K #o.

Thus there are at most, k focal points of (M,'a) along
£, each being counted with its proper multiplicity.

PROOF: Choose n-k vector fields 71’1 (u1 yeee ,uk) yeon ,_ﬁn_k(u1 yoee ,uk)
along the manifold so that 71 yee ’—";n—k are unit vectors which are orthogo-

nal to each other and to M. We can introduce coordinates (u1 yoo .,uk

b
t',...,t%% on the manifold NC M xR as follows. Iet (u',...,u5t!,...

tn'k) correspond to the point

n-k
(’i’(u1,...,uk), z taﬁ’a(u1,...,uk)) €N
a=1

Then the function
E: N —R!
gives rise to the correspondence

1 k .1 -k 2 1 1
(u',...,u5t, .., = R(u ,...,uk) + Etaﬁa(u ,...,uk) ,

with partial derivatives

V< - ow
de ox a Vo
o€ . °X ; ¢ 2
dut dut b dut
de -
gﬂ = W B )

Taking the inner products of these n-vectors with the linearly independent
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— —
X =

vectors 531,..., S;k’ W1""ﬁ;n—k we will obtain an nxn matrix whose

rank equals the rank of the Jacobian of E at the corresponding point.
This nxn matrix clearly has the following form

= - w ow
9 <) a d a Mo =
SN LeE ) Qe

identity

(:) matrix

Thus the nullity is equal to the nullity of the upper left hand block. Using

the identity

- ow - 2=
9 - OX a  OX - 37X

0 = W . == = —— . == + W .
Bui ( o auj ) dut Buj o BuIauJ

we see that this upper left hand block is just the matrix
o -
(e - Z 6%V - Ty )
a

Thus:

ASSERTION 6.4. q + tv is a focal point of (M,d) with multiplicity

p  if and only if the matrix

(*) (815 - tv - Tij)

is singular, with nullity .

Now suppose that (gij) is the identity matrix. Then (*) is singu-
lar if and only if % is an eigenvalue of the matrix (v . Tij) . Further-
more the multiplicity p 1is equal to the multiplicity of % as eigenvalue.
This completes the proof of Lemma 6.3.

Now for fixed P € R® 1let us study the function

hﬁ = f: M - R
where

G, u) - R, -2 R F-F BT D

We have

df 3% - -
5 =2 - (X -p)
bui SEI

Thus f has a critical point at 'a if and only if '3 —'3 is normal to M

at ?i .
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The second partial derivatives at a critical point are given by

¥ (FE X, _SX L E-D)
bulbuj du —B—J auiauj

Setting 3 = X+ tV, as in the proof of Lemma 6.3, this becomes
3% -
= 2(g. s - -7
duTau’ (Byy - o+ fyy)
Therefore:
IEMMA 6.5. The point TeM isa degenerate critical point
of f = Igr if and only if T 1is a focal point of (M,3).

The nullity of 4 as critical point is equal to the multi-
plicity of P as focal point.

Combining this result with Corollary 6.2 to Sard's theorem, we
immediately obtain:

THEOREM 6.6. For almost all p € R® (all but a set of
measure 0) the function
Lp: M—=R

has no degenerate critical points.
This theorem has several interesting consequences.

COROLLARY 6.7. On any manifold M there exists a dif-
ferentiable function, with no degenerate critical points,
for which each M® is compact.

PROOF: This follows from Theorem 6.6 and the fact that an n-dimen-

sional manifold M can be embedded differentiably as.a closed subset of

R (see Whitney, Geometric Integration Theory, p. 113).

APPLICATION 1. A differentiable manifold has the homotopy type of
a CW-complex. This follows from the above corollary and Theorem 3.5.

APPLICATION 2. On a compact manifold M there is a vector field
X such that the sum of the indices of the critical points of X equals
X(M), the Euler characteristic of M. This can be seen as follows: for

any differentiable function f on M we have X(M) = I (-1)7L C, where C,

13
is the number of critical points with index A. But (-1)7L is the index of

the vector field grad f at a point where f has index .
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It follows that the sum of the indices of any vector field on M
is equal to X(M) Dbecause this sum is a topological invariant (see Steen-
rod, "The Topology of Fibre Bundles," §39.7).

The preceding corollary can be sharpened as follows. Let k> 0
be an integer and let K C M be a campact set.

COROLLARY 6.8. Any bounded smooth function f: M—R can

be uniformly approximated by a smooth function g which

has no degenerate critical points. Furthermore g can be

chosen so that the i-th derivatives of g on the compact

set K uniformly approximate the corresponding derivatives
of f, for i<k

(Compare M. Morse, The critical points of a function of n vari-

ables, Transactions of the American Mathematical Society, Vol. 33 (1931),
pp. 71-91.)
PROOF: Choose some imbedding h: M —+RY of M as a bounded sub-

get of same euclidean space so that the first coordinate h1 is precisely

the given function f. Let c¢ be a large number. Choose a point
P = (-Ctey,€,,..0,8)

close to (-¢,0,...,0) € R® so that the function T‘fP: M — R is non-

(x) - c?
g(x) = ELQC_

Clearly g is non-degenerate. A short computation shows that
n

g(x) = £f(x) + i hi(x)e/Zc -i eih.i(x)/c + z 512/20 - £
1

1 1

degenerate; and set

Clearly, if c¢ 1is large and the ey are small, then g will approximate
f as required.
The above theory can also be used to describe the index of the

function

Lp:M-*R

at a critical point.

IEMMA 6.9. (Index theorem for Lp.) The index of

at a non-degenerate critical point q € M is equal to
the number of focal points of (M,q) which lie on the
segment from g to p; each focal point being counted
with its multiplicity.



38 I. NON-DEGENERATE FUNCTIONS

An anslogous statement in Part III (the Morse Index Theorem) will

be of fundamental importance.

PROOF: The index of the matrix

32 -
(ﬁ) - oy, - T,

is equal to the number of negative eigenvalues. Assuming that ( gij) is
the identity matrix, this is equal to the number of eigenvalues of (Vv - Tij)
which are _>_-:—,: . Comparing this statement with 6.3, the conclusion follows.
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§7. The Iefschetz Theorem on Hyperplane Sections.

As an application of the ideas which have been developed, we will
prove some results concerning the topology of algebraic varieties. These
were originally proved by Lefschetz, using quite different arguments. The
present version is due to Andreotti and Fran.kel*.

THEOREM 7.1. If MCGC! isa non-singular affine alge-
braic variety in complex n-space with real dimension 2k,
then

H; (M;Z) = 0 for 1> k.

This is a consequence of the stronger:

THEOREM T7.2. A complex analytic manifold M of complex
dimension k, bianalytically embedded as a closed subset
of ¢ has the homotopy type of a k-dimensional CW-complex.

The proof will be broken up into several steps. First consider a

quadratic form in k complex variables
1 k
Q(z ,...,27) = thj 2Pz
h Yh h
If we substitute x + 1 for 2z, and then take the real part of Q we
obtain a real quadratic form in 2k real variables:
Q! (x1 yeee ,xk,y1 yees ,yk) = real part of thj(xh+iyh) (xd+iyd)

ASSERTION 1. If e is an eigenvalue of Q' with multiplicity g,

then -e 1is also an eigenvalue with the same multiplicity pu.

PROOF. The identity Q(iz',...,1z5) - -q(z',...,z5) shows that
the quadratic form Q' can be transformed into -Q' by an orthogonal

change of variables. Assertion 1 clearly follows.

See 8. Lefschetz, "L'analysis situs et la géométrie algébrique," Paris,
1924k; and A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane
sections, Annals of Mathematics, Vol. 69 (1959), pp. T13-T17.
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Now consider a complex manifold M which is bianalytically imbed-
ded as a subset of C™. ILet g be a point of M.

ASSERTION 2. The focal points of (M,q) along any normal line (

occur in pairs which are situated symmetrically about q.

In other words if q + tv is a focal point, then q - tv is a

focal point with the same multiplicity.

PROOF. Choose complex coordinates 2! yoen ,zk for M in a neigh-

borhood of q so that z‘(q) = ... = zk(q) = 0. The inclusion map M- CP
determines n complex analytic functions
Ky

1
Wy =wa(z PN A

s

Iet v Dbe a fixed unit vector which is orthogonal to M at q. Consider
the Hermitian inner product

- 1 K\ =
Z W Vo = z w2z, .. ,27)7,
of w and v. This can be expanded as a complex power series
1 Ky = 1 k.
w(z',...,27)V, = constant + Q(z',...,2") + higher terms,

where Q denotes a homogeneous quadratic function. (The linear terms van-
ish since v 1s orthogonal to M.)
Now substitute xh + iyh for zh 80 as to obtain a real coordinate

system for M; and consider the real inner product
W+ v = real part of ZWQVO‘
This function has the real power series expansion
1] k _1 k
w*v = constant + Q'(x',...,X,¥ ,...,y ) + higher terms.

Clearly the quadratic terms Q' determine the second fundamental form of
M at q 1in the normal direction v. By Assertion 1 the eigenvalues of
Q' occur in equal and opposite pairs. Hence the focal points of (M,q)
along the line through q and q + v also occur in symmetric pairs. This
proves Assertion 2.

We are now ready to prove 7.2. Choose a point p € C? so that the

squared-distance function
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Lp: M—=R
has no degenerate critical points. Since M 1is a closed subset of Cn, it
is clear that each set

M - L;)‘ [0,a]
is compact. Now consider the index of Lp at a critical point q. Accord-
ing to 6.9, this index is equal to the number of focal points of (M,q)
which 1lie on the line segment from p to q. But there are at most 2k
focal points along the full line through p and q; and these are distri-
buted symmetrically about q. Hence at most k of them can lie between p
and q.

Thus the index of I‘fp at q is < k. It follows that M has the

homotopy type of a CW-complex of dimension < k; which completes the proof
of T.2.

COROLLARY 7.3 (Lefschetz). Let V be an algebraic variety
of complex dimension k which lies in the complex projective
space CPn. Iet P be a hyperplane in CPn which contains
the singular points (if any) of V. Then the inclusion map

VnP=>V

induces isomorphisms of homology groups in dimensions less
than k-1. Purthermore, the induced homomorphism

H, (V0 PsZ) —= H__,(V;Z)

is onto.

PROOF. Using the exact sequence of the pair (V,Vv n P) it is
clearly sufficient to show that H_,(V,V n P;Z) = 0 for r < k-1. But the
Lefschetz duality theorem asserts that

H,(V,V n P;2) = HXT(V ~(V n P);2)
But V -(V n P) is a non-singular algebraic variety in the affine space
CPn - P. Hence it follows from 7.2 that the last group is zero for r < k-1.

This result can be sharpened as follows:

THEOREM 7.4 (Lefschetz). Under the hypothesis of the
preceding corollary, the relative homotopy group
1rr(V,V n P) is zero for r < k.
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PROOF. The proof will be based on the hypothesis that some neigh-
borhood U of VN P can be deformed into V n P within V. This can be
proved, for example, using the theorem that algebraic varieties can be tri-
angulated.

In place of the function I_p: V-VNP—-R we will use f: V=R

where
for xeVnpP ,

f(x) = { °
1/Lp(x) for x ¢ P.

Since the critical points of I_p have index < k it follows that
the critical points of f have index > 2k - k = k. The function f has
no degenerate critical points with & < f < ». Therefore V has the
homotopy type of V& - £ o ,€l  with finitely many cells of dimension > k
attached.

Choose & small enough so that V® C U. Let I® denote the unit
r-cube. Then every map of the pair (IF ,ir ) into (V,V n P) can be deform-
ed into a map

(I,1Y - (v®*,vnP) C (U,V N P) |,

since r < k, and hence can be deformed into V n P. This campletes the

proof.



PART IT

A RAPID COURSE IN RIEMANNIAN GEOMETRY

§8. Covariant Differentiation

The object of Part IT will be to give a rapid outline of some basic
concepts of Riemannian geometry which will be needed later. For more infor-
mation the reader should consult Nomizu, "Lie groups and differential geo-
metry. Math. Soc. Japan, 1956; Helgason, 'Differential geometry and sym-
metric spaces,' Academic Press, 1962; Sternberg, 'Lectures on differential
geometry," Prentice-Hall, 196L4; or Laugwitz, "Differential and Riemernnian
geometry,' Academic Press, 1965.

Iet M be a smooth manifold.

DEFINITION. An affine connection at a point p € M 1is a function

which assigns to each tangent vector Xp € TM.p and to each vector field Y

a new tangent vector

)Lpl-YeTM.p

called the covariant derivative* of Y in the direction X D This is re-

quired to be bilinear as a function of Xp and Y. Furthermore, if
f: M- R
is a real valued function, and if fY denotes the vector field
(D4 = fl@Yy
‘then F 1is required to satisfy the identity

Xp F(fY) = (pr)Yp + f(p)Xp FY .

Note that our X +Y coincides with Nomizu's VXY. The notation is in-
tended to suggest that the differential operator X acts on the vector field
Y.
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(As usual, pr denotes the directional derivative of f in the direction

X5.)

A global affine connection (or briefly a comnection) on M is a

function which assigns to each p € M an affine connection I-p at p,
satisfying the following smoothness condition.
1) If X and Y are smooth vector fields on M then the vector

field X kY, defined by the identity
(X I-Y)p=}(p l-pY ,
must also be smooth.

Note that:

(2) X FY 4is bilinear as a function of X and Y .

(3) (fFX) FY=fX FY) ,

(%) (X F(fY) = XOY + fF(X +Y)

Conditions (1), (2), (3), (%) can be taken as the definition of
a connection.

In terms of local coordinates u' yooo ,un defined on a coordinate
neighborhood U C M, the connection F is determined by n3  smooth real
valued functions Fil?j on U, as follows. Let Bk denote the vector
field ga}z on U. Then any vector field X on U can be expressed

uniquely as
k.
X = Z X ak
k=1
k

where the x are real valued functions on U. 1In particular the vector

field 81 + Bj can be expressed as

k
(5) 3, F 3y = g r oy

These functions r‘].L_{'j determine the connection completely on U.
In fact given vector fields X = }:xiai and Y = Zy‘jéj one can
expand X FY Dby the rules (2), (3), (4); yilelding the formula

(6) N O X ALY
k i
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where the symbol yki stands for the real valued function

b

yf{i = aiyk +Z Fi]fj yj
J
Conversely, given any smooth real valued functions r‘fj on U,
one can define X FY by the formula (6). The result clearly satisfies
the conditions (1), (2), (3), (&), (5).
Using the connection F one can define the covariant derivative of

a vector field along a curve in M. First some definitions.

A parametrized curve in M is a smooth function ¢ from the real

numbers to M. A vector field V along the curve c¢ 1is a function which
assigns to each t € R a tangent vector

Vt € TMC(t)

This is required to be smooth in the following sense: For any smooth func-

tion f on M the correspondence

t —>th

should define a smooth function on R.
As an example the velocity vector field %% of the curve is the
vector field along c¢ which is defined by the rule

dc d
TE - °x TE

Here adf denotes the standard vector field on the real numbers, and
Cy: TR, — TMc(t)
(]

denotes the homomorphism of tangent spaces induced by the map c. (Compare

Diagram 9.)
L
de
c(t)

Diagram 9
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Now suppose that M is provided with an affine connection. Then

any vector field V along c¢ determines a new vector field %—‘% along c
called the covariant derivative of V. The operation

v - X

is characterized by the following three axioms.

a) DD DV DW

b) If f 1is a smooth real valued function on R then

D(fV) df Dv
X - w®V+IEw

¢) If V 1is induced by a vector field Y on M, that is if
DV dc
Vy = Yc(t) for each t, then Ff 1s equal to FF FY
(= the covariant derivative of Y in the direction of the
velocity vector of «c)
IEMMA 8.1. There is one and only one operation V — %—%
which satisfies these three conditions.

PROOF: Choose a local coordinate system for M, and let
u1 (v),. .,un(t) denote the coordinates of the point c¢(t). The vector
field V can be expressed uniquely in the form

vV = Z vjbj

1 I are real valued functions on R (or an appropriate open

where v ,...,v
subset of R), and 9,,...,d, are the standard vector fields on the co-
ordinate neighborhood. It follows from (a), (b), and (c¢) that

J
DV § av o1
'd'f‘j(“d’c’aj'*“ja%"a:j)

k i
DI R

Conversely, defining aD:VE by this formula, it is not difficult to verify
that conditions (a), (b), and (c) are satisfied.
A vector field V along c¢ 1is said to be a parallel vector field

if the covariant derivative %—‘é is identically zero.
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LEMMA 8.2. Given a curve c¢ and a tangent vector V,
at the point c¢(0), there is one and only one parallel
vector field V along c¢ which extends Vo‘

PROOF. The differential equations

k i
gd\%+zdu rk vl - o

have solutions vk( t) which are uniquely determined by the initial values
vk(o) . Since these equations are linear, the solutions can be defined for
all relevant values of t. (Compare Graves, "The Theory of Functions of
Real Variables," p. 152.)

The vector Vt is said to be obtained from Vo by parallel trans-
lation along c.

Now suppose that M is a Riemannian manifold. The inner product
of two vectors X, Y, will be denoted by <xp, Yp>

DEFINITION. A comnection F+ on M is compatible with the Rieman-
nian metric if parallel translation preserves imner products. In other words,
for any parametrized curve c¢ and any pair P, P' of parallel vector fields

along c¢, the imner product < P,P'> should be constant.

IEMMA 8.3. Suppose that the comnection is compatible with
the metric. Iet V, W be any two vector fields along c.
Then

a v DW
dt <V,W> = <a’f’w> + <V,
PROOF: Choose parallel vector fields P1 yee ’Pn along c¢ which
are orthonormal at one point of ¢ and hence at every point of c¢. Then

the given fields V and W can be expressed as z vil?‘i and z WJPJ respec-

tively (where v <V,Pi> is a real valued function on R). It fol-
lows that < V,W> = z viwl and that
DV_ZdviP DW_ZdWJP
daEF - dt “i’ dt - dt” *j
Therefore
ow
<8D:VE’W> + <V’HE> Z ( wi + Vl dW = ad"f <V,W> ’

which completes the proof.
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COROLLARY 8.4. For any vector fields Y,Y' on M and any

vector Xp € TMP:
Xp<Y,Y'> = <Xp I-Y,Yls> + <Yp,xp FY'> .

PROOF. Choose a curve c¢ whose velocity vector at t = 0 is Xp;
and apply 8.3.
DEFINITION 8.5. A connection F 1is called symmetric if it satis-
fies the identity
(X FY) - (Y +X) = I[X,Y]

(As usuval, [X,Y] denotes the poison bracket I[X,YIf = X(Yf) - Y(Xf) of

two vector fields.) Applying this identity to the case X = ai, Y = Bj,
since [Bi,aj] = 0 one obtains the relation
k k
ryy3 - Tii = O

Conversely if r‘jlfj = r‘jlg_ then using formula (6) it is not difficult to
verify that the commection F 1is symmetric throughout the coordinate neigh-
borhood.

IEMMA 8.6. (Fundamental lemma of Riemannian geometry.)
A Riemannian manifold possesses one and only one sSym-
metric connection which is compatible with its metric.

(Compare Nomizu p. 76, Laugwitz p. 95.)
PROOF of uniqueness. Applying 8.4 to the vector fields ai,aj,ak,
and setting < aj,ak > = 8y One obtains the identity
ai 8k = <ai raj,ak> +<aj,ai l-ak>
Permuting 1i,j, and k this gives three linear equations relating the

The following reformulation may (or may not) seem more intuitive. Define
The "covariant second derivative" of a real valued function f along two
vectors Xp,Yp to be the expression

Xp(Yf) - (Xp FY)Ff

where Y denotes any vector field extending Yp‘ It can be verified that
this expression does not depend on the choice of Y. (Compare the proof of
Temma 9.1 below.) Then the connection is symmetric if this second deriva-

tive i1s symmetric as a function of Xp and Yp.
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three quantities

<ai I-Bj,bk>, <aj rak,ai>, and <ak + Bi,bj>
(There are only three such quantities since ai F 8j = aj + ai .) These
equations can be solved uniquely; yielding the first Christoffel identity

1
<{3p F3g3> = 7 (3385 + 9385y - 38y
The left hand side of this identity is equal to zg F;E 8oy - Multiplying
L

by the inverse (gkﬂ) of the matrix (gak) this yields the second Christof-
fel identity

0 1 ke
Tyy = Z 3 (3 gk * Oy Biy - Oy 813) €
K

Thus the connection is uniquely determined by the metric.

Conversely, defining F;% by this formula, one can verify that the
resulting connection is symmetric and compatible with the metric. This
completes the proof.

An alternative characterization of symmetry will be very useful
later. Consider a '"parametrized surface" in M: that is a smooth function

N R2 - M .

By a vector field V along s 1is meant a function which assigns to each

(x,y) € R® a tangent vector
Vix,3) € Msx,y)
. d d R .
As examples, the two standard vector fields 35 and 35 give rise to vec-

tor fields s, g% and sy é% along s. These will be denoted briefly by

g% and %% ; and called the "velocity vector fields" of s.

For any smooth vector field V along s the covariant derivatives

%% and g% are new vector fields, constructed as follows. For each fixed

Yo, Trestricting V to the curve

x = s8(x,73,)
one obtains a vector field along this curve. Its covariant derivative with
respect to x 1is defined to be ( %% )<X’yo) . This defines %% along

the entire parametrized surface s.

As examples, we can form the two covariant derivatives of the two
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vector fields % and -g-% . The derivatives -g-:;—{ % and %%; are

simply the acceleration vectors of suitable coordinate curves. However,

the mixed derivatives % -g-; and % % cannot be described so simply.

D 9ds D 9ds

IEMMA 8.7. If the connection is symmetric then 5;33; = 3y =

PROOF. Express both sides in terms of a local coordinate system,

and compute.
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§9. The Curvature Tensor

The curvature tensor R of an affine connection F measures the
extent to which the second covariant derivative bi F( aj FZ) 1is sym-
metric in 1 and j. Given vector fields X,Y,Z define a new vector field
R(X,Y)Z by the identity

R(X,)Z = X F(¥YF2Z) +YFXF2Z + [XY] FZ.

IEMMA 9.1. The value of R(X,Y)Z at a point p e M
depends only on the vectors Xp,Yp ,Zp at this point
p and not on their values at nearby points. Further-

more the correspondence
Xpo¥prZp = RO, Yp) 2

from ‘I’IVLp X TMp X ‘I'IVLp to TMp is tri-linear.

Briefly, this lemma can be expressed by saying that R is a "tensor."

PROOF: Clearly R(X,Y)Z is a tri-linear function of X,Y, and Z.
If X 1is replaced by a multiple fX then the three terms X F (Y F 2),
Y F(XF2Z), I[X,Y] FZ are replaced respectively by
i) -fX+FXF2 ,
i) (¥OX F2) + Y F X F2)
iii) - (YD) (X +F 2) + £IX,Y] F Z
Adding these three terms one obtains the identity

R(fX,Y)Z = fR(X,Y)Z

Corresponding identities for Y and Z are easily obtained by similar

computations.
Now suppose that X = ZXibi, Y = Zyibj , and Z = ; zkak.

Then
R(X,V)Z - ZR(xibi,yjbj)(Zkbk)

= z xiyjzk R(Bi,bj)ak

Nomizu gives R the opposite sign. Our sign convention has the advan-
tage that (in the Riemannian case) the inner product <R(ah,ai) BJ,Bk>
coincides with the classical symbol Rhijk .
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Evaluating this expression at p one obtains the formula
. . Kk
(R(X,V)2);, = Z ©(0) 7 () 20 (R(35,37)3, ),

K at p, and

which depends only on the values of the functions x ,yj
not on their values at nearby points. This completes the proof.

Now consider a parametrized surface
S: R2 — M .

Given any vector field V along s. one can apply the two covariant dif-
ferentiation operators % and % to V. In general these operators will
not commute with each other.

D D D D Bsas
IEMA 9.2, wxV-HmmV o- (

PROOF: Express both sides in terms of a local coordinate system,

and compute, making use of the identity

3y F (3 k3 -3y k(3 k3 = R(3;,3,)9

J

[It is interesting to ask whether one can construct a vector field

P along s which is parallel, in the sense that

D D
P - 3P - 0

and which has a given value P at the origin. In general no such

0,0
vector field exists. However,(it” ::he curvature tensor happens to be zero
then P can be constructed as follows. Let P(x,o) be a parallel vector
field along the x-axis, satisfying the given initial condition. For each
be a parallel vector field along the curve

fixed x let P(x

0 )

¥ = s(xg,y) ,
having the right value for y = 0. This defines P everywhere along s.
Clearly 3% P is identically zero; and % P 1is zero along the x-axis.
Now the identity

D D D D
TyTXP'ﬁTyP=R(T’B— =0
D

implies that B%‘ L2 P -o0. Inother words, the vector field 2% P is
parallel along the curves

¥ — 8(x,,7)
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D . D R .
Since (ﬁ P)(xo,o) = 0, this implies that 3% P 1s identically zero;
and completes the proof that P 1is parallel along s.]

Henceforth we will assume that M is a Riemannian manifold, pro-
vided with the unique symmetric connection which is compatible with its
metric. In conclusion we will prove that the tensor R satisfies four

symmetry relations.

ILEMMA 9.3. The curvature tensor of a Riemannian manifold
satisfies:

(1) R(X,Y)Z + R(Y,X)Z = ©

(2) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0

(3) <RX,VZ,W> + <R(X,V)W,2> =0

(») <R(EX,VZ,W> = <R(Z,WX,Y>

PROOF: The skew-symmetry relation (1) follows immediately from the
definition of R.

Since all three terms of (2) are tensors, it is sufficient to
prove (2) when the bracket products [X,Y], [X,Z] and [Y,Z] are all
zero. Under this hypothesis we must verify the identity

-XF@XFEZ) + YFEEXF2
-YF(ZFX) + ZF(YFX
-ZFEXFY + XF(ZFY) = 0.
But the symmevry of the connection implies that
YrFZ-Z2FY = [¥,2] = 0.
Thus the upper left term cancels the lower right term. Similarly the re-
maining terms cancel in pairs. This proves (2).

To prove (3) we must show that the expression <R(X,Y)Z,W> 1is

skew-symmetric in Z and W. This is clearly equivalent to the assertion
that

<R(X,0)Z,Z> = O

for all X,Y,Z. Again we may assume that [X,Y] = 0, so that
<R(X,Y)Z,Z2> 1is equal to

<-XFXLFZ) +YFXF2D,2>
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In other words we must prove that the expression

<Y FXF2D,2>

is symmetric in X and Y.
Since [X,Y] = o0 the expression YX < Z,Z2> is symmetric in X
and Y. 3ince the connection is compatible with the metric, we have
X<2%,2> = 2<X +2,2>
hence
WL2,2> = 2<Y HX F2),2> +2<X FZ,Y F2Z> .
But the right hand term 1s clearly symmetric in X and Y. Therefore
<Y F (X F2),2> 1is symmetric in X and Y; which proves property (3).
Property (4) may be proved from (1), (2), and (3) as follows.

<R(X,Y)Z,W>

<R(X,W)Y,Z>

<R (Z,W) X,¥>

Formula (2) asserts that the sum of the quantitles at the vertices
of shaded triangle W 1s zero. Similarly (making use of (1) and (3)) the
sum of the vertices of each of the other shaded triangles 1s zero. Adding
these identities for the top two shaded triangles, and subtracting the
identities for the bottom ones, this means that twice the top vertex minus
twice the bottom vertex 1s zero. This proves (4), and completes the proof.
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§10. Geodesics and Completeness

Iet M be a connected Riemannian manifold.

DEFINITION. A parametrized path
y: I =M,
where I denotes any interval of real numbers, is called a geodeslc 1f the
acceleration vector field a]?f %—% is identically zero. Thus the velocity
vector fleld %% must be parallel along y. If »y is a geodesic, then the

identity

d dy d: ;) D d d
T <gtat> - 2<mF FE> - °©
' dy dy dy~1/2
shows that the length ||af" = <Hf’ a‘f> of the velocity vector is

constant along y. Introducing the arc-length function

s(t) = | 13lat + constant

This statement can be rephrased as follows: The parameter t along a
geodesic is a linear function of the arc-length. The parameter t 1is actu-
ally equal to the arc-length if and only if "%%" = 1.

In terms of a local coordinate system with coordinates u! N ,un

a curve t— y(t) € M determines n smooth functions ul(t) oo .,un(t) .

The equation a]% %—% for a geodesic then takes the form

n
a?uk . z rkK o aul awd
== 13 (00 S35 -

1,3=1

The existence of geodesics depends, therefore, on the solutions of a certain
system of second order differential equations.

More generally consider any system of equations of the form

a% — do
w? T T )

Here U stands for (u',...,u) and ¥ stands for an n-tuple of C*

functions, all defined throughout some neighborhood U of a point

- = 2n
(u;,vy) €R



56 IT. RIEMANNIAN GEOMETRY

EXISTENCE AND UNIQUENESS THEOREM 10.1. There exists a
neighborhood W of the point (4,,V;) and a number
e > 0 so that, for each GIO,VB) € W the differen-
tial equation o N
du o opg
= s
at® at
has a unique solution t —U(t) which is defined for
|t] < e, and satisfies the initial conditions
-
e —_ a —
u(o) = u,, H% (0) = vy o
Furthermore, the solution depends smoothly on the in-
itial conditions. In other words, the correspondence

(T, ¥y,t) = T(t)
from W x (-e,e) to R% is a C” function of all
2n+1 variables.

i
PROOF: Introducing the new variables vi = %;E this system of n
second order equations becomes a system of 2n first order equations:

—
du g
axT = Vo

d-\-; ?—»—»

daE = (a,v)
The assertion then follows from Graves, "Theory of Functions of Real Vari-
ables," p. 166. (Compare our §2.4.)

Applying this theorem to the differential equation for geodesics,
one obtains the following.

IEMMA 10.2. For every point P, ona Riemannian
manifold M there exists a neighborhood U of Do
and a number € > 0 so that: for each p € U and
each tangent vector v € TMp with length < e
there is a unique geodesic

7yt (-2,2) = M
satisfying the conditions
dy
75000 = P, FE (0 = v

PROOF. If we were willing to replace the interval (-7,?) by an
arbitrarily small interval, then this statement would follow immediately

from 10.1. To be more precise; there exists a neighborhood U of Py and



§10. GEODESICS AND COMPLETENESS 57

numbers €,,€, > 0 80 that: for each p € U and each v € TMp with
Ivl < e, there is a unique geodesic

7yt (-252,252) - M
satisfying the required initial conditions.

To obtain the sharper statement it is only necessary to observe that
the differential equation for geodesics has the following homogeneity pro-
perty. Let c¢ be any constant. If the parametrized curve

t =7t
is a geodesic, then the parametrized curve
t — y(ct)

will also be a geodesic.

Now suppose that e is smaller than e,e Then if vl < e and

o°
|t] < 2 note that

Iv/e,ll < e, and |eyt| <2e,

Hence we can define yv(t) to be 7y (52t) . This proves 10.2.

v/es

This following notation will be convenient. Iet v € TMq be a

tangent vector, and suppose that there exists a geodesic
y: [0,1] =M
satisfying the conditions
y(0) = q, %%(0) = V.

Then the point (1) € M will be denoted by equ(v) and called the
egponential* of the tangent vector v. The geodesic y can thus be des-
cribed by the formula

7(8) = expy(tv)

The historical motivation for this terminology is the following. If M
is the group of all n x n unitary matrices then the tangent space TMI
at the identity can be identified with the space of n x n skew-Hermitian
matrices. The function

expy: TMI - M
as defined above is then given by the exponential power series

epr(A) = I+A+—él!—A2+-31—!-A3+
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Lemma 10.2 says that equ(v) is defined providing that |v| is small enough.
In general, equ(v) is not defined for large vectors v. However, if

defined at all, equ(v) is always uniquely defined.

DEFINITION. The manifold M is geodesically complete if equ(v)
is defined for all g € M and all vectors vV € TMq. This is clearly equiva-
lent to the following requirement:

For every geodesic segment 7,: [a,b] —M it should be possible

to extend vy, to an infinite geodesic
vz R =M

We will return to a study of completeness after proving some local results.

Iet TM Dbe the tangent manifold of M, consisting of all pairs
(p,v) with peM, v € TMp. We give TM the following C* structure:
if (1.11 yene ,un) is a coordinate system in an open set U C M then every
tangent vector at q € U can be expressed uniquely as t181 Faeet tnbn,
where Bi = S%i- Q- Then the functions u' s e ,un,'c1 seee ,tn constitute
a coordinate system on the open set TU C TM.

Lemma 10.2 says that for each p € M the map
(q,v) — exp,(v)

is defined throughout a neighborhood V of the point (p,0) € TM. Further-
more this map is differentiable throughout V.

Now consider the smooth function F: V — M x M defined by
F(q,v) = (aq, equ(v)) . We claim that the Jacobian of F at the point
(p,0) 1is non-singular. In fact, denoting the induced coordinates on

UxUCMxM by (u:,...,u?,u;,...,ug), we have

d d d
F = —7 + —¥
*< .B?'- ) Bu1 Bu2
o) d
F = —
o atd dug
Thus the Jacobian matrix of F at (p,0) has the form ( 11 \ , and
o I

hence is non-singular.
It follows from the implicit function theorem that F maps some
neighborhood V' of (p,0) € TM diffeomorphically onto some neighborhood



§10. GEODESICS AND COMPLETENESS 59

of (p,p) € M x M. We may assume that the first neighborhood V' consists
of all pairs (q,v) such that q belongs to a given neighborhood U' of
p and such that |v] < e. Choose a smaller neighborhood W of p so that
F(V') D W x W. Then we have proven the following.

IEMMA 10.3. For each p € M there exists a neighborhood
W and a number € > 0 so0 that:

(1) Any two points of W are joined by a unique
geodesic in M of length < e.

(2) This geodesic depends smoothly upon the two
points. (I.e., 1f t— equ1(tv), 0<t< 1, is the
geodesic joining q, and q,, then the pair (q.l,v) €
TM depends differentlably on (q,,d,) 2)

(3) For each q € W the map exp, maps the open
e-ball in TMq diffecmorphically onto an open set
Uq oW,

REMARK. With more care it would be possible to choose W so that
the geodeslc joining any two of its points lies completely within W. Com-
pare J. H. C. Whitehead, Convex regions in the geometry of paths, Quarter-
1y Journal of Mathematics (Oxford) Vol. 3, (1932), pp. 33-42.

Now let us study the relationship between geodesics and arc-length.

THEOREM 10.4. Iet W and € be as in Lemma 10.3. Let
y: [o0,1] =M

be the geodesic of length < & joining two points of W,

and let
o: [0,1] =M

be any other piecewise smooth path joining the same two
points. Then'

1 1
idziae < § ig2pee
0 0]

where equality can hold only if the point set ([0,1])
coincides with y(lo0,1]).

Thus ¢ 1s the shortest path joining its end points.

The proof will be based on two lemmas. Iet q = y(0) and let Uq

be as in 10.3.
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LEMMA 10.5. In Uq, the geodesics through gq are
the orthogonal trajectories of hypersurfaces

{ equ(v) TV € ‘I'Mq, vl = constant} .

PROOF: ILet t=— v(t) denote any curve in ‘I'Mq with [v(®) | =

We must show that the corresponding curves

t - equ(rov(t))
in Uq, where 0 < r, <&, are orthogonal to the radial geodesics
r— equ(rv(to))

In terms of the parametrized surface f given by

f(r,t) = equ(rv(t)), oLr<e ,

we must prove that
of af
< g""gf =0
for all (r,t).
Now
of af' D of of D
<3—:'§E = <3f BF)'JE> <T:T '8<E>

The first expression on the right is zero since the curves
r = f(r,t)

are geodesics. The second expression is equal to

D of Bf‘
<EZE> - b <EE> -0
since [I ]| = |lv(t)|] = 1. Therefore the quantity <g§,%§> is indepen-

dent of r. But for r 0 we have

f(o,t) = equ(o) =
hence %ié(o,t) = 0. Therefore <%%,%€> 1s identically zero, which cam-
pletes the proof.

Now consider any piecewise smooth curve

o: [a,b] —rU - {q}
Each point o(t) can be expressed uniquely in the form equ(r(t)v(t)) with
0<r(t) <e, and |v(B)| =1, v(t) € TMq.
LEMMA 10.6. The length Sb || Pl dt is greater than or

equal to |r(b) - r(a)|, where equality holds only if the
function r(t) is monotone, and the function v(t) is constant.
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Thus the shortest path joining two concentric spherical shells
around q 1is a radial geodesic.

PROOF: ILet f(r,t) = equ(rv(t)), so that o(t) = f(r(t),t)

Then

Since the two vectors on the right are mutually orthogonal, and since
||%%|| = 1, this gives
2
TR el

where equality holds only if -g-i: = 0; hence only if g—% = 0. Thus

b b
§ ||%—‘§||dtz§ o' () |dt > [r(b) - r(a) |
a a

where equality holds only if r(t) 1s monotone and v(t) is constant.
This completes the proof.
The proof of Theorem 10.4 is now straightforward. Consider any

plecewise smooth path o from q to a point

LI B
q equ(rv) € Uq

where 0 < r < e, IW]l = 1. Then for any & > O the path o must con-
tain a segment joining the spherical shell of radius & to the spherical
shell of radius r, and lying between these two shells. The length of this
segment will be > r - 8; hence letting & tend to 0 the length of o
will be > r. If o([0,1]) does not colncide with y([0,1]), then we
easily obtain a strict inequality. This completes the proof of 10.k4.

An important consequence of Theorem 10.4 is the following.

COROLLARY 10.7. Suppose that a path : [0,L] = M, para-
metrized by arc-length, has length less than or equal to
the length of any other path from o(0) to (). Then
is a geodesic.

PROOF: Consider any segment of o 1lying within an open set W, as
above, and having length < €. This segment must be a geodesic by Theorem
10.4. Hence the entire path o 1is a geodesic.

DEFINITION. A geodesic y: [a,b] = M will be called minimal if
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its length is less than or equal to the length of any other piecewise smooth
path jolning its endpoints.

Theorem 10.4 asserts that any sufficiently small segment of a
geodesic is minimal. On the other hand a long geodesic may not be minimal.
For example we will see shortly that a great circle arc on the unit sphere
is a geodesic. If such an arc has length greater than =, it is certainly
not minimal.

In general, minimal geodesics are not unique. For example two anti-
podal points on a unit sphere are jolned by infinitely many minimal geodesics.
However, the followlng assertion is true.

Define the distance o(p,q) between two points p,q € M to be the
greatest lower bound for the arc-lengths of piecewise smooth paths joining
these points. This clearly makes M into a metric space. It follows
easily from 10.4 that this metric is compatible with the usual topology of M.

COROLIARY 10.8. Given a compact set K C M there exists
a number & > O so that any two points of K with dis-
tance less than & are joined by a unique geodesic of
length less than &. PFurthermore this geodesic is minimal;
and depends differentiably on its endpoints.

PROOF. Cover K by open sets W,, as in 10.3, and let & be
small enough so that any two points in K with distance less than & lie
in a common wa. This completes the proof.

Recall that the manifold M 1is geodesically complete if every geo-

desic segment can be extended indifinitely.

THEOREM 10.9 (Hopf and Rinow*) . If M 1is geodesically
complete, then any two points can be joined by a minimal
geodesic.

PROCOF. Given p,q € M with distance r > 0, choose a neighborhood

Up as in Lemma 10.3. Iet S C Up denote a spherical shell of radius s < e

* Compare p. 341 of G. de Rham, Sur la réductibilité d'un espace de

Riemann, Commentarii Math. Helvetici, Vol. 26 (1952); as well as H. Hopf and
W. Rinow, Ueber den Begriff der-vollsté@ndigen differentialgeometrischen Fliiche,
Commentarii, Vol. 3 (1931), pp. 209-225.
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about p. Since S 1is compact, there exists a point
P, = exp,(sv), vl = 1,
on S for which the distance to q is minimized. We will prove that
expy(rv) = Q.

This implies that the geodesic segment t — 7(t) = expp(tv), oLtLr,
is actually a minimal geodesic from p to (q.

The proof will amount to showing that a point which moves along the
geodesic y must get closer and closer to q. In fact for each t € [5,r]

we will prove that
(1) p(7(t),a) = r-t
This identity, for t = r, will complete the proof.
First we will show that the equality (15) is true. Since every
path from p to q must pass through S, we have
p(p,q) = gi?s (o(p,8) + p(s8,d)) = 5 + o(py,q)
Therefore p(po,q) =r - 8. Since Py = 7(s), this prqves (18)'

Let t, € [s,r] denote the supremum of those numbers t for which
(1 t) is true. Then by continuity the equality (1 1;0) is true also.
If to < r we will obtain a contradiction. ILet S' denote a small spheri-
cal shell of radius &' about the point 7(1:0); and let pc'> € 3' be a
point of S' with minimum distance from q. (Compare Diagram 10.) Then

p(7(ty),q) = Mins,(°(7(to)’s) + o(8,q) = 8' + o(p4,2) ,
se€
hence
(2) p(pg,2) = (r - ty) - 8!
We claim that pé is equal to 7(1:0 + 8'). In fact the triangle
inequality states that

p(P,pd) 2 o(P,@) - o(p4,2) = £, + &'

(making use of (2)). But a path of length precisely t, + 8' from p to
pa is obtained by following »y from p to 7(to), and then following
a minimal geodesic from 7('00) to pj. Since this broken geodesic has
minimal length, it follows from Corollary 10.7 that it is an (unbroken)
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geodesic, and hence coincides with 7.

Thus 7(to + 8') = pé. Now the equality (2) becomes

(¢ 451 p(r(ty +8",a) = - (t, + 3"
(¢}

This contradicts the definition of to; and completes the proof.

Diagram 10.

As a consequence one has the following.

COROLLARY 10.10. If M 1s geodesically complete then
every bounded subset of M has compact closure. Con-
sequently M 1is complete as a metric space (i.e., every
Cauchy sequence converges).

PROOF. If X CM has diameter d then for any p € X the map

exXpy*

of M which (making use of Theorem 10.9) contains X. Hence the closure

TMP-> M maps the disk of radius d in TM.p onto a compact subset

of X is compact.

Conversely, if M 1s complete as a metric space, then it 1s not
difficult, using Lemma 10.3, to prove that M is geodesically complete.
For details the reader is referred to Hopf and Rinow. Henceforth we will
not distinguish between geodesic completeness and metric completeness, but
will refer simply to a complete Riemannian manifold.
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FAMILTAR EXAMPLES OF GEODESICS. In Euclidean n-space, n?, with
the usual coordlnate system Xx,,...,x, and the usual Riemannian metric
dx, ® dx; +...+ dx, ® dxn we have P;B = 0 and the equations for a geo-
desic y, given by t— (x,(%t),...,x,(t) become

d2xi
_2.=o ,
d
whose solutions are the straight lines. This could also have been seen as

follows: 1t is easy to show that the formula for arc length
n
dx,\ 2\ %
1
§(2 (D) ar
i=1

coincides with the usual definition of arc length as the least upper bound
of the lengths of inscribed polygons; from this definition it is clear that
straight lines have minimal length, and are therefore geodesics.

The geodesics on s? are precisely the great circles, that is, the
intersections of S™ with the planes through the center of s™.

PROOF. Reflection through a plane E2 1s an isometry 1I: gt - gt
whose fixed point set is C = s n E2. et X and y be two points of C
with a unique geodesic C' of minimal length between them. Then, since I
is an isometry, the curve I(C') 1s a geodesic of the same length as C'
between I(x) = x and I(y) = y. Therefore C' = I(C'). This implies that
cr coc.

Finally, since there is a great circle through any point of s? in
any given direction, these are all the geodesics.

Antipodal points on the sphere have a continium of geodesics of
minimal length between them. All other pairs of points have a unique geo-
desic of minimal length between them, but an infinite family of non-minimal
geodesics, depending on how many times the geodesic goes around the sphere
and in which direction it starts.

By the same reasoning every meridian line on a surface of revolution
is a geodesic.

The geodesics on a right circular cylinder Z are the generating
lines, the circles cut by planes perpendicular to the generating lines, and
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the helices on Z.

PROOF: If L 4is a generating line of Z then we can set up an
isometry I: Z - L -*R2 by rolling Z onto RE:

| |
e

The geodesics on Z are just the images under I"1 of the straight lines
2
in R . Two points on Z have infinitely many geodesics between them.



PART III

THE CALCULUS OF VARIATIONS APPLIED TO GEODESICS

§11. The Path Space of a Smooth Manifold.

Iet M be a smooth manifold and let p and q be two (not neces-
sarily distinct) points of M. By a plecewise smooth path from p to q

will be meant a map o: [0,1] — M such that

1) there exists a subdivision O = to < t1 < ..o & tk = 1 of
[0,11 so that each o|lt;_;,t;] is differentiable of class c%;

2) o(0) =p and o(1) =dq.

The set of all plecewlse smooth paths from p to q in M will be denoted
by a(M;p,q), or briefly by e(M) or @.

Later (in §16) @ will be given the structure of a topological
space, but for the moment this wlll not be necessary. We will think of @
as being something like an "infinite dimensional manifold." To start the
analogy we make the following definition.

By the tangent space of @ at a path o will be meant the vector
space consisting of all piecewise smooth vector fields W along o for
which W(0) = 0 and W(1) = 0. The notation TQ, will be used for this
vector space.

If F is a real valued function on ¢ 1t is natural to ask what
Fy: Toy _'TRF(m) s

the induced map on the tangent space, should mean. When F 1s a function
which is smooth in the usual sense, on a smooth manifold M, we can define
Fy: TMp -»TRF(p) as follows. Given X € TM:p choose a smooth path

u = a(u) in M, which is defined for -e <u < e , so that

a(0) = P, %%(0) = X
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Then F,(X) is equal to Q@é{@. ueos Multiplied by the basis vector

d
(% )F(p) € TRp(py -
In order to carry out an analogpus construction for F: @ =R,

the following concept is needed.

DEFINITION. A variation of o (keeping endpoints fixed) is a

function
a: (-e,e) =@,

for some e > 0, such that

1) @(0) = o

2) there is a subdivision 0 = o <t <o L Ty =1
of [0,1] so that the map

a: (-e,e) x [0,1] =M

defined by a(u,t) = @(u)(t) 1s C® on each strip (-e,e) x [t;_;,t;],
1=1,...,k

Since each a(u) belongs to & = 2(M;p,q), note that:

3) o(u,0) = p, a(u,l) =qg for all u e (-g,g)

We will use either o or @ to refer to the variation. More
generally if, in the above definition, (-e,e) 1s replaced by a neighbor-

hood T of 0 in R®, then o (or & is called an n-parameter varia-

tion of w.
Now & may be considered as a "smooth path" in Q. Its "velocity

vector" da(o) € Te  1is defined to be the vector field W along o given
du ®

by
W, = oy, = Po,t) .
Clearly W € T2,. This vector field W 1is also called the variation vec-
tor field associated with the variation «.
Given any W € Tow note that there exists a variation
&: (-e,e) =0 which satisfies the conditions &0) = o, S(0) - W.
In fact one can set

a(u) () = eme(t)(uwt) .

By analogy with the definition given above, if F 1is a real valued
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function on @, we attempt to define
Fe: TQ o TBF((D)

as follows. Given W € T@  choose a variation &: (-e,e) — @ with

ao) = o, o) - w
d(F(a(u))
and set Fy (W) equal to ——Fluo multiplied by the tangent vector
( -d‘-if) ( ). Of course without hypothesis on F there is no guarantee that
Flo

this derivative will exist, or will be independent of the choice of a.

We will not investigate what conditions F must satisfy in order for F,
to have these properties. We have indicated how F, might be defined only
to motivate the following.

DEFINITION. A path o 1is a critical path for a function
F: o—=R if and only if %3(& is zero for every variation & of

u=0
.

EXAMPIE. If F takes on its minimum at a path Dy and if the
derivatives %3—(@—)— are all defined, then clearly o is a critical path.
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§12. The Energy of a Path.

Suppose now that M 1s a Riemannian manifold. The length of a vec-

tor Vv € ‘I‘M:D will be denoted by |lv]l = < v,v >%. For o € @& define the
energy of o frama to b (where 0 <a<b< 1) as
b 2
zeo - e
a

We will write E for E|.
This can be compared with the arc-length from a to b given by

b
@ = { [
a

as follows. Applying Schwarz's inequality

b, b b
( gfgdt) <( S £2at)( g g?at)
a a l&
with f£(t) = 1 and g(t) = "%%Il we see that
(=2 Lo - a)El

where equality holds if and only if g 1is constant; that is if and only if
the parameter t 1is proportional to arc-length.

Now suppose that there exists a minimal geodesic y from p = ®(0)
to q@ = o(1). Then

E(y) = L(»N? < L@)? < Bw)

Here the equality L(y)2 = L(®)2 can hold only if o is also a minimal
geodesic, possibly reparametrized. (Compare §10.7.) On the other hand

the equality L(m)2 = E(o) can hold only if the parameter 1s proportional
to arc-lengthalong . This proves that E(y) < E(e) unless o 1s also

a minimal geodesic. 1In other words:

LEMMA 12.1. Let M be a complete Riemannian manifold
and let p,q € M have distance d. Then the energy
function

E: o(M;p,q) = R
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takes on its minimum d2 precisely on the set of minimal
geodesics from p to q.

We will now see which paths o € @ are critical paths for the
energy function E.
Let a@: (-e,e) = @ be a variation of o, and let Wy = %%(O,t)

be the assoclated variation vector field. Furthermore, let:

Ve = %% = velocity vector of o ,
Ae = é%«%f = acceleration vector of o ,
AV = Vi, - Ve = discontinuity in the velocity vector at t,
where 0 < t <1
Of course AV = 0 for all but a finite number of values of t.

THEOREM 12.2 (First variation formula). The derivative

; _
1 dE(g(u)) lu=o is equal to ,
3 < [ rns
0 0

PROOF: According to Lemma 8.3, we have

d da da D 3¢ da
3u <3p3E > = 2 <33 5E5% > .

Therefore

1
L)) §<%%,%% > at - 2§ <BRE > a

By Lemma 8.7 we can substitute %%-gg for %L-%% in this last formula.

Choose 0 = to <t <. < tk =1 8o that a 1is differentiable on
each strip (-e,e) x [t;_,,t;]. Then we can "integrate by parts" on
[t;_4,%t;], as follows. The identity

d da da D Jda da D
#<ETE> - < HERT> TR
implies that
Sti D dda < 4 <2020 0=ty -
< 3% SwaE > = <3 >
ty =ty *

D
( < RHF>a
i—1
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Adding up the corresponding formulas for i = 1,...,k; and using the fact

da
that 57 -0 for t <=0 or 1, this glves

k-1 1
1 dE(a(u)) da da da D da
Toodu ='z<3‘ﬁ’%ia'f>'§<ﬁ’3‘t'3‘t'>dt
Setting u = 0, we now obtain the required formula
_ 1
FELE () - ) <way > - <ua> at
t 6]

This completes the proof.
Intultively, the first term in the expression for ga&—a’(o) shows
that varying the path ® in the direction of decreasing "kink," tends to

decrease E; see Diagram 11.

%‘g(ti-)

m(ti) =

e

- \
path @(e) with \
smaller energy \

\

Diagram 11.

The second term shows that varying the curve in the direction of its
acceleration vector an (%%) tends to reduce E.

Recall that the path o € @ 1s called a geodesic 1f and only if
o 1is C° on the whole interval [0,1], and the acceleration vector a%(-g-‘,g)

of ® 1s identically zero along w.

COROLLARY 12.3. The path o 1is a critical point for the
function E if and only if o 1is a geodesic.
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PROOF: Clearly a geodesic is a critical point. ILet o be a
critical point. There is a variation of o with W(t) = f(t)A(t) where
f(t) 1s positive except that it vanishes at the t;. Then

1
T80 - -g r(t) < A(t),A(t) > dt.
0

This is zero if and only if A(t) = 0 for all +t. Hence each wl[ti,ti+1]
is a geodesic.

Now pick a variation such that W(ti) = AtiV. Then
T E0) - -z <8y V,8, V> . If this is zero then a1l AV are O, and

o 1is differentiable of class C', even at the points t;. Now it follows

00

from the uniqueness theorem for differential equations that o is C

everywhere: thus o is an unbroken geodesic.
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§13. The Hessian of the Energy Function at a Critical Path.

Continuing with the analogy developed in the preceding section, we
now wish to define a bilinear functional

Eyyt TQ7 X Tﬂy - R
when vy 1s a critical point of the function E, i.e., a geodesic. This
bilinear functional will be called the Hessian of E at ».

If £ 1is a real valued function on a manifold M with critical

point p, then the Hessian

g TM:p X TMp -+ R
can be defined as follows. Given X1 X, € ‘I‘Mp choose a smooth map
(uy,uy) = o(u;,u,) defined on a neighborhood of (0,0) in RQ, with
values in M, so that

«(0,0) = p, %1(0,0) = X, .ta%?(o,o) = X,
Then

3% (alu, ,u,))

fex(X,X,)
ot au1 Bu2

(0,0)
This suggests defining E,, as follows. Given vector fields Wi,W, € ‘1‘07

choose a 2-parameter variation
a: Ux lo,1] =M,
where U 1is a neighborhood of (0,0) in Rg, so that
a(0,0,t) = 7(t), -3%1(0,0,1:) - W (b, -%e(o,o,t) - WD)

(Compare §11.) Then the Hessian E**(w1 ,WQ) will be defined to be the
second partial derivative
3°B(&(u, ,u,))
du; du, (0,0)
where @(u;,u,) € 2 denotes the path oz(u1 sUy )(t) = oa(uy,u,,t) . This
second derivative will be written briefly as W( 0,0)

The following theorem is needed to prove that E,, is well defined.
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THEOREM 13.1 (Second variation formula). Iet a: U—@
be a 2-parameter variation of the geodesic y with
variation vector f’ields

W

i = (oo)eTn, i=1,2

Then the second derivative -;—33—%u— (0,0) of the energy

function is equal to

DW, ! DAW,
- z <w2(t) ,At T > - S < We, '—d? + R(V,W.I )V> dt
t 0

where V = %—% denotes the velocity vector field and where
DW, Dw, + Dw, _
A ar = () - gp(t)
Dw1
denotes the jump in at one of its finitely many
points of discontinuity in the open unit interval.

PROOF: According to 12.2 we have

1 OE
PR, - L < HamFE > S<3"§Dfﬁ>dt
Therefore
1 3°B D da dar D
T 56, ou, - 'Z<w ’B—uQ’AtB't'> z<3—:a— 8 3% >
D D D
g< 35%%>°”' g<3— T%JEFE>°““

Let usevaluate this expression for (u1 su,) = (0,0). Since y = @(0,0) is
an unbroken geodesic, we have

do D du

so that the first and third terms are zero.

2

Rearranging the second term, we obtain

1
1 3°%E D D D
(13.2) -Q-W(o,o) = -Z <Wy,n g8 Wi > -S‘< Wy, E1B'EV>dt'
0

D D
In order to interchange the two operators Bu_1 and 3 » Ve need to
bring in the curvature formula,

D D D D R(Bot Ba

ai] V- 3__E,_gu_"V = = R(V,W1)V
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Together with the identity %Jﬁ- vV = B'PE %3’- = HQE W1 , this yields
1 1
D D D&,
(13-3) -&1-1 F‘EV = Et?_ + R(V,W1)V

Substituting this expression into (13.2) this completes the proof of 13.1.
2
COROLLARY 13.4. The expression E,,(W,,W,) = %%u_e(o,o)

is a well defined symmetric and bilinear function of W1
and W,.

2
. °E
PROOF: The second variation formula shows that W(o’o)
depends only on the variation vector fields W1 and WE, so that
Eyx (W, ,W5) 1is well defined. This formula also shows that E,, 1is bilinear.

The symmetry property
E**(W1 ,wg) = E**(wg’ W1)

is not at all obvious from the second variation formula; but does follow
2 2

immediately from the symmetry property 33%'11 = Buasﬁ
1772 277

REMARK 13.5. The diagonal terms E,,(W,W) of the bilinear pairing
Eyy can be described in terms of a 1-parameter variation of y. In fact

a%g o &
4E- &

Eyu(W,W) =
du

o) ,

where @: (-e,e) = & denotes any variation of y with variation vector
field %%(o) equal to W. To prove this identity it is only necessary to

introduce the two parameter variation

E(u1 yup) = c'zz(u1 + u2)
and to note that
B _daa °E°p _ d’E. a
Sy T dW’ 3uy du, au®

As an application of this remark, we have the following.

LEMMA 13.6. If y 1is a minimal geodesic from p to q
then the bilinear pairing E,, is positive semi-definite.
Hence the index A of E,, 1is zero.

PROOF: The inequality E(&(u)) > E(y) = E(a(0)) implies that

a®E(&(u))
4EGEW) |

3 evaluated at u = 0, is > 0. Hence E;(W,W) > 0 for all W.
u
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§14. Jacobi Fields: The Null Space of E,,

A vector field J along a geodesic y 1is called a Jacobi field
if it satisfies the Jacobi differential equation

2
g-t% + ROV,D)V = o

where V = g-?cl . This is a linear, second order differential equation.

[It can be put in a more familiar form by choosing orthonormal parallel vec-

tor fields P,,...,P

 along 7. Then setting J(t) = & £1(t)P,(t), the

equation becomes

1
4. }nj a?j‘(t)fj(t) = 0, i=1,...,n;

=1

where a% = < R(V,PJ)V,P1> .] Thus the Jacobi equation has 2n linearly
independent solutions, each of which can be defined throughout y. The
solutions are all C”-differentiable. A given Jacobi field J 1is com-
pletely determined by its initial conditions:

3(0), 3E(0) € ™ o

Iet p =y(a) and q = y(b) be two points on the geodesic vy,
with a # b.

DEFINITION. p and q are congugate* along y 1if there exists a
non-zero Jacobi field J along 9y which vanishes for t =a and t = b.
The multiplicity of p and q as conjugate points is equal to the dimen-
sion of the vector space consisting of all such Jacobi fields.

Now let y be a geodesic in @ = @(M;p,q). Recall that the null-
space of the Hessian

Eyyt TQ7 X Tay———»R

is the vector space consisting of those W, € Ta, such that By (W, ,W,) =0

¥ If y has self-intersections then this definition becomes ambiguous.

One should rather say that the parameter values a and b are conjugate
with respect to 7.
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for all W,. The nullity v of E,y 1s equal to the dimension of this
null space. E,, 1is degenerate if v > 0.

THEOREM 14.1. A vector field W, € Tn7 belongs to the

mull space of Ey, if and only if W, 1is a Jacobi field.
Hence E,, 1s degenerate if and only if the end points

p and g are conjugate along y. The nullity of E,, is
equal to the multiplicity of p and q as conjugate points.

PROOF: (Compare the proof of 12.3.) If J. i1s a Jacobl field which
vanishes at p and q, then J certainly belongs to Tn,’. The second
variation formule (§13.1) states that

1
'JQE**(J,WQ) = z <W2(t),0> +S‘ <W2,0> dt = ©
t 0

Hence J belongs to the null space.
Conversely, suppose that W, belongs to the null space of E,,.
Choose a subdivision 0 = t; < t; <...< t =1 of [0,1] so that
W1‘“‘1-1’t1] is smooth for each i. Iet f: [0,1] = [0,1] be a smooth
function which vanishes for the parameter values tostys-..,ty and is
positive otherwise; and let
D4

dt

R
1 1
- §E**(w1 ’we) = z 0O+ §‘ f(t)NPTi-tT + R(V,W1 )V

Since this is zero, it follows that W, | [ti-vti] is a Jacobi field for

Wo(t) = £(8)( — + R(V,WV), .

Then
2
dt

each 1i.
i ' Dw1
Now let W, € T97 be a field such that We(ti) = Ati i for

i=1,2,...,k-1. Then
k=1

1
- 2B (W, W) =
i=1

Dw,

Mg, TaE

i

Dw
Hence 'd'% has no jumps. But a solution W1 of the Jacobi equation is

Dw
completely determined by the vectors W1 (ti) and arr1(’°1) . Thus it fol-
lows that the k Jacobi fields W,[[t; ;,t;], 1 =1,...,k, fit together
to give a Jacobi field W1 which is C”-differentiable throughout the
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entire unit interval. This completes the proof of 1k.1.
It follows that the nullity v of E;, 1is always finite. For
there are only finitely many linearly independent Jacobi fields along 7.

REMARK 1k.2. Actually the nullity v satisfies 0 < v < n. Since
the space of Jacobi fields which vanish for t = 0 has dimension
precisely n, it is clear that v < n. We will construct one
example of a Jacobi field which vanishes for t = 0, but not for

t = 1. This will imply that v < n. In fact let Jt = 1:,Vt where
dy

V = qTE denotes the velocity vector field. Then
DJ _ . v
g = 1V V+tgg =V
2
(Since %: 0), hence D—% = 0. Furthermore R(V,J)V = tR(V,V)V
dt

= 0 s8ince R 1is skew symmetric in the first two variables. Thus
J satisfies the Jacobi equation. Since J, =0, J, # 0, this

completes the proof.

EXAMPLE 1. Suppose that M is "flat" in the sense that the curva-
ture tensor is identically zero. Then the Jacobi equation becomes

2
B% = 0. Setting J(t) = I fi(t)Pi(t) where P; are parallel,

dt .
2.1

this becomes -d—f-§ = 0. Evidently a Jacobi field along y can have
dt

at most one zero. Thus there are no conjugate points, and E,, is

non-degenerate.

EXAMPLE 2. Suppose that p and q are antipodal points on the
unit sphere Sn, and let y be a great circle arc from p to q.
Then we will see that p and q are conjugate with multiplicity
n-1. Thus in this example the nullity v of BE,, takes its
largest possible value. The proof will depend on the following

discussion.

Iet o be a 1-parameter variation of y, not necessarily keeping

the endpoints fixed, such that each a(u) 1is a geodesic. That is, let
a: (-e,e) x [0,1] =M

be a C* map such that a(o,t) = 7(t), and such that each a&(u) [given
by a(u)(t) = o(u,t)] is a geodesic.
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IEMMA 14.,3. If a is such a variation of ¥y through
geodesics, then the varlation vector field W(t) = 3—(o t)
is a Jacobi field along y.

PROOF: If o is a variation of y through geodesics, then %%—%’
is identically zero. Hence

o - D Do _ D D d (Baaa)aa
= J}|WIEISE T FIWSE Y
2
D" aa aa da
+
=& - (%R

(Compare §13.3.) Therefore the variation vector field %191' is a Jacobi

field.
Thus one way of obtaining Jacobi fields is to move geodesics around.

\ 7/

Now let us return to the example of two antipodal points on a unit
n-sphere. Rotating the sphere, keeping p and q fixed, the variation
vector field along the geodesic y will be a Jacobi field vanishing at p
and q. Rotating in n-1 different directions one obtains n-1 linearly

independent Jacobi fields. Thus p and q are conjugate along y with
miltiplicity n-1.
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IEMMA 1k.4, Every Jacobi field along a geodesic y: [0,1]1 =M
may be obtained by a variation of 7y through geodesics.

PROOF': Choose a neighborhood U of y(0) so that any two points
of U are joined by a unique minimal geodesic which depends differentiably
on the endpoints. Suppose that 7(t) e U for 0 < t < 5. We will first
construct a Jacobi field W along 7]|[0,8] with arbitrarily prescribed
values at t =0 and t = 5. Choose a curve a: (-e,e) — U so that
a(0) = y(0) and so that %%(o) is any prescribed vector in TMy(O)'
Similarly choose b: (-g,e) — U with b(0) = y(3) and %%(o) arbitrary.

Now define the variation
a: (-e,e) x [0,8] =M

by letting &(u): [0,8] — M be the unique minimal geodesic from a(u)
to b(u). Then the formula t -»%g(o,t) defines a Jacobi field with the
given end conditions.

Any Jacobi field along +7|[0,8] can be obtained in this way: If
F(y) denotes the vector space of all Jacobi fields W along 7y, then the
formula W — (W(0), W(s)) defines a linear map

£: f(7) - TM‘y(O) X TM7(5)

We have just shown that £ is onto. Since both vector spaces have the same
dimension 2n it follows that £ 1is an isomorphism. TI.e., a Jacobi field
is determined by its values at y(0) and y(8). (More generally a Jacobi
field is determined by its values at any two non-conjugate points.) There-
fore the above construction yields all possible Jacobi fields along
y|lo,s].

The restriction of @(u) to the interval [0,s5] is not essential.
If u 1is sufficiently small then, using the compactness of [0,1], a(u)
can be extended to a geodesic defined over the entire unit interval [0,1].

This yields a variation through geodesics:
a': (-e',e') x [0,1] =M

with any given Jacobi field as variation vector.

REMARK 14.5. This argument shows that in any such neighborhood U
the Jacobi fields along a geodesic segment in U are uniquely determined
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by thelr values at the endpoints of the geodesic.

REMARK 14.6. The proof shows also, that there is a nelghborhood
(-8,5) of O so that if t e (-5,8) then y(t) 1is not conjugate to
y(0) along y. We will see in §15.2 that the set of conjugate points to
y(0) along the entire geodesic y has no cluster points.
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§15. The Index Theorem.

The index A of the Hessian
: 1] 1]
Eyy: T y x T 7-—’ R

is defined to be the maximum dimension of a subspace of TQ”/ on which Eg,
is negative definite. We will prove the following.

THEOREM 15.1 (Morse). The index M of E,, is equal
to the number of points (t), with 0 < t < 1, such
that y(t) 1is conjugate to v(0) along y; each such
conjugate point being counted with its multiplicity.
This index » is always finite".

As an immediate consequence one has:

COROLLARY 15.2. A geodesic segment y: [0,1] =M can
contain only finitely many points which are conjugate
to 7y(0) along 7.

In order to prove 15.1 we will first make an estimate for A by
splitting the vector space TQ7 into two mutually orthogonal subspaces, on
one of which E,, 1s positive definite.

Each point y(t) 1is contained in an open set U such that any two
points of U are jolned by a unique minimal geodesic which depends differ-
entiably on the endpoints. (See §10.) Choose a subdivision
0 =1, <t 7..< tk = 1 of the unit interval which is sufficiently fine
so that each segment 7[ti-1’ti] lies within such an open set U; and so
that each 7| [ti_1,ti] is minimal.

Let Tgy(to’tvte’“"tk) C Tny be the vector space consisting of
all vector fields W along 9y such that

1) Wilt;_;,t;] 1s a Jacobi field along v|[t;_;,t;] for each i;

2) W vanishes at the endpoints t =0, t = 1.

Thus Tn»/(to,t1 yoo .,tk) is a finite dimensional vector space consisting of
broken Jacobi fields along vy.

For generalization of this result see: W. Ambrose, The index theorem in
Riemannian geometry, Annals of Mathematics, Vol. 73 (1961), pp. 49-86.
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Iet T'C Tny be the vector space consisting of all vector fields
We Toy for which W(t,) =0, W(%) =0, W(ty) = 0,..., W(ty) =

LEMMA 15.3. The vector space Tny splits as the direct

sum T“y(to’tw'“:tk) ® T'. THese two subspaces are

mutually perpendicular with respect to the inner product

Eyx. Furthermore, E,, restricted to T' is positive

definite.

PROOF: Given any vector field W e TQ», let W, denote the unique
"broken Jacobi field" in Te (to, 1s-++5>%) such that W,(ty) = W(ty) for
i=0,1,...,k. It follows from §14.5 that W, exists and is unique.
Cleerly W - W, belongs to T'. Thus the two subspaces, Tny(to’tV""tk)
and T' generate TQ y and have only the zero vector field in common.

Ir W, belongs to Te (to, 1s-++sty) and W, belongs to T',

then the second variation formula (13.1) takes the form

1 le 1
-gE**(w.‘ ’WQ) = - E <W2(’t-) ’At H’F> - S <W2,0 > dt = o .
t (o]

Thus the two subspaces are mutually perpendicular with respect to Eyy -
For any W € Tn the Hessian E,,(W,W) can be interpreted as the

dE
du

second derivative (0) 5 where a: (-€,e) = Q 1is any variation of

y with variation vector field a%(o) equal to W. (Compare 13.5.) If
W belongs to T'!' then we may assume that & 1s chosen so as to leave the
points 7y(ty),y(ty),...,7(t,) fixed. In other words we may assume that
a(u)(ty) = »(t;) for i =0,1,... .k

Proof that Ege(W,W) > 0 for W e T'. Each a&(u) € @ is a piece-
wise smooth path from y(0) to 7('01) to 7(ty,) to ... to y(1). But
each y|[t;_;,t;] 1s a minimal geodesic, and therefore has smaller energy
than any other path between its endpoints. This proves that

E(@(uw)) > E(y) = E(@(0))
Therefore the second derivative, evaluated at u = 0, must be > 0.
Proof that Eu(W,W) > 0 for WeT', W# 0. Suppose that
Exx(W,W) were equal to 0. Then W would lie in the null space of E,,.

In fact for any W, € Te (to, 1900 - tk) we have already seen that
Exy(W,,W) = 0. For any W, € T' the inequality
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0 < Eyy(W + Wy, W Wy = 20 Egy(Wy,W) + ¢ By (W,,W,)

for all values of c¢ implies that E**(we,w) = 0., Thus W 1lies in the
null space. But the null space of E,, consists of Jacobi fields. Since
T' contains no Jacobi fields other than zero, this implies that W = 0.
Thus the quadratic form E,, is positive definite on T'. This
completes the proof of 15.3.
An immediate consequence is the following:

IEMMA 15.4. The index (or the nullity) of E,, is equal
to the index (or nullity) of E,, restricted to the space
Toy(to,t1 yees ,tk) of broken Jacobi fields. In particular
(since Tﬂ,y(to,t1 see .,tk) is a finite dimensional vector
space) the index A is always finite.

The proof is straightforward.
Let 7, denote the restriction of y to the interval [o,7].

Thus 7.: [0,7T] = M 1is a geodesic from y(0) to y(7). Iet A(T) denote
the index of the Hessian ( Eg )** which is associated with this geodesic.
Thus (1) is the index which we are actually trying to compute. First
note that:

ASSERTION (1). A(T) is a monotone function of T.

For 1f 7 < 7' then there exists a A(t) dimensional space 9 of
vector fields along Ye which vanish at y(0) and y(t) such that the
Hessian ( Eg )** is negative definite on this vector space. Each vector
field in ¢ extends to a vector field along Yo which vanishes identically
between 7y(t) and y(t'). Thus we obtain a A(T) dimensional vector space
of fields along Y1 oon which (Eg' )** is negative definite. Hence
A1) < A(Th).

ASSERTION (2). (1) = 0 for small values of ~.

For if 1 1is sufficiently small then 7. 1s a minimal geodesic,
hence A(T) = 0 by Lemma 13.6.

Now let us examine the discontinuities of the function A(T). First
note that M(T) 1is continuous from the left:

ASSERTION (3). For all sufficiently small € > 0 we have

rMT-€) = A(T).
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PROOF. According to 15.3 the number (1) can be interpreted as
the index of a quadratic form on a finite dimensional vector space
Tny(to:t1"'°’tk)° We may assume that the subdivision is. chosen so that
say t; < T < ty,,. Then the index A(T) can be interpreted as the index
of a corresponding quadratic form HT on a corresponding vector space of
broken Jacobi fields along Y- This vector space is to be constructed
using the subdivision 0 < t, < t, <... < t; <7 of [o,7]. Since a
broken Jacobi field is uniquely determined by its values at the break points

7(ti), this vector space is isomorphic to the direct sum
r = TMy(t1) @TMy(tQ) ® ... o TMy(ti)

Note that th%ﬁ vector space Y 1is independent of 7. Evidently the quad-
ratic form H_ on Y varies continuously with .

Now H* is negative definite on a subspace %’ C I of dimension
A(7). For all t' sufficiently close to T it follows that HT, is
negative definite on ¢. Therefore M(T') > AM(T). But if 7' =7 -¢ < 7T

then we also have A(71-£) < A(T) by Assertion 1. Hence rMT-g) = A(T).

ASSERTION (4). Let v be the nullity of the Hessian ( Eg \**.
Then for all sufficiently small & > 0 we have
MT+e) = A(T) + v

Thus the function A(t) jumps by v when the variable t passes
a conjugate point of multiplicity v; and is continuous otherwise. Clearly

this assertion will complete the proof of the index theorem.

PROOF that A(T+e) < AM(T) + v . Let H. and Y be as in the proof
of Assertion 3. Since dim Y = ni we see that HT is positive definite on
some subspace ' C ¥ of dimension ni - :x(T) - v. For all ' sufficient-
ly close to T, it follows that H&, is positive definite on 9”'. Hence

AMT) < dim T - dim 9" = A (T) + v

PROOF that A(T+€) > r(T) + v. Let W,,...,WX(T) be A(T) vector
fields along 7., vanishing at the endpoints, such that the matrix

((CE5 ), 01,05 )
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is negative definite. ILet J,,...,J ~be v linearly independent Jacobi
fields along Yos also vanishing at the endpoints. Note that the v

vectors

DJh

—af(T) € TMy(T)
are linearly independent. Hence it is possible to choose v vector fields

X1,...,XV along Yrse? vanishing at the endpoints of vyt + &, so that

(< z% (1), X (1) >)

is equal to the v x v identity matrix. Extend the vector fields Wi and
Jh over  y..e by setting these fields equal to 0 for T < t< T+ €.

Using the second variation formula we see easily that

( Eg+5)**( Jh’ Wi)

( Eg+€)**( Ihs Xk)

Now let c¢ be a small number, and consider the A(t) + v vector fields

[
(o]

(Kronecker delta).

251’].1{

-1 =1
W1,...,WX(T), c Jy -cX,..., C JV -cX,

along Yose: We claim that these vector fields span a vector space of

T

dimension A(T) + v on which the quadratic form E +8) is negative
0 *%

definite. In fact the matrix of ( Eg+e)** with respect to this basis is
T
(CE5), Cwpup ) c A
4T+ c®B

where A and B are fixed matrices. If c¢ 1is sufficiently small, this
compound matrix is certainly negative definite. This proves Assertion (k).

The index theorem 15.1 clearly follows from the Assertions (2),(3),
and (4).
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§16. A Finlte Dimensional Approximation to a°

Iet M be a connected Riemannian manifold and let p and gq be
two (not necessarily distinct) points of M. The set @ = @(M;p,q) of
piecewise C® paths from p to q can be topologized as follows. Iet »p
denote the topological metric on M coming from its Riemann metric. Given

o, ' € @ with arc-lengths s(t), s'(t) respectively, define the distance

Max ' ds  asnZ..]?
0<t<1p(m(t),w'(t))+[§(a%--a%)dt]

d(w,n0') to be

(The last term is added on so that the energy function,

E(a) - Sp( ) dt

will be a continuous function from @ to the real numbers.) This metric
induces the required topology on Q.

Given c¢ > 0 let 0° denote the closed subset E"([o,c]) Ca
and let Int 9° denote the open subset E°1([o,c)) (where E = Eé: Q—R
is the energy function). We will study the topology of C by construct-
ing a finite dimensional approximation to it.

Choose some subdivision 0 = to< £y <...< . = 1 of the unit inter-
val. ILet a(ty,t,,...,t,) be the subspace of @ consisting of paths
w: [0,1] = M such that

1) o(0) =p and (1) =

2) oflt;_,,t;] is a geodesic for each i = 1,...,k.
Finally we define the subspaces

Q(ty,t,---,5)% = 2% 0 alty,ty,...,t)

)C

Int a(t oty

0~ 1) (Int Qc) n Q(to,...,tk)

IEMMA 16.1. Let M be a complete Riemannian manifold;
and let ¢ be a fixed positive number such that e° # g.
Then for all sufficiently fine subdivisions (to stysees ,tk)
of [0,1] the set Int 2(ty,t;,...,t,)° can be glven the
structure of a smooth finite dimensional manifold in a
natural way.
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PROOF': Iet S denote the ball
{x € M : o(x,p) <Vc)

Note that every path o € a® 1lies within this subset S C M. This follows
from the inequality 12 <ELec.

Since M 1is complete, S 1is a compact set. Hence by 10.8 there
exists € > 0 so that whenever x, y € 3 and p(x,y) < € there is a
unique geodesic from x to y of length < e; and so that this geodesic
depends differentiably on x and y.

Choose the subdivision (tg,tq,...,%t,) of [0,1] so that each
difference t; - ty_; 1s less than ez/c. Then for each broken geodesic

® € ty,ty,...,5)°

we have

t
(gt

2 t
- o) = (-t Eti 1 ) < () -t ) (E o)

. 2
S (t’i = t1_1)0 <e

Thus the geodesic o] [ty 4 ,til is uniquely and differentiably determined by
the two end points.

The broken geodesic ® is uniquely determined by the (k-1)-tuple

o(ty), o(ty),...,0(t, ;) € M x Mx...x M.
Evidently this correspondence
o = (a(t)),...,0(t,_;))

defines a homeomorphism between Int g,y .,tk)c and a certain open
subset of the (k-1)-fold product M x...x M. Taking over the differentiable
structure from this product, this completes the proof of 16.1.

To shorten the notation, let us denote this manifold
Int @(ty,t,,...,t,)% of broken geodesics by B. ILet

E': B =R

denote the restriction to B of the energy function E : @ = R.
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THEOREM 16.2. This function E': B—R is smooth.
Furthermore, for each a < ¢ the set B® = (E')"1[0,a]
is compact, and is a deformation retract® of the cor-
responding set a®. The critical points of E' are
precisely the same as the critical points of E in
Int o%: namely the unbroken geodesics from p to ¢
of length less than «c. The index [or the nullity]
of the Hessian E',, at each such critical point vy
is equal to the index [ or the nullity 1 of Eyy at 7.

Thus the finite dimensional manifold B provides a faithful model
for the infinite dimensional path space Int a®. As an immediate conse-

quence we have the following basic result.

THEOREM 16.3. Iet M be a complete Riemannian manifold
and let p,q € M be two points which are not conjugate
along any geodesic of length < ~a. Then 0% has the
homotopy type of a finite CW-complex, with one cell of
dimension A for each geodesic in @® at which Eyx
has index .

(In particular it is asserted that % contains only finitely many
i Y

geodesics.)
PROOF. This follows from 16.2 together with §3.5.

PROOF of 16.2. Since the broken geodesic o € B depends smoothly
on the (k-1)-tuple
m(t1) ,m(tg) b ,m(th) € Mx...xM

it is clear that the energy E'(w) also depends smoothly on this (k-1)-
tuple. In fact we have the explicit formula

k
Br(o) = ) e(a(ty_)),006))2/(t; -ty )
i=1

Similarly B itself is a deformation retract of Int .
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For a < c the set B® 1is homeomorphic to the set of all (k-1)-
tuples (p1,...,pk_1) € S xS X...x 3 such that

k

Z p(py_1,Py) %/ (bg - ) <o
i1

(Here it 1s to be understood that p, = b, by = q.) As a closed subset
of a compact set, this is certainly compact.

A retraction r: Int @° — B is defined as follows. ILet r(o)
denote the unique broken geodesic in B such that each r(o)| [ti_1 ,ti] is
a geodesic of length < e from cb(ti_1) to a)(ti). The inequality

2
o(p,0(t) < (Lof<Ea<ec

implies that ol[0,1] C S. Hence the inequality

2 t 2
i € 2
ooty _),0(t) < (4 - 5 4)( Bl , o) <& e - e

implies that r(w) can be so defined.
Clearly E(r(w)) < E(w) < c. This retraction r fits into a 1-
parameter family of maps

r,: Int a® — Int of

as follows. For t; , <ugt; let

ry(@) [lo,t; 4] r(o) |lo,t; 41,

ru(m) Ilti_1 ul minimal geodesic from o(t; 1) to o(u) ,
, _

r (@) [lu,1] = ollu,1]

o 1s the identity map of Int nc, and r, =r. It is easily veri-

fied that ru(m) is continuous as a function of both variables. This proves

Then r

that B is a deformation retract of Int a°.

Since E(ru(m)) < E(w) it is clear that each B% 1is also a defor-
mation retract of o2,

Every geodesic is also a broken geodesic, so it is clear that every
"ecritical point" of E in Int o° automatically lies in the submenifold B.

Using the tirst variation formula (§12.2) it is clear that the critical
points of E' are precisely the unbroken geodesics.

Consider the tangent space 'I’By to the manifold B at a geodesic
7. This will be identified with the space Ts’zy(to,t1 yees ,tk) of broken
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Jacobi fields along 7y, as described in §15. This identification can be
justified as follows. Let

a: (-s,e) =B
be any variation of 9y through broken geodesics. Then the corresponding
variation vector field %(0 ,t) along 9y is clearly a broken Jacobi field.
(Compare §14.3)
Now the statement that the index (or the nullity) of Ei, at

is equal to the index (or nullity) of Ejy, at » is an immediate conse-

quence of Lemma 15.4%. This completes the proof of 16.2.

REMARK. As one consequence of this theorem we obtain an alternative
proof of the existence of a minimal geodesic joining two given points p,q
of a complete manifold. For if na(p,q) is non-vacuous, then the corres-
ponding set B® will be compact and non-vacuous. Hence the continuous
function E': B®* =R will take on its minimum at some point v € B%. This

7y will be the required minimal geodesic.
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§17. The Topology of the Full Path Space.

Iet M be a Riemannian manifold with Riemann metric g, and let
p be the induced topological metric. ILet p and g be two (not neces-
sarily distinct) points of M.

In homotopy theory one studies the space * of all continuous
paths

o: [0,1] =M

from p to q, in the compact open topology. This topology can also be
described as that induced by the metric

d*(w,w') = Mi.x p(w(t),w'(t))

On the other hand we have been studying the space @ of piecewise c”

paths from p to q with the metric

2

1
d(w,n') = d¥(w,we') + [ S (g‘% - %%')2 dt} .
(0]

Since d > d* the natural map
i: o = o

is continuous.

THEOREM 17.1. This natural map i 1is a homotopy equiva-
lence between o and a*.

[Added June 1968. The following proof is based on suggestions by
W. B. Houston, Jr., who has pointed out that my original proof of 17.1 was
incorrect.. The original proof mede use of an alleged homotopy inverse

q* - Q which in fact was not even continuous. ]

PROOF: We will use the fact that every point of M has an open
neighborhood N which is "geodesically convex' in the sense that any two
points of N are joined by a unique minimal geodesic which lies completely
within N and depends differentiably on the endpoints. (This result is due

to J. H. C. Whitehead. See for example Bishop and Crittenden, "Geometry of



oL IIT. CALCULUS OF VARIATIONS

manifolds," p. 246; Helgason, 'Differential geometry and symmetric spaces,"

p. 53; or Hicks, "Notes on differential geometry,' p. 13L4.)

Choose a covering of M by such geodesically convex open sets Na .
Subdividing the interval [0,1] into 2K equal subintervals [(j-l)/ek,j/zK],
let Qf{* denote the set of all continuous paths o from p to g which sat-
isfy the following condition: the image under o of each subinterval
[(,j-l)/ek,j/2k] should be contained in one of the sets N, of the covering.

Clearly each qz is an open subset of the space (* of all paths from
p to g, and clearly O* is the union of the sequence ~f open subsets

Qi*CQ;CQ;C

Similarly the corresponding sets
o = 170y
are open subsets of Q with union equal to Q.
We will first show that the natural map

(g & o - q
is a homotopy equivalence. For each o € QE let h(w) Qk be the broken
geodesic which coincides with o for the parameter values t = j/ek,
j =0,1,2,.. .,2k, and which is a minimal geodesic within each intermediate

interval [(,j-l)/ek, j/ek]. This construction defines a function
h : 01.:—) QK }
and it is not difficult to verify that h is continuous.

Just as in the proof of 16.2 on page 91, it can be verified that the
composition (ilnk) ° h is homotopic to the identity map of Of and that the
composition h o (ilok) is homotopic to the identity map of nk This proves
that i IOK is a homotopy equivalence.

To conclude the proof of 17.1 we appeal to the Appendix. Using Ex-
ample 1 on page 149 note that the space Q is the homotopy direct limit of
the sequence of subsets QK Similarly note that O* is the homotopy direct
limit of the sequence of subsets QE Therefore, Theorem A (page 150) shows

that i : 0-» * 1s a homotopy equivalence. This completes the proof.
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It is known that the space o* has the homotopy type of a CW-

complex. (See Milnor, On spaces having the homotopy type of a CW-complex,

Trans. Amer. Math. Soc., Vol. 90 (1959), pp. 272-280.) Therefore

COROLLARY 17.2. @ has the homotopy type of a CW-
complex.

This statement can be sharpened as follows.

THEOREM 17.3. (Fundamental theorem of Morse Theory.)
ILet M be a complete Riemannian manifold, and let
pP,q € M be two points which are not conjugate along
any geodesic. Then o(M;p,q) (or @*(M;p,q)) has the
homotopy type of a countable CW-complex which contains
one cell of dimension M for each geodesic from p
to q of index .

The proof is analogous to that of 3.5. Choose a sequence
a, < a4 < a, < ... of real numbers which are not critical values of the
energy function E, so that each interval (ai_1,ai) contains precisely

one critical value. Consider the sequence
Q ceo ce c ... ;

a,
where we may assume that Q © is vacuous. It follows from 16.2 together

as as _
with 3.3 and 3.7 that each @ + has the homotopy type of -1 with a
finite number of cells attached: one A-cell for each geodesic of index A
in E'1(ai_1,ai). Now, just as in the proof of 3.5, one constructs a se-
quence KO C K1 C K2 C ... of CW-complexes with cells of the required
description, and a sequence a aq a,

QlOCQ ca“cC

Ky C K, C K, C

of homotopy equivalences. Letting f: @ — K be the direct limit mapping,
it is clear that f induces isomorphisms of homotopy groups in all dimen-
sions. Since @ 1is known to have the homotopy type of a CW-complex (17.2)
it follows from Whitehead's theorem that f 1s a homotopy equivalence. This

completes the proof. [For a different proof, not using 17.2, see p. 149.]

EXAMPIE. The path space of the sphere st Suppose that p and g

are two non-conjugate points on s®.  That is, suppose that q # p,p'

where p' denotes the antipode of p. Then there are denumerably many
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geodesics 74,74,75,-.. from p to q, as follows. Let y, denote the
short great circle arc from p to g; let v, denote the long great
circle arc pq'p'q; let 75 denote the arc pgp'q'pd; and so on. The

subscript k denotes the number of times that p or 7Pp' occurs in the

interior of Yy
The index x(yk) = By kel by is equal to k(n-1), since each

of the points p or p' in the interior is conjugate to p with multi-

plicity n-1. Therefore we have:

COROLIARY 17.4%. The loop space a(s™) has the homotopy
type of a CW-complex with one cell each in the dimensions
0, n-1, 2(n-1), 3(n-1),...

For n > 2 the homology of n(sn) can be computed immediately
from this information. Since Q(Sn) has non-trivial homology in infinite-

ly many dimensions, we can conclude:

COROLIARY 17.5. Let M have the homotopy type of 8%,
for n > 2. Then any two non-conjugate points of M are
joined by infinitely many geodesics.

This follows since the homotopy type of a*(M) (and hence of
Q(M)) depends only on the homotopy type of M. There must be at least one
geodesic in @(M) with index 0, at least one with index n-1, 2(n-1),

3(n-1), and so on.
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REMARK. More generally if M is any complete manifold which is
not contractible then any two non-conjugate points of M are joined by
infinitely many geodesics. Compare p. 484 of J. P. Serre, Homologie
singuliére des espaces fibrés, Annals of Math. 54% (1951), pp. 425-505.

As another application of 17.4, one can give a proof of the Freuden-

thal suspension theorem. (Compare §22.3.)
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§18. Existence of Non-Conjugate Points.

Theorem 17.3 gives a good description of the space a(M;p,q) pro-
viding that the points p and q are not conjugate to each other along any
geodesic. This section will justify this result by showing that such non-
conjugate points always exist.

Recall that a smooth map f: N—= M between manifolds of the same
dimension is critical at a point x € N if the induced map

Fye: TN, = TMf(x)
of tangent spaces is not 1-1. We will apply this definition to the ex-
ponential map
exp = expp: TMp - M
(We will assume that M 1s complete, so that exp is everywhere defined;
although this assumption could easily be eliminated.)

THEOREM 18.1. The point exp v 1s conjugate to p along
the geodesic 7y from p to exp v if and only if the
mapping exp is critical at v.

PROOF: Suppose that exp is critical at v e ‘I'M:p Then expy(X)
= 0 for some non-zero X € T(TI%)V, the tangent space at v to ‘I'Mp,
considered as a manifold. Iet u - v(u) be a path in ‘I'M]3 such that
v(0) = v and %—%(0) = X. Then the map « defined by a(u,t) = exp tv(u)
is a variation through geodesics of the geodesic 7, given by t — exp tv.
Therefore the vector field W given by t— %(exp tv(u)) lu=o is a Jacob:

field along 7y,. Obviously w(0) 0. We also have

n

W(1) = gl-(exp v(u))lu=0 = exp, glé%l(o) = exp,X = 0.

But this field is not identically zero since

DW D 29 D
(0) = (exp tV(u))| = v(u) #0
at 3u 3T (0,0) u =0
3o there is a non-trivial Jacobi field along Ty from p to exp v,

vanishing at these points; hence p and exp v are conjugate along 7y -
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Now suppose that exp, 1s non-singular at v. Choose n independ-
ent vectors X,,..., X, in T(TMp)v‘ Then expy(X,),..., expy(X,) are

linearly independent. In T choose paths u = v, (w),...,u — vn(u)
with vi(o) = v and %ii)(o) = Xy

Then o,,...,a,, constructed as above, provide n Jacobi fields
w1,...,Wn along Yy vanishing at p. Since the Wi(l) = exp*()gi) are

independent, no non-trivial linear combination of the W; can vanish at
exp v. Since n 1is the dimension of the space of Jacobi fields along Yo
which vanish at p, clearly no non-trivial Jacobi field along Ty vanishes
at both p and exp v. This completes the proof.

COROILIARY 18.2. Iet p € M. Then for almost all q € M,
p is not conjugate to q along any geodesic.

PROOF. This follows immediately from 18.1 together with Sard's
theorem (§6.1).



100 III. CALCULUS OF VARIATIONS

§19. Some Relations Between Topology and Curvature.

This section will describe the behavior of geodesics in a manifold

with "negative curvature" or with "positive curvature."

IEMMA 19.1. Suppose that <R(A,B)A,B> <o for
every pair of vectors A,B in the tangent space

and for every p € M. Then no two points of
M ~are conjugate along any geodesic.

PROOF. Let 9y be a geodesic with velocity vector field V; and

let J be a Jacobi field along y. Then

2

D°J

=5 + R(V,V = o0

at ’
so that

D21
< vl J> =- < R(V,DHV,I> > o.

Therefore

2

2
a
a-f<g%,J>=<];—t‘;,J>+ >0

&

Thus the function <%% ,y I> is monotonically increasing, and strictly
DJ

so if FE # 0.

If J vanishes both at 0 and at t, > 0, then the function

< g%, J > also vanishes at 0 and t,, and hence must vanish identically
throughout the interval [o,tO] . This implies that

J0) = g-%(o) - 0

I

so that J 1is identically zero. This completes the proof.
REMARK. If A and B are orthogonal unit vectors at p then the

quantity <R(4,B)A,B> 1is called the sectional curvature determined by

A and B. It is equal to the Gaussian curvature of the surface
(u, ) expp(uIA + u,B)
spanned by the geodesics through p with velocity vectors in the subspace

spamned by A and B. (See for example, Laugwitz "Di fferential-Geometrie,"
p. 101.)
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[Intuitively the curvature of a manifold can be described in terms
of "optics" within the manifold as follows. Suppose that we think of the
geodesics as being the paths of light rays. Consider an observer at p
looking in the direction of the unit vector U towards a point q = exp(rU).
A small line segment at ¢ with length L, pointed in a direction corre-
sponding to the unit vector W € TMp, would appear to the observer as a
line segment of length

2
L(1 + %; <R(U,WU,W > + (terms involving higher powers of r)) .

Thus if sectional curvatures are negative then any object appears shorter
than it really is. A small sphere of radius € at q would appear to be
an ellipsoid with principal radii e(1 + %§K1 +oena)y eee, (1 + %?Kn + o)
where K,,K,,...,K  ~denote the eigenvalues of the linear transformation
W = R(U,W)U. Any small object of volume v would appear to have volume
v(1 + %;(K1 + Ky 4.4 Kn) + (higher terms)) where K, +...+ K 1is equal
to the "Ricci curvature" K(U,U), as defined later in this section.]

Here are some familiar examples of complete manifolds with curva-
ture < O:

(1) The Euclidean space with curvature O.

(2) The paraboloid z = x° - y2, with curvature < 0.

(3) The hyperboloid of rotation x2 + y2 - z2 = 1, with curva-
ture < 0.

(%) The helicoid X cos z + y sin z = 0, with curvature < 0.

(REMARK. 1In all of these exampies the curvature takes values arbi-

trarily close to 0. Cf. N. V. Efimov, Impossibility of a complete surface

in 3-space whose Gaussian curvature has a negative upper bound, Soviet Math.,

Vol. 4 (1963), pp. 843-846.)

A famous example of a manifold with everywhere negative sectional

curvature is the pseudo-sphere

z = - N1 -x% - 3% + sech! Jx% y2, zZ>0

with the Riemann metric induced from R}. Here the Gaussian curvature has
the constant value -1.
No geodesic on this surface has conjugate points although two geo-

desics may intersect in more than one point. The pseudo-sphere gives a
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non-Euclidean geometry, in which the sum of the angles of any triangle is
< n radians. This manifold is not complete. 1In fact a theorem of Hilbert

states that no complete surface of constant negative curvature can be
imbedded in R3. (See Blaschke, "Differential Geometric I," 3rd edn., §96;
or Efimov, ibid.)

However, there do exist Riemannian manifolds of constant negative
curvature which are complete. (See for example Laugwitz, "Differential
and Riemannian geometry,' §12.6.2.) Such a manifold can even be compact;
for example, a surface of genus > 2. (Compare Hilbert and Cohn-Vossen,
"Geometry and the imagination," p. 259.)

THEOREM 19.2 (Cartan*). Suppose that M is a simply

connected, complete Riemannian manifold, and that the

sectional curvature < R(A,B)A,B> is everywhere < 0.

Then any two points of M are joined by a unique geo-

desic. Furthermore, M is diffeomorphic to the
Euclidean space RE.

PROOF: Since there are no conjugate points, it follows from the
index theorem that every geodesic from p to g has index » = 0. Thus
Theorem 17.3 asserts that the path space @(M;p,q) has the homotopy type
of a 0-dimensional CW-complex, with one vertex for each geodesic.

The hypothesis that M is simply connected implies that o (M;p,q)
is connected. Since a connected 0-dimensional CW-complex must consist of
a single point, it follows that there is precisely one geodesic from p to
q.

See E. Cartan, "Lecons sur la Géométrie des Espaces de Riemamnn," Paris,
1926 and 1951.
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Therefore, the exponential map expp: TMp —+ M 1is one-one and

onto. But it follows from 18.1 that expp

so that expp is locally a diffeomorphism. Combining these two facts, we

is non-critical everywhere;

see that expp is a global diffeomorphism. This completes the proof of
19.2.

More generally, suppose that M is not simply connected; but is
complete and has sectional curvature < 0. (For example M might be a
flat torus S1 X S1 , or a compact surface of genus > 2 with constant
negative curvature.) Then Theorem 19.2 applies to the universal covering
space M of M. For it is clear that M inherits a Riemannian metric
from M which is geodesically complete, and has sectional curvature < O.

Given two points p,q € M, it follows that each homotopy class of
paths from p to q contains precisely one geodesic.

The fact that ﬁ is contractible puts strong restrictions on the

topology of M. For example:

COROLLARY 19.3. If M 1s complete with <R(A,B)A,B>
< 0 then the homotopy groups sri(M) are zero for
i>1; and 1:1(M) contains no element of finite order
other than the identity.

PROOF: Clearly ni(M) = ni(ﬁ) = 0 for 1> 1. Since ﬁ is
contractible the cohomology group Hk(M) can be identified with the co-
homology group Hk(n1(M)) of the group sr1(M). (See for example pp. 200-
202 of S. T. Hu "Homotopy Theory," Academic Press, 1959.) Now suppose
that nI(M) contains a non-trivial finite cyclic subgroup G. Then for a
suitable covering space IT/I of M we have 1:1(B7I) = G; hence

Hk(G) = Hk(ﬂ) = 0 for k> n

But the cohomology groups of a finite cyclic group are non-trivial in arbi-
trarily high dimensions. This gives a contradiction; and completes the
proof.

Now we will consider manifolds with "positive curvature." Instead
of considering the sectional curvature, one can obtain sharper results in
this case by considering the Ricci tensor (sometines called the "mean curva-

ture tensor").
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DEFINITION. The Ricci tensor at a point p of a Riemannian mani-
fold M is a bilinear pairing

K: 'I'Mp X TMp -+ R
defined as follows. Let K(Ul,Ue) be the trace of the linear transforma-
tion
W - R(U1,w)U2
from TMp to TM.p. (In classical terminology the tensor K 1is obtained
from R Dby contraction.) It follows easily from §9.3 that K is symmetric:
K(U1 ,U2) = K(UQ;U1) .
The Ricci tensor is related to sectional curvature as follows. Let

U,,U U_ Dbe an orthonormal basis for the tangent space TMp.

VRTINS
ASSERTION. K(Un,Un) is equal to the sum of the sectional curva-
tures < R(U,,U;)U,,U; > for i=1,2,...,n-1.

PROOF: By definition K(U,,U,)) is equal to the trace of the matrix
( <R(Un,Uj_)Un,U‘.j > ) . Since the n-th diagonal term of this matrix is

zero, we obtain a sum of n-1 sectional curvatures, as asserted.

THEOREM 19.4 (Myers*) . Suppose that the Ricci curvature
K satisfies
K(U,U) > (n-1)/r®

for every unit vector U at every point of M; where r
is a positive constant. Then every geodesic on M of
length > =r contains conjugate points; and hence is not
minimal.

PROOF: ILet y: [0,1] — M be a geodesic of length L. Choose

..,P

parallel vector fields P n

19 along vy which are orthonormal at one

point, and hence are orthonormal everywhere along y. We may assume that

Pn points along vy, so that
DP

dy i
V = dqF = L Pn B and g5 = 0
Iet Wi(t) = (sin =t) Pi(t). Then

See S. B. Myers, Riemann menifolds with positive mean curvature, Duke
Math. Journal, Vol. 8 (1941), pp. 401-kok,
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1 2w
1 DWWy
§E**(Wi,Wi) = 'S <Wi, 112 + R(V,Wi)V> dt
]

1
S (sin nt)2 (n2 _12 < R(P,P;)P.,Py > ) dt.
0o

Summing for i = 1,...,n-1 Wwe obtain

n-1 1
1 z By (W, W;) = S (sin art)Q((n-1)1t2 - 12 K(Pn,Pn)) at
o]

2
1

Now if K(Pn,Pn) > (n—1)/r2 and L > sr then this expression is
< 0. Hence E**(Wi,wi) < 0 for some 1. This implies that the index of
y 1s positive, and hence, by the Index Theorem, that contains conju-
gate points.

It follows also that y is not a minimal geodesic. In fact if
a: (-e,e) — @ 1is a variation with variation vector field wi then

- o, =
dE(al(lu)) - o, da E((iz(u)) <o,

for u = 0. Hence E(a(u)) < E(y) for small values of u # 0. This com-

pletes the proof.

EXAMPLE. If M is a sphere of radius r then every sectional
curvature is equal to 1 /r2. Hence K(U,U) takes the constant value
(n-1)/r2. It follows from 19.4 that every geodesic of length > =xr con-
tains conjugate points: a best possible result.

COROLIARY 19.5. If M is complete, and K(U,U) >
(n-1)/1*2 > 0 for all unit vectors U, then M is
compact, with diameter < nr.

PROOF. If p,q € M let y be a minimal geodesic from p to q.

Then the length of y must be < nr. Therefore, all points have distance
< nr. Since closed bounded sets in a complete manifold are compact, it
follows that M itself is compact.

This corollary applies also to the universal covering space M of
M. Since f/f is compact, it follows that the fundamental group n1(M) is
finite. This assertion can be sharpened as follows.
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THEOREM 19.6. If M is a compact manifold, and if the
Ricci tensor K of M is everywhere positive definite,
then the path space @(M;p,q) has the homotopy type of
a CW-complex having only finitely many cells in each
dimension.

PROOF. Since the space consisting of all unit vectors U on M
is compact, it follows that the continuous function X(U,U) > 0 takes on
a minimum, which we can denote by (n-1)/r2 > 0. Then every geodesic
y € @(M;p,q) of length > =xr has index X > 1.

More generally consider a geodesic y of length > ksr. Then a
similar argument shows that y has index » > k. In fact for each
i=1,2,...,k one can construct a vector field Xi along y which vanishes
outside of the interval (11'21 , % ), and such that E**(Xi’xi) < 0.
Clearly E**(Xi,Xj) = 0 for 1 # j; so that Xy5-+-,X, spana k-
dimensional subspace of Tn'r on which E,, is negative definite.

Now suppose that the points p and q are not conjugate along any
geodesic. Then according to § 16.3 there are only finitely many geodesics
from p to q of length < kxr. Hence there are only -finitely many geo-
desics with index < k. Together with §17.3, this completes the proof.

REMARK. I do not know whether or not this theorem remains true if
M 1is allowed to be complete, but non-compact. The present proof certainly
breaks down since, on a manifold such as the paraboloid z = %% 4 y2, the

curvature K(U,U) will not be bounded away from zero.

It would be interesting to know which manifolds can carry a metric
so that all sectional curvatures are positive. An instructive example is
provided by the product s x Sk of two spheres; with m,k > 2. For this
manifold the Ricci tensor is everywhere positive definite. However, the
sectional curvatures in certain directions (corresponding to flat tori
s'x 8! g« Sk) are zero. It is not known whether or not S™ x Sk can
be remetrized so that all sectional curvatures are positive. The following
partial result is known: If such a new metric exists, then it can not be
invariant under the involution (x,y) — (-x,-y) of S Sk. This follows

from a theorem of Synge. (See J. L. Synge, On the connectivity of spaces
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of positive curvature, Quarterly Journal of Mathematics (Oxford), Vol. 7

(1936), pp. 316-320.
For other theorems relating topology and curvature, the following

sources are useful.

K. Yano and S. Bochner, "Curvature and Betti Numbers," Annals

Studies, No 32, Princeton, 1953.

3. S. Chern, On curvature and characteristic classes of a Riemann

manifold, Abh. Math. Sem., Hamburg, Vol. 20 (1955), pp. 117-126.

M. Berger, Sur certaines variétés Riemanniennes & courbure positive,

Comptes Rendus Acad. Sci., Paris, Vol. 247 (1958), pp. 1165-1168.
S. I. Goldberg, "Curvature and Homology," Academic Press, 1962.
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PART IV.

APPLICATIONS TO LIE GROUPS AND SYMMETRIC SPACES

§20. Symmetric Spaces.

A symmetric space is a connected Riemannian manifold M such that,

for each p € M there is an isometry Ip: M — M which leaves p fixed
and reverses geodesics through p, i.e., if y 1is a geodesic and y(0) = p
then Ip(w(t)) = 7(-t).

IEMMA 20.1 Let 9y be a geodesic in M, and let
p=17(0) and q = y(c). Then I T (y(t)) = 7(t + 2¢)
(assuming y(t) and (%t + 2c) are defined). More-
over, Iqu preserves parallel vector fields along 7.

PROOF: Let ¢'(t) = y(t +c). Then ' is a geodesic and
[ - q. = - = '(-t - ¢)) =
y'(0) = q. Therefore Iqu(v(t)) I (r(-t)) Iglr'(-t - e))
y'(t +¢) = 7(t+ 20).

If the vector field V 4is parallel along y then Ip *(V) is
parallel (since Ip is an isometry) and Ip*V( 0) = -V(0); therefore

Ip*V(t) = =V(-t). Therefore Iq* Ip*(V(t)) = V(t + 2¢).
COROLLARY 20.2, M is complete.
Since 20.1 shows that geodesics can be indefinitely extsended.
COROLLARY 20.3. Ip is unique.

Since any point is joined to p by a geodesic.

COROLLARY 20.4. If U,V and W are parallel vector

fields along vy then R(U,V)W is also a parallel
field along vy.

PROOF. If X denotes a fourth parallel vector field along 7,
note that the quantity < R(U,V)W,X > is constant along y. In fact,
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glven p = y(0), q = y(c¢), consider the isometry T = I7(0/2)Ip which
carries p to q. Then

ROV, XD = K RITWUL, TV ) T, T D>
by 20.1. Since T is an isometry, this quantity is equal to
<R(U V. )Wp,Xp> . Thus <R(U,V)W,X> is constant for every parallel
vector field X. It clearly follows that R(U,V)W i1s parallel.
Manifolds with the property of 20.k are called locally symmetric.

(A classical theorem, due to Cartan states that a complete, simply connected,
locally symmetric manifold is actually symmetric.)

In any locally symmetric menifold the Jacobi differential equations
have simple explicit solutions. Iet y: R —+ M be a geodesic in a local-
ly symmetric manifold. ILet V = %—%(0) be the velocity vector at p = y(0).

Define a linear transformation
K M

by* KV(W) = R(V,W)V. Iet e .,6, denote the eigenvalues of K.

12 n

THEOREM 20.5. The conjugate points to p along ¥
are the points y(:rk/J_e'j'_) where k 1is any non-zero
integer, and ey is any positive eigenvalue of
The multiplicity of v(t) as a conjugate point is
equal to the number of ey such that t 1s a mul-
tiple of =« /~/_e-i.

PROOF: First observe that K; 1is self-adjoint:
<R, W = SWERWH D>
This follows immediately from the symmetry relation
< REWVLWYD = RVLWHT,WD
Therefore we may choose an orthonormal basis U,,...,U, for Mp so that

n
KUy = e4Uy

1s+++»8y are the eigenvalues. Extend the U; to vector fields

along vy Dby parallel translation. Then since M 1is locally symmetric,

where e

*

KV should not be confused with the Ricci tensor of §19.
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the condition
R(V,U))V = e,U;

remains true everywhere along y. Any vector field W along y may be
expressed uniquely as

w(t) (D)U, (£) +euvs v ()T ()

+ Ky (W)

Z—-—Ui z eiwiUi = 0,

Since the U:L are everywhere linearly independent this is equivalent to

Then the Jacobi equation 0 takes the form

-, &% "
= =

the system of n equations
d Wy
j‘ + e i = 0 .
We are interested in solutions that vanish at t = o. If &y > 0 then

wi(t) = ¢; sin (Jei t), for some constant ey .

Then the zeros of wi(t) are at the multiples of t = 1(/\/_8—1

If e; =0 then w;(t) = ¢yt and if e; < O then
wi(t) =cy sinh («/_I_ez'it) for some constant Cy- Thus if ey Lo, wi(t)
vanishes only at t = 0. This completes the proof of 20.5.
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§21. Lie Groups as Symmetric Spaces.

In this section we consider a Lie group G with a Riemannian metric

which is invariant both under left translations

LT: G —+G, LT(a) = To

and right translation, RT(U) = ot. If G is commutative such a metric
certainly exists. If G 1is compact then such a metric can be constructed
as follows: Let <> be any Riemannian metric on G, and Let p denote

the Haar measure on G. Then up is right and left invariant. Define a

new inner product <g:,:§> on G by

KLv,w> - S LLg R, (V) Ly R (W) > du(e) du(r) .
GxG

Then <<,>> 1is left and right invariant.

LEMMA 21.1 If G 1is a Lie group with a left and right
invariant metric, then G 1is a symmetric space. The
reflection IT in any point T € G is given by the

formula IT(U) - 1o .

PROOF: By hypothesis LT and RT are isometries. Define a map

Io: G =G by

-1
Ie(o) = o .
Then Ip*: TGe - TGe reverses the tangent space of e; so is certainly
an isometry on this tangent space. Now the identity
I. = R _,IL
e s-17€ g-1
shows that Ie*: TGéé TGU_1 is an isometry for any o € G. Since Ie

reverses the tangent space at e, it reverses geodesics through e.

Finally, defining I (¢) = 7o '7, the identity I_ - RIR;'

shows that each IT is an isometry which reverses geodesics through -T.

A 1-parameter subgroup of G is a C* homomorphism of R into

G. It is well known that a 1-parameter subgroup of G is determined by
its tangent vector at e. (Compare Chevalley, "Theory of Lie Groups,"

Princeton, 1946.)
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IEMMA 21.2. The geodesics y in G with »(0)
are precisely the one-parameter subgroups of G.

[}
[

PROOF: Iet y: R = G be a geodesic with y(0)

e. By Lemma 20.1
the map Iy(t)Ie takes y(u) into y(u + 2t). Now Iy(t)Ie(o) = y(t)o y(t)
so 7(t)y(wy(t) = y(u+ 2t). By induction it follows that o(nt) = y(t)"
for any integer n. If t'/t" is raticnal so that t' = n't and t" = n"t

Lot
for some t and some integers n' and n" then y(t' + t") = y(£)2 1 -

y(t")y(t"). By continuity y is a homomorphism.

Now let y: R —+ G be a 1-parameter subgroup. Let ' be the
geodesic through e such that the tangent vector of y' at e 1is the tan-
gent vector of y at e. We have just seen that +' 1is a 1-parameter sub-
group. Hence 9' = y. This completes the proof.

A vector field X on a Lie group G is called left invariant if
and only if (La)*(Xb) =X,., forevery a and b in G. If X and Y
are left invariant then [X,Y] is also. The Lie algebra g of G is the
vector space of all left invariant vector fields, made into an algebra by
the bracket [ 1.

g 1s actually a Lie algebra because the Jacobi identity
[[X,¥1,2] + [[Y,2],X] + [[Z,X],Y] = o

holds for all (not necessarily left invariant) vector fields X,Y and 2.

THEOREM 21.3. Let G be a Lie group with a left and

right invariant Riemannian metric. If X,Y,Z and W
are left invariant vector fields on G then:

a) <I[X,Y¥1,2> = <X,[¥,21>
b) R(X,Y)Z = ¢ [[X,Y],2]
o) <RX,MZW> = ¢ <IXY],IZ,W> .

PROOF: As in §8 we will use the notation X F Y for the covariant
derivative of Y in the direction X. For any left invarient X the iden-
tity

XFX=0

is satisflied, since the integral curves of X are left translates of 1-

parameter subgroups, and therefore are geodesics.
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Therefore
(X FX) + X FY)
+ (YFX) +« (Y }FY)

(X +Y) F(X+7Y)

is zero; hence
XFY+YEFEX = 0.
On the other hand

X FY-YFX [X,Y]

by §8.5. Adding these two equations we obtain:
d) 22X +FY = I[X,Y]
Now recall the identity

Y {X,2> = <Y FX2> + <XYFZ>.
(See §8.4.) The left side of this equation is zero, since <X,Z> is
constant. Substituting formula (d) in this equation we obtain

o = <Iy,x1,2> + <X,[¥,z21>

Finally, using the skew commutativity of [Y,X], we obtain the required

formula*
(a) <IxYl,z> = <X%,ly,21>
By definition, R(X,Y)Z is equal to

- XF(XYFZ + YFEXFZ) + [XY]F2Z.
Substituting formula (d), this becomes

- L, 1,211 + 417,1X,2]] + l(X,¥],2]
Using the Jacobi identity, this yields the required formula
(b) R(X,0)Z = lIX,¥1,2]

The formula (c) follows from (a) and (Db)

It follows that the tri-linear function X,Y,Z — X,Y1,Z2> is skew-
symmetric in all three variables. Thus one obtains a left invariant differ-
ential 3-form on G, representing an element of the de Rham cohomology group
H3(G) . In this way Cartan was able to prove that H3(G) £0 if G 1is a
non-abelian compact connected Lie group. (See E. Cartan, "La Topologie des
Espaces Représentatives des Groupes de lLie," Paris, Hermann, 1936.)
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COROLLARY 21.4. The sectional curvature <R(X,Y)X,Y> =

1}- < [X,Y],[X,Y)> is always > 0. Equality holds if and

only if [X,Y] = o.

Recall that the center ¢ of a ILie algebra g 1is defined to be
the set of X € § such that [X,Y] =0 forall Ye g.

COROLLARY 21.5. If G has a left and right invariant
metric, and if the Lie algebra ¢ has trivial center,
then G is compact, with finite fundamental group.

PROOF: This follows from Meyer's theorem (§19). Let X, be any
unit vector in ¢ and extend to a orthonormal basis X;,...,X,. The Riccl

curvature

n
K(X,,%,) = Z<R(X1,X1)X1,Xi>
=1

must be strictly positive, since [X1,Xi] # 0 for some 1. Furthermore
K(X,,X,) 1is bounded away from zero, since the unit sphere in ¢ is compact.
Therefore, by Corollary 19.5, the manifold G is compact.

This result can be sharpened slightly as follows.

COROLLARY 21.6. A simply connected Lie group G with left
and right invariant metric splits as a Cartesian product

G' x Rk where G' is compact and Rk denotes the additive
Iie group of some Euclidean space. Furthermore, the Lie
algebra of G' has trivial center.

Conversely it is clear that any such product G' x Rk possesses a

left and right invariant metric.

PROOF. Iet ¢ be the center of the ILie algebra ¢ and let
g' = {Xeg:<XC>= 0 forall Ce c}

be the orthogonal complement of ¢ . Then ¢' is a Lie sub-algebra. For
if X,Ye g' and C € ¢ then

< Ixyl,0c > = <X%,[¥,0)> = o0;
hence [X,Y] € g'. It follows that ¢ splits as a direct sum g¢' @ ¢ of

Iie algebras. Hence G splits as a Cartesian product G' x G"; where G

is campact by 21.5 and G" 1is simply connected and abelian, hence isomorphic
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to some RE. (See Chevalley, "Theory of Lie Groups.") This completes the
proof.

THEOREM 21.7 (Bott). Let G be a compact, simply con-

nected Lie group. Then the loop space 0(G) has the

homotopy type of a CW-complex with no odd dimensional

cells, and with only finitely many i-cells for each
even value of M.

Thus the A-th homology groups of a(G) 1is zero for » odd, and is

free abelian of finite rank for A even.

REMARK 1. This CW-complex will always be infinite dimensional. As
an example, if G is the group s3 of unit quaternions, then we have seen

that the homology group Hin(s3) is infinite cyclic fqor all even values of 1.

REMARK 2. This theorem remains true even for a non-compact group.
In fact any connected Lie group contains a compact subgroup as deformation

retract. (See K. Iwasawa, On some types of topological groups, Annals of

Mathematics 50 (1949), Theorem 6.)

PROOF of 21.7. Choose two points p and q in G which are not
conjugate along any geodesic. By Theorem 17.3, 0(G;p,q) has the homotopy
type of a CW-complex with one cell of dimension A for each geodesic from
P to q of index A. By §19.4 there are only finitely many \-cells for
each . Thus it only remains to prove that the index A of a geodesic is
always even.

Consider a geodesic y starting at p with velocity vector
_ 4y o
vV = af(O) € TGp =g
According to §20.5 the conjugate points of p on 7y are determined by the

elgenvalues of the linear transformation
ke TGp ind TGp B
defined by
K00 = ROV,NV = LIIV,W],V]
Defining the adjoint homomorphism

AdV: g — @
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by
Ad V(W) = [V,W]
we have
Ky = - (BAV) o (Ad V)
The linear transformation Ad V 1is skew-symmetric; that is
AATVW, W D> = - < WAAVWY) >

This follows immediately from the ildentity 21.3a. Therefore we can choose

an orthonormal basis for & so that the matrix of Ad V takes the form

It follows that the composite linear transformation (Ad V)o.(Ad V) has

matrix

Therefore the non-zero eigenvalues of Kv = - %(Ad V)2 are positive, and
occur in pairs.

It follows from 20.5 that the conjugate points of p along 9y also
nccur in pairs. In other words every conjugate point has even multiplicity.
Together with the Index Theorem, this implies that the index A of any

geodesic from p to q 1is even. This completes the proof.
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§22. Whole Manifolds of Minimal Geodesics.

So far we have used a path space a(M;p,q) based on two points
P,q4 € M which are in "general position." However, Bott has pointed out
that very useful results can be obtained by considering pairs p,q in some
special position. As an example let M be the unit sphere Sn+1 , and
let p,q be antipodal points. Then there are infinitely many minimal geo-
desics from p to q. In fact the space 9"2 of minimal geodesics forms
a smooth manifold of dimension n which can be identified with the equator

gt ¢ s™'. We will see that this space of minimal geodesics provides a

sn

q

fairly good approximation to the entire loop space Q(Sn”) .
Let M be a complete Riemannian manifold, and let p,q € M be two

points with distance p(p,q) = vd.

THEOREM 22.1. If the space Qd of minimal geodesics from

P to g 1is a topological manifold, and if every non-minimal
geodesic from p to g has index > g5 then the relative
homotopy group ni(n,nd) ig zero for 0 < i< Ao

It follows that the inclusion homomorphism
ny(a%) = x;(2)
is an isomorphism for 1 < )“0 - 2. But it is well known that the homotopy
group ni(o) is isomorphic to "1+1(M) for all values of 1. (Compare
S. T. Hu, "Homotopy Theory," Academic Press, 1959, p. 111; together with
§17.1.)
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Thus we obtain:

COROLLARY 22.2. With the same hypotheses, =;(a%) 1s
isomorphic to "i+1(M) for 0< 1< - 2.

Iet us apply this corollary to the case of two antipodal points on
the (n+1)-sphere. Evidently the hypotheses are satisfied with X, = 2n.
For any non-minimal geodesic must wind one and a half times around Sn+1;
and contain two conjugate points, each of multiplicity n, in its interior.
This proves the following.

COROLLARY 22.3. (The Freudenthal suspension theorem.)

The homotopy group ni(Sn) is isomorphic to niﬂ(sn*‘)

for i < 2n-2.

Theorem 22.1 also implies that the homology groups of the loop
space O are isomorphic to those of nd in dimensions < Ay - 2. This
fact follows from 22.1 together with the relative Hurewicz theorem. (See
for example Hu, p. 306. Compare also J. H. C. Whitehead, Combinatorial
homotopy I, Theorem 2.)

The rest of §22 will be devoted to the proof of Theorem 22.1. The
proof will be based on the following lemma, which asserts that the condition
"all critical points have index > xo" remains true when a function is
Jjiggled slightly.

Let K be a compact subset of the Fuclidean space R%; let U be
a neighborhood of K; and let

f: U—- R
be a smooth function such that all critical points of f in K have index
pIR YN

IEMMA 22.4, If g: U-— R is any smooth function which
is "close" to f, in the sense that

2 2
d of | 3°g d°f
F%i - B?il <&, Ic)xiax. - 6xiaxj <e, (1, =1,...,n)

J

uniformly throughout K, for some sufficiently small constant e,

then all critical points of g in K have index > Ao -

(Note that f 1is allowed to have degenerate critical points. In
the application, g will be a nearby function without degenerate critical
points.)
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PROOF of 22.4. The first derivatives of g are roughly described
by the single real valued function

A

i

>0

d
B%i

on U; which vanishes precisely at the critical points of g. The second

derivatives of g can be roughly described by n continuous functions

eé,..., ergl: U —-R ,

as follows. Let
1 2 n
eg(x) < eg(x) <o < eg(x)

denote the n eigenvalues of the matrix (3}%3%) . Thus a critical point
x of g has index‘ > A if and only if the number eg(x) is negative.

The continuity of the functions eg follows from the fact that the
r-th eigenvalue of a symmetric matrix depends continuously on the matrix*.
This can be proved, for example, using the fact that the roots of a complex
polynomial of degree n vary continuously with the coefficient of the poly-

nomial. (Rouché’s theorem. )

Py
0
g (x).

Similarly let mf(x) denote the larger of the corresponding numbers Kf(x)
A

Let mg(x) denote the larger of the two numbers kg(x) and -e

and —efo(x) . The hypothesis that all critical points of f in KX have
index > A, implies that -ezo(x) > 0 whenever kf(x) = 0. In other words
mf(x) >0 for all x € K.

Let & > 0 denote the minimum of me on K. Now suppose that g
is so close to f that

*o o
(%) g0 - 0| <5, [0 - o] <n

for all x € K. Then mg(x) will be positive for x € K; hence every

critical point of g in K will have index > Moo

This statement can be sharpened as follows. Consider two nxn symmetric
matrices. If corresponding entries of the two matrices differ by at most
€, then corresponding eigenvalues differ by at most ne. This can be
proved using Cou{-ant's minimax definition of the A-th eigenvalue. (See
§1 of Courant, Uber die Abhingigkeit der Schwingungszahlen einer Membran...,
Nachrichten, Koniglichen Gesellschaft der Wissenschaften zu Gottingen, Math.
Phys. Klasse 1919, pp. 255-264.)
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To complete the proof of 22.4, it is only necessary to show that

the inequalities (*) will be satisfied providing that
2 2
l-g%i—g-fzi' < e and Ixixj -&%i—j < €

for sufficiently small €. This follows by a uniform continuity argument
which will be left to the reader (or by the footnote above ).

We will next prove an analogue of Theorem 22.1 for real valued
functions on a manifold.

Iet f: M — R be a smooth real valued function with minimum o0,
such that each M® = f"1[0,c] is compact.

IEMMA 22.5. If the set M° of minimal points is a manifold,

and if every critical point in M - M0 has index > Mo
then nr(M,MO) =0 for 0<r< xo.

PROOF: First observe that M° is a retract of some neighborhood
U C M. In fact Hanner has proved that any manifold M° is an absolute
neighborhood retract. (See Theorem 3.3 of O. Hanner, Some theorems on

abgolute neighborhood retracts, Arkiv for Matematik, Vol. 1 (1950), pp.

389-408.) Replacing U by a smaller neighborhood if necessary, we may

assume that each point of U is joined to the corresponding point of Mo

by a unique minimal geodesic. Thus U can be deformed into M within M.
let I' denote the unit cube of dimension r < Ay, and let

h: (I5,17) - (M,M°)

be any map. We must show that h is homotopic to @ map h' with
n' (%) ¢ u.

let ¢ be the maximum of f on h(I%).

Iet 35 > 0 be the mini-
mum of f on the set M - U. (The function f has a minimum on M - U

since each subset MC - U is compact.)

Now choose a smooth function

MC+28 - R

g:
which approximates f closely, but has no degenerate critical points. This
is possible by §6.8. To be more precise the approximation should be so

close that:
(1) |f(x) - g(x)| <8 forall x € M®*2%;  ang
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(2) The index of g at each critical point which lies in the com-
pact set £ '[s,c+25] 1s > Ay

It follows from Lemma 22.4 that any g which approximates f
sufficiently closely, the first and secend derivatives also being approxi-
mated, will satisfy (2). In fact the compact set f'1[5,0+25] can be
covered by finitely many compact set X;, each of which lies in a coordi-
nate neighborhood. Lemma 22.4 can then be applied to each Ki

The proof of 22.5 now proceeds as follows. The function g is
smooth on the compact region g '[25,c+s8] C £ [s,c+25), and all critical
points are non-degenerate, with index > Ao Hence the manifold
g‘I(-oo,c+8] has the homotopy type of g_1(-oo,28] with cells of dimension
> M, attached.

Now consider the map
h: 15,I% = MC,M0 C g7 (-w,ce5],M°

Since r < A, it follows that h is homotopic within g"(-eo,c+5],M0 to

a map
ht: IF,I% = g ' (-»,25],M°

But this last pair is contained in (U,MO); and U can be deformed into

M0

within M. It follows that h' is homotopic within (M,Mo) to a map
n": 17,i* — M°,M°. This completes the proof of 22.5.
The original theorem, 22.1, now can be proved as follows. Clearly

it is sufficient to prove that

ni(Int nc,nd) = 0
for arbitrarily large values of c¢. As in §16 the space Int a® contains
a smooth manifold Int ﬂc(to,t1 yeee ,tk) as deformation retract. The space

od

of minimal geodesics is contained in this smooth manifold.

The energy function E: @ —+ R, when restricted to
Int Qc(to,tv...,tk), almost satisfies the hypothesis of 22.5. The only
difficulty is that E(eo) ranges over the interval d < E < ¢, instead of

the required interval [0,«). To correct this, let

F: [d,c) = [o0,w)
be any diffeomorphism.
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Then
F e B: Int 0%ty,t,,...,t) —R
satisfies the hypothesis of 22.5. Hence
%y (Int 0%(tg,...,t0,0% = x, (Int a%,0%

is zero for i < A This completes the proof.
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§23. The Bott Periodicity Theorem for the Unitary Group.

First a review of well known facts concerning the unitary group.
Let €% be the space of n-tuples of complex numbers, with the usual Her-
mitian inner product. The unitary group U(n) is defined to be the group
" of all linear transformations S: C® —C% which preserve this inner
product. Equivalently, using the matrix representation, U(n) is the
group of all n x n complex matrices S such that S ¥ - I; where S*
denotes the conjugate transpose of S.

For any n x n complex matrix A the exponential of A 1s defined

by the convergent power series expansion
exp A = I+A+§‘TA2+—3‘TA3+ ..

The following properties are easily verified:
(1) exp (A") = (exp A% exp (TAT™Y) - T(exp A)T'.
(2) If A and B commute then
exp (A + B) = (exp A)(exp B). In particular:
(3) (exp A)(exp -A) =1
(4) The function exp maps a neighborhood of 0 in the space of
n x n matrices diffeomorphically onto a neighborhood of TI.

If A is skew-Hermitian (that is if A + A* = 0), then it fol-
lows from (1) and (3) that exp A is unitary. Conversely if exp A 1is
unitary, and A belongs to a sufficiently small neighborhood of 0, then
it follows from (1), (3), and (4) that A «+ A - 0. From these facts one
eagsily proves that:

(5) U(n) is a smooth submanifold of the space of n x n matrices;

(6) the tangent space 'I'U(n)I can be identified with the space of

n x n skew-Hermitian matrices.

Therefore the Lie algebra g of U(n) can also be identified with
the space of skew-Hermitian matrices. For any tangent vector at I extends
uniquely to a left invariant vector fleld on U(n). Computation shows that
the bracket product of left invariant vector fields corresponds to the
product [A,B] = AB - BA of matrices.
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Since U(n) 1s compact, it possesses a left and right invariant
Riemannian metric. Note that the function

exp: TU(n)I - U(n)
defined by exponentiation of matrices coincides with the function exp de-

fined (as in §10) by following geodesics on the resulting Riemannian mani-

fold. 1In fact for each skew-Hermitian matrix A the correspondence
t — exp(t A)

defines a 1-parameter subgroup of U(n) (by Assertion (2) above); and
hence defines a geodesic.

A gpecific Riemannian metric on U(n) can be defined as follows.
Given matrices A,B e g 1let <A,B> denote the real part of the complex

number

trace (AB*) = zAiJBij
i,

Clearly this inner product is positive definite on ¢

This inner product on ¢ determines a unique left invariant
Riemannian metric on U(n). To verify that the resulting metric is also
right invariant, we must check that it is invariant under the adjoint
action of U(n) on g.

DEFINITION of the adjoint action. Each S € U(n) determines an
inner automorphism

X »85x8" - (LRg X

of the group U(n). The induced linear mapping

-1 . "

(LSRS )*. TU\n)I - TU(n)I

is called Ad(S). Thus Ad(S) is an automorphism of the Lie algebra of
U(n). Using Assertion (1) above we obtain the explicit formula

aa(s)a = sas™' o,
for Ae€g, Se€Un).

The inner product <A,B> 1is invariant under each such automorphism

Ad(S). In fact if A, = Ad(S)A, B, = Ad(S)B then the identity

1
AB,* - sasT'(sBs™")" - saB*s™
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implies that
trace (AlBl*) = trace (SAB*S"‘) - trace (AB%) ;

and hence that

<A;,B;> = <AB>
It follows that the corresponding left invariant metric on U(n) is also
right invariant.
Given A € ¢ we know by ordinary matrix theory that there exists
T € U(n) so that TAT™' 4is in diagonal form

TAT =

where the a,'s are real. Also, given any S € U(n), there is a T € U(n)

such that

where again the ai's are real. Thus we see directly that exp: ¢ —U(n)
is onto.

One may treat the special unitary group SU(n) in the same way.
SU(n) is defined as the subgroup of U(n) consisting of matrices of de-
terminant 1. If exp is regarded as the ordinary exponential map of
matrices, 1t is easy to show, using the diagonal form, that

det (exp A) = etr'ace A

Using this equation, one may show that g' , the ILie algebra of SU(n) is
the set of all matrices A such that A + A - 0 and trace A = 0.

In order to apply Morse theory to the topology of U(n) and SU(n),
we begin by considering the set of all geodesics in U(n) from I to -I.
In other words, we look for all A € TU(n); = g such that exp A = -T.
Suppose A 1is such a matrix; if it is not already in dlagonal form, let

T € U(n) be such that TAT™' is in diagonal form. Then

exp TAT™! = T(exp A)T™' - T(-D)T"' - -I
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so that we may as well assume that A 1is already in diagonal form

ia1
A= ‘
1a.n
In this case,
ia
e 1
exp A =
. lap
e

s0 that exp A = -T 1if and only if A has the form

lﬁli”
for some odd integers k,,... ) g
Since the length of the geodesic t—+exp tA from t =0 to t =1
is |A| = Vtr AA*, the length of the geodesic determined by A is
x kf teoot kfl Thus A determines a minimal geodesic if and only if each
ki equals + and in that case, the length is = vn. Now, regarding

such an A as a linear map of c® to C€P observe that A is completely

1,
determined by specifying Eigen(ir), the vector space consisting of all

v € C® such that Av = inv; and Eigen(-ix), the space of all v € ct
such that Av = -inv. Since C® splits as the orthogonal sum Eigen(ir) @
Eigen(-ix), the matrix A is then completely determined by Eigen(inr),
which is an arbitrary subspace of C™. Thus the space of all minimal geo-
desics in U(n) from I to -I may be identified with the space of all
sub- vector -spaces of ct.

Unfortunately, this space is rather inconvenient to use aince it
has components of varying dimensions. This difficulty may be removed by
replacing U(n) by SU(n) and setting n = 2m. 1In this case, all the
above considerations remain valid. But the additional condition that

a, +...+ & = 0 with a; =+« restricts Eigen(in) to being an arbi-

1 2m
trary m dimensional sub-vector-space of cm, This proves the following:
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ILEMMA 23.1. The space of minimal geodesics fram I to -I
in the special unitary group SU(2m) is homeomorphic to the
camplex Grassmann manifold Gm(Cem) , consisting of all m
dimensional vector subspaces of com,

We will prove the following result at the end of this section.

IEMMA 23.2. Every non-minimal geodesic from I to -I
in SU(2m) has index > am+2.

Combining these two lemmas with §22 we obtain:

THEOREM 23.3 (Bott). The inclusion map G, (€™ —
Q(SU(2m); I,-I) induces isomorphisms of homotopy groups
in dimensions < 2m. Hence

g G (€T = 7y , SU(2m)

for 1 < am.

On the other hand using standard methods of homotopy theory one

obtains somewhat different isomorphisms.

LEMMA 23.4. The group niGm(Cem) is isomorphic to
n;_4 U(m) for 1 < 2m. Furthermore,

LI U(m) = LI Ulm+1) = LT U(m+2) = ...

for 1 < 2m; and
- n, U(m) = x, SU(m)
J J
for j # 1.

PROOF. First note that for each m there exists a fibration
U(m) = U(me1) — 821

From the homotopy exact sequence

cee T omy g - mg_q U(m) = ny Ulms1) - LI gl oL,
of this fibration we see that
LI U(m) = %5 U(m+1) for i< 2m.

(Compare Steenrod, "The Topology of Fibre Bundles," Princeton, 1951, p. 35
and p. 90.) It follows that the inclusion homomorphisms

ni_1U(m) - gy U(m+1) = 44 U(m+2) - ...

are all isomorphisms for 1 < 2m. These mutually isomorphic groups are
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called the (i-1)-st stable homotopy group of the unitary group. They will

be denoted briefly by =;_, U.

The same exact sequence shows that, for i = 2m+1, the homomorphism
Tom U(m) — T om U(m+1) = n, U 1s onto.

The complex Stiefel manifold is defined to be the coset space
U(2m) /U(m). From the exact sequence of the fibration

U(m) =U(am) - U(2m)/ U(m)
we see that ni(U(zm)/ U(m)) = o for 1< 2m.
The complex Grassmenn manifold Gm(Cem) can be identified with

the coset space U(2m)/ U(m) x U(m). (Compare Steenrod §7.) From the exact

sequence of the fibration
Um) —U(em)/ U(m) = G, (€™
we see now that
niGm(Clem) _ LT U(m)
for 1 < om.
Finally, fram the exact sequence of the fibration
SU(m) = U(m) - s' we see that anU(m) o g U(m) for J # 1. This

completes the proof of Lemma 23.L4.
Combining Lemma 23.4 with Theorem 23.3 we see that

fgy Usmg U = G €™ =, SUCD) = U

for 1 <1< 2m. Thus we obtain:
PERIODICITY THEOREM. Ty U =~ LI U for 1> 1.

To evaluate these groups it is now sufficient to observe that U(1)
is a circle; so that
U = 7, U(1) = o0
n U = = u(1) Z (infinite cyclic).

R

As a check, since SU(2) is a 3-sphere, we have:
1\:2U = 7, SU(2) = o
ﬂ3U = n3SU(2) ~ Z .
Thus we have proved the following result.
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THEOREM 23.5 (Bott). The stable homotopy groups
of the unitary groups are periodic with period 2.

fact the groups
tyUn,U=mxU
are zero, and the groups

n1Ugn3U 7

14

5 U

are infinite cyclic.

The rest of §23 will be concerned with the proof of Lemma 23.2.
must compute the index of any non-minimal geodesic from I to

SU(n), where n 1is even. Recall that the Lie algebra

o

14

g' = T(SUM))[

consgists of all n x n skew-Hermitian matrices with trace zero.

matrix A € g' corresponds to a geodesic fram I to -I if and only if

We

A given

the eigenvalues of A have the form ink,,...,1ink, where k. ,.. . k, are

odd integers with sum zero.

We must find the conjugate points to I along the geodesic

t — exp(tA)

According to Theorem 20.5 these will be determined by the positive eigen-

values of the linear transformation

where
KA(W) = R(A,W)A =

(Compare §21.7.)

We may assume that A 1is the diagonal matrix

1
L Ua,wl,a] .

i:tk1
° inkn
with k, > k, > ... > kye If W o= (“j!Z) then a short computation shows
that
(A,W] = (1"“‘3 - k,)wjﬂ) ,
hence

(4, [4,W]]

(—nQ(kj - k)2 wjﬂ) ,
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and
2
7 2
Ky(W) = (T(kj - k) "’32)
Now we find a basis for g¢' consisting of eigenvectors of KA, as follows:
1) For each j < £ the matrix Ejl with +1 1in the (j¢)-th
place, -1 in the (£j)-th place and zeros elsewhere, is in g¢'
and is an eigenvector corresponding to the eigenvalue
2
Ty - k)®
2) Similarly for each j < { the matrix E;l with +1 4n the
(j2)-th place and +i in the (£j)-th place is an eigenvector,
2
also with eigenvalue EE(kj - k) ?
3) Each diagonal matrix in g¢' is an eigenvector with eigenvalue 0.
2
Thus the non-zero eigenvalues of KA are the numbers %r(kj - k£)2
with kj > kﬁ. Each such eigenvalue is to be counted twice.
Now consider the geodesic y(t) = exp tA. Each eigenvalue
2
e = -’,i—(kj - k2)2 > 0 gives rise to a series of conjugate points along vy

corresponding to the values
t = =Ne, 2xNe, 3xNe,
(See §20.5.) Substituting in the formula for e, this gives

v - 2 b 6
kj-kl,kj-kl’kj_ki’

The number of such values of t in the open interval (0,1) 1is evidently

k. -
equal to i 1.

2
Now let us apply the Index Theorem. For each j,f with kj > kﬁ

2
we obtain two copies of the eigenvalue %r(kj - kl)z, and hence a contri-

bution of
k; - k
0
o( L2 - 1)
to the index. Adding over all Jj,{ this gives the formula
r = 25 (kj - k) - 2)
kj > ky

for the index of the geodesic y.
As an example, if y is a minimal geodesic, then all of the kj
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are equal to + 1. Hence X =0, as was to be expected.

Now consider a non-minimal geodesic. Let n = 2m.

CASE 1. At least m+1 of the ki's are (say) negative. In this

case at least one of the positive ki must be > 3, and we have

m+1
M2 ) (3= (-1 - 2) = 2(m)
1

CASE 2. m of the ki are positive and m are negative but not
all are + 1. Then one is > 3 and one is < -3 so that

m=1 m-1
A2 ) B (D -2 ) (1-(-3) -2 + (3 (-3) - 2)
1 1
= lkm > 2(m+1)

Thus in either case we have ) > 2m+2., This proves Lemma 23.2,

and therefore completes the proof of the Theorem 23.3.
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§24. The Periodicity Theorem for the Orthogonal Group.

This section will carry out an analogous study of the iterated loop
space of the orthogonal group. However the treatment is rather sketchy, and
many details are left out. The point of view in this section was suggested

by the paper Clifford modules by M. Atiyah, R. Bott, and A. Shapiro,

which relates the periodicity theorem with the structure of certain Clifford

algebras. (See Topology, Vol. 3, Supplement 1 (196L4), pp. 3-38.)

Consider the vector space R® with the usual inner product. The

orthogonal group O(n) consists of all linear maps

T : Rn —']{n

which preserve this inner product. Alternatively O(n) consists of all
real n x n matrices T such that T TF - I. This group O(n) can be
considered as a smooth subgroup of the unitary group U(n); and therefore
inherits a right and left invariant Riemannian metric.

Now suppose that n 1is even.

DEFINITION. A complex structure J on R" is a linear transfor-

mation J : Rn—»l{n, belonging to the orthogonal group, which satisfies
the identity J2 = -I. The space consisting of all such complex structures

on R® will be denoted by 9.1(n) .

We will see presently (Lemma 2L4.4) that 01(n) is a smooth sub-
manifold of the orthogonal group O(n).

REMARK. Given some fixed J1 € Q,l(n) let U(n/2) be the subgroup
of O(n) consisting of all orthogonal transformations which commute with

J Then 01(n) can be identified with the quotient space O(n)/U(n/2).

1"

IEMMA 24.1. The space of minimal geodesics from I to -I
on O(n) is homeomorphic to the space 9.1(n) of complex
structures on Rn.

PROOF: The space O(n) can be identified with the group of n x n
orthogonal matrices. Its tangent space ¢ = TO(n)I can be identified with

the space of n x n skew-symmetric matrices. Any geodesic y with
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y(0) = I can be written uniquely as
y(t) = exp (=t A)

for some A € g.
Ilet n = 2m. Since A 1is skew-symmetric, there exists an element

T € O(n) so that

TaT™' - .

with a,,a,,...,a; > 0. A short computation shows that T(exp = AT s

equal to
cos wa, sin na, o] o] e
-sin na, cos wa, 0 o] ves
0 0 cos ma, sin na, ..
0 0 -sin na, cos ma, -

Thus exp(wA) 1is equal to -I 1if and only if a,,8,5,...,8, are odd integers.
The inner product < A,A> 1is easily seen to be 2(&? + ag +...+a§l) .

Therefore the geodesic  y(t) = exp(xt A) fram I to -I is minimal if

and only if a, =8, = ... =a, =1.

If y is minimal then

hence A 1is a complex structure.

Conversely, let J be any complex structure. Since J 1is orthogo-
nal we have
JJ* = I
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where J* denotes the transpose of J. Together with the identity
JJ - -I this implies that J = -J. Thus J is skew-symmetric. Hence

0 8.1
-a.0
i L
for some a,,a8,,...,8, > 0 and some T. Now the identity J% - 1 implies
that 8 = ... =8, = 1; and hence that exp nJ = -I. This completes the

proof.

IEMMA 2k.2. Any non-minimal geodesic from I to -I
in O(2m) has index > om-2.

The proof is similar to that of 23.2. Suppose that the geodesic has
the form t — exp(=xt A) with

where a, > a,> ... > a, > 0 are odd integers. Computation shows that the
non-zero eigenvalues of the linear transformation K, = - ,} (A4 A)2 are
1) for each i < j the number (.ta,:.L + aj)g/ 4L, and

2) for each i < j with ay # 8y the number (a; - aj)e/ L,

Each of these eigenvalues is to be counted twice. This leads to the formula

o= Z (ai+aj-2)+ z (ai-aj-z)
i< ai>aj

For a minimal geodesic we have a8, =8, = ... =8, =1 80 that

» = 0, as expected. For a non-minimal geodesic we have a, > 3; 8o that

2
m

> z (3+1-2) + 0 = 2m - 2.
2

This completes the proof.

Now let us apply Theorem 22.1. The two lemmas above, together with
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the statement that 01 (n) is a manifold imply the following.

THEOREM 24.3 (Bott). The inclusion map Ql(n) — 0 O(n)
induces isomorphisms of homotopy groups in dimensions
< n-k. Hence

ni.{)](n) =y O(n)
for 1 < n-k.

Now we will iterate this procedure, studying the space of geodesics

from J to -J in .Q,,(n); and so on. Assume that n 1is divisible by a

high power of 2.
Let J,,...,d,_, be fixed complex structures on R" which anti-

commute ¥, in the sense that

Jdg + JJ. = 0O

for r # s. Suppose that there exists at least one other complex structure

J which anti-commutes with J,,...,J, ,.

DEFINITION. Let Qk(n) denote the set of all complex structures J
on R™® which anti-commute with the fixed structures J PRI
Thus we have

Q,(n) CQy ,(n) C ... CQ(n) CO(n)

Clearly each ().k(n) is a compact set. To complete the definition it is
natural to define Qo(n) to be O(n)

LEMMA 24.%. Each Q,(n) 1s a smooth, totally geodesic

submanifold of O(n). The space of minimal geodesics from
Jg to -J, in Qy(n) is homeomorphic to Qy,,(n), for

0< 2 <k

It follows that each component of Qk(n) is a symmetric space.
For the isometric reflection of O(n) in a point of .Q,k(n) will automati-
cally carry .Q,k(n) to itself.

These structures meke R into a module over a suitable Clifford algebra.
However, the Clifford algebras will be suppressed in the following presen-
tation.

** A submanifold of a Riemannian manifold is called totally geodesic if
each geodesic in the submanifold is also a geodesic in larger manifold.




§24. THE ORTHOGONAL GROUP 137

PROOF of 24k.4. Any point in O(n) close to the identity can be

"small," skew-

expressed uniquely in the form exp A, where A 1is a
symmetric matrix. Hence any point in O(n) close to the complex structure

J can be expressed uniquely as J exp &; where again A is small and

skew.
ASSERTION 1. J exp A 1is a complex structure if and only if A
anti-commutes with J.
PROOF: If A anti-commutes with J, then J 'AJ = -A hence
I - exp(37'AJ) expA = J '(exp A)J exp A
Therefore (J exp A)2 = =-I. Conversely if (J exp A)2 = -I then the

above computation shows that
exp(J'1A J) exp A = I
Since A is small, this implies that
J7Ag - -a
so that A anti-commutes with J.

ASSERTION 2. J exp A anti-commutes with the complex structures
Jqsevesdyq Iif and only if A commutes with J,,...,J. ;.

The proof is similar and straightforward.

Note that Assertions 1 and 2 both put linear conditions on A.

Thus a neighborhood of J in Qk(n) consists of all points J exp A where
A ranges over all small matrices in a linear subspace of the Lie algebra g.
This clearly implies that Qk(n) is a totally geodesic submanifold of

O(n).

Now choose a specific point Jk € Q,k(n), and assume that there
exists a complex structure J which anti-commutes with J,,...,J,. Setting
J=J lCL\ we see easily that A 1is also a complex structure which anti-
cammutes with J,. However, A comutes with J,,...,J, ;. Hence the
formula

t = Jy exp(nt A)

defines a geodesic from J, to -J in Qk(n). Since this geodesic is
minimal in O(n), it is certainly minimal in Q,k(n) .
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Conversely, let y be any minimal geodesic from Jk to —Jk in
Qk(n). Setting y(t) = Jk exp(nt A), 1t follows from 2k.1 that A is
a complex structure, and from Assertions 1,2 that A commutes with
Jyseee,Jy_; and anti-commutes with J,. It follows easily that J,A
belongs to Qk+1(n) . This completes the proof of 24.k,

REMARK. The point J,A e (),k“(n) which corresponds to a given
geodesic y has a very simple interpretation: it is the midpoint y(3)
of the geodesic.

In order to pass to a stable situation, note that Q. (n) can be
imbedded in Q,k(mn') as follows. Choose fixed anti-commuting camplex
structures Jy,...,Jp on Rn'. Then each J € (),k(n) determines a complex
structure J @® Jj on R™ @Rn' which antl-commutes with J & 4 for

DEFINITION. Iet Q) denote the direct limit as n-—« of the
spaces Q. (n), with the direct limit topology. (I.e., the fine topology.)
The space O = Q, 1s called the infinite orthogonal group.

It is not difficult to see that the inclusions (),k+1(n) - Q Q,k(n)
give rise, in the limit, to inclusions Q, , - aQ, .

THEOREM 24.5. For each k > 0 this limit map ‘Q'k+1 -
Q ‘Q’k is a homotopy equivalence. Thus we have lsomorphisms

00 = o Q= 71y 0, =002 0,00
The proof will be given presently.

Next we will give individual descriptions of the manifolds Q.k(n)
for k =0,1,2,...,8.
Qy(n) 1is the orthogonal group.
(),1(n) is the set of all complex structures on Rn .

Given a fixed complex structure J , Wwe may think of Rn as belng a vector

space Cn/ 2

over the complex numbers,
Q,(n) can be described as the set of "quaternionic structures" on

the complex vector space Cn/ 2, Given a fixed J o € Qg(n) we may think of
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Cn/ 2 as being a vector space }In/ b over the quaternions H. ILet Sp(n/4)
be the group of isometries of this vector space onto itself. Then Qg(n)
can be identified with the quotient space U(n/2)/ Sp(n/k).

Before going further it will be convenient to set n = 16r.

IEMMA 24.6 - (3). The space (),3(16r) can be identified
with the quaternionic Grassmann manifold consisting of
all quaternionic subspaces of l-[lm.

PROOF: Any complex structure J 3 € (),3(15r) determines a splitting
of Hhr = R1 ér into two mutually orthogonal subspaces V1 and V2 as fol-

lows. Note that J 1J oJ 3 is an orthogonal transformation with square

J1J2J3J1J2J3 equal to + I. Hence the eigenvalues of J,J,J, are + 1.

3
let V, C R'6T be the subspace on which JJ,J; equals + I; and let V,
be the orthogonal subspace on which it equals -I. Then clearly

R'®" - vV, @V, sSince JJ,J, commteswith J, and J, it is clear

that both V1 and V2 are closed under the action of J1 and J2.

Conversely, given the splitting Hhr = V, &V, into mutually
orthogonal quaternionic subspaces, we can define J 3 € 93(16r) by the
identities

J3!V1 = —J1J2|V1
I3 v, = J,9,Iv, .

This proves Lemma 24.6 -(3).

The space 93(16r) is awkward in that it contains components of
varying dimension. It is convenient to restrict attention to the component
of largest dimension: namely the space of 2r-dimensional quaternionic sub-

spaces of Hhr. Henceforth, we will assume that J 3 has been chosen in

this way, so that d:‘LmHV1 = dimHV2 = 2r.

IEMMA 24.6 - (4). The space Qh(161~) can be identified
with the set of all quaternionic isometries from V1 to
V,. Thus Qh(16r) is diffeomorphic to the symplectic
group Sp(er).

PROOF: Given J, € 0)(16r) note that the product J.J, eanti-

3

commutes with J1J2J3 . Hence J3Ju maps V1 to V, (and V, to V1)'
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Since J3Ju commutes with J 1 and J2 we see that

J3J,‘|V1 1V, =V,
is a quaternionic isomorphism. Conversely, given any such isomorphism
T : V1 -V, it is easily seen that J y 1is uniquely determined by the
identities:

Ju|V1

i
o

1
|
=]
L
o

Iy 1V,

This proves 2k.6 - (4).

IEMMA 24.6 - (5). The space 05(16r) can be identified
with the set of all vector spaces W C V1 such that

(1) W is closed under J1 (i.e., W 1is a complex
vector space) and

(2) V1 splits as the orthogonal sum W & J2 W.

PROOF: Given J 5 € (),5(16r) note that the transformation J,J,J 5
commutes with J1J2J3 and has square + I. Thus ..T1..T,+J5 maps V1 into
itself; and determines a splitting of V1 into two mutually orthogonal sub-

spaces. Let W C V1 be the subspace on which J1JhJ coincides with + I.

5
Since J, antl-cammutes with J1JhJ5, it follows that J W C v, 1is
precisely the orthogonal subspace, on which J 1949 5 equals -I. Clearly
JW =W

Conversely, given the subspace W, it is not difficult to show that
J 5 is uniquely determined.

REMARK. If U(2r) C Sp(2r) denotes the group of quaternionic auto-
morphisms of V., keeping W fixed, then the quotient space Sp(ar) / U(2r)
can be identified with 05(16r) .

IEMMA 24.6 - (6). The space (),6(16r) can be identified
with the set of all real subspaces X C W such that W
splits as the orthogonal sum X & J 1X.

PROOF. Given J 6 € (),6(16r) note that the transformation J,J,J 6
commutes both with J1J2J3 and with J1JhJ5. Hence JeJhJG maps W into
itself. Since (JEJHJ6)2 = I, it follows that J.J,J, determines a
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splitting of W into two mutually orthogonal subspaces. Let X C W be the
subspace on which J,J)J 6 equals +I. Then J 1X will be the orthogonal
subspace on which it equals -I.

Conversely, given X C W, it is not hard to see that J, is unique-
ly determined.

REMARK. If O(2r) C U(2r) denotes the group of complex automor-
phisms of W keeping X fixed, then the quotient space U(2r)/ O(2r) can
be identified with 06(16r) .

IEMMA 24.6 - (7). The space 07(16r) can be identified
with the real Grassmann manifold consisting of all real
subspaces of X =R

PROOF: Given J 79 anti-commuting with J,,...,Jg note that

J1J6J7 commutes with J1J2J3, with J1JhJ5, and with J,J,J.; and has

square +I. Thus J 1J 6J 7 determines a gplitting of X 1into two mutually
orthogonal subspaces: X (where J 1J 6J 7 equals +I) and X, (where

1
J1‘T6J7 equals -I). Conversely, given X, C X it can be shown that J7

is uniquely determined.
This space 07(16r), like (),3(16r), has camponents of varying dimen-
sion. Again we will restrict attention to the camponent of largest dimen-

sion, by assuming that
dimX1 = dimX2 = I.

Thus we obtain:

ASSERTION. The largest component of (),7(16r) is diffeaomorphic to

the Grassmann manifold consisting of r-dimensional subspaces of Rer .

LEMMA 24.6 - (8). The space 08(16r) can be identified
with the set of all real isometries from X, to X2.

PROOF. If J g € (),8(16r) then the orthogonal transformation J 7J 8

commutes with J1J2J3, J1JhJ5, and J,J)Jg; but anti-commutes with J1J6J7.
Hence J7J8 maps X1 isomorphically onto X, Clearly this isomorphism

determines J 8 uniquely.
Thus we see that Qg(16r) is diffeomorphic to the orthogonal
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w* o(r).

Iet us consider this diffeomorphism .(),8(16r) —-0(r), and pass to
the limit as r — «». It follows that 9’8 is homeomorphic to the infinite
orthogonal group O. Combining this fact with Theorem 24.5, we obtain the
following.

THEOREM 2k.7 (Bott). The infinite orthogonal group O has
the same homotopy type as its own 8-th loop space. Hence
the homotopy group O is isomorphic to .8 O for i) o.

If Sp =‘(),,+ denotes the infinite symplectic group, then the above

argument also shows that O has the homotopy type of the 4-fold loop space
2000 Sp, and that Sp has the homotopy type of the 4-fold loop space
2002 0. The actual homotopy groups can be tabulated as follows.

i modulo 8| g o | Ty Sp
0 Z2 0
1 Z, o}
2 0 0
3 Z Z
L o} z,
5 o} z,
6 o} 0
7 Z Z

The verification that these groupsare correct will be left to the reader.
(Note that Sp(1) is a 3-sphere, and that S0(3) is a projective 3-space.)
The remainder of this section will be concerned with the proof of
Theorem 24.5. It is first necessary to prove an algebraic lemma.
Consider a Buclidean vector space V with anti-commuting complex

structures J,,...,J).

For k> 8 it can be shown that .().k(16r) is diffeomorphic to Q.k_s(r).

In fact any additional complex structures J,,J J x on R1 ér give

9291070 %s
rise to anti-commuting complex structures J8J9, JgJ10s IgT11s--50gdy on
X

will be sufficient to stop with k = 8.

13 and hence to an element of nk_s(r) . However, for our purposes it
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DEFINITION. V is a minimal (J . .,Jk) -space if no proper, non-

12°
trivial subspace is closed under the action of J,,..., and Jy- Two such
minimal vector spaces are isomorphic if there is an isometry between them

which commutes with the action of J,,.. .,Jk.

IEMMA 2k.8 (Bott and Shapiro). For k # 3 (mod 4), any

two minimal (J,,.. .,Jk) vector spaces are isomorphic.

The proof of 24.8 follows that of 24.6. For k = 0,1, or 2 a
minimal space is Just a 1-dimensional vector space over the reals, the
camplex numbers or the quaternions. Clearly any two such are isamorphic.

For k =3 a minimal space is still a 1-dimensional vector space
over the quaternions. However, there are two possibilities, according as
..T3 is equal to +J,J, or -J,J,. Thisgives two non-isomorphic minimal
spaces, both with dimension equal to 4. Call these H and H'.

For k = 4 a minimal space must be isomorphic to H @ H', with
J3Jh mapping H to H'. The dimension is equal to 8.

For k = 5,6 we obtain the same minimal vector space H ® H'. The
complex structures J 5,J 6 merely determine preferred complex or real sub-
spaces. For k = 7 we again obtain the same space, but there are two
possibilities, according as J7 is equal to +J1J2J3JhJ5J6 or to
-J 1J oJ 3J yJ 5J 6 Thus in this case there are two non-iscmorphic minimal
vector spaces; call these L and L'.

For k = 8 a minimal vector space must be isomorphic to L & L',
with J 7J 8 mapping L onto L'. The dimension is equal to 16.

For k> 8 it can be shown that the situation repeats more or less
periodically. However, the cases k < 8 will suffice for our purposes.

Let m, denote the dimension of a minimal (J1,.. "Jk) -vector space.

From the above discussion we see that:

m0=1
m, =My =mg =m, =8, my = 16.

For k> 8 1t can be shown that my, = 16my_g.
REMARK. These numbers m_ are closely connected with the problem

of constructing linearly independent vector fields on spheres. Suppose for

example that J 1s+++sJ) are anti-commuting complex structures on a vector
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space V of dimension Ty, . Here r can be any positive integer. Then
for each unit vector u € V the k vectors J,u, J,u,..., Jpu are perpen-
dicular to each other and to u. Thus we obtain k 1linearly independent
vector fields on an (rmk—1)—sphere. For example we obtain 3 vector
fields on a (4r-1)-sphere; T vector fields on an (8r-1)-sphere; 8 vector
fields on a (16r-1)-sphere; and so on. These results are due to Hurwitz

and Radon. (Compare B. Eckmann, Gruppentheoretischer Bewels des Satzes von

Hurwitz-Radon..., Commentarii Math. Helv. Vol. 15 (1943), pp. 358-366.) J.

F. Adams has recently proved that these estimates are best possible.

PROOF of Theorem 24.5 for k # 2 (mod 4). We must study non-
minimal geodesics from J to -J in Qk(n) . Recall that the tangent space
of Qk(n) at J consists of all matrices J A where

1) A 1is skew

2) A anti-commutes with J

3) A commutes with J,,...,Jp 4.

Iet T denote the vector space of all such matrices A. A given A € T
corresponds to a geodesic t—+J exp (wxtA) from J to -J 1if and only if
its eigenvalues are all odd multiples of 1i.

Each such A € T determines a self-adjoint transformation
K,: T—T. Since Q,k(n) is a totally geodesic submanifold of O(n), we

can compute KA by the formula
KB - -7 [A,[4,B]] = (-A%B + 2aBA - BA®) /4
Jjust as before. We must construct some non-zero eigenvalues of KA 80 as

to obtain a lower bound for the index of the corresponding geodesic

t — J exp(nt A)

Split the vector space R® as a direct sum M1 ® M2 ® ... D Ms of
mutually orthogonal subspaces which are closed and minimal under the action
of Ji,e+e,Jp 4> J and A. Then the eigenvalues of A on M, mst be

all equal, except for sign.* For otherwise Mh would split as a sum of

We are dealing with the complex eigenvalues of a real, skew-symmetric
transformation. Hence these eigenvalues are pure imaginary; and occur in
conjugate pairs.
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eigenspaces of A; and hence would not be minimal. Iet + iah be the two

eigenvalues of Ath; where a a_ are odd, positive integers.

150028
Now note that J' = a{l'JAIMh; is a complex structure on M, which

anti-commutes with J,,...,Jy_;, and J. Thus M, is (J1,...,Jk_1 ,J,J1) -

minimal. Hence the dimension of M, is my ,. Since k + 1 # 3 (mod k)

we see that M, ,M,,...,M, are mutually iscmorphic.

s
For each pair h,j with h # j we can construct an eigenvector

B: R —=R® of the linear transformation Ky: T—T as follows. Let
B|M, be zero for (¢ #h,j. Let B|M, be an isometry from M, to MJ
which satisfies the conditions

BJl, = JB for a=1,...,k-1;

BI] = -JB and BJ' = +J'B .
In other words Bth is an isomorphism from Mh to Mj; where the bar in-
dicates that we have changed the sign of J on MJ. Such an isomorphism
exists by 24.8. Finally let BIMj be the negative adjoint of BIMh.

Proof that B Dbelongs to the vector space T. Since

<Bv,w> = Lv,-Bw> for velM, ve My

it is clear that B 1is skew-symmetric. It is also clear that BIMh com-
mutes with J,,...,J,_, and anti-commutes with J. It follows easily that
the negative adjoint BIMJ also commutes with J1,.. "Jk-I and anti-
commutes with J. Thus B e T.
We claim that B is an eigenvector of KA corresponding to the

eigenvalue (ah + aj)2/h. For example if v € Mh then

(KgB)v = 1 (-A®B + 2ABA - BA®)v
11: (a?Bv + eajBahv + Baflv)
= '111'('9‘3' + ah)2 Bv ;

and a similar computation applies for v € Mj.

Now let us count. The number of minimal spaces My CRY is given
by s = n/mk+1 . For at least one of these the integer ap must be > 3.
For otherwise we would have a minimal geodesic. This proves the following
(always for k £ 2 (mod 4)):

ASSERTION. KA has at least s-1 eigenvalues which are
> (3+1)2/h = k4, The integer s =n/mk+1 tends to infinity with n.
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Now consider the geodesic t — J exp(nt A). Each eigenvalue e
of KA gives rise to conjugate points along this geodesic for
t = e"', 2e'1, 3¢™',... by 20.5. Thus if e? > 4 then one obtains at

least one interior conjugate point. Applying the index theorem, this proves
the following.

ASSERTION. The index of a non-minimal geodesic from J to -J in

Q. (n) is > n/mg - 1.

It follows that the inclusion map

0k+1(n) Il ‘Q'k(n)

induces isomorphisms of homotopy groups in dimensions < n/kar1 - 3. This
number tends to infinity with n. Therefore, passing ‘to the direct limit
as n— «, it follows that the inclusion map 1 : QKH - Q Q'k induces
isomorphisms of homotopy groups in all dimensions. But it can be shown
that both ‘Qk+1 and @ @, have the homotopy type of a CW-complex. There-
fore, by Whitehead's theorem, it follows that i 1is a homotopy equivalence.
This completes the proof of 24.5 providing that k # 2 (mod 4).

PROOF of 24,5 for k = 2 (mod 4). The difficulty in this case may
be ascribed to the fact that O.k(n) has an infinite cyclic fundamental
group. Thus @ .Q,k(n) has infinitely many components, while the approximat-
ing subspace Qk+1(n) has only finitely many.

To describe the fundamental group n1ﬂk(n) we construct a map

£ oQn) - s'ce

ag follows. ILet J,,.. -»Jy_, be the fixed anti-commuting complex struc-
ture on R®. Make Rn into an (n/2)-dimensional complex vector space by
defining
iv=JJ, ... Iy v

for v € R®; where i =+-1 € C. The condition k = 2 (mod 4) guarantees
that 1% - -1, and that J,,J,,...,J) , commute with 1.

Choose a base point J € Qk(n) . For any J'e O.K(n) note that the
composition J™'J' commutes with i. Thus J~'J' 1is a unitary complex
linear transformation, and has a well defined complex determinant which will

be denoted by f(J').
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Now consider a geodesic
t = J exp(ntA)
from J to -J in @, (n). Since A commtes with 1 = J,J, ... Jp_,
(compare Assertion 2 in the proof of 24/4) we may think of A also as a
complex linear transformation. In fact A 1is skew-Hermitian; hence the
trace of A 1is a pure imaginary number. Now

£(J exp(ntA)) = determinant (exp(=td)) = o™t trace A

Thus f maps the given geodesic into a closed loop on S1 which is com-
pletely determined by the trace of A. It follows that this trace is in-
variant under homotopy of the geodesic within the path space Q(Qk(n) 3J,-J) .

The index M of this geodesic can be estimated as follows. As
before split R™ into an orthogonal sum M1 ® ... Mr where each Mh
is closed under the action of J,,...,J,_,,J, and A; and is minimal.
Thus for each h, the complex linear transformation AIMh can have only
one eigenvalue, say ia,h. For otherwise Mh would split into eigenspaces.
Thus AlMh coincides with a,J,J, ... Jy_, |Mh' Since M, is minimal under
the action of J,,...,Jy_,, and J; its complex dimension is m, /2.
Therefore the trace of A 1is equal to i(a1+...+ar)mk/2.

Now for each h # j an eigenvector B of the linear transforma-
tion

B—KB = (-A°B + 2ABA - BA®) /4

can be constructed much as before. Since M, and M;] are (Jy,...,Jp_1,9)-

minimal it follows from 24.8 that there exists an isometry
BIMh M- MJ
which commutes with J,,...,J, , and anti-commutes with J. Let BIMJ be
the negative adjoint of BIMh; and let B|M, be zero for ¢ # h,j. Then
an easy computation shows that
KB = (ay - ay)%B/4
Thus for each ay > aj we obtain an eigenvalue (ah - aj) 2/h for KA‘

Since each such eigenvalue makes a contribution of (ah - aj) /2 -1

towards the index A, we obtain the inequality

an > 2 (e - a5 - 2)
&n > 8y
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Now let us restrict attention to some fixed component of @ Q.k(n) .
That is let us look only at matrices A such that trace A = iomk/z where
¢ 1is some constant integer.
Thus the integers ay,...8, satisfy
1)

2) a

©
n
[
11
m

o a, =1 (mod 2), (since exp(nd) = -I),

+..0+ 8, = C and

7 r ’
3) M?{X layl > 3 (for a non-minimal geodesic).

Suppose for example that some ay is equal to -3. Iet p be the sum of
the positive ay and -q the sum of the negative ap- Thus

P-a = ¢, Dp+a>r ,

hence 2p > r + c. Now

2> ) (ep-ey-2> ) (ay-(-3) -3 - b,
ay > ay ap > 0
hence 1 > 2p > r + ¢; where r = n/mk tends to infinity with n. It
follows that the component of @ .().k(n) is approximated up to higher and
higher dimensions by the corresponding component of ().k+1(n) , 88 n— o .
Passing to the direct limit, we obtain a homotopy equivalence on each com-

ponent. This completes the proof of 24.5.



149

APPENDIX. THE HOMOTOPY TYPE OF A MONOTONE UNION

The object of this appendix will be to give an alternative version
for the final step in the proof of Theorem 17.3 (the fundamental theorem
of Morse theory). Given the subsets %0 c o™ ca®2c ... of the path
space @ = a(M;p,q), and given the information that each 0®L has the
homotopy type of a certain CW-complex, we wish to prove that the union @
also has the homotopy type of a certain CW-complex.

More generally consider a topological space X and a sequence
X, € X CX,C ... of subspaces. To what extent 1s the homotopy type of
X determined by the homotopy types of the Xi‘l

It is convenient to consider the infinite union

= x[0,1] v Xyx [1,2]) v X, x[2,3] u ..
L =X 1 2 %12,

This is to be topologized as a subset of X x R.

DEFINITION. We will say that X 1is the homotopy direct limit of

the sequence {Xi] if the projection map p : XZ — X, defined by

p(x,T) = x, 1is a homotopy equivalence.

EXAMPLE 1. Suppose that each point of X 1lies in the interior of
some Xi’ and that X 1is paracompact. Then using a partition of unity one
can construct a map

f:X-R
so that f(x) > i+1 for x ¢ X;, eand f(x) > 0 for all x. Now the corres-
pondence x — (x,f(x)) maps X homeomorphically onto a subset of X, which
is clearly a deformation retract. Therefore p 1s a homotopy equivalence;

and X 1is a homotopy direct limit.

EXAMPIE 2. Let X be a CW-complex, and let the Xi be subcomplexes
with union X. Since p : X, =X induces isomorphisms of homotopy groups
in all dimensions, it follows from Whitehead's theorem that X 1is a homotopy

direct limit.
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EXAMPLE 3. The unit interval [0,1] is not the homotopy direct
limit of the sequence of closed subsets [o] o [1/i,1].

The main result of this appendix is the following.

THEOREM A. Suppose that X 1s the homotopy direct
limit of (X;} and Y 1is the homotopy direct limit
of {Yi] . let f: X— Y be a map which carries each
Xi into Yi by a homotopy equivalence. Then £
itself 1s a homotopy equivalence.

Assuming Theorem A, the alternative proof of Theorem 17.3 can be

given as follows. Recall that we had constructed a commutative diagram
a0
Q

K

a
of homotopy equivalences. Since 0 = U @ 1

and K = U Ki are homotopy
direct limits (compare Examples 1 and 2 above), it follows that the limit

mapping @ — K is also a homotopy equivalence.

PROOF of Theorem A. Define fy : X, =Y, by fz(x,t) = (f(x),t).
It is clearly sufficient to prove that f2 is a homotopy equivalence.

CASE 1. Suppose that X; =Y; and that eachmap f; : X; — Y5
(obtained by restricting f) is homotopic to the identity. We must prove
that fz is a homotopy equivalence.

REMARK. Under these conditions it would be natural to conjecture
that f2 must actually be homotopic to the identity. However counter-
examples can be given.

For each n let

By X=Xy
be a one-parameter family of mappings, with hg = £, hy - identity.
Define the homotopy

by 1 X=X
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as follows (where it is always to be understood that 0 < t <1, and

n=0,1,2,...).

(@(x),nmt) for 0 <t< %

Ry(x,mt) = 4 (BF5 gy, (X),ne1) for 3<t<
3

EOAMWERII S EEE

Taking u = 0 this defines a map hO s X2 = X5 which is clearly homotopic
to fz‘ The mapping h1 : XZ - XZ on the other hand has the following

properties:

h1(x,n+t) = (x,n+2t) for o0

IN
ct

In
=

j=

IN
ct

In

h, (x,n+t) € KXoy X [n+1] for

We will show that any such map h1 is a homotopy equivalence. In fact a
homotopy inverse g : X2 - X2 can be defined by the formula

(x,n+2t) 0<t< 3
g(x,n+t) =
’ {h,(x,m%-t) fct<n

This is well defined since

hy(x,n+%) = hy(x,n+1) = (x,041) .

Proof that the composition h1g is homotopic to the identity map
of X5 . Note that

(X,n+bt) 0<t< %
h,g(x,n+t) = 4 h,(x,n+2t) T<t<3
h1(x,n+%-t) <t .

Define a homotopy H, : X, — X, as follows. For 0<u< 3 let

h, g(x,n+t) for 0<t< (1-u)/2

N

H, (x,n+t) = and for H+u<t <1

h, (x,n+1-u) for (1-u)/2 < t< %+ u.



152 APPENDIX
This is well defined since
h g(x,n+(1-u) /2) = h1g(x,n+%+u) = hy(x,n+1-u).

Now Hy is equal to h1g and H% is given by

(x,n+bt) 0<t<E
H;é(x,n+t) = {
(x,n+1) Tt

Clearly this is homotopic to the identity.
Thus h1g is homotopic to the identity; and a completely analogous
argument shows that gh, 1is homotopic to the identity. This completes the

proof in Case 1.

CASE 2. Now let X and Y be arbitrary. For each n 1let
g, : ¥, ~ X, be a homotopy inverse to fn' Note that the diagram

Y

n n
ey, I
Y Xn+1

(where in and jn denote inclusion maps) 1s homotopy commutative. In

fact
1n8n ~ Bniifnaiingn = 8ny1Infnn ~ 8nyidn
n - n n _ .
Choose a specific homotopy hu : Yn Xn+1 with ho = ingn, h1 = gn+1jn’
and define G : Yz - X2 by the formula

(8,(¥) ,n+2t) 0<t<3
G(y,n+t) = {

(hgy 4 (y),ne1) 2ct<

We will show that the composition sz H Xz - X2 is a homotopy equivalence.
Let XIZ1 denote the subset of Xz consisting of all pairs (x,Tt) with

t < n. (Thus Xg = Xy xlo,1) v ... v X, yx[n-1,n] v X, x[nl.) The compo-
sition sz carries Xlg into itself by a mapping which is homotopic to the
identity. In fact )é‘ contains an [n] as deformation retract; and the
mapping sz restricted to an [n] can be identified with gnfn, and
hence is homotopic to the identity. Thus we can apply Case 1 to the sequence
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{X;‘] , and conclude that Gf‘2 is a homotopy equivalence.

This proves that fz has a left homotopy inverse. A similar
argument shows that sz : Yz g Yz is a homotopy equivalence, so that
f}: has a right homotopy inverse. This proves that f2 is a homotopy
equivalence (compare page 22) and completes the proof of Theorem A.

COROLLARY. Suppose that X 1is the homotopy direct
limit of (Xy}. If each X; has the homotopy type
of a CW-complex, then X itself has the homotopy
type of a CW-complex.

The proof is not difficult.
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