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Abstract

The scientific problems that Big Data faces may be network scientific problems. Network an-
alytics contributes a great deal to networked Big Data processing. Many network issues can
be modeled as nonconvex optimization problems and consequently they can be addressed by
optimization techniques. In the pipeline of nonconvex optimization techniques, evolutionary
computation gives an outlet to handle these problems efficiently. Because, network commu-
nity discovery is a critical research agenda of network analytics, in this chapter we focus
on the evolutionary computation based nonconvex optimization for network community dis-
covery. The single and multiple objective optimization models for the community discovery
problem are thoroughly investigated. Several experimental studies are shown to demonstrate
the effectiveness of optimization based approach for big network community analytics.

Keywords: Big data, complex networks, nonconvex optimization, evolutionary
computation, multiobjective optimization

1. Introduction

Recent years have witnessed the growing enthusiasm for the concept of “Big Data” [86].
Big Data has been an active topic and has attracted great attention from every walk of life
[18, 64, 89]. It should be noted that the scientific problems that Big Data faces may be
that of network scientific problems, and complex network analytics should be an important
cornerstone of data science [125, 71, 1, 114]. Network analytics undoubtedly can contribute
a great deal to networked Big Data processing.

Network analytics contains many issues, to name a few, community structure discovery,
network structural balance, network robustness, link prediction, network resource allocation,
anomaly detection, network security, network recommendation, network propagation, and
network ranking, etc. Most if not all of these issues can be modeled as nonconvex opti-
mization problems and consequently they can be computed by optimization techniques. Be-
cause, those optimization models for network issues are nonconvex from mathematical view,
thus, canonical mathematical optimization methods can hardly solve these problems. In the
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pipeline of optimization techniques, evolutionary computation gives an outlet to handle these
nonconvex optimization problems efficiently.

Because network community discovery may be the cornerstone to the analytics of many
other network issues, consequently this chapter focuses on the optimization based community
structure discovery from networks. The rest of this chapter is organized as follows. Section
2 briefly talks about the issues that network analytics concerns and several eminent proper-
ties of networks. Section 3 discusses the basic definitions of optimization and evolutionary
computation. Section 4 presents the related work of network community structure analytics,
including the definition of a network community and the research progress of community
discovery. Section 5 surveys the optimization models for network community discovery.
The network data sets commonly used for community discovery benchmarking are listed in
Section 6. Section 7 exhibits some experiments on network community discovery, and the
conclusions are finally drawn in Section 8.

2. Network issues, properties and notations

2.1. Issues concerning network analytics

Network analytics is an essential research agenda of network and networked big data
mining. Fig. 1 shows the importance of network analytics to network and networked data
mining. Network analysis not only may very likely result in the discovery of important pat-
terns hidden beneath the networks, but also can potentially shed light on important properties
that may control the growth of the networks. Network analytics involves many issues. To
move forward, we show 12 critical issues that concern network analytics in Fig. 2.
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Figure 1: Network analytics plays an important role in network and networked data mining.
Reprinted figure with permission from Ref. [74].
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Figure 2: Twelve critical issues that concern network analytics.

Very often, to analyze a network issue one should consider the properties of the corre-
sponding network. In the following, we are going to discuss several eminent properties of
networks.

2.2. Eminent properties of network
Because structure always affects function, consequently, a substantial volume of work

has been done to analyze the structural properties of complex networks [94, 16, 41, 96, 97].
Networks have many notable properties, such as the small-world property [126], the scale-
free property [14], the community structure property [45], etc.

The analysis of network properties is dispensable to network analytics. It is an essential
part of network science. Fig. 3 shows some representative properties of networks in the
language of graph.

A scale-free network is a network whose degree distribution follows a power law, at least
asymptotically. That is, the fraction P(k) of nodes in the network having k connections to
other nodes goes for large values of k as

P(k) ∼ k−γ (1)

where γ is a parameter whose value is typically in the range 2 < γ < 3, although occasionally
it may lie outside these bounds.

A small-world network is a type of mathematical graph in which most nodes are not
neighbors of one another, but most nodes can be reached from every other by a small number
of hops or steps.

A network with community structure means that the network can be separated into clus-
ters with different sizes, and the similarities between nodes coming from the same cluster are
large while from different clusters they are small.

2.3. Graph based network notation
Data sets collected from many different realms can be represented in the form of interac-

tion big networks in a very natural, concise and meaningful fashion. In order to better analyze
a big network, one direct way is to represent a network with a graph denoted as G = {V,E},
where V representing the network objects is the aggregation of vertices, and E representing

3
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Figure 3: (a) An example of a scale-free network. (b) An example of a small-world network.
(c) An example of a network with two communities. Reprinted figure with permission from
Ref. [74].

the relations between the objects is the aggregation of edges. Graph G can be denoted by an
adjacency matrix An×n whose element ai j is defined as:

{
ai j = ωi j i f ∃L < i, j >
ai j = 0 i f @L < i, j > (2)

where L < i, j > represents the link between nodes i and j and ωi j denotes the weight of
L < i, j >.

In the field of social science, the networks that include both positive and negative edges
are called signed social networks [37] or signed networks for short. In signed networks, the so
called positive links (L+) denote positive relationships such as friendship, common interests,
and negative links (L−) may denote negative relationships such as hostility, different interests,
and so forth. A signed graph is normally denoted as G = {V,PE,NE}, where PE and NE
represent the aggregations of positive and negative edges, respectively, and the element ai j of
the corresponding adjacency matrix An×n is defined as:


ai j = ωi j i f ∃L+ < i, j >
ai j =−ωi j i f ∃L− < i, j >
ai j = 0 i f @L < i, j >

(3)

Matrix A is symmetric with the diagonal elements 0, but, if the corresponding network is
directed, like the e-mail network, A is asymmetric.
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3. Introduction to nonconvex optimization and evolutionary computation

3.1. What is optimization

Optimization has long been an active research topic. Mathematically, a single objective
optimization problem (assuming minimization) can be expressed as:

min f (x), x = [x1,x2, ...,xd] ∈Φ

s.t. gi(x)≤ 0, i = 1, ...,m (4)

where x is called the decision vector, d is the number of parameters to be optimized, Φ is the
feasible region in decision space, and gi(x) is the constraint function.

Given that Φ is a convex set, f (x) is said to be convex if ∀x1,x2 ∈Φ,∀α ∈ [0,1], and the
following condition holds:

f (αx1 +(1−α)x2)≤ α f (x1)+(1−α) f (x2) (5)

Particularly, f (x) is strictly convex if ∀x1 6= x2 ∈Φ,∀α ∈ (0,1), and the following condi-
tion holds:

f (αx1 +(1−α)x2)< α f (x1)+(1−α) f (x2) (6)

If f (x) and gi(x) are all convex, then we call Eq. 4 as a convex optimization problem.
For a strictly convex optimization problem, there is at most one minimal solution which is
also the global one. In real applications, the functions f (x) and gi(x) may be nonconvex
and there may exist many local and/or global minimum. In this respect, we call Eq. 4
as a nonconvex optimization problem. As a matter of fact, many real-world optimization
problems are nonconvex [56, 92].

In reality, many optimization problems involve multiple objectives, i.e., there are more
than one f (x) to be optimized. A multiobjective optimization problem can be mathematically
formulated as:

min F(x) = ( f1(x), f2(x), ..., fk(x))T (7)

The objectives in Eq. 7 often conflict with each other. Improvement of one objective may
lead to deterioration of another. Thus, a single solution, which can optimize all objectives
simultaneously, does not exist. For multi-objective optimization problems, the aim is to find
good compromises (trade-offs) which are also called Pareto optimal solutions. The Pareto
optimality concept was first proposed by Edgeworth and Pareto. To understand the concept,
here are some related definitions.

• Definition 1 (Pareto Optimality): A point x∗ ∈ Φ is Pareto optimal if for every x ∈ Φ

and I = {1,2, ...,k} either ∀i ∈ I, fi(x) = fi(x∗) or, there is at least one i ∈ I such that
fi(x)> fi(x∗).

• Definition 2 (Pareto Dominance): Given two vectors x, y∈Φ, where x = (x1,x2, ...,xn)
and y = (y1,y2, ...,yn), we say that x dominates y (denoted as x ≺ y), if xi 5 yi for

5



i = 1,2, ...,n, and x 6= y. x is nondominated with respect to Φ, if there does not exist
another x′ ∈Φ such that F(x′)≺ F(x).

• Definition 3 (Pareto Optimal Set): The set of all Pareto optimal solutions is called
Pareto Optimal Set which is defined as:

PS = {x ∈Φ|¬∃x∗ ∈Φ, F(x∗)≺ F(x)} (8)

• Definition 4 (Pareto Front): The image of the Pareto set (PS) in the objective space is
called the Pareto front (PF) which is defined as:

PF = {F(x)|x ∈ PS} (9)

0

1f

2f
Pareto solution

Pareto front

A

B C

A, B and D are nondominated

Either B or D dominates C

D

Figure 4: Graphical illustration of Pareto optimal solution and Pareto front.

Fig. 4 gives an example of the above mentioned definitions. Each dot except that labeled
by C in the figure represents a nondominated solution to the optimization problem. The aim
of a multiobjective optimization algorithm is to find the set of those nondominated solutions
approximating the true PF.

3.2. How to tackle optimization problems
In the field of optimization, evolutionary computation, a class of intelligent optimization

techniques, has been proved to be an efficient tool for solving nonconvex optimization prob-
lems. In the last several decades, many evolutionary algorithms (EAs) originated from the
evolution principles and behavior of living things, have sprung out and have found nation-
wide applications in the optimization domain [34, 31]. Most if not all of the EAs share the
following commom properties:

1. They are population based stochastic searching methods. A population consists of a set
of individuals, each individual represents a solution to the optimization problem. An
evolutionary algorithm optimizes the problem by having a population of initialized so-
lutions and then apply stochastic components to generate new solutions in the decision
space.
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2. They are recursively iterative methods. These methods iteratively search for optimal
solutions in the search space. The search process will not stop untill the maximum
iteration number or a prescribed threshold is reached.

3. They have some inherent parameters, like the population size and the maximum itera-
tion number, etc. These parameters are normally set empirically.

Algorithm 1 General framework of evolutionary algorithms.
Input: algorithm parameters, problem instance
Output: optimal solutions to the optimization problem

1. Begin
2. population initialization
3. store optimal solutions
4. for i=1 to max_iteration do

(a) for each individual in the population, do
i. generate a new individual through stochastic components

ii. evaluate the fitness of the new individual
(b) end for
(c) update optimal solutions

5. end for
6. End

A general framework of EAs is shown in Algorithm 1. In the last few years, many efforts
have been devoted to the application of EAs to the development of multiobjective optimiza-
tion. A lot of multiobjective evolutionary algorithms (MOEAs) have been proposed, e.g.,
[66, 35, 135, 30, 133, 53, 13, 11, 131].

4. Community structure analytics

Community structure discovery is one of the cornerstones of network analytics. It can
provide useful patterns and knowledge for further network analysis. This section is dedicated
to summarizing the related works for community structure analytics.

4.1. Description of community discovery

Network community discovery plays an important role in the networked data mining field.
Community discovery helps to discover latent patterns in networked data and it affects the
ultimate knowledge presentation.

As illustrated above, a complex network can be expressed with a graph that is composed
of nodes and edges. The task for network community discovery is to separate the whole
network into small parts which are also called communities. There is no uniform definition
for community in the literature, but in academic domain, a community, also called a cluster

7



or a module, is normally regarded as a groups of vertices which probably share common
properties and/or play similar roles within the graph. Fig. 5 exhibits the community discovery
problem under different network scenarios.

(a) (b)

(c) (d)

t t+1

T

(e)

Figure 5: Graphical illustration of community discovery. (a) common model, (b) directed
model, (c) signed model, (d) overlapping model and (d) dynamic model.

From Fig. 5 we can notice that community discovery under dynamic context is quite
different from the others. In a dynamic network, the community structure is temporally
changed. How to design algorithms to uncover time-varying communities is challenging.

4.2. Qualitative community definition
In order to formalize the qualitative community in unsigned network, Radicchi et al. in

[107] gave a definition based on node degree. Given a network represented as G = (V,E),
where V is the set of nodes and E is the set of edges. Let ki be the degree (the number of links
that have connections with node i) of node i and A be the adjacency matrix of G. Given that
S ⊂ G is a subgraph, let kin

i = ∑i, j∈S Ai j and kout
i = ∑i∈S, j/∈S Ai j be the internal and external

degree of node i, then S is a community in a strong sense if

∀i ∈ S, kin
i > kout

i (10)

S is a community in a weak sense if

∑i∈Skin
i > ∑i∈Skout

i (11)
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The above community definition only fits for unsigned networks. In [48] the authors
give a definition under signed context. Given a signed network modeled as G = (V,PE,NE),
where PE and NE are the set of positive and negative links, respectively. Given that S ⊂ G
is a subgraph, let (k+i )

in = ∑ j∈S,Li j∈PE Ai j and (k−i )
in = ∑ j∈S,Li j∈NE |Ai j| be the positive and

negative internal degree of node i, respectively. Then S is a community in a strong sense if

∀i ∈ S, (k+i )
in > (k−i )

in (12)

Let (k−i )
out = ∑ j/∈S,Li j∈NE |Ai j| and (k+i )

out = ∑ j/∈S,Li j∈PE Ai j be the negative and positive
external degree of node i, respectively. Then S is a community in a weak sense if{

∑i∈S(k
+
i )

in > ∑i∈S(k
+
i )

out

∑i∈S(k
−
i )

out > ∑i∈S(k
−
i )

in (13)

The above definitions only give the conditions that a community should satisfy, but they
have not told how good on earth a community is. Therefore, there should have quantitative
indexes that can measure the quality of a community. These indexes will be illustrated in
Section 5.

4.3. Existing approaches for community discovery

In the literature, a large amount of methods have been proposed to discover communities
in big networks. Roughly, these methods can be divided into two categories: optimization
based class and non-optimization based class.

Table 1: Representative non-optimization based methods for big network community discov-
ery.

Method Ref. Key Technique Network Scale
CNM [29] greedy optimization + sophisticated data structure medium
LPA [12] mark each node with a label and then let them propagate very large
Infomod [111] information compression, transmission, and decoding large
FEC [130] random walk + cutoff function very large
BGLL [15] fast hierarchical modularity optimization medium
Infomap [112] clustering + information compression + random walks large

For the non-optimization based avenues, in Table 1 we list several outstanding methods
that can handle big networks. For more information about the existing community discovery
methods developed before 2012, please refer to [41, 129].

As for the optimization based methods, most of them are nonconvex. The essence of
them is to model the network community discovery task as different optimization problems
and then design suitable nonconvex optimization methods such as EAs to deal with them. As
what follows we will summarize the optimization models for community structure analytics.

9



5. Optimization models for community structure analytics

5.1. Single objective optimization model
5.1.1. Modularity based model

The most popular evaluation criterion for community detection is the modularity (nor-
mally denoted as Q) proposed by Newman and Girvan in [98]. The modularity index can be
given in the following form:

Q =
1

2m

n

∑
i, j

(
Ai j−

ki · k j

2m

)
δ (i, j) (14)

where n and m are the number of nodes and edges of a network, respectively. δ (i, j) = 1, if
node i and j are in the same group, otherwise, 0. By assumption, higher values of Q indicate
better partitions.

Q is very popular, a lof of bio-inspired metaheuristics have been utilized to optimize Q to
find the community structure with biggest Q value [46, 124, 85, 128, 82, 60, 123, 119, 63, 76,
62, 43, 61, 115, 75, 77, 78, 22, 88]. However, Q has several drawbacks. First, to maximize Q
is proved to be NP-hard [19]. Second, large Q value does not always make sense. Random
networks with no community structures can also possess high Q values [59, 110]. Third,
which is also the most important, Q has the resolution limitation [42], i.e., maximizing Q
cannot discover communities whose sizes are smaller than a scale which depends on the total
size of the network and on the degree of inter connectedness of the modules, even in the case
scenario where modules are unambiguously defined.

To overcome these demerits, many researchers have devoted themselves to designing ef-
ficient operators for the optimization algorithms to enhance the exploration and exploitation;
some scholars make efforts to design new evaluation criteria, such as extended modularity
[110, 10, 106], multi-resolution index [80], and so forth. Because Q is originally designed
for unsigned, unweighted, undirected, nonoverlapped and static networks, thus, many cre-
ative jobs have been done to extend Q to handle other types of networks.

Gómez et al. in [47] presented a reformulation of Q that allows the analysis of weighted,
signed, and netwoks that have self-loops. The presented Q is formulized as:

Qsw =
1

2(w++w−)∑
i, j

[
wi j−

(w+
i w+

j

2w+
−

w−i w−j
2w−

)]
δ (i, j) (15)

where wi j is the weight of the signed adjacency matrix, w+
i (w

−
i ) denotes the sum of all

positive (negative) weights of node i. Based on the Qsw metric, the authors in Cai et al. [23]
suggested a discrete particle swarm optimization (DPSO) algorithm to detect communities
from signed networks.

Qsw can be easily changed to handle directed, weighted graphs [8, 72, 113], and the
expression of directed and weighted Q reads:

Qdw =
1
w ∑

i, j

(
Ai j−

wout
i ·win

j

w

)
δ (i, j) (16)
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where wout
i (win

i ) denotes the out-degrees (in-degrees) of node i. It can be noticed that the
factor 2 is removed because the sum of the in-degrees (outdegrees), the number of non-
vanishing elements of the asymmetric adjacency matrix, all equal w.

In the case when a node may belong to more than one community, Q has been modified
to fit overlapping communities [134, 99, 117], and a general expression reads:

Qov(Uk) =
k

∑
c=1

[
A(V c,V c)

A(V,V )
−
(

A(V c,V )

A(V,V )

)2
]

(17)

where Uk = [u1,u2, . . . ,uk] is a fuzzy parition of the nodes of the network into k clusters.
A(V c,V c) = ∑i∈V c ∑ j∈V c

((uic + u jc)/2)wi j, where V c is the set of vertices in community c,
A(V c,V ) = A(V c,V c)+∑i∈V c ∑ j∈V−V c

((uic+(1−u jc))/2)wi j and A(V,V ) = ∑i∈V ∑ j∈V wi j.
uic is the membership value that node i belongs to community c.

The existing overlapping community detection methods can be roughly divided into two
categories, the node-based (directly cluster nodes) and the link-based (cluster links and then
map link communities to node communities) ones, but the the mainstream for single solution
based overlapping community detection is to first utilize soft clustering technique such as
fuzzy K-means to find a fuzzy partition of the nodes of a network into k clusters, and then
apply a criterion to choose the best overlapping network partition [134, 68, 70, 109]. The
key technique lies in the evaluation of an overlapped community. As long as an evaluation
criterion is decided, bio-inspired metaheuristics can be easily utilized to solve this problem
[104, 84, 24, 81]. For more information about the fitness evaluation for overlapping commu-
nities, please refer to [28, 129].

Other extended criteria such as the local modularity can be found in [90, 93], the triangle
modularity in [9] and the bipartite modularity in [58].

5.1.2. Multi-resolution model
To overcome the resolution limitation of modularity, many multi-resolution models have

been developed. Pizzuti in [102] proposed a genetic algorithm for community detection. The
highlight of the work is the suggested community score (CS) evaluation metric. Let µi =

1
|S|k

in
i

be the fraction of edges connecting node i to the other nodes in S and M(S) = ∑i∈S(µi)
r

|S| be the
power mean of S of order r. |S| is the cardinality of S, i.e., the number of nodes in S. We
further define vS =

1
2 ∑i kin

i be the volume of S, i.e., the number of edges connecting vertices
inside S, then the score of S is defined as score(S) = M(S)×vS. Assume that G has a partition
of k subgraphs, i.e., Ω = {S1,S2, ...,Sk}, then CS can be written as:

CS = ∑
k
i=1score(Si) (18)

The CS metric takes one parameter r which is hard to tune. The author claims that higher
values of the exponent r bias the CS towards matrices containing a low number of zeroes,
i.e., higher values of r help in detecting communities.

Li et al. in [80] put forward the modularity density (D) index. D can break the resolution
limitation brought by Q. For an unsigned network, let us define L(Sa,Sb) = ∑i∈Sa, j∈Sb

Ai j and
L(Sa,Sa) = ∑i∈Sa, j∈Sa

Ai j, where Sa = Ω−Sa. Then D is defined as:
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Dα =
k

∑
i=1

2αL(Si,Si)−2(1−α)L(Si,Si)

|Si|
(19)

where α ∈ [0,1] is a resolution control parameter. Dα can be viewed as a combination of the
ratio association and the ratio cut [36]. Generally, optimize the ratio association algorithm
often divides a network into small communities, while optimize the ratio cut often divides
a network into large communities. By tuning the α value, we can use this general function
to uncover more detailed and hierarchical organization of a complex network. Based on
modularity density, many algorithms have emerged [25, 27, 51, 49, 79, 21].

5.2. Multi-objective optimization model
Many real-world optimization problems involve multiple objectives. From the statement

of the community detection problem discussed earlier we can notice that, community de-
tection can also be modeled as multiobjective optimization problems. Many multiobjective
optimization based community detection methods have been developed in this respect. Each
run of these methods can yield a set of community partitions for the decision maker to choose.
The most important point for these methods should own to their abilities for breaking through
the resolution limit of modularity. As stated earlier, components used in single objective
optimization models, such as the individual representation, recombination, etc., serve multi-
objective optimization models as well. This section primarily deals with the multiobjective
community detection models.

5.2.1. General model
As stated earlier, for an unsigned network, the links within a community should be dense

while the links between communities should be sparse, as for a signed network, the inter and
intra links should all be dense. On the basis of this property, many multiobjective community
models are established.

Pizzuti in [105] and [103] proposed a multiobjective genetic algorithm-based method
called MOGA-Net. In this method, the author modeled the community detection task as a
multiobjective optimization problem and then applied the fast elitist non-dominated sorting
genetic algorithm (NSGA-II) [35] framework to solve it. The two objectives introduced are
the CS and the CF. Thus, the proposed optimization model is:

max
{

f1 =CS
f2 =−CF

}
(20)

CF (community fitness) is a criterion put forward by Lancichinetti in [68]. CF is formu-
lated as:

CF = ∑
S∈Ω

∑
i∈S

kin
i
ki

(21)

From the formulation of CF and CS we may notice that, CF to some extent measures
the link density within communities, while CS can be regarded as an index to measure the
averaged degrees within communities.
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An improved version of MOGA-Net can be found in [20]. To optimize the above model,
other metaheuristics, such as the multi–objective enhanced firefly algorithm [6], hybrid evo-
lutionary algorithm based on HSA (harmony search algorithm [44]) and CLS (chaotic local
search) [5, 4, 7], non-dominated neighbor immune algorithm [52], have all find their niche in
community detection.

In [54] the authors presented a multiobjective evolutionary algorithm based on decompo-
sition (MOEA/D) based method. MOEA/D is proposed by Zhang and Li in [133]. The high-
light of this work is the newly cranked out multiobjective community optimization model
which optimizes two objectives termed as NRA (Negative Ratio Association) and RC (Ratio
Cut). The optimization model is:

min


NRA =−

k

∑
i=1

L(Si,Si)

|Si|

RC =
k

∑
i=1

L(Si,Si)

|Si|

 (22)

It can be noticed that Eq. 22 is the decomposition of Eq. 19. RC measures the link
density between two communities and RA calculates the link density within a community.
To minimize NRA and RC we can ensure that the connections within a community is dense
and the links between communities are sparse. A similar optimization model can be found in
[50].

Other optimization models such as maximizing the combinations of Q and CS can be
found in [2], and maximizing the two parts of the Q index, i.e., Q is decomposed into two
objectives, can be found in [120]. A three objectives model can be found in [116]. Small
surveys on the selection of objective functions in multiobjective community detection can be
found in [121, 122].

5.2.2. Signed model
Many social networks involve friendly and hostile relations between the objects that com-

pose the networks. These networks are called signed networks. In [48] the authors put for-
ward a novel discrete multiobjective PSO framework for community detection. To handle
signed networks, the authors have suggested a signed optimization model which optimizes
two objectives named as SRA (Signed Ratio Association) and SRC (Signed Ratio Cut). The
optimization model reads:

min


SRA =−

k

∑
i=1

L+(Si,Si)−L−(Si,Si)

|Si|

SRC =
k

∑
i=1

L+(Si,Si)−L−(Si,Si)

|Si|

 (23)

where L+(Si,S j) = ∑i∈Si, j∈S j Ai j,(Ai j > 0) and L−(Si,S j) = ∑i∈Si, j∈S j |Ai j|,(Ai j < 0). To
minimize SRA and SRC we can make sure that the positive links within a community are
dense while the negative links between communities are also dense, which is in accordance
with the feature of signed community.
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In [3] the authors put forward another signed optimization model which uses the NSGA-II
framework to optimize it. The model reads:

min
{

f1 =−Qsw
f2 = f rustration

}
(24)

where f rustration = ∑
n
i, j(A

+
i j(1−δ (i, j))−A−i jδ (i, j)). The first objective Qsw measures how

good a signed community is and to minimize f rustration we will ensure that the sum of the
negative links within a community and the positive links between difference communities are
minimum.

Recently, to detect communities from signed networks, the authors in [83] put forward a
signed optimization model based on node similarity. The optimization model is as follows:

max


fpos−in (Ω) =

1
k

k

∑
i=1

PSi
in

PSi
in +PSi

out

fneg−out (Ω) =
1
k

k

∑
i=1

NSi
out

NSi
in +NSi

out

 (25)

where PSi
in (or PSi

out) is the internal (or external) positive similarity of community Si, and NSi
in (or

NSi
out) is the internal (or external) negative similarity of community Si. See reference [83] for

more information about the similarity of a community. To maximize fpos−in we can ensure
high positive similarities within communities, and to maximize fneg−out we can guarantee
high negative similarities between different communities.

5.2.3. Overlapping model
In real world, a node of a network may belong to more than one community, just like the

friendship network. From the perspective of finding overlapping communities, intuitively,
the nodes that connect multiple communities with similar strength are more likely to be over-
lapping nodes. For instance, if node i has both l links with community a and b, then we can
regard i as an overlapping node. From the viewpoint of finding nonoverlapping or separated
communities, the less the number of overlapping nodes, the more the separated communities.

Based on the above principle, the authors in [84] put forward a three objectives optimiza-
tion model reads:

max


f1 = fquality(Ω) =

CF
k

f2 = fseparated(Ω) =− |Voverlap |

f3 = foverlapping(Ω) = ∑
i∈Voverlap

min
s∈Ω
{

ks
i

ki
}

 (26)

where ks
i denotes the number of edges connect node i and community s, Voverlap is the set of

the overlapping nodes. To maximize f2 and f3 one can get a tradeoff between nonoverlapping
and overlapping communities.
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5.2.4. Dynamical model
In reality, networks may evolve with the time, the nodes and the links may disappear or

new nodes may just come out, therefore, the community structures are also changing accord-
ing to the time. However, traditional approaches mostly focuse on static networks for small
groups. As the technologies move forward, in the presence of big data, how to design meth-
ods and tools for modeling and analyzing big dynamic networks is a challenging research
topic in the years to come. To analyze the community structures of dynamical networks will
help to predict the change tendency which may give support to the analysis of other network
or networked scientific issues. Community detection in dynamic networks is challenging.

Dynamic community detection is normally based on a temporal smoothness framework
which assumes that the variants of community division in a short time period are not desirable
[39]. According to the temporal smoothness framework, the community detection in dynamic
networks can be naturally modeled as a bi-objective optimization problem. The optimization
of one objective is to reveal a community structure with high quality at this moment, and the
optimization of the other objective is to uncover a community structure at the next moment
which is highly similar with that at the previous time [38, 39, 55, 26, 40]. The commonly
used dynamical optimization model can be written as:

max
{

f1 =CS or Q or Dα

f2 = NMI (27)

NMI, Normalized Mutual Information [33], comes from the field of information theory.
NMI can be regarded as a similarity index. For the community detection problem, given that
A and B are two partitions of a network, respectively, C is a confusion matrix, Ci j equals to
the number of nodes shared in common by community i in partition A and by community j
in partition B. Then NMI(A,B) is written as:

NMI =
−2∑

CA
i=1 ∑

CB
j=1Ci jlog(Ci j ·n/Ci.C. j)

∑
CA
i=1Ci.log(Ci./n)+∑

CB
j=1C. jlog(C. j/n)

(28)

where CA (or CB) is the number of clusters in partition A(or B), Ci. (or C. j) is the sum of
elements of C in row i( or column j). NMI(A,B) = 1 means that A and B are identical and
NMI(A,B) = 0 indicates that A and B are completely different.

The first objective in Eq. 27 is the snapshot cost which measures how well a community
structure A is at time t and the second objective is the temporal cost which measures how
similar the community structure B is at time t +1 with the previous community structure A.

Another dynamical model which maximizes the Min-max cut and global silhouette index
can be found in [65].

6. Network data sets

This section will list the network data sets commonly used in the literature for testing
purpose. The data sets contain two types, artificial benchmark networks and real-world net-
works. Benchmark networks have controlled topologies. They are used to mimic real-world
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networks. Different real-world networks may have different properties. Hence, real-world
networks are still needed for testing purpose.

6.1. Artificial generated benchmark networks

6.1.1. GN benchmark and its extended version
Girvan and Newan (GN) in [45] put forward a benchmark network generator which is

normally recognized as the GN benchmark. For a GN benchmark network, it was constructed
with 128 vertices divided into four communities of 32 vertices each. Edges were placed
between vertex pairs independently at random, with probability Pin for vertices belonging
to the same community and Pout for vertices in different communities, with Pout < Pin. The
probabilities were chosen so as to keep the average degree z of a vertex equal to 16.

An extended version of the GN model was introduced in [32]. The extended benchmark
network also consists of 128 nodes divided into four communities of 32 nodes each. Every
node has an average degree of 16 and shares a fraction γ of links with the rest in its commu-
nity, and 1− γ with the other nodes of the network. Here, γ is called the mixing parameter.
When γ < 0.5, the neighbours of a vertex inside its community are more than the neighbors
belonging to the rest groups.

6.1.2. LFR benchmark
Standard benchmarks, like the GN benchmark or its extended version, do not account for

important features in graph representations of real systems, like the fat-tailed distributions
of node degree and community size, since on those benchmark networks, all vertices have
approximately the same degree, moreover, all communities have exactly the same size by
construction.

To overcome these drawbacks, a new class of benchmark graphs have been proposed by
Lancichinetti, Fortunato, and Radicchi (LFR) in [69], in which the distributions of node de-
gree and community size are both power laws with tunable exponents. They assume that
the distributions of degree and community size are power laws, with exponents τ1 and τ2,
respectively. Each vertex shares a fraction 1− µ of its edges with the other vertices of its
community and a fraction µ with the vertices of the other communities; 0≤ µ ≤ 1 is the mix-
ing parameter. The software to create the LFR benchmark graphs can be freely downloaded
at http://santo.fortunato.googlepages.com/inthepress2. In our experiments, we
generate 17 networks with the mixing parameter increasing from 0 to 0.8 with an interval of
0.05.

6.1.3. Signed LFR benchmark
The LFR network generator is a reliable model for benchmarking. However, this model

is originally designed for unsigned networks. In order to mimic signed social networks, The
LFR model can be extended into signed version. Here we give a feasible way to do so.

A signed LFR model can be depicted by SLFR(n, kavg, kmax, γ, β , smin, smax, µ, p−, p+),
where n is the number of nodes; kavg and kmax are the averaged and maximum degree of a
node, respectively; γ and β are the exponents for the power law distribution of node degree
and community size, respectively; smin and smax are the minimum and maximum community
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size, respectively. µ is a mixing parameter. Each node shares a fraction 1− µ of its links
with the other nodes of its community and a fraction µ with the other nodes of the network.
p− is the fraction of negative edges within communities, and p+ is the fraction of positive
edges between different communities.

6.2. Real-world networks

Table 2: Eight commonly tested unsigned networks.

Network #Node #Edge #Clusters k Ref.
Karate 34 78 2 4.588 [132]
dolphin 62 159 2 5.129 [87]
football 115 613 12 10.661 [45]
SFI 118 200 unknown 3.390 [45]
e-mail 1133 5451 unknown 9.622 [57]
netscience 1589 2742 unknown 3.451 [95]
power grid 4941 6594 unknown 2.669 [126]
PGP 10680 24340 unknown 4.558 [17]

Table 3: Eight commonly tested signed networks.

Network #Node #Edge m+ m− k Ref.
SPP 10 45 18 27 9.000 [67]
GGS 16 58 29 29 7.250 [108]
EGFR 329 779 515 264 4.736 [101]
Macrophage 678 1,425 947 478 4.204 [100]
Yeast 690 1,080 860 220 3.130 [91]
Ecoli 1,461 3,215 1,879 1,336 4.401 [118]
WikiElec 7,114 100,321 78,792 21,529 28.204 [73]
Slashdot 77,357 466,666 352,890 113,776 12.065 [73]

Tables 2 and 3 list the parameters of 8 commonly tested unsigned and signed networks.
In the Tables, m+ and m− denote the numbers of positive and negative edges, respectively. k
is the averaged node degree.

6.3. Famous websites

Apart from the above mentioned network data sets, many other network data sets are
available on the Internet. In this part we list several famous websites as follows:

• http://www-personal.umich.edu/∼mejn/ (Mark Newman Website)

• http://deim.urv.cat/∼aarenas/data/welcome.htm (Alex Arenas Website)
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• http://snap.stanford.edu/index.html (Stanford Network Analysis Project. Diverse kinds
of network data and graphical visualization softwares and tools and useful codes are
available.)

• http://www.correlatesofwar.org/ (The Correlates of War Project. A large amount of
signed networks mainly related to war are free to access.)

• http://www.gmw.rug.nl/∼huisman/sna/software.html (A collection of softwares for so-
cial network analysis.)

• http://tuvalu.santafe.edu/∼aaronc/hierarchy/ (Hierarchical Random Graphs)

7. Experimental exhibition

In [22] we have suggested a greedy discrete particle swarm optimization algorithm (GDPSO)
for big network community discovery. The GDPSO algorithm optimizes the modularity in-
dex. As what follows we will show its performance over several real-world networks.

Table 4: Averaged modularity values obtained by five methods over 30 independent runs.

network GDPSO CNM BGLL Infomap LPA
Karate 0.4198 0.3800 0.4180 0.4020 0.3264
dolphin 0.5280 0.4950 0.5188 0.5247 0.4964
football 0.6041 0.5770 0.6046 0.6005 0.5848
e-mail 0.4783 0.4985 0.5412 0.5355 0.0070
power grid 0.8368 0.9229 0.7756 0.8140 0.7476
PGP 0.8013 0.8481 0.9604 0.7777 0.7845

Table 4 lists the averaged modularity values obtained by five methods over 30 independent
runs on six networks. The GDPSO algorithm is an optimization based method. GDPSO is
competitive to the rest four methods in terms of the modularity index.

On one hand, it is natural to model network community discovery as a multiobjective
optimization problem. On the other hand, based on the preliminary shown in subsection 3.1,
we can get to know that a single run of a MOEA based community discovery method can
output a set of solutions, as shown in Fig. 6.

As can be seen from Fig. 6 that each Pareto solution denotes a certain network community
structure. However, each single run of the methods listed in Table 4 can only output one
solution. There is no doubt that the MOEA based community discovery facilitates intelligent
multi-criteria decision making. For more exhibitions about the MOEA based community
discovery please refer to our recent work in [48].

It should be noted that based on the optimization models discussed in Section 5, one
can design different single objective EAs or MOEAs to optimize those models. However,
according to the NFL (No Free Lunch) theory [127], there is no one-for-all method that can
deal with all kinds of networks. For one thing, for different network issues, we can solve
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Figure 6: An illustration of the Pareto front obtained by an MOEA for community discovery
from the Karate network.

them well as long as we can establish a good optimization model that can well depict the
nature of those problems. For another thing, we should make efforts to enhance the search
abilities of the optimization algorithms. Meanwhile, different networks have different space-
time properties. Consequently, we should take into account the special characters of the
networks when designing algorithms to solve network issues.

8. Concluding remarks

Network analysis is one of the theoretical underpinnings of big data. Network community
discovery serves as the backbone of network analysis. The past decades have witnessed the
prosperity of the research on community discovery. A large number of techniques have been
cranked out to discover communities in the networks. Among the extant avenues for solving
the network community discovery problem, many of them are nonconvex optimization based.

This chapter tries to investigate the network community discovery problem from the opti-
mization view. Single objective and multiobjective optimization models for network commu-
nity discovery problems are delineated. Experimental studies are also shown to demonstrate
the promise of the optimization based idea for network analytics.

We expect that complex network analysis’s scope will continue to expand and its ap-
plications to multiply. We are positive that methods and theories that work for community
detection are helpful for other network issues. From both theoretical and technological per-
spectives, network community discovery technology will move beyond network analytics
toward emphasizing network intelligence. We do hope that this chapter can benefit scholars
who set foot in this field. Our future work will focus on more in-depth analysis of network
issues. Such analysis is expected to shed light on how networks change the real world.
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