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Abstract. We investigate the use of multiple transmitting andor receiving antennas for single user communications 
over the additive Gaussian channel with and without fading. We derive formulas for the capacities and error exponents 
of such channels, and describe computational procedures to evaluate such formulas. We show that the potential gains 
of such multi-antenna systems over single-antenna systems is rather large under independenceassumptions for the fades 
and noises at different receiving antennas. 

1 INTRODUCTION 

We will consider a single user Gaussian channel with 
multiple transmitting andor receiving antennas. We will 
denote the number of transmitting antennas by t and the 
number of receiving antennas by r. We will exclusively 
deal with a linear model in which the received vector y E Cr 
depends on the transmitted vector x E ([I via 

y = H x + n  (1) 

where H is a r x t complex matrix and n is zero-mean 
complex Gaussian noise with independent, equal variance 
real and imaginary parts. We assume E[nnt] = I r ,  that is, 
the noises corrupting the different receivers are indepen- 
dent. The transmitter is constrained in its total power to P, 
E[xtx] 5 P. Equivalently, since xtx = tr(xxt), and expec- 
tation and trace commute, 

This second form of the power constraint will prove more 
useful in the upcoming discussion. 

We will consider several scenarios for the matrix H: 

1. H is deterministic. 

2 .  H is a random matrix (for which we shall use the 
notation H), chosen according to a probability distri- 
bution, and each use of the channel corresponds to 
an independent realization of H. 

3. H is a random matrix, but is fixed once it is chosen. 

'Invited paper 

The main focus of this paper in on the last two of these 
cases. The first case is included so as to expose the tech- 
niques used in the later cases in a more familiar context. 
In the cases when H is random, we will assume that its 
entries form an i.i.d. Gaussian collection with zero-mean, 
independent real and imaginary parts, each with variance 
1/2. Equivalently, each entry of H has uniform phase and 
Rayleigh magnitude. This choice models a RayIeighfading 
environment with enough separation within the receiving 
antennas and the transmitting antennas such that the fades 
for each transmitting-receiving antenna pair are indepen- 
dent. In all cases, we will assume that the realization of H 
is known to the receiver, or, equivalently, the channel out- 
put consists of the pair (y ,  H), and the disfribution of H is 
known at the transmitter. 

2 PRELIMINARIES 

A complex random vector x E C? is said to be Gaussian 
if the real random vector d E R2" consisting of its real and 
imaginary parts, 2 = [!lit(')], 3m(x) is Gaussian. Thus, to specify 
the distribution of a complex Gaussian random vector x, it 
is necessary to specify the expectation and covariance of 3, 
namely, 

E[2] E El2" and E[(d-  E[2])(2- E[IZ])'] E R2nx2n.  

We will say that a complex Gaussian random vector x is 
circularly symmetric if the covariance of the corresponding 
d has the structure 
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for some Hermitian non-negative definite Q E rc""". Note 
that the real part of an Hermitian matrix is symmetric 
and the imaginary part of an Hermitian matrix is anti- 
symmetric and thus the matrix appearing in (3) is real and 
symmetric. In this case Z[(X - E [ x ] ) ( x  - !€[XI)+] = Q, 
and thus, a circularly symmetric complex Gaussian ran- 
dom vector x is specified by prescribing ' € [ X I  and E [  (x - 
qXl ) (x -  m I , t ] .  

For any z E C" and A E [Pxm define 

Lemma 1. The mappings z -+ 2 = [;:',:;] and A + A = 
Rc(A)  - l im(A) have the following properties: 

Proof: The properties (4a), (4b) and (4c) are immediate. 
(4d) follows from (4a) and the fact that 1, = 12,. (4e) fol- 
lows from 

det(A) =det ([A :]A [* I -il [I) 
= det ( [la A) :*I) 
= det(A) det(A)' , 

(4f), (4g) and (4h) are immediate. 

Corollary 1. (I E (TX" is unitaoifa?zd only $0 E PZnxZn 
is orthonormal. 

Corollary 2. / f Q  E lPx" is non-negative definite then so 
is Q p 211 x Zn 

The probability density (with respect to the standard 
Lebesgue measure on C') of a circularly symmetric com- 
plex Gaussian with mean p and covariance Q is given by 

Y ~ , Q ( ~ )  = det(nQ)-'/'exp(-(f - f i ) tQ- ' (2 -  f i ) )  
= det(rQ)-'  exp ( - ( x -  p )  ' Q - ' ( x  - p ) )  

where the second equality follows from (4d)-(4h). The dif- 
ferential entropy of a complex Gaussian x with covariance 
Q is given by 

H(7Q) = !-?%a [-logYQ(x)l 
= logdet(nQ) + (loge) 'E[xtQ-'x] 

= logdet(nQ) + (Ioge)tr( '€[xxt]Q-') 
= logdet(nQ) + (loge) tr(1) 
= log det (nee). 

For us, the importance of the circularly symmetric complex 
Gaussians is due to the following lemma: circularly sym- 
metric complex Gaussians are entropy maximizers. 

Lemma 2. Suppose the complex random vector x E ic is 
zero-mean and satisfies !E[xx'] = Q, i.e., E[x~x*.] J = Qij, 
1 5 i ,  j 5 11. Then the entropy of x satisfies %(x) 5 
logdet(neQ) with eqriafity ifand oniy i f x  is ct circirlariy 
symmetric complex Gaussian with 

'€[xxt] = Q. 

Proof: Let p be any density function satisfying !E,[xix;] = 
Qi,, 1 5 i , j  5 n. Let 

yp(x) = det(nQ)-l exp(-xtQ-'x). 

Observe that 'EyQ[~ixf] = Qij, and that logye(x) is a lin- 
ear combination of the terms xi$.  Thus q Q [ l o g 7 ~ ( x ) ]  = 
E p [ l o g y ~  (XI].  Then, 

@(PI - = - 2P[10gp(x)] f ! - ? % ~ [ l ~ g T Q ( ~ ) l  

L 0, 

with equality only if p = 7p. Thus @ ( p )  5 H ( y p ) .  0 

Lemma 3. lf x E C' is a circularly symmetric complex 
Gaussian then so is y = Ax for  any A E Pxn. 

Proof: We may assume x is zero-mean. Let Q = ~ [ x x t ] .  
Then y is zero-mean, 3 = A%, and 

qyjq = A  55"BBtjAf = $AQ$ - = ZK ' ,. 
where K = AQA'. 0 

Lemma 4. l f x  and y are independent circiilarly symmetric 
coii~plex Gairssians, theti z = x i- y is a circ~rlnrly symtnet- 
ric cornplL..r Gaussian. 

P m l f :  Let A = E[xxt] and B = E[yy"]. Then '€[%?I = gc 
with C = A + 5. 0 
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3 THE GAUSSIAN CHANNEL WITH FIXED 
TRANSFER FUNCTION 

We will start by reminding ourselves the case of de- 
terministic H .  The results of this section can be inferred 
from [ I ,  Ch. 81 

3.1 CAPACITY 

We will first derive an expression for the capacity 
C ( H ,  P )  of this channel. To that end, we will maximize the 
average mutual information f(x;y) between the input and 
the output of the channel over the choice of the distribution 
of x. 

By the singular value decomposition theorem, any ma- 
trix H E C’“‘ can be written as 

H = UDVt 

where U E Crxr and V E C X r  are unitary, and D E Rrx‘ is 
non-negative and diagonal. In fact, the diagonal entries of 
D are the non-negative square roots of the eigenvalues of 
H H t ,  the columns of U are the eigenvectors of H H t  and 
the columns of V are the eigenvectors of H t H .  Thus, we 
can write ( 1 )  as 

y = U D V ~ X  -+ n. 

Let 7 = Uty, % = Vtx, ii = Utn.  Note that U and V are in- 
vertible, R has the same distribution as n and, E[ttt] = 
‘€[xtx]. Thus, the original channel is equivalent to the 
channel 

Y=D%+ii (5) 

where R is zero-mean, Gaussian, with independent, identi- 
cally distributed real and imaginary parts and E[fiiit] = I,. 
Since H is of rank at most min{ r,t}. at most min{ r, t }  of the 

i = 1 , .  . . ,  min{r,r}, we can write (5) component-wise, to 
get 

singular values of it are non-zero. Denoting these by X i  112 , 

j i  = X i  112 i ; + i i i ,  I _< i 5 min{r,t}, 
and the rest of the components of jj (if any) are equal to 
the corresponding components of ii. We thus see that j$ for 
i > min{t, r} is independent of the transmitted signal and 
that l; for i > min{t,r} don’t play any role. To maximize 
the mutual information, we need to choose {Ti : 1 5 i 5 
min(r, t } )  to be independent, with each 5; having indepen- 
dent Gaussian, zero-mean real and imaginary parts. The 
variances need to be chosen via “water-filling” as 

where p is chosen to meet the power constraint. Here, u+ 
denotes max{O,a}. The power P and the maximal mutual 
information can thus be parametrized as 

Remark I (Reciprocity). Since the non-zero eigenvalues of 
H’H are the same as those of H H t ,  we see that the capaci- 
ties of channels corresponding to H and H t  are the same. 

Example 1. Take Hij = 1 for all i, j .  We can write H as 

and we thus see that in the singular value decompo- 
sition of H the diagonal matrix D will have only one 
non-zero entry, fi. (We also see that the first col- 
umn of U is *[I,. . ., 11’ and the first column of V is 
m[1,. .., I]+.) Thus, 

C = l o g ( l + r t P ) .  

The x = V# that achieves this capacity satisfies E[xixf] = 
P / t  for all i, j ,  i.e., the transmitters are all sending the same 
signal. Note that, even though each transmitter is sending 
a power of P/t, since their signals add coherently at the re- 
ceiver, the power received at each receiver is P t .  Since each 
receiver sees the same signal and the noises at the receivers 
are uncorrelated the overall signal to noise ratio is Prt. 
Exarnple2. T a k e r = t = n a n d H = I , , . T h e n  

C = n l o g ( l + P / n )  

For x that achieves this capacity !E[xixf] = G;jP/n, i.e, the 
components of x are i.i.d. However, it is incorrect to in- 
fer from this conclusion that to achieve capacity one has to 
do independent coding for each transmitter. It is true that 
the capacity of this channel can be achieved by splitting the 
incoming data stream into t streams, coding and modulat- 
ing these schemes separately, and then sending the t mod- 
ulated signals over the different transmitters. But, suppose 
N t  bits are going to be transmitted, and we will either sep- 
arate them into t groups of N bits each and use each group 
to select one of 2N signals for each transmitter, or, we will 
use all all N t  bits to select one of 2” signal vectors. The 
second of these alternatives will yield a probability of error 
much smaller than the first, at the expense of much greater 
complexity. Indeed, the log of the error probability in the 
two cases will differ by a factor o f t .  (See the error expo- 
nents of parallel channels in [I, pp. 149-1501.) 

3.2 ALTERNATIVE DERIVATION OF T H E  CAPACITY 

The mutual information I ( x ; y )  can be written as 

I(x;Y) = d ( y )  -H (y lx )  = H(Y) -H(n), 

and thus maximizing I(x;y) is equivalent to maximizing 
g ( y ) .  Note that if x satisfies Z[xrx] 5 P, so does x- ?€[XI, 
so we can restrict our attention to zero-mean x. Further- 
more, if x is zero-mean with covariance ‘€[xxt] = Q, then 
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y is zero-mean with covariance ‘€[yyt] = H Q H t  + l r ,  and 
by Lemma 2 among such y the entropy is largest when y is 
circularly symmetric complex Gaussian, which is the case 
when x is circularly symmetric complex Gaussian (Lem- 
mas 3 and 4). So, we can further restrict our attention to 
circularly symmetric complex Gaussian x. In this case the 
mutual information is given by 

Z(x;y) = logdet(lr + H Q H t )  = logdet(1, + Q H t H )  

where the second equality follows from the determinant 
identity det(l+AB) = det(l+BA), and it only remains 
to choose Q to maximize this quantity subject to the con- 
straints tr(Q) < P and that Q is non-negative definite. The 
quantity logdet(l+ H Q H ’ )  will occur in this note fre- 
quently enough that we will let 

P(Q, H )  = logdet(l+ HQH’)  

to denote it. Since H t H  is Hermitian it can be diagonalized, 
H t H  = U’AU, with unitary U and non-negative diagonal 
A = diag( X 1 . . . A,). Applying the determinant identity 
again we see that 

d e t ( l r + H Q H t )  = det(l, + i l ’ / 2 U Q U t i l ’ / 2 ) .  

Observe that Q = UQUt is non-negative definite when and 
only when Q is, and that tr(Q) = tr(Q); thus the maximiza- 
tion over Q can be carried equally well over Q. Note also 
that for any non-negative definite matrix A, det(A) 5 ni A i i ,  

thus 
det(l, + A’/zQA’’z) 5 n( 1 + & X i )  

i 

with equality when Q is diagonal. Thus we see that the 
maximizing Q is diagonal, and the optimal diagonal entries 
can be found via “water-filling” to be 

0;; = ( p  - A;’)+, i = I , .  . . , t  

where p is chosen to satisfy x i  Qii  = P. The corresponding 
maximum mutual information is given by 

i 

as before. 

3.3 ERROR EXPONENTS 

Knowing the capacity of a channel is not always suffi- 
cient. One may be interested in knowing how hard it is to 
get close to this capacity. Error exponents provide a par- 
tial answer to this question by giving an upper bound to the 
probability of error achievable by block codes of a given 
length n and rate R. The upper bound is known as the ran- 
dom coding bound and is given by 

?‘(error) 5 exp(-nE,.(R)), 

where the random coding exponent E,(R) is given by 

where, in turn, Eo(p)  is given by the supremum over all 
input distributions qx satisfying the energy constraint of 

In our case p(ylx) = det(Tl,)-’exp(-(y-x)+(y-x)). If 
we choose qx as the Gaussian distribution ye we get (after 
some algebra) 

The maximization of Eo over Q is thus same same problem 
as maximizing the mutual information, and we get Eo(p) = 

To choose qx as Gaussian is not optimal, and a distribu- 
tion concentrated on a “thin spherical shell” will give better 
results as in [ l ,  $7.3]-nonetheless, the above expression 
is a convenient lower bound to EO and thus yields an upper 
bound to the probability of error. 

PC(P/(l +P)IH). 

4 THE GAUSSIAN CHANNEL WITH RAY- 
LEIGH FADING 

Suppose now that the matrix H is not fixed, but is a ran- 
dom matrix H independent of both x and n. The realization 
H of H is assumed to be known at the receiver, but not at 
the transmitter. The channel is thus with input x and output 
(y ,H) = (Hx+ n ,H) .  We will assume that the entries of 
H are independent and each entry is zero-mean, Gaussian, 
with independent real and imaginary parts, each with vari- 
ance 1/2. Equivalently, each entry of H has uniformly 
distributed phase and Rayleigh distributed magnitude, with 
expected magnitude square equal to unity. This is intended 
to model a Rayleigh fading channel with enough physical 
separation within the transmitting and the receiving anten- 
nas to achieve independence in the entries of H. We will 
first show that such an H is invariant under unitary trans- 
formations. 

Lemma 5 .  Suppose H E Vx‘ is a complex Gaussian ma- 
trix with independent identically distributed entries, each 
entry with independent real and imaginaryparts with zero- 
memi and equal variance. Then for any unitary U € Cxr,  
and V E Cx‘, the distribution of UHVt is the same as the 
distribrrtion H .  

Prooj? It suffices to show that G = UH has the same distri- 
bution as H. The lemma then follows from an application 
of this to Gt.  Since columns of H are independent. the 
columns of G are independent also. It remains to check 
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that each column of G has the same distribution as that of 
H. Since the columns of H are circularly symmetric com- 
plex Gaussian vectors, so are those of G. If g, and hi are 
the f h  column of G and H respectively, then 

where the last equality holds because E[hjh) is a multiple 

In this section we will assume that the channel is mem- 
oryless: for each use of the channel an independent realiza- 
tion of H is drawn. In this case we are on familiar ground 
and the capacity can be computed as the maximum mutual 
information. However, the results that follow are valid ver- 
batim for channels for which H is generated by an ergodic 
process: as long as the receiver observes the H process only 
the first order statistics are needed to determine channel ca- 
paci ty. 

of the identity matrix. 0 

4.1 CAPACITY 

Since the receiver knows the realization of H, the chan- 
nel output is the pair (y ,H)  = (Hx+n,H) .  The mutual 
information between input and output is then 

I (x ; (y ,H) )  = I(x;H) + I(x;ylH) 
= I(x;ylH) 
= E ~ [ l ( x ; y ( H =  H ) ] .  

We know from the previous section that if x is con- 
strained to have covariance Q, the choice of x that max- 
imizes I(x;y(H = H )  is the circularly symmetric com- 
plex Gaussian of covariance Q, and !P(Q, H )  = logdet(I, + 
HQHt) is the corresponding maximal mutual information. 
We thus need to maximize 

over the choice of non-negative definite Q subject to 

Since Q is non-negative definite, we can write it as 
Q = U 5 U t  where U is unitary and D is non-negative and 
diagonal. With this substitution 

S(Q) = '€[logdet(I,+ (HU)D(HU)t)] 

By Lemma 5 the distribution of HU is the same as that 
of H, and thus S ( Q )  = !P(D). We can thus restrict our 
attention to non-negative diagonal Q. Given any such Q 
and any permutation matrix n, consider Q" = 17Qllt. 
Since HI7 has the same distributionas H ,  @(en) = !P(Q). 
Note that for any H ,  the mapping Q ++ I, + HQHt is 
linear and preserves positive definiteness. Since logdet 
is concave on the set of positive definite matrices, Q c) 
#(el H )  = logdet(l,+HQHt) is concave. It then follows 
that Q i-f S ( Q )  is concave. Thus 

tr(Q) 5 P. 

1 
t !  

Q =  -CQ" 

satisfies !P(Q) 2 !P(Q) and t r (0)  = tr(Q). Note that Q is 
a multiple of the identity matrix and we conclude that the 
optimal Q must be of the form d. It is clear that the max- 
imum is achieved when a is the largest possible, namely 
f / t .  To summarize, we have shown the following: 

Theorem 1. The capacity ofthe channel is achieved when 
x is a circularly symmetric complex Gaussian with zero- 
mean and covariance ( P / t ) I g .  The capacity is given by 
E[logdet (I, + ( P / t ) H H t ) ] .  

Note that for fixed r, by the law of large numbers 
SHHt + I ,  almost surely as t gets large. Thus, the capacity 
in the limit of large t equals 

4.2 EVALUATION OF T H E  CAPACITY 

Although the expectation"E[log det (I,+ ( P  /r)HHt)] is 
easy to evaluate for either r = 1 or t = 1, its evaluation gets 
rather involved for r and t larger than 1. We will now show 
how to do this evaluation. Note that 

det(I,+ (P / t )HHt )  = det(I, + (P/t)HtH) 

and define 

W = {  H H ~  r < t  
H ~ H  r z t ,  

n = max{r,t} and m = min{r1t}. Then W is an m x m ran- 
dom non-negative definite matrix and thus has real, non- 
negative eigenvalues. We can write the capacity in terms of 
the eigenvalues XI , . . . , Am of W: 

r m  1 

E I C l o g ( l +  (P/r)Xi) (7) 
i= I 

The distribution law of W is called the Wishart distribution 
with parameters m, n and the joint density of the ordered 
eigenvalues is known to be (see e.g. [2] or [3, p. 371) 

where Km,n is a normalizing factor. The unordered eigen- 
values then have the density 

The expectation we wish to compute 

E [  i= 2 1 log( 1 + (P / t )A i )  I m  = i= C 1 '€"log 

= m E[Iog( 
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depends only on the distribution of one of the unordered 
eigenvalues. To compute the density of XI we only need to 
integrate out the X2,  . . . , 

p x ,  ( X I  ) = 1. . . / p x  (XI ,  . . . , Art) dXz. .dX,,. 

To that end, note that ni, j (  Xi  - X i )  is the determinant of a 
Vandermonde matrix 

and we can write px as 

I 

With row operations we can transform D ( A 1 , .  . .,A,,,) into 

( F I ( A I )  ' . '  PI(X,n) 

' t ? i i i ( X ~ )  . . . Pm(X,n)  

where PI,. . . , p," is the result of applying the Gram- 
Schmidt orthogonalization procedure to the sequence 

1, A ,  A', . . . , A'"-' 

in the space of real valued functions with inner product 

( f ,g)  = ~ w f ( A ) g ( X ) X " - m e - *  dX. 

Thus SOm~,(X)3,(X)Xn-me-XdX = d,,. The determinant of 
D then equals (modulo multiplicative constants picked up 
from the row operations) the determinant of d, which in 
turn, by the definition of the determinant, equals 

det(D(A1, . . .  -A,,,)) = ~ ( - l ) " ~ " ' n d , , , i  
n i 

where the summation is over all permutations of 
{ 1 , .  . . m},  and per( a )  is 0 or 1 depending on the perrnuta- 
tion a being even or odd. Thus 

px(A1, . . .  ,A,) =C,,,C(-l)per(n)+per(p) x 
a ,P 

x n'Fn, (A,)'Fpt (X;)X;-"e-XI. 

px, ( X I )  =c,,,, C ( - l ) p r ( L y ) + F r ( P )  'Fn,(Xl)P/4(/\I) 

i 

Integrating over . . , A, we get 

0 ,i.1 
Au-m - A 1  
I e fl[L,A 

i l l  

c 
8o t 63.4 --- 

5 0 1  - - - -  
38 ...... 

25.3 
I 0  
60 - 
50 - 
40 - 
30 - 
20 - 

- 

0 c 0  J - -__ 10 _-- 
' O W 5  t l 5  20 20 

Figure 1 :  Capacity (in nats) vs. r and t for P = 20dB. 

= Cm,,,(m- I ) !  C p i ( ~ , ) 2 ~ ; - m e - x ~  
m -  

i= I 

where the second equality follows from the fact that if 
oi = j;l; for i 2 2 then N I  = PI also (since both Q and p 
are permutations of { 1 ,  . . . , m } )  and thus cr = ,d, and the 
last equality follows from the fact that pi(Xl)2Ay-'ne-xl 
integrates to unity and thus C,,,,l must equal l/m!. Observe 
now that the Gram-Schmidt orthonormalization yields 

112 
pk+l(~) = [-I L;-"I(X), k = 0,. . . , m -  1 

where L!-"'(.r) = $ ~ r ~ " - "  $ ( e-r-fln--m+k ) is the associ- 
ated Laguerre polynomial of order k.  (See [4, $8.90.8.971.) 

Theorem 2. The capacity of the channel with t transmit- 
ters and r receivers under power constraint P eqiials 

To summarize: 

S,-=log( 1 + f A) '5' k !  
k=O ( k + n - m ) !  

[L;-"'(X)]2X"-"e-~ dX (8) 

where m = min{r, t } ,  ti = max{ r, t } ,  and Lf are the associ- 
cited Luguerre polynomiuls. 

Figure 1 shows the value of the integral in (8) for 1 5 
r, f _< 20 and P = 20dB. 
Example 3. Consider t = 1. In this case m = 1 and n = r.  
Noting that L;-'"(A) = 1 ,  an application of (8) yields the 
capacity as 

(9) 

Note that as r gets large, so does the capacity. For large r, 
the capacity is asymptotic to log( I + Pr),  in the sense that 
the difference goes to zero. 
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The value of the capacity (in nats) as found from ( I  1)  vs. r for 
OdB 5 P 5 35dB in 5dB increments. 

C 

/ ,' 
140 - 

120- 

0 5 10 15 20 
Figure 2: Capacity vs. r for r = t and various values of P.  

Example 4. Consider r = 1. As in the previous example, 
applying (8) yields the capacity as 

As noted in (6), the capacity approaches log( I + P )  as t gets 
large. 
E.ramp1r 5. Consider r = t .  In this case n = m = r,  and an 
application of (8) yields the capacity as 

r- I 

l a l o g ( l  + P X / r )  c Lk(X)'e-AdX, (11) 
k=O 

where L k  = L: is the Laguerre polynomial of order k.  
Figure 2 shows this capacity for various values of r 

and P. I t  is clear from the figure that the capacity is very 
well approximated by a linear function of r. Indeed, first 
rewrite (7)  as 

where FA (x) is the empirical distribution of the eigenvalues 
of an m x m Hermitian matrix A: 

the number of eigenvalues of A less than x 
m 

FA(.r) = 

A very general result from the theory of random matri- 
ces (see, e.g., [ 5 ] )  says that for W defined as above, as 
n = max { r, t }  and m = min{ r, t }  are increased with n / m  
approaching a limit T 2 1, 

otherwise, 
( 1 2 )  

d v  

with v+ = (fik 1)'. Thus, in the limit of large r and t ,  

For the case under consideration, m = n = r = t ,  for which 
Y- = 0, Y+ = 4, and 

c 4  1 1  
r - w  lim - r = 1 log( 1 + P Y )  - lr / z d u  

1 + 2 tanh-' ~ 

d m -  1 = IogP- 1 + 
2P Jm' 

The closed form of the integral was pointed out to me re- 
cently by [ 6 ] .  
Remark 2. The result from the theory of random matrices 
used in Example 5 applies to random matrices that are not 
necessarily Gaussian. For equation (13) to hold it is suffi- 
cient for H to have i.i.d. entries of unit variance. 
Remark 3. The reciprocity property that we observed for 
deterministic H does not hold for random H :  Compare Ex- 
amples 3 and 4 where the corresponding H's are transposes 
of each other. In Example-3, capacity increases without 
bound as r gets large, whereas in Example 4 the capacity is 
bounded from above. 

Nonetheless, interchanging r and t does not change the 
matrix W, and the capacity depends only on P / t  and the 
eigenvalues of W. Thus, if C ( r , t , P )  denotes the capacity 
of a channel with r receivers, t transmitters and total trans- 
mitter power P, then 

C ( a , b , P b ) =  C ( b , a , P a ) .  

Remark4. In the computation preceding Theorem 2 we 
obtained the density of one of the unordered eigenvalues 
of the complex Wishart matrix W. Using the identity (19) 
in the appendix we can find the joint density of any number 
k of unordered eigenvalues of W: 

4.3 ERROR EXPONENTS 

As we did in the case of deterministic H we can com- 
pute the error exponent in the case of fading channel. To 
that end, note first that 

Since H is independent of x, p ( y ,  Hlx) = p ~ ( H ) p ( y l x ,  H )  
and thus 
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Note that 

p(yJx,  H )  = det( rIr)-' exp( - (y - H x ) ~  (y - H x ) )  . 

and for qx = YQ, the Gaussian distribution with covariance 
Q, we can use the results for the deterministic H case to 
conclude 

Noting that A + det(A)-P is a convex function, the argu- 
ment we used previously to show that Q = (P/ t ) I ,  maxi- 
mizes the mutual information applies to maximizing Eo as 
well. and we obtain 

P HHt) -'] . (14) 

To efficiently compute Eo, one would represent the 
Wishart eigenvalue density as a Vandermonde determi- 
nant, (just as in the previous section), and orthonormalize 
the monomials 1, A ,  X2,. . . , A'"-', with respect to the inner 
product 

The multiplicative factor picked up in the orthonormaliza- 
tion is the value of the expectation in (14). 

As before, the restriction of qx  to Gaussian distributions 
is suboptimal, but this choice leads to simpler expressions. 

5 NON-ERGODIC CHANNELS 

We had remarked at the beginning of the previous sec- 
tion that the maximum mutual information has the mean- 
ing of capacity when the channel is memoryless, i.e., when 
each use of the channel employs an independent realization 
of H. This is not the only case when the maximum mutual 
information is the capacity of the channel. In particular, if 
the process that generates H is ergodic, then too, we can 
achieve rates arbitrarily close to the maximum mutual in- 
formation. 

In contrast, for the case in which H is chosen randomly 
at the beginning of all time and is held fixed for all the 
uses of the channel, the maximum mutual information is in 
general not equal to the channel capacity. In this section 
we will focus on such a case when the entries of H are 
i.i.d., zero-mean circularly symmetric complex Gaussians 
with '€[lhi,12] = 1, the same distribution we have analyzed 
in the previous section. 

5.1 CAPACITY 

In the case described above, the Shannon capacity of 
the channel is zero: however small the rate we attempt to 

communicate at, there is a non-zero probability that the re- 
alized H is incapable of supporting it no matter how long 
we take our code length. On the other hand one can talk 
about a tradeoff between outage probability and support- 
able rate. Namely, given a rate R,  and power P, one can 
find Pout(R, P )  such that for any rate less than R and any 
S there exists a code satisfying the power constraint P for 
which the error probability is less than 6 for all but a set of 
H whose total probability is less than Pou,(R, P ) :  

Pout(R,P) = inf P(!P(Q,H) < R )  (15) 
Q:Q9 

t r ( Q l 9  

where 
!P(Q,H) = logdet(l,+HQHt). 

This approach is taken in [7] in a similar problem. 
In this section, as in the previous section we will take 

the distribution of H to be such that the entries of H are 
independent zero-mean Gaussians, ,each with independent 
real and imaginary parts with variance 1/2. 

Example 6. Consider t = 1. In this case, it is clear that 
Q = P is optimal. The outage probability is then 

!P(logdet(lr+HPHt) < R) = P( log ( l+PHtH)  < R )  

Since H t H  is a y' random variable with 2r degrees of free- 
dom and mean r, we can compute the outage probability 
as 

where r ( a , x )  = ~ ~ u " ' e - ' ' d u  is the incomplete gamma 
function. Let $(P, c )  be the value'of R that satisfies 

P(!P(P,H) 5 R) = 6. (17) 

Figure 3 shows +(P, E) as a function of r for various values 
of E and P. 

Note that by Lemma 5 the distribution of HU is the 
same as that of H for unitary U. Thus, we can conclude 
that 

@(uQutl H) 
has the same distribution as !P(Q,H). By choosing U to 
diagonalize Q we can restrict our attention to diagonal Q. 

The symmetry in the problem suggests the following 
conjecture. 

Conjecture. The optimal Q is  of the form 

P 
-diag( 1 , .  . ., 1,0,. . ., 0 )  
k -- 

k ones t - k :enis 

for some k E { I ,  . . . , t } .  The value of k depends on the rote: 
higher the rate (i.e.. higher the outageprobability). smciller 
the k. 
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$(P,c) vs. r a t  t = 1 for various values of P and c.  Recall that 
$ ( P , c )  is the highest rate for which the outage probability is less 
than c. Each set of curves correspond to the P indicated below 
it. Within each set the curves correspond, in descending order, to 
e = 10-',10-2,10-~ , 10-4. 

0 2 4 6 8 10 

I 
(a) P = OdB 

0 2 4 6 8 I0 
(b) P = 15dB 

0 2 4 6 8 10 
(c) P = 30dB 

Figure 3: The €-capacity f o r t  = 1 as defrned by ( 1  7). 

As one shares the power equally between more trans- 
mitters, the expectation of 9 increases, but the tails of its 
distribution decay faster. To minimize the probability of 
outage, one has to maximize the probability mass of 9 that 
lies to the right of the rate of interest. If one is interested 
in achieving rates higher than the expectation of 9, then it 
makes sense to use a small number of transmitters to take 
advantage of the slow decay of the tails of the distribution 
of 9. Of course, the corresponding outage probability will 
still be large (larger than 4, say). 

Example 7. Consider r = 1. With the conjecture above, it 
suffices to compute P(@( ( P / t ) I r l  H) < R) for all values 
of t ;  if the actual number of transmitters is, say, T ,  then the 
outage probability will be the minimum of the probabilities 
for t = I , .  . . , T .  As in Example 6 we see that HHt is a l2 

! P ( P ( P / t ) I , , H )  5 R) vs. R for various values of P and t .  Each 
set of curves corresponds to the P indicated below it. Within each 
set, the curves correspond, in the order of increasing sharpness, to 
t = 1,2,3,4,5,6,7, 8,9 ,  10 and 100. 

100 + 

10-2 

10-3 

0 0.2 0.4 0.6 0.8 
(a) P = OdB 

10-2 lo-' A 

0 1 2 3 4 
(b) P = 15dB 

0 2 4 6 8 
(c) P = 30dB 

Figure4: Distribution ofP((P/t)I,,H)for r = I .  

statistic with 2r degrees of freedom and mean t ,  thus 

Figure 4 shows this distribution for various values of t  and 
P. It is clear from the figure that large t performs better at 
low R and small t performs better at high R, in keeping with , 

the conjecture. As in Example 3, let $(P, E )  be the value of 
R satisfying 

Figure 5 shows $i(P, E )  vs. t for various values of P and c. 
For the small E values considered in the figure, using all 
available transmitters is always better than using a subset. 
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q ( f , c )  vs.  t for various values of P and c .  Recall that d(  f , c )  is the 
highest rate for which the outage probability remains less than e .  

Each set of curves corresponds to the P indicated below it. Within 
each set the curves correspond, in descending order, to c = lo-', 
1o-*.l0-~, 10-4. 

'/ 
I- 

+--++ 

i 
i. -+ + I 

i 
0 ! / I  I I I 

I 

0 2 4 6 8 1 0  
(c) P = 30dB 

Fisirre 5: The c-cnpcicity for  r = I ,  0.7 defined by (18) .  

6 MULTIACCESS CHANNELS 

Consider now a number of transmitters, say M ,  each 
with t transmitting antennas, and each subject to a power 
constraint P. There is a single receiver with r antennas. 
The received signal y is given by 

where x, is the signal transmitted by the mth transmit- 
ter, n is Gaussian noise as in ( l ) ,  and H,, m = I , .  . . , M  
are r x 1 complex matrices. We assume that the receiver 
knows ail the H,'s, and that these have independent cir- 
cularly symmetric complex Gaussian entries of zero mean 
and unit variance. The multiuser capacity for this commu- 

nication scenario can be evaluated easily by exploting the 
nature of the solution to the single user scenario discussed 
above. Namely, since the capacity achieving distribution 
for the single user scenario yields an i.i.d. solution for each 
antenna, that the users in the multiuser scenario cannot co- 
operate becomes immaterial. A rate vector (R1 . . . , RM) 
will be achievable if 

m 

i= I 
C ~ r ~ l <  C(r ,  mt,rn~), for all m = 1,. . . , M  

where (RfI] ] .  . . , R[MI)  is the ordering of the rate vector from 
the largest to the smallest, and C(a, b, P)  is the single user 
a receiver b transmitter capacity under power constraint P. 

7 CONCLUSION 

The use of multiple antennas will greatly increase the 
achievable rates on fading channels if the channel parame- 
ters can be estimated at the receiver and if the path gains 
between different antenna pairs behave independently. The 
second of these requirements can be met with relative ease 
and is somewhat technical in nature. The first requirement 
is a rather tall order, and can be justified in certain com- 
munication scenarios and not in others. Since the original 
writing of this note in late 1994 and early 1995, there has 
been some work in which the assumption of the availability 
of channel state information is replaced with the assump- 
tion of a slowly varying channel, see e.g., [8]. 

APPENDIX 

Theorem. Given m fiinctions 'p I . . . , 'p ,,,, orthonormal 

1 det(Ak(/\ I ,  . . . , A d )  d F ( A k )  

= (m- k +  1 )  det((Ak-l(A1 ,.. . , Ak-I)). (19) 

Proof: Let @(A) = [p!(A), ...,'p,( X) l t .  Then the ( i , j ) t h  
element of A L ( A I , .  . . ,Ak)  is @(Xi) t@(Aj) .  Note that 
J c D ( X ) ~ @ ( A ) ~ F ( X )  =tnandJ@(X)@(X)tdF(X) = I,. By 
the definition of the determinant 

det(Ak(X1,. . . ,A,)) = C(-l)P"""'n~=I~(A,)t~(A,,) 
CI 
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where the sum is over all permutations N of { 1 , .  . . , k } .  Let 
us separate the summation over a into k summations, those 
for which a ,  = k ,  j = 1 , .  . ,, k, and consider each sum in 
t u rn .For the j th sum, j=1  , . . .  , k - l , n j = k f o r j # k . F o r  
such an a we can define p as pi = ai for i # j, k, and @j = 
Q k .  Note that $ ranges over all permutations of { 1, . . . , k - 
I }  and that per&?) differs from per(&) by I. 

C (- l)Fr'a'n~=l@(Xi)'@(Xcrl) 
a:n,=k 

= c (-l)Pe'(*) ( n i # j , k @ ( X i ) ' @ ( X a , ) )  
a:nj=k 

@( j )  t@(  Xcr, )@( x k )  '@( Ask) 

= - C( - I)V'(P) ( nif: j@(x i )+@(xPi ) )  
B 

@( Aj) '@(Ak)@( X k )  ' @ ( A p , ) .  

Integratingover Xk, and recalling J @ ( x ) @ ( X ) ~ ~ F ( X )  =I,,,, 

( - 1 ) a ) nf= 1 @ ( X I )  @ ( a I ) d F  ( X k  ) 
'cr z=k 

= - ~ ( - 1 ) F r ( q p - I  {=I @ ( X l ) + @ ( ~ + d  

i-1 
= -det(Ak-, ( X i  , . .  . , Xk-1) )  

So, the contribution of the first k - 1 sums to the integral 
in (19) IS  - ( k -  1) det(Ak-l). For the last sum N X  = k .  De- 
line $ as Dl = al for i # k. As before 13 ranges over the 
permutations of { I , .  . ., k -  l}, but now per(@) = per(cr). 

And so, the contribution of the last sum to the integral 
in (19) is mdet(Ak-I). The result now follows by adding 
the two contributions. 0 
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