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Arbitrary direction incident Gaussian beam

scattering by multispheres∗
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Based on spherical vector wave functions and their coordinate rotation theory, the field of a Gaussian beam in

terms of the spherical vector wave functions in an arbitrary unparallel Cartesian coordinate system is expanded. The

beam shape coefficient and its convergence property are discussed in detail. Scattering of an arbitrary direction Gaussian

beam by multiple homogeneous isotropic spheres is investigated. The effects of beam waist width, sphere separation

distance, sphere number, beam centre positioning, and incident angle for a Gaussian beam with two polarization modes

incident on various shaped sphere clusters are numerically studied. Moreover, the scattering characteristics of two kinds

of shaped red blood cells illuminated by an arbitrary direction incident Gaussian beam with two polarization modes

are investigated. Our results are expected to provide useful insights into particle sizing and the measurement of the

scattering characteristics of blood corpuscle particles with laser diagnostic techniques.
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1. Introduction

Calculations on the light-scattering properties of
plane waves or laser beams from an aggregate of par-
ticles are used in many areas, such as biophysics,
microbiology, medicine, oceanography, meteorologi-
cal optics, and so on. Since the advent of the clas-
sic Mie theory,[1] many investigators[2−9] have studied
the scattering properties of spherical particles. The
addition theorem of spherical vector wave functions
(SVWFs) was put forward in Ref. [10] and developed
in Refs. [2], [3], and [5], and the first significant contri-
bution to multisphere scattering through the provision
of a comprehensive solution for a two-sphere chain was
made in Ref. [2]. Then, the scattering of an aggregate
of spherical particles in a general case is solved based
on the generation multiple Mie theory (GMM) devel-
oped by Xu,[4,6−8] T -matrix approach developed by
Wang and Chew[11] and Auger et al.,[12] and discrete-
dipole approximation (DDA) developed by Bruce and
Flatau[13] and Lei et al.[14] However, these approaches
are limited to the plane wave scattering problem. If
a Gaussian beam is used as an excitation source and
the beam waist width is less than or of the same or-

der as the sphere separation distance of two adjacent
spheres, the plane wave assumption utilized in these
earlier analyses will not be valid.

The problem of a Gaussian beam scattering by
multispheres has not yet been figured out, while a
Gaussian beam is a typical laser beam and used ex-
tensively in particle sizing, laser fusion, optical levi-
tation, laser beam cloud penetration, etc.[15] Gerard
et al.[16] derived three methods to compute the beam
shape coefficient (BSC) gn (on-axis) and gm

n (off-axis)
based on several relatively simple approximate Gaus-
sian beam models introduced by Davis[17] and put for-
ward the generalized Lorenz–Mie theory (GLMT) to
solve the problem of a Gaussian beam scattering by
multispheres.[18] Utilizing the addition theorem of the
SVWFs, Doicu and Wriedt[19] presented the BSC of
the off-axis Gaussian beam through different meth-
ods. Wu et al.[20] also put forward an improved al-
gorithm of BSC. Subsequently, many authors have
further studied various cases of a particle scattering
Gaussian beam.[15,21−23] However, most of the above
references dealt only with a single object scattering the
Gaussian beam. Due to the difficulty and complexity
of the BSC calculation and the addition theorem co-
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efficients used to solve the interaction of two spheres
in the multi-particle scattering problem, published re-
sults on multiple scattering Gaussian beam are rather
scarce. Based on the “order-of-scattering” technique
introduced by Fuller and Kattawar,[9] Barton et al.[24]

investigated the internal field and far-region scattering
field of only two adjacent spheres scattering a focused
Gaussian beam. Bai et al.[25] investigated the interac-
tion of a sphere chain with a Gaussian beam. However,
in their study, the incident direction of the Gaussian
beam and the direction of the sphere chain were com-
pletely coincident, as a result, they adopted the BSC
and the addition theorem coefficients in the simplest
case, namely, the on-axis BSC and the addition theo-
rem coefficients while m = ±1. In the present paper, a
more complicated scattering problem where arbitrar-
ily distributed aggregate spheres scatter an off-axis
Gaussian beam is studied. The off-axis BSC and the
addition theorem coefficients while m = −n, n are
considered.

In some particle sizing experimentations, the lab-
oratory coordinate system is fixed. Hence, it is neces-
sary to change the incident direction of the Gaussian
beam to obtain more scattering information about
fixed aggregate particles. However, the BSC in the
laboratory coordinate system is difficult to derive. In
this paper, BSC in arbitrary unparallel Cartesian co-
ordinate system is derived through the introduction
of Euler angles α, β, γ[26] and the coordinate-rotation
theory of the SVWF in two unparallel Cartesian co-
ordinate systems.[27] The BSC is more complicated
than the off-axis BSC and its convergence property
is numerically discussed. Afterwards, the analytical
solution on the multisphere particles with arbitrary
configuration scattering an arbitrary direction inci-
dent Gaussian beam is derived based on the GMM
developed in Refs. [4], [6]–[8]. Some selected figures
on the total scattering intensities of various shaped
sphere clusters and red blood cells (RBCs) illuminated
by x′-polarization or y′-polarization Gaussian beams
with different beam waist widths and different inci-
dent angles are presented. This work is helpful for
providing some theoretical tools and benchmarks for
further research on the transfer and scattering of a
Gaussian beam by an aggregate of particles which are
randomly distributed. In the subsequent depiction, a
time dependence of the form exp(−iωt) is assumed
and suppressed, where ω is the circular frequency.

2. Theoretical formulation

2.1.BSC in arbitrary coordinate system

In order to indicate the randomicity of the in-
cident direction of Gaussian beam and the config-
uration of the aggregation of spherical particles, a
Cartesian coordinate system Oxyz is built and serves
as a fixed global coordinate system. As shown in
Fig. 1, L homogeneous isotropic spheres with radii
aj (j = 1, 2, . . . , L) in Oxyz are illuminated by a z′-
propagating monochromatic Gaussian beam polarized
in x′O′z′-plane, which is characterized by the trans-
verse component of the electric field in the beam co-
ordinate system O′x′y′z′ as

Eix(x′′, y′′, 0) = E0 exp[−(x′′2 + y′′2)/w2
0], (1)

where E0 is the amplitude of the beam centre O′, w0

is the beam waist width and the y′-axis component
Eiy(x′′, y′′, 0) = 0.

Fig. 1. L spheres illuminated by an arbitrary direction

incident Gaussian beam.

We establish a rectangular coordinate system
Ojxjyjzj with an arbitrary sphere centre Oj , which
is parallel to Oxyz. Due to the randomicity of the
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incident direction, Ojxjyjzj and O′x′y′z′ are not al-
ways parallel. Accordingly, the field of the incident
Gaussian beam cannot be simply expanded in terms
of the SVWF’s in the j-th sphere coordinate sys-
tem Ojxjyjzj . Thus, a temporary coordinate system
Ojx

′
jy

′
jz

′
j parallel to O′x′y′z′ is introduced to make

the field of the incident Gaussian beam be expanded
in terms of the SVWF in Ojx

′
jy

′
jz

′
j as

Eij′(r) = E0

∞∑
n=1

n∑
m=−n

Cnm[igmj′

n,TEM (1)
mn

+ gmj′

n,TMN (1)
mn],

Hij′(r) = E0
k0

ωµ0

∞∑
n=1

n∑
m=−n

Cnm[gmj′

n,TEN (1)
mn

− igmj′

n,TMM (1)
mn], (2)

where

Cnm =


in−1 2n + 1

n(n + 1)
, m ≥ 0,

(−1)|m| (n + |m|)!
(n − |m|)!

in−1 2n + 1
n(n + 1)

, m < 0.

(3)
The SVWF M and N can be written as[1,4]

M (l)
mn(kr, θ, φ)

= z(l)
n (kr)

[
im

Pm
n (cos θ)
sin θ

e imφθ̂ − dPm
n (cos θ

dθ
e imφφ̂

]
,

N (l)
mn(kr, θ, φ)

= n(n + 1)
z
(l)
n (kr)
kr

Pm
n (cos θ) e imφr̂ +

1
kr

d(rz(l)
n (kr))
dr

×
[

dPm
n (cos θ)
dθ

θ̂ + im
Pm

n (cos θ)
sin θ

φ̂

]
e imφ, (4)

where z(l)
n represents an appropriate kind of spherical

Bessel functions: the first kind jn, the second kind yn,
or the third kind h(1)

n and h(2)
n , denoted by l = 1, 2, 3,

or 4, respectively; Pm
n (cos θ) is the associated Legen-

dre function of the first kind.
The expansion coefficients gmj′

n,TE and gmj′

n,TM in
Eq. (2) are the so-called BSCs. The field of the Gaus-
sian beam is not a rigorous solution to the vector wave
equation, so it is difficult to give an analytical form
of the BSC. However, various approximate solutions
have been given, as discussed in the introduction. The
Gaussian beam arbitrarily polarized in x′O′z′-plane
can be decomposed into two orthogonally linear polar-
ization beams, namely, an x′-polarization beam and a
y′-polarization beam. If there are no particular re-
quirements for accuracy and beam waist width, the
localized approximation with the sum of series, given

by Doicu and Wriedt,[19] is a preferable selection, ow-
ing to the calculation time. For the x′-polarization
Gaussian beam, the BSC can be expressed as[

gmj′

n,TM

igmj′

n,TE

]
= (−1)m−1Knmψ′

j e ik0z′
j

× 1
2

[
e i(m−1)ϕ′

j Jm−1

(
2
Q̄′

jρ
′
jρn

w2
0

)
± e i(m+1)ϕ′

j Jm+1

(
2
Q̄′

jρ
′
jρn

w2
0

)]
, (5)

where

ψ′
j = iQ̄′

j exp(−iQ̄′
jρ

′2
j /w2

0)

× exp(−iQ̄′
j(n + 0.5)2/k2

0w
2
0),

Q̄′
j = (i − 2z′j/(k0w

2
0))

−1,

ρ′j =
√

x
′2
j + y

′2
j , ρn = (n + 0.5)/k0,

ϕ′
j = arctan(x′

j/y′
j), k0 = 2π/λ, (6)

Knm =


(−i)|m| i

(n + 0.5)|m|−1
, m 6= 0,

n(n + 1)
n + 0.5

, m = 0,

(7)

where (x′
j , y′

j , z′j) is the coordinate of the beam centre
O′ in the temporary coordinate system Ojx

′
jy

′
jz

′
j . The

subscript or superscript j = 1, 2, . . . , L indicates the
relative parameter of the j-th sphere. In what follows,
the formulae are shown to have similar expressions in
the two coordinate systems.

For arbitrary two coordinate systems with the
same origin such as the temporary coordinate system
Ojx

′
jy

′
jz

′
j and the j-th coordinate system Ojxjyjzj

shown in Fig. 1, the rotation relations of these co-
ordinate systems can be described by the Euler angles
α, β, γ.[26] Generally, the coordinates of the beam
centre O′ and the j-th sphere centre in global coordi-
nate system Oxyz are known and assumed to be (x′,
y′, z′) and (xj , yj , zj), respectively. Accordingly, the
coordinate (x′

j , y′
j , z′j) can be obtained through the

coordinate rotation theory to be
x′

j

y′
j

z′j

 =


cos α − sinα 0

sinα cos α 0

0 0 1




cos β 0 − sinβ

0 1 0

sinβ 0 cos β



×


cos γ − sin γ 0

sin γ cos γ 0

0 0 1




x′ − xj

y′ − yj

z′ − zj

 . (8)

The BSC in the temporary coordinate system
Ojx

′
jy

′
jz

′
j parallel to the beam coordinate system
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O′x′y′z′ has now been obtained, but what we want is
the BSC in the j-th coordinate system Ojxjyjzj . For
Ojx

′
jy

′
jz

′
j and Ojxjyjzj , the SVWFs in these coordi-

nate systems have the following relation with Euler
angles α, β and γ[27]

(M ,N)(1)mn(kr′j , θ
′
j , ϕ

′
j)

=
n∑

s=−n

ρ (m, s, n)(M ,N)(1)sn (krj , θj , ϕj) , (9)

where

ρ(m, s, n) = (−1)s+m e isγ

[
(n + m)!(n − s)!
(n − m)!(n + s)!

]1/2

×u(n)
sm(β) e imα, (10)

with

u(n)
sm(β) =

[
(n + s)!(n − s)!

(n + m)!(n − m)!

]1/2

×
∑

σ

(
n + m

n − s − σ

)(
n − m

σ

)
(−1)n−s−σ

×
(

cos
β

2

)2σ+s+m(
sin

β

2

)2n−2σ−s−m

.

(11)

Fig. 2. Values of BSC fmn versus term of order n.
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Substituting Eq. (9) into Eq. (2) and interchanging
between summation orders, m and s, the expansion
of the field of the incident Gaussian beam in terms of
the SVWF in arbitrary j-th sphere coordinate system
can be derived as

Eij = −E0

∞∑
n=1

n∑
m=−n

[
f ij

mnN (1)
mn − igij

mnM (1)
mn

]
,

Hij = E0
k0

ωµ0

∞∑
n=1

n∑
m=−n

[
gij

mnN (1)
mn + if ij

mnM (1)
mn

]
, (12)

where f ij
mn and gij

mn are the BSC in the arbitrary j-th
sphere coordinate system and can be expressed as

(
f ij

mn,−gij
mn

)
=

n∑
s=−n

ρ(s,m, n)Cns

×
(
gsj′

n,TM, gsj′

n,TE

)
, (13)

and ρ(s,m, n) can be obtained through interchanging
between m and s in Eq. (12). For the y′-polarization
Gaussian beam, we can also obtain the BSC through
similar derivation as(

f ij
mny′ , g

ij
mny′

)
= −i

(
f ij

mn,−gij
mn

)
, (14)

In as much as the simple relation, we only need to
study the characteristic of either BCS. Some selected
results are given in order to study the property of the
BCS for an x′-polarization Gaussian beam as follows.

Figure 2 shows the values of BSC fmn versus the
term of the order n in several cases. It can be observed
that (i) the BSC has an excellent convergence prop-
erty with the increase of the term of the order n in
each case shown above; (ii) the larger the term of the
order m, the quicker the convergence is (see Fig. 2(a);
(iii) Euler angles α, β and γ have little influence on
convergence speed, but strongly affect the magnitude
of the BSC as compared with Figs. 2(b)–2(d) and 2(f);
(iv) the larger the beam waist width, the slower the
convergence is and the larger the magnitude of the
BSC is (see Fig. 2(e)).

2.2. Scattered and internal fields of each

sphere

The scattered and internal fields can be expanded
in terms of the SVWFs in the j-th sphere coordinate
system Ojxjyjzj ,

Esj = E0

∞∑
n=1

n∑
m=−n

[
asj

mnN (3)
mn − ibsj

mnM (3)
mn

]
,

Hsj = −E0
k0

ωµ0

∞∑
n=1

n∑
m=−n

×
[
bsj
mnN (3)

mn + iasj
mnM (3)

mn

]
, (15)

EIj = −E0

∞∑
n=1

n∑
m=−n

[
AIj

mnN (1)
mn − iBIj

mnM (1)
mn

]
,

HIj = E0
kj

ωµj

∞∑
n=1

n∑
m=−n

×
[
BIj

mnN (1)
mn + iAIj

mnM (1)
mn

]
, (16)

where kj = 2πNj/λ, µ0 and µj are the permeability
of the free space and the j-th dielectric sphere, respec-
tively.

2.3.Total incident fields of each sphere

The interaction between two arbitrary spheres
should be considered for multi-particle scattering
problem, resulting in the fact that the total incident
fields of each sphere consists of not only the initial in-
cident field but also the scattered fields from the other
spheres. For instance, the total incident fields on the
j-th sphere should be expressed as

Eitj = Eij +
L∑

(l 6=j)

Esl,j ,

Hitj = Hij +
L∑

(l 6=j)

Hsl,j , (17)

where l = 1, 2, . . . , L and j = 1, 2, . . . , L. In order
to predigest the forms of the total incident fields, we
need to use the addition theorem of the SVWF. For
any two parallel coordinate systems, the addition the-
orem is actually to seek the relations of the SVWF
between these two coordinate systems. As shown in
Fig. 3, for arbitrary two parallel coordinate systems
Olxlylzl and Ojxjyjzj , the SVWF in these coordinate
systems have the following relations[2,5,10]

Fig. 3. Transform of coordinate system for addition the-

orem.
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when rl ≤ dlj , rl ≤ dlj ,
M

(3)
mn(rl, θl, φl) =

∞∑
υ=1

v∑
µ=−v

[Amn
µυ (l, j)M (1)

µυ (rj , θj , φj) + Bmn
µυ (l, j)N (1)

µυ (rj , θj , φj)],

N
(3)
mn(rl, θl, φl) =

∞∑
υ=1

v∑
µ=−v

[Amn
µυ (l, j)N (1)

µυ (rj , θj , φj) + Bmn
µυ (l, j)M (1)

µυ (rj , θj , φj)];
(18)

when rl ≥ dlj , rj ≥ dlj ,
M

(3)
mn(rl, θl, φl) =

∞∑
υ=1

v∑
µ=−v

[Ãmn
µυ (l, j)M (3)

µυ (rj , θj , φj) + B̃mn
µυ (l, j)N (3)

µυ (rj , θj , φj)],

N
(3)
mn(rl, θl, φl) =

∞∑
υ=1

v∑
µ=−v

[Ãmn
µυ (l, j)N (3)

µυ (rj , θj , φj) + B̃mn
µυ (l, j)M (3)

µυ (rj , θj , φj)],
(19)

where A and B are addition theorem coefficients and
the detailed expressions can be obtained from Refs. [2],
[4] and [5]. Then, substituting Eqs. (18), (12), and
(15) into Eq. (17), we can derive the total incident
fields of each sphere as

Eitj = E0

∞∑
n=1

n∑
m=−n

[ f itj
mnN (1)

mn(k0rj , θj , φj)

− igitj
mnM (1)

mn(k0rj , θj , φj)],

Hitj = −E0
k0

ωµ0

∞∑
n=1

n∑
m=−n

[ gitj
mnN (1)

mn(k0rj , θj , φj)

+ if itj
mnM (1)

mn(k0rj , θj , φj)], (20)

where

f itj
mn = −f ij

mn +
L∑

(l 6=j)

∞∑
v=1

v∑
µ=−v

[asl
µvAµυ

mn(l, j)

− ibsl
µvBµυ

mn(l, j)], (l 6= j),

gitj
mn = −gij

mn +
L∑

(l 6=j)

∞∑
v=1

v∑
µ=−v

[iasl
µνBµυ

mn(l, j)

+ bsl
µvAµυ

mn(l, j)], (l 6= j). (21)

2.4. Scattering coefficients

For the j-th sphere, the boundary conditions are
written as

Eitθj + Esθj = EIθj ,

Eitφj + Esφj = EIφj , (rj = aj),

Hitθj + Hsθj = HIθj ,

Hitφj + Hsφj = HIφj , (rj = aj). (22)

Utilizing the expressions of the SVWFs (4), the
components of the total incident fields, the scattered
and internal fields can be gained and substituting
them into Eq. (22), as done in Mie theory,[1] the in-
teractive scattering coefficients can be derived easily

as

asj
mn = aj

nf itj
mn, bsj

mn = bj
ngitj

mn, (23)

where aj
n and bj

n are Mie scattering coefficients.[1] The
total scattered fields are our concerned problem and
can be written as

Est =
L∑

l=1

Esl, Hst =
L∑

l=1

Hsl. (24)

Using the addition theorem (19), the total scat-
tered fields of the entire aggregation in the global co-
ordinate system can be obtained as

Est=E0

∞∑
n=1

n∑
m=−n

[
ast

mnN (3)
mn − ibst

mnM (3)
mn

]
,

Hst =
−E0k0

ωµ0

∞∑
n=1

n∑
m=−n

[
bst
mnN (3)

mn + iast
mnM (3)

mn

]
,(25)

where

ast
mn = asj0

mn +
L∑

l 6=j0

∞∑
v=1

v∑
µ=−v

[as2
µvÃµυ

mn(l, j0)

− ibs2
mnB̃µυ

mn(l, j0)],

bst
mn = bsj0

mn +
L∑

l 6=j0

∞∑
v=1

v∑
µ=−v

[ias2
µvB̃µυ

mn(l, j0)

+ bs2
mnÃµυ

mn(l, j0)]. (26)

For the y′-polarization Gaussian beam, the scat-
tering coefficients can be similarly obtained by using
Eq. (4) in the above derivation.

Substituting Eq. (4) into Eq. (25), we can derive
the normalized total far-region scattering intensity for
scattering electric field as

Ist = Is‖ + Is⊥

= lim
r−>∞

k2r2{|Estθ|2 + |Estφ|2}/|E0|2,

=
1
π

{∣∣∣∣ ∞∑
n=1

n∑
m=−n

(−i)n e imφ
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× [ast
mnτmn − ibst

mnmπmn]
∣∣∣∣2

+
∣∣∣∣ ∞∑

n=1

n∑
m=−n

(−i)n+1 e imφ

× [−ast
mnmπmn + ibst

mnτmn]
∣∣∣∣2}, (27)

where Is‖ and Is⊥ denote the scattering intensities in
the directions parallel and perpendicular to the scat-
tering plane, respectively.

3. Results and discussion

In this section, we focus mainly on the effects
of the beam waist width, sphere separation distance,
sphere number, beam center positioning, polarization
and incident angle for a Gaussian beam incidence.
Moreover, the most general theory is used to study the
scattering characteristic of biological particles. The
total scattering intensity of various shaped RBCs illu-
minated by an arbitrary direction incident Gaussian
beam with x′-axis or y′-axis polarization is presented.

3.1.Validation of theory and codes

To validate the theory, some results are selected
to be compared with the published data and numer-
ical results provided by the CST software. As shown
in Fig. 4(a), the total scattering intensities of closely
packed pyramid-like aggregate acrylic spheres illumi-
nated by a z-propagating Gaussian beam with w0 =
20λ and two polarization modes are compared with
those obtained from the program “gmm01f.f” which is
provided and applied to the GMM by Xu,[4,6−8] and
the CST software for a plane wave incidence, respec-
tively. The good agreement can confirm the accuracy
of our theory and the dependability of the CST soft-
ware.

Like Fig. 4(a), figure 4(b) shows the angular dis-
tributions, but the incident angle β = 30◦ and beam
waist width w0 = 1λ, 2λ, 3λ, and 20λ. It is observed
for either polarization mode that i) the total scatter-
ing intensity increases with the increase of the beam
waist width for an oblique incident Gaussian beam,
while a similar performance for a normally incident
Gaussian beam on a sphere chain has been studied
by Bai;[25] ii) both the curves “w0 = 20λ(x′-P)” and
“w0 = 20λ(y′-P)” are in good agreement with the cor-
responding curves “CST” offered by the CST software,
which can testify the correctness of our theory formu-
lae for the arbitrary incident direction Gaussian beam

scattered further; and iii) the peak values and their
oscillation positioning of the curves for x′-P and y′-
P are distinct except for the maxima at the incident
direction.

It is worthwhile noting that “x′-P” and “y′-P” de-
note “x′-polarization” and “y′-polarization”, respec-
tively; the observing plane azimuth angle is 0◦ in
Fig. 4, namely, xoz plane. The following figures also
have the same expressions. The incident angle α = 0◦

and γ = 0◦ in Fig. 4, which indicates that xoz plane
and the x′oz′ plane are consistent and the y axis of
the global coordinate system Oxyz and y′ axis of the
beam coordinate system O′x′y′z′ are the same. It can
be observed from Fig. 1(b).

Fig. 4. Angular distributions of scattering intensity of 14

acrylic spheres for (a) positive incidence and (b) oblique

incidence.

3.2. Effects of sphere separation distance

and sphere number

Angular distributions of the total scattering in-
tensity of 3-close-packed-water-drop chain illuminated
by a vertical incident Gaussian beam with different
waist widths are shown in Fig. 5(a). It can be found
that 1) the lager the beam waist width, the higher the
oscillation of the angular distribution is and the closer
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to the incident direction (90◦) the first extremum
point resulting from the fact that as the beam waist
width increases, the interaction among the contiguous
spheres is more obvious, the interference point will
be moved and produced; 2) the angular distribution,
when the beam waist width is very small comparing
with the radius, approaches that of a sphere, which
indicates that the interaction is quite weak. This
property can be applied to the study of particle sizing.
Figure 5(b) shows the angular distributions for two
polarization modes. It can be observed that the os-
cillation of the angular distribution for x′-P is shaper
than that for y′-P at the backward direction (270◦)
and lateral direction (0◦), owing to the stronger inter-
action for x′-P. Comparing Fig. 5(b) with Fig. 4(b),
we find that the range of the same scattering intensity
of a sphere chain is larger than that of a pyramid-like
aggregate spheres at forward direction for both x′-P
and y′-P due to better symmetry of a sphere chain.
Furthermore, the angular distribution is symmetri-
cal with respect to the incident axis as a result of the

Fig. 5. Angular distributions of scattering intensity of

a sphere chain consisting of 3 water drops. (a) Different

beam waist widths. (b) Different polarization modes.

symmetries of both the sphere chain and the Gaussian
beam.

Like Fig. 5, figure 6 shows the angular distribu-
tions for different values of sphere separation distance
dj , different sphere numbers, different incident angles
and beam centres. In view of the symmetry, angu-
lar distributions only from 90◦ to 270◦ are shown in
Fig. 6(a). It can be observed from Fig. 6(a) that (I)
the larger the sphere separation distance dj , the more
the angular distribution coincides with that of a sphere
and the smaller the oscillation period of the scattering
intensity in the lateral direction (150◦–230◦). This is
because as dj increases, the interaction among the
adjacent spheres weakens and the interaction will be
existent until dj ≥ 100aj . This observation might be
very useful in particle sizing with laser diagnostic tech-
niques; (II) the sphere number only affects the scat-
tering intensity in the lateral direction (150◦–230◦)
and the larger the sphere number, the stronger the in-
teraction in the lateral direction (150◦–230◦) is, then
the more the extremum points to the lateral direction
(150◦–230◦). In Fig. 6(b), the scattering intensities

Fig. 6. Angular distributions of the scattering intensity of

different sphere chains consisting of 3 water drops. (a) Dif-

ferent sphere separation distances and sphere number, and

(b) different incident angles and beam centre positioning.
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for incident angle β = 30◦ and 90◦ and beam centre
position z′ = 0 and 1 µm are described, respectively.
It can be observed that the symmetry of the distribu-
tion of the scattering intensity is destroyed completely
when the symmetry axis of the Gaussian beam is not
coincident with that of the aggregate spheres.

3.3. Effects of beam centre positioning

Angular distributions of the total scattering in-
tensity of a closely packed tetrahedral cluster illumi-
nated by an x′-P or a y′-P Gaussian beam with the
beam centre moving away from the centre of the clus-
ter along the z axis and the x axis are described in
Fig. 7. It can be indicated that I) for both x′-P and
y′-P Gaussian beams, as the beam centre moves away
from the centre of the cluster along the z axis or the
x axis, the scattering intensity always decreases as a
result of the incident beam spreading, however, the an-
gular distribution little changes; II) the velocity of the
reduction of the scattering intensity when beam is in-
cident along the x axis is much larger than that along
the z axis as a result of the incident beam off z axis.

Fig. 7. Angular distributions of scattering intensity of

a closely packed tetrahedral cluster. (a) Away from the

centre along z axis and (b) away from the centre along x

axis.

After careful examinations and simulations, it is found
that the scattering intensity has a similar scattering
performance for beam centre moving away from the
centre of the cluster along the y axis to that along
the x axis. Hence, the figures of the angular distribu-
tions of the total scattering intensity for beam centre
moving away from the centre of the cluster along the
y axis are not given here in detail due to the paper
length restriction.

By comparing Fig. 7(a) with Fig. 7(b), it can be
found that the scattering intensities at 0◦–10◦ for x′-P
and y′-P Gaussian beams propagating along the z axis
are the same because the symmetry axis of the Gaus-
sian beam is coincident with the z axis. When the
Gaussian beam propagates off z axis, the scattering
intensity for x′-P Gaussian beam is totally different
because the symmetry axis of the Gaussian beam is
not coincident with the z axis.

3.4. Scattering characteristics of biolog-

ical particles

A red blood cell (RBC) is a classic biological par-
ticle. Owing to blood plasma proteins and under suf-
ficiently low flow rates, erythrocytes fasten together
along their axis of symmetry and form aggregates
called rouleaux.[28] Thus, the RBC can be approxi-
mated as a blood swatch of a spherical particle cluster.
Generally, the RBC in blood is characterized by radius
a = 3.5 µm and refractive index N = 1.47 and the re-
fractive index of the blood swatch is often assumed to
be 1.3325–1.360. Here we adopt 1.34. Later, we will
exhibit some selected angular distributions of the total
scattering intensity of some shaped cluster composed
of a few RBCs illuminated by a Gaussian beam with
different incident angles and beam waist widths.

Figure 8(a) shows the angular distributions of the
total scattering intensity of a closely packed sphere
chain composed of 3 RBCs illuminated by an x′-P
Gaussian beam with different beam waist widths. It
can be found that a) the scattering intensity at the
incident direction is not the maximal value when the
beam waist width (w0 = 1λ) is smaller than the ra-
dius of the RBC since the interaction magnitude of
two adjacent RBCs is comparable to the scattering
intensity of an RBC, then the effect of the interaction
will be obvious. When w0 is comparable to the radius
of the RBC, the effect of the interaction in a forward
direction will be very weak; b) the oscillation of the
scattering intensity of 3 RBCs is sharper than that of
an RBC, which is also due to the effect of the inter-
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action. As Fig. 8(a), figure 8(b) shows angular distri-
butions for the Gaussian beam with different incident
angles. It can be observed that the forward scatter-
ing intensities are different for different incident angles
as a result of interaction or interference magnitude in
the incident direction for different incident angles. By
comparing Fig. 5 with Fig. 8, it can be found that the
angular distribution of the scattering intensity of the
RBCs oscillates more sharply than that of the water
drops because of the larger size parameter of the RBC
than that of the water drop.

Fig. 8. Angular distributions of scattering intensity of a

closely packed sphere chain composed of 3 RBCs: (a) dif-

ferent beam waist widths and (b) different incident angles.

Figure 9 shows angular distributions of the total
scattering intensity of a trigonal cluster symmetrical
along the x axis, composed of 3 RBCs illuminated by
an x′-P or y′-P Gaussian beam with different values
of incident angle α, β and γ. It can be observed that
the forward scattering intensities of a closely packed
trigonal cluster composed of 3 RBCs also change with
incident angle. A comparison among Figs. 9(a), 8(b),
7, 5(b), and 4(b) indicates that the scattering inten-
sities of x′-P and y′-P Gaussian beams are affected

by the configuration of the aggregate sphere, the inci-
dent direction and the beam centre positioning of the
Gaussian beam.

Fig. 9. Angular distributions of scattering intensity of a

closely packed trigonal cluster composed of 3 RBCs; (a)

changing incident angle β and (b) changing incident angle

α, β and γ.

For arbitrary incident angle α, β, and γ, while
β = 0◦, changing α or γ by the same magnitude, we
will obtain absolute scattering intensity. This can be
explained through Fig. 1 as follows: while β = 0◦,
the incident direction of the Gaussian beam keeps un-
changed if we change α or γ by the same magnitude.
When α = 0◦, the position of the forward scattering
intensity is determined by β. In fact, Euler angles α

and β, scattering angle θ and azimuth angle ϕ are re-
lated as α = ϕ and β = θ. When α = 0◦, different
α values only denote different observing planes corre-
spondingly. When α, β and γ are all not equal to 0◦,
the scattering intensity will be quite sensitive to the
Euler angles.

4. Conclusion

The BSC in an arbitrary unparallel Cartesian co-
ordinate system is derived based on the coordinate
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rotation theory of the SVWF. The convergence prop-
erty of the BSC for the terms of orders n and m, the
incident angle and the beam waist width are numer-
ically discussed. In addition, the most general case
for an aggregate of spheres scattering an arbitrary di-
rection incident Gaussian beam with two polarization
modes is studied based on the GMM. The accuracy
of the theory is verified by comparing the numeri-
cal results, while the Gaussian beam degenerates as a
plane wave incidence, with the results obtained from
the published data and CST software, separately. The
effects of the beam parameters and the sphere sepa-
ration distance on scattering property are numerically
analysed. It is indicated that the beam waist width
and the beam centre position moving away from the
cluster centre along the x axis and the z axis have lit-
tle influence on angular distribution, but they affect
the magnitude of the scattering intensity significantly.
The angular distribution of the total scattering inten-
sity is determined just by the sphere illuminated by
the Gaussian beam, when the sphere separation is very
large or the beam waist width is very small compared
with the sphere radius. The scattering properties and
the polarization characteristics of various shaped clus-
ters composed of RBCs illuminated by a Gaussian
beam with different incident angles and beam waist
widths are also discussed in detail.

It is worthwhile to note that the theory and the
numerical arithmetic described in this paper are appli-
cable to the randomly distributed aggregated spheri-
cal particles whose radii are comparable to the inci-
dent wavelength, including aggregation particles sta-
tistically distributed in spatial coordinate such as soot
aggregation particles. We can study its scattering
characteristic using this theory through simulating its
spatial configuration using the Monte Carlo method.
In addition, the theoretical method and the numerical
results in this paper are conducible to an effective cal-
ibration for further research on the transfers and scat-
tering of the Gaussian beam on randomly distributed
particles, to the study of particle sizing with laser di-
agnostic techniques and the reverse scattering problem
for aggregation particles.
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