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Abstract—Real-world phenomena that can be formulated as
signals are often affected by a number of factors and appear
as multi-component modes. To understand and process such
phenomena, “divide-and-conquer” is probably the most common
strategy to address the problem. In other words, the captured
signal is decomposed into signal components for each individual
component to be processed. Unfortunately, for signals that are
superimposition of non-stationary amplitude-frequency modu-
lated (AM-FM) components, the “divide-and-conquer” strategy
is bound to fail, since there is no way to be sure that the
decomposed components take on the AM-FM formulations which
are necessary for the extraction of their instantaneous frequencies
(IFs) and amplitudes (IAs). In this paper, we propose an adaptive
signal separation operation (ASSO) for effective and accurate
separation of a single-channel blind-source multi-component sig-
nal, via introducing a time-varying parameter that adapts locally
to IFs and using linear chirp (linear frequency modulation)
signals to approximate components at each time instant. We
derive more accurate component recovery formulae based on the
linear chirp signal local approximation. In addition, a recovery
scheme, together with a ridge detection method, is also proposed
to extract the signal components one by one, and the time-
varying parameter is updated for each component. The proposed
method is suitable for engineering implementation, being capable
of separating complicated signals into their components or sub-
signals and reconstructing the signal trend directly. Numerical
experiments on synthetic and real-world signals are presented to
demonstrate our improvement over the previous attempts.

Index Terms—Time-frequency analysis, Adaptive signal sepa-
ration operator, Linear chirp local approximation, Instantaneous
frequency estimation, Multi-component signal separation.

I. INTRODUCTION

For communication, audio, and other applications, a single-
channel multicomponent signal x(t) is usually represented
as a superimposition of Fourier-like oscillatory amplitude-
frequency modulated (AM-FM) components, called the AM-
FM model [1], [2]. Motivated by the empirical mode decom-
position (EMD) [3], we model a multicomponent signal (or in
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terms of a time series) by

x(t) =
K∑
k=1

xk(t) +A0(t) = F (t) +A0(t), (1)

where

F (t) =
K∑
k=1

xk(t) =
K∑
k=1

Ak(t) cos (2πφk(t)) . (2)

Here A0(t), called the trend of x(t), is (at most) minimally
oscillatory. The function F (t) in (2) with 0 < µ ≤ Ak(t) ≤
M , φ′k(t) ≥ 0 and φ′k(t) > 0 almost everywhere (a. e.),
φ′k(t) > φ′k−1(t), and Ak(t), φ′k(t) varying more slowly
than φk(t) (see [4], Eq.(1.3)), is called the AF-FM model,
where Ak(t) are called the instantaneous amplitudes (IAs)
and φ′k(t) the instantaneous frequencies (IFs), which can be
used to describe the underlying dynamics. In the mathematical
literature, F (t) is also called the “adaptive harmonic model
(AHM)” (see for example [4], [5], [6]). Note that it is not
necessary for the components xk to be defined on all of R.
They may be supported on some finite or infinite sub-intervals
of R as considered in [5].

The present paper is devoted to resolving the inverse prob-
lem of recovering the non-stationary signal components xk(t),
k = 1, · · · ,K and trend A0(t) from the “blind-source” data
of the composite signal x(t) governed by the model (1) and
(2), first by extracting the IFs φ′k(t), k = 1, · · · ,K. For the
stationary setting (i.e. for φ′k(t) being positive constants for all
t ∈ R) with trend A0(t) = 0 and positive constant amplitudes
Ak, the solution of this problem already appeared in the classic
work [7] of De Prony (called Prony’s method), where the
number K of components is assumed to be known. Significant
improvements of [7] to allow unknown K and (non-constant)
exponential decay amplitude functions Ak(t), but again for
the stationary setting, were introduced in [8] and [9], called
MUSIC and ESPRIT algorithms, that have profound impact to
the current advancement of wireless communication systems,
particularly for smart antenna design. Later, the notion of
“synchrosqueezed transform (SST)” was introduced in [10] to
extend Prony’s method to the general non-stationary setting.
An extensive study of SST, by using the continuous wavelet
transform (CWT) as well as short-time Fourier transform
(STFT) constitutes the bulk of the Princeton PhD thesis [6].
Detailed and in-depth early work are developed in [5] and [11],
on CWT SST and STFT SST, respectively. Later development
on SST includes [12]-[27].
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It is important to point out the objective of signal separation
to solve an inverse problem which is quite different from
EMD. EMD is an ad hoc computational scheme for decom-
posing a non-stationary signal into its “IMFs” and “trend”,
without the concern of recovering the true IMF and trend of the
source signal. See [28]-[39] for further development of EMD.
To avoid “artifacts” aroused by EMD, the empirical wavelet
transform based on Fourier-Bessel series expansion was in-
troduced in [40], which decomposes multicomponent signals
via wavelet based filter banks. Furthermore, other modified
iteration methods, such the variational mode decomposition
and the discrete energy separation algorithms in [41] and [42],
the eigenvalue decomposition algorithms of Hankel matrix in
[43] and [44] are proved to be very efficient for decomposing
multicomponent non-stationary signals under some conditions.

To obtain IMFs, the SST method consists of two steps.
IFs are estimated from the SST plane. After recovering of
IFs, the IMFs of the source signal are computed by reversible
transforms along each estimated IF curves on the SST plane.

On the other hand, [4] introduced a new method with signal
separation operator (SSO) to solving the inverse problem of
multicomponent signal separation. The time-frequency ridge
of STFT (spectrogram) and time-scale ridge of CWT (scalo-
gram) have been studied in some papers including [45], [46].
However those papers are mainly about using ridges as an
estimator of IFs. The ridges of spectrogram or scalogram
have not been used directly for multicomponent signal com-
ponent recovery (mode retrieval) in those papers. To our best
knowledge, [4] is the first paper to use spectrogram ridges
directly for component recovery: a component is recovered
simply by plugging the ridge to SSO (a variant of STFT).
Thus SSO avoids the second step of the two-step SST method
in signal separation, which depends heavily on the accuracy of
the estimated IFs. In addition, [4] provides theoretical analysis
of the error bounds for IF estimation and component recovery.

A window function is used in SSO. The window function
in [4] has the same window length for all the components
(sub-signals). In this paper we introduce an adaptive signal
separation operator (ASSO) which has a time-varying window
length. In addition, the SSO component recovery formula in
[4] was derived based on the sinusoidal signal approximation,
which requires the IFs of component change slowly. Another
objective of this paper is to deal with signals with fast-varying
IFs. To this regard, we consider a linear chirp-based model
with components of a multicomponent non-stationary signal
approximated by linear chirps.

In this paper we will derive a more accurate component
recovery formula based on linear chirp local approxima-
tion at any time instant. Furthermore, we propose a signal
separation scheme by adopting a time-varying window for
adaptive separation of each sub-signal based on the introduced
ASSO and more accurate component recovery formula. The
main innovations of this paper are: (a) we proposed a more
accurate component recovery formula based on linear chirp
local approximation; (b) we proposed a ridge detection method
and a recovery scheme to extract the signal components one

by one, and the time-varying window is updated for each
component; and (c) the proposed separation algorithm is ca-
pable of separating much complicated multicomponent signals
and reconstructing the signal trend directly. In addition, the
proposed method is suitable for engineering implementation
with truncated Gaussian window and fast Fourier transform
(FFT).

The remainder of the paper is organized as follows. In
Section II, we first review the SSO. After that we formulate
and state the results on the ASSO. Finally we show the
relationship between the SSO and the STFT with a time-
varying parameter σ(t). In Section III, based on the adaptive
STFT and linear chirp local approximation, we derive a
more accurate component recovery formula by analyzing the
component recovery error when the window function is the
Gaussian function. We propose a signal separation scheme
which extracts the signal components one by one with the
time-varying window updated for each component. In Section
IV, we present the numerical experiments on synthetic data
and real data. Our experimental results show that ASSO
outperforms the EMD, SSO and SSTs in signal separation.
Finally, we give a brief conclusion in Section V.

II. ADAPTIVE SIGNAL SEPARATION OPERATOR (ASSO)

In this section, first we recall the signal separation condition
based on the sinusoidal signal local approximation and review
the SSO method. After that we introduce the adaptive signal
separation operator with a time-varying parameter. Finally we
show the relationship between the ASSO and the adaptive
STFT considered in [24].

A. Signal separation by time-frequency analysis

The modified STFT of a signal x(t) ∈ L2(R) with a window
function h(t) ∈ L2(R) is defined by

Vx(t, η) :=

∫
R
x(τ)h(τ − t)e−j2πη(τ−t)dτ, (3)

where t and η are the time variable and the frequency variable
respectively. For a real-valued window function h(t) with
h(0) 6= 0, one can show that a real-valued signal x(t) can
also be recovered back from its STFT Vx(t, η) with integrals
involving only η:

x(t) =
2

h(0)
Re
{∫ ∞
−∞

Vx(t, η)dη
}
. (4)

When all components xk(t) are sinusoidal signals: xk(t) =
Ak cos(2πckt) for some constant Ak, ck > 0, then for η > 0,
the STFT Vxk(t, η) of xk(t) with a window function h(t) is

Vxk(t, η) =
1

2
Ak
(
ej2πcktĥ(η − ck) + e−j2πcktĥ(η + ck)

)
≈ 1

2
Ake

j2πcktĥ(η − ck),

provided that ĥ, the Fourier transform of h(t), decays fast
as η → ∞. Moreover, when xk(t) = Ak(t) cos(2πφk(t))
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with Ak(t) > 0, φ′k(t) > 0 in (2) is well approximated by
sinusoidal functions in a small neighborhood of a fixed t ∈ R,
that is,

xk(t+ u) ≈ Ak(t) cos
(
2π(φk(t) + φ′k(t)u)

)
(5)

for small u, then we have, for η > 0,

Vxk(t, η) ≈ 1

2
Ak(t)ej2φk(t)ĥ(η − φ′k(t)).

Since the support zone of Vxk(t, η) for η > 0 is determined
by the support of ĥ, we need to define the essential support of
ĥ if h is not band-limited. More precisely, for a given threshold
0 < τ0 < 1 small enough, if |ĥ(ξ)|/maxξ |ĥ(ξ)| ≤ τ0
for |ξ| ≥ λh, then we say ĥ(ξ) is essentially supported in
[−λh, λh], which is denoted as supp(ĥ)⊆̇[−λh, λh]. Note that
λh = λh,τ0 depends on τ0. For simplicity, here and below we
drop the subscript τ0.

Hence if supp(ĥ)⊆̇[−λh, λh] for some λh > 0, then
Vxk(t, η) essentially lies in the time-frequency zone given by

Zk := {(t, η) : |η − φ′k(t)| < λh, t ∈ R}.

Therefore, if

φ′k(t)− λh > φ′k−1(t) + λh, 2 ≤ k ≤ K, (6)

then Zk ∩ Z` = Ø, k 6= `, which means the components of
x(t) are well separated in the time-frequency plane. (6) is
a required condition for the study of FSST in [15] and for
the study of the second-order FSST in [20]. This was also
pointed in [47], namely if the STFTs of two components are
mixed, the corresponding FSSTs will not be able to separate
these two components too. This is also true for other linear
time-frequency analysis methods, such as continuous wavelet
transform (CWT) and CWT-based SSTs (see [5], [47]).

[4] introduced signal separation operator (SSO) for signal
IF estimation and component recovery of multicomponent
signals. More precisely, let h(t) be an admissible window
function which is non-negative and even on R, in C3(R),
supp(h) ⊆ [−1, 1] and h(t) 6≡ 0. For a > 0, denote

h̃a :=
∑
n∈Z

h
(n
a

)
. (7)

When a is large enough, then h̃a > 0. The SSO T a,δx of a
signal x(t) is defined as

T a,δx (t, θ) :=
1

h̃a

∑
n∈Z

x(t− nδ)h
(n
a

)
ej2πnθ, (8)

where h is an admissible window function, δ, a > 0 are
parameters.

[4] established that, under certain conditions on
Ak(t), φk(t), when the components of x(t) are well-
separated with T a,δx (t, θ), then the ridge (curve of local
maxima) θ̂k(t) of |T a,δx (t, θ)| corresponding to the IF of the
sub-signal xk(t) gives an approximation to the IF φ′k(t).
Most importantly, the sub-signal xk(t) can be recovered
directly by

x̂k(t) = 2Re
{
T a,δx (t, θ̂k(t)

}
.

The reader is referred to [4] for the details. In the next
two subsections, we introduce adaptive SSO, and then show
its relationship to the STFT with a time-varying parameter,
termed as the adaptive STFT, considered in [24].

B. Adaptive signal separation operator (ASSO)

Definition 1. (ASSO). Let x(t) be a signal given by (1).
For each sub-signal xk in (1), let at > 0 be a time-varying
parameter. The (modified) adaptive signal separation operator
(ASSO) T̃ at,δ applied to x is defined by

T̃ at,δx (t, η) :=
1

h̃at

∑
n∈Z

x(t− nδ)h
( n
at

)
ej2πδnη, (9)

where h is an admissible window function, δ > 0 and at > 0
are parameters, with at large enough such that h̃at defined by
(7) with a = at is positive.

Note that compared with SSO, ASSO uses at > 0 which
depends on t. In addition, θ in (8) is replaced by δη. Thus the
restriction in [4] for θ: θ ∈ [0, 1] is replaced by η ∈ [0, 1/δ].

In the following we also assume
∫
R h(t)dt = 1. In addition,

we assume the signals x(t) given by (1) satisfy the following
conditions, termed as Assumption 1.

Assumption 1. For the non-stationary real signal x = x(t)
in (1), we assume that A0 ∈ C0, 0 < Ak ∈ C0, φk ∈ C2,
and φ′k(t) satisfies (6) for k = 1, ...,K, and that there exists
a constant ε > 0 such that for small u,

|φ′k(t+ u)− φ′k(t)| ≤ ε|u| φ′k(t),
|Ak(t+ u)−Ak(t)| ≤ ε|u| Ak(t), t ∈ R. (10)

Denote

B = B(t) := max
1≤k≤K

φ′k(t), µ = µ(t) := min
1≤k≤K

Ak(t).

Then the following theorem for representation and recovery of
the k-th sub-signal xk(t) in (1) can be followed by Theorem
2.4 in [4].

Theorem 1. Let x(t) be a non-stationary signal in (1)
satisfying Assumption 1. Let δ = 1

εat
√
4B

. Then the following
statements hold for sufficiently small ε > 0 and fixed t ∈ R.

(a) The set Gt :=
{
η : |T̃ at,δx (t, η)| > µ/2

}
is a disjoint

union of some non-empty sets Gk := Gt,k := Gt ∩{η : (t, η) ∈
Zk} with φ′k(t) ∈ Gk.

(b) Let
η̃k(t) := arg max

η∈Gk
|T̃ at,δx (t, η)|. (11)

Then
|η̃k(t)− φ′k(t)| < C ε

1
3 . (12)

(c) With η̃k given by (11), we have∣∣2Re
{
T̃ at,δx (t, η̃k(t))

}
− xk(t)

∣∣ ≤ D ε
1
3 , (13)

where C and D depend on the signal x(t) and the window
function h(t).

3
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C. ASSO and adaptive STFT

The authors of [24] introduced the adaptive STFT. In the
following we show that ASSO is a discretization version of
the adaptive STFT. More precisely, let g = g(t), t ∈ R be a
window function with g(0) 6= 0 and having certain smoothness
and decaying order as t→∞. Denote

gσ(t) :=
1

σ
g(
t

σ
), (14)

where σ > 0 is a parameter. For a signal x(t), the STFT of
x(t) with a time-varying parameter (termed as the adaptive
STFT) is defined in [24] as

V σx (t, η) = V
σ(t)
x (t, η)

:=
∫
R x(τ)gσ(t)(τ − t)e−j2πη(τ−t)dτ

=
∫
R x(t+ τ) 1

σ(t)g( τ
σ(t) )e

−j2πητdτ,
(15)

where σ = σ(t) > 0 is a function of t.

Let us return back to the definition of ASSO. Observe that
when at is large, we have

h̃at =
∑
n∈Z

h(
n

at
) ≈ at

∫
R
h(x)dx = at,

where we have used the assumption
∫
R h(t)dt = 1. Thus,

T̃ at,δx (t, η) = 1
at

∑
n∈Z

x
(
t− (δat)

n
at

)
h
(
n
at

)
e(j2πδηat)

n
at

≈
∫
R x(t− δatu)h(u)ej2πδηatudu

=
∫
R x(t+ τ) 1

δat
h
(

τ
δat

)
e−j2πητdτ,

where the last equality follows from the substitution τ =
−δatu and the fact that h is even. Therefore ASSO T̃ at,δx (t, η)
is a discretization of the adaptive STFT V σtx (t, η) with g = h
and σt = δat.

In the following, when we discuss the IF estimation (12) and
component recovery (13), we will deal with V σtx (t, η) instead
of T̃ at,δx (t, η). In the next section, we will consider the well-
separated condition and more accurate component recovery
formula based on the linear chirp local approximation when g
is the Gaussian window function.

III. COMPONENT RECOVERY BASED ON ASSO AND
LINEAR CHIRP LOCAL APPROXIMATION

As aforementioned, the results with SSO and ASSO in
Section II are based on the sinusoidal signal local approxi-
mation as given in (5). In this section we study component
recovery based on the linear chirp local approximation. Since
T̃ at,δx (t, η) is a variant of the adaptive STFT V σtx (t, η) as
shown in Section II-C, we will focus on V σtx (t, η) from now
on due to its simplicity and we also call it ASSO. From now
on, unless stated otherwise, we will use V σx (t, η) to denote
V σtx (t, η) and we use the Gaussian function as the window
function g:

g(t) = e−
t2

2 /
√

2π. (16)

In this section, first we consider the well-separated condi-
tion. After that we derive a more accurate component recovery

formula after analyzing the recovery error. We propose a
ridge detection method and an ASSO scheme to recover the
component one by one. We also discuss how to select the
time-varying parameter σ(t).

A. Separation condition analysis

To model a frequency-varying signal more accurately, we
consider the local approximation of linear chirps (also called
linear frequency modulation signals). We say s(t) is a (real)
linear chirp if s(t) = A cos

(
2π(ct+rt2/2)

)
. In this paper we

always assume c + rt > 0 when we talk about a real linear
chirp. Then for η > 0, we have

V σs (t, η) ≈ Aej2π(ct+rt
2/2)

2
√

1− j2πσ2r
m
(
η − (c+ rt)

)
, (17)

where
m(ξ) = e

− 2π2σ2

1−j2πrσ2
ξ2
, (18)

and throughout this paper, the root
√
a+ bj of an complex

number a + bj with a > 0 denotes the value locating in the
same quadrant as a+ bj.

To derive (17), we apply the following formula (see [48]
p.121) with α =

√
(2σ2)−1 − jπr and β = 2π(η − c− rt):∫ ∞

−∞
e−α

2u2−iβudu =

√
π

α
e−

β2

4α2 (Re(α) > 0, β ∈ R) (19)

to obtain the STFT of s̃(t) = Aej2π(ct+rt
2/2), the complex-

version of s(t), is

V σs̃ (t, η) =
s̃(t)√

1− j2πσ2r
m
(
η − (c+ rt)

)
.

Therefore, the STFT of s̃(t) = Ae−j2π(ct+rt
2/2) is

V σ
s̃

(t, η) =
s̃(t)√

1 + j2πσ2r
m
(
η + (c+ rt)

)
.

Hence we have

V σs (t, η) =
1

2
V σs̃ (t, η) +

1

2
V σ
s̃

(t, η).

Observe that |m(ξ)| is a Gaussian function and it approaches
to 0 very fast at ξ →∞. In addition, η > 0 and c+rt > 0, thus
the second term on the right-hand side of the above equation
is small and could be negligible, and hence, (17) holds.

Observe that |m(ξ)| gains maximum at ξ = 0. Thus the
ridge of |V σs (t, η)| concentrates around η = c+rt in the time-
frequency plane. Hence if |m(ξ)| is essentially supported in
[−λm, λm] for some λm > 0, then V σs (t, η) lies in the time-
frequency zone given by

{(t, η) : |η − (c+ rt)| < λm, t ∈ R}.

Recall that we say |m(ξ)| is essentially supported in
[−λm, λm] if

|m(ξ)|/max
ξ
|m(ξ)| ≤ τ0,

4
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for all |ξ| ≥ λm, where τ0 is a given threshold with 0 < τ0 <
1. For m given by (18), we have

λm =
√

2| ln τ0|
√

1/(2πσ)2 + (rσ)2. (20)

When xk(t) = Ak(t) cos(2πφk(t)) with Ak(t) > 0,
φ′k(t) > 0 in (2) is well approximated by linear chirps during
any local time of t ∈ R, that is,

xk(t+u) ≈ Ak(t) cos
(
2π(φk(t)+φ′k(t)u+

φ′′k(t)u2

2
)
)

(21)

for small u, then following (17), we have, for η > 0,

V σxk(t, η) ≈ Ak(t)ej2πφk(t)

2
√

1− j2πσ2φ′′k(t)
e
− 2π2σ2(η−φ′k(t))2

1−j2πφ′′
k
(t)σ2 . (22)

Thus V σxk(t, η) lies in the time-frequency zone given by

Zk := {(t, η) : |η − φ′k(t)| < λk,t, t ∈ R},

where

λk,t :=
√

2| ln τ0|
√

1/(2πσ)2 +
(
φ′′k(t)σ

)2
. (23)

Observe that at any (fixed) time instant t, the function on the
right-hand side of (21) is a linear chirp of variable u. When
Ak(t) satisfies (10) for a small ε > 0 and φ

(3)
k (t) is small,

then (21) holds (see [26]). In this case, we say xk(t) is well-
approximated (locally) by linear chirps.

If φk(t) satisfies

φ′k(t)− φ′k−1(t) > λk,t + λk−1,t, t ∈ R, (24)

for all 2 ≤ k ≤ K, then the components of x(t) are
well separated in the time-frequency plane of STFT, namely,
Zk, 1 ≤ k ≤ K, do not overlap. In this case, xk(t) can be
recovered by STFT or the FSST-based methods.

When using the SSO method to estimate IFs and extract
sub-signal xk(t), we care more about the ridges on the time-
frequency plane. So the well-separated condition (24) can be
relaxed to

φ′k(t)− φ′k−1(t) > wk,t, t ∈ R, 2 ≤ k ≤ K, (25)

where wk,t is a quantity satisfying

max{λk,t, λk−1,t} < wk,t < λk,t + λk−1,t. (26)

For example one may use wk,t = max{λk,t, λk−1,t} +
1
2 min{λk,t, λk−1,t}. On the one hand wk,t < λk,t+λk−1,t in
(26) means we allow certain mixture of xk−1(t) and xk(t) on
the STFT plane. On the other hand, wk,t > max{λk,t, λk−1,t}
means wk,t should be great enough to make sure the values on
the ridge (extrema) of |V σxk(t, η)| should not be disturbed by
other components and it will not result in new ridges (artifact
components) on the STFT plane.

Note that if σ = σ(t) is very small, then λk,t in (23) will
be very large, hence neither (24) nor (25) holds. Thus σ must
be larger than a certain positive number, which we denote by
σmin.

B. More accurate component recovery formula

As discussed in Section II-B, if the non-stationary signal
x(t) in (1) satisfies Assumption 1, then the components of
x(t) can be recovered by SSO and ASSO. In contrast to
the (implicit) component recovery error in [4] and Theorem
1, we discuss the explicit recovery error with linear chirp
local approximation and the Gaussian window function given
by (16). We assume the well-separated condition (24) holds.
Thus we can discuss the recovery error for each component
individually. For simplicity of presentation, we start with a
mono-component signal

f(t) = A(t) cos (2πφ(t)) .

Let

η

∧

(t) := arg max
η>0

∣∣V σf (t, η)
∣∣ . (27)

Then ASSO method tells us that η∧(t) is an estimate of φ′(t)
and f(t) can be recovered by

f

∧

(t) = 2Re
{
V σf (t, η

∧

(t))
}
. (28)

When f(t) can be well-approximated by linear chirps, that
is (21) holds with xk(t), φ′k(t) replaced by f(t), φ′(t), then
by (22), we have

V σf (t, η
∧

(t)) ≈ A(t)ej2πφ(t)

2
√

1−j2πσ2φ′′(t)
e
− 2π2σ2(η

∧

(t)−φ′(t))2

1−j2πφ′′(t)σ2

≈ A(t)ej2πφ(t)

2
√

1−j2πσ2φ′′(t)
(since η∧(t) ≈ φ′(t)).

Thus the component recovery error is

ef := |f

∧

(t)− f(t)|
=
∣∣2Re

{
V σf (t, η

∧

(t))
}
−A(t) cos (2πφ(t))

∣∣
≤
∣∣2V σf (t, η

∧

(t))−A(t)ej2πφ(t)
∣∣

≈
∣∣ A(t)ej2πφ(t)√

1−j2πσ2φ′′(t)
−A(t)ej2πφ(t)

∣∣
= A(t)

∣∣ 1√
1−j2πσ2φ′′(t)

− 1
∣∣

= A(t)
∣∣ j2πσ2φ′′(t)√

1−j2πσ2φ′′(t)(1+
√

1−j2πσ2φ′′(t))

∣∣
≤ 2πσ2|φ′′(t)|A(t)(

1+4π2σ4φ′′2(t)
) 1

4
(
1+
√

1+4π2σ4φ′′2(t)
) 1

2
,

(29)

where the last inequality follows from

|
√

1− j2πσ2φ′′(t) + 1| ≥
(
1 +

√
1 + 4π2σ4φ′′2(t)

) 1
2 .

Hence, ef is essentially bounded by 2πσ2|φ′′(t)|A(t). Of
course smaller σ(t) will result in smaller error. Due to that
σ(t) ≥ σmin, f

∧

(t) gives a good approximation to f(t) only
if |φ′′(t)| is small, meaning IF of f changes slowly. It seems
we cannot break the bottleneck of slowly changing IFs re-
quirement even if we consider the linear chirp approximation.
However, the error analysis in (29) triggers us to propose the
following component recovery formula

f

∧

(t) = 2Re
{√

1− j2πσ2φ′′(t) V σf (t, η

∧

(t))
}
. (30)
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Then the corresponding recovery error is

|f

∧

(t)− f(t)|
=
∣∣2Re

{√
1− j2πσ2φ′′(t) V σf (t, η

∧

(t))
}
− f(t)

∣∣
≤
∣∣2√1− j2πσ2φ′′(t) V σf (t, η

∧

(t))−A(t)ej2πφ(t)
∣∣

≈
∣∣A(t)ej2πφ(t) −A(t)ej2πφ(t)

∣∣ = 0.

Thus (30) provides a more accurate recovery formula.

For a complex-valued signal f(t) = A(t)ej2πφ(t), derived
similarly as the above, a more accurate recovery formula is

f

∧

(t) =
√

1− j2πσ2φ′′(t) V σf (t, η

∧

(t)). (31)

Observe that the recovery formula (30) involves φ′′(t). In
practice, we need to estimate φ′′(t). One simple way is to
use η∧′(t) as φ′′(t) since η∧(t) is an estimate to φ′(t). One can
apply a three-point or five-point formula for differentiation to
the ridge η

∧

(t) to obtain its derivative. In this paper we use
linear fitting of η∧(t): for a fixed t, let r∧t defined by

min
u

∥∥η∧(t+ u)−
(
η

∧

(t) + r

∧

tu
)∥∥

2
(32)

where u ranges over [−λ0, λ0] with λ0 the essential support
of gσ:

λ0 := 2πσ
√

2| ln τ0|. (33)

Then we use r∧t as φ′′(t) in (30) and (31).

Next let us consider the component recovery of a multi-
component signal x(t) of the form (1). We assume (24) holds,
that is the components of x(t) are well separated in the time-
frequency plane. Denote

Ht :=
{
η : |V σx (t, η)| > µ/2

}
,

Hk = Ht,k := Ht ∩ {η : (t, η) ∈ Zk}.

When xk(t) is well-approximated locally by linear chirps, that
is (21) holds, then φ′k(t) ∈ Gk. Let

η

∧

k(t) := arg max
η∈Hk

|V σx (t, η)| . (34)

Then η

∧

k(t) is an estimate of φ′k(t). By the above derivation
with the mono-component signal f , we propose the following
formula to recover components.

Component recovery formula based on linear chirp local
approximation: Component xk(t) in (1) can be recovered by

x

∧

k(t) = 2Re
{√

1− j2πσ2φ′′k(t) V σx (t, η

∧

k(t))
}

; (35)

if xk(t) in (1) is a complex signal, namely xk(t) =
Ak(t)ej2πφk(t), then the recovery formula is

x

∧

k(t) =
√

1− j2πσ2φ′′k(t) V σx (t, η

∧

k(t)). (36)

Again, to apply (35) or (36), we need to have an estimation
of φ′′k(t). As above, we may use η∧′k(t) as φ′′k(t), or use the
linear fitting

min
u

∥∥η∧k(t+ u)−
(
η

∧

k(t) + r

∧

t,ku
)∥∥

2
(37)

to obtain r∧t,k as an approximation of φ′′k(t).

Next we consider the recovery of the (real-valued) trend
A0(t). Assume φ′1(t) satisfies

φ′1(t) > λ1,t + λ0,

where λ0 is defined by (33). Then A0(t) and x1(t) are well-
separated in the adaptive STFT plane. In this case we use the
following formula to recover A0(t):

A

∧

0(t) = Re
{
V σx (t, 0)

}
. (38)

With the fact

A

∧

0(t) = Re
(
{V σx (t, 0)

}
≈ V σA0

(t, 0)
=
∫
RA0(τ)gσ(τ − t)dτ,

we know the recovery error is

|A

∧

0(t)−A0(t)| ≈ |
∫
RA0(τ)gσ(τ − t)dτ −A0(t)|

= |
∫
RA0(t+ τ)gσ(τ)dτ −A0(t)|

= |
∫
R(A0(t+ τ)−A0(t))gσ(τ)dτ |

≤
∫
R |A0(t+ τ)−A0(t)|gσ(τ)dτ

≤
∫
R ε|τA0(t)|gσ(τ)dτ

=
√

2
π |A0(t)|εσ.

Note that here we assume
∣∣A0(t + τ) − A0(t)

∣∣ ≤ ε|τA0(t)|,
which is consistent with (10) when k = 0. Thus the recovery
error is small if ε is small. In addition, a smaller σ results in
a more accurate recovery.

Remark 1. In the paper we propose component recovery
formulas (35) and (36) based on linear chirp local approxima-
tion. Compared with sinusoidal signal-based recovery formula
(28), there is a factor

√
1− j2πσ2φ′′k(t) in (35) and (36).

The experiments in the next section show that (35) and (36)
lead to more accurate recovery results than those by (28) even
when the estimate of φ′′k(t) is rough. More mathematically
rigorous analysis for the recovery error by (36) was studied
very recently by authors of this paper and their collaborator
in [49].

In Section III-C we will propose an iterative ASSO scheme
based on (35) in which component xk(t) is recovered one by
one. In this case, the time-varying parameter σ(t) is chosen
for this particular xk(t), and hence, it is denote by σk,t. The
choice of σk,t will be discussed in Section III-D.

Before moving on to the next subsection, we remark that
during the review process of this paper, we were aware of
the paper [50] which was submitted to a journal in April
2020, more than two months later than our paper submitted
to this journal. Let f be the complex version of (2), namely
f(t) =

∑K
k=1 fk(t) with fk(t) = Ak(t)ej2πφk(t). The authors

of [50] proposed to approximate the STFT V g̃fk of fk(t) by
the following formula

V g̃fk(t, η) ≈ V g̃f
(
t, ω̂

[2]
f (t, ϕk(t))

)
e
−
πσ2
(
η−ω̂[2]

f
(t,ϕk(t))

)2
1−jq̂f (t,ϕk(t)σ2 (39)

where V g̃f (t, η) denotes the STFT defined by (3) with window
function given by

g̃(t) = e
− t2

(σ/
√
π)2 ,
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ϕk(t) is a ridge corresponding to the k-th component xk,
like θ

∧

k(t) defined by in (34), ω̂[2]
f (t, η) and q̂f (t, η) are

quantities used to define the 2nd-order FSST. The authors
claim that ω̂[2]

f (t, ϕk(t)) ≈ φ′k(t), qf (t, ϕk(t)) ≈ φ′′k(t). Thus
the recovered fk(t) proposed in [50] is

fk(t) =
1

g̃(0)

∫ ∞
−∞

V g̃fk(t, η)dη

≈
∫ ∞
−∞

V g̃f
(
t, ω̂

[2]
f (t, ϕk(t))

)
e
−
πσ2
(
η−ω̂[2]

f
(t,ϕk(t))

)2
1−jq̂f (t,ϕk(t)σ2 dη

= V g̃f
(
t, ω̂

[2]
f (t, ϕk(t))

) ∫ ∞
−∞

e
− πσ2η2

1−jq̂f (t,ϕk(t)σ2 dη

=
1

σ

√
1− jσ2q̂f

(
t, ϕk(t)

)
V g̃f
(
t, ω̂

[2]
f (t, ϕk(t))

)
, (40)

where the last equality follows from (19) with α =

σ
√
π/
√

1− jσ2q̂f
(
t, ϕk(t)

)
and β = 0. Note that g̃(t) =

σgσ/
√
π(t). Thus (40) is exactly (36), the complex version

of our recovery formula (35), with window function g̃, and
q̂f (t, ϕk(t)) and ω̂

[2]
f (t, ϕk(t)) used for φ′′k(t) and θ

∧

k(t) re-
spectively. The same authors of [50] considered in their very
recent paper [51] another recovery formula ( see (27) in [51])
which is the discrete form of

fk(t) ≈ 1

σ

√
1− jσ2

(
Dfin
k

)′
(t) V g̃f

(
t,Dfin

k (t))
)
, (41)

where Dfin
k (t) is a ridge. Again (41) is our recovery formula

(36) with θ
∧′

k(t) used as an approximation to φ′′k(t).

C. Component recovery formula with iterative ASSO

In the above subsection we derive more accurate compo-
nent recovery formulas (35) and (36). In this subsection, we
propose, with these formula, to reconstruct the component
of x(t) one by one, to say to recover x`(t) first, then a
different component xm(t) of x(t) from x(t)− x`(t), and so
on. When we target a particular component, to say xk(t), we
will choose σ(t), denoted by σk,t depending only on IFs and
their derivatives of xk−1, xk, xk+1 such that xk−1, xk, xk+1

are well-separated in the adaptive STFT (ASSO) plane.
More precisely, we will choose σk such that V σk,txk−1(t, η),
V
σk,t
xk (t, η), V σk,txk+1(t, η) lie in non-overlapping time-frequency

zones, which can be guaranteed by

φ′k(t)−φ′k−1(t) > λk,t+λk−1,t, φ
′
k+1(t)−φ′k(t) > λk+1,t+λk,t

(42)
where t ∈ R, λk,t is defined by (23). Note that for k = K,
only one inequality in (42) is required; for k = 1, x1(t) and
the trend A0(t) should be well-separated on the ASSO plane
if

φ′1(t) > λ1,t + λ0, φ
′
2(t)− φ′1(t) > λ2,t + λ1,t, t ∈ R

where λ0 = λgσ . With the analysis above, in particular by
(30), we propose the following recovery formula for xk(t):

x

∧

k(t) = 2Re
{√

1− j2πσ2
k,tr

∧

k,tV
σk,t
x (t, η

∧

t)
}
, (43)

where
η

∧

t = arg max
η∈Hk

|V σk,tx (t, η)|, (44)

and r

∧

k,t is the estimation of chirp rate φ′′k(t) obtained
by (32) with η

∧

(t) replaced by η

∧

t and u ranging over
[−2πσk,t

√
2| ln τ0|, 2πσk,t

√
2| ln τ0|].

We should choose the parameter σ(t) as the minimum σ
for each time t, with which xk is well-separated from xk−1
and xk+1 on the adaptive STFT plane, namely the inequalities
in (42) hold. We propose a method (called Algorithm 2) to
choose σk,t in the next subsection.

Next we present a signal separation scheme to recover
components one by one. First, we consider the trend of the
input signal x(t) with a small constant σ, with which the trend
is well-represented along η = 0. We extract A0(t) by (38).
After that we consider the component with the largest peak of
the trend-removed signal s(t):

s(t) = x(t)−A

∧

0(t).

Before we describe our procedure, noting that in practice we
do not know or it is hard to estimate Hk, first we need a
method to obtain the ridge or an estimate of it. In this paper
we propose a method as follows. Suppose s(t) is uniformly
sampled with sampling points tn, n = 1, 2, · · · , N . We let T
and Υ denote the sample points:

T = {t1, t2, · · · , tN}, Υ = {η1, η2, · · · , ηN1
},

where N and N1 are the number of time and frequency points
respectively.

Let V σs (t, η) be the adaptive STFT of s(t) with time-varying
σ(t). We find the maximum points

(tm, ηm) := arg max
t∈T,η>0

∣∣V σs (t, η)
∣∣, (45)

Next we define

ηm+1 := arg max
η∈Dtm

∣∣V σs (tm+1, η)
∣∣,

where
Dtm := [ηm − λ0, ηm + λ0]

with λ0 defined by (33). From ηm+1, we define Dtm+1
and

then obtain ηm+2 and so on. We obtain ηm−1, then ηm−2 so
on in the same way. More precisely, we propose the following
ridge detection algorithm.

Ridge Detection Algorithm

Step 1. Obtain tm, ηm by (45).

Step 2. For n = m,m+ 1, · · · , N − 1, do

Dtn = [ηn − λ0, ηn + λ0], ηn+1 = arg max
η∈Dtn

∣∣V σs (tn+1, η)
∣∣;

and for n = m,m− 1, · · · , 2, do

Dtn = [ηn − λ0, ηn + λ0], ηn−1 = arg max
η∈Dtn

∣∣V σs (tn−1, η)
∣∣.

Step 3. Obtain ridge η∧1(tn) = ηn, n = 1, · · · , N . �
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Let us return back to the trend removed multicomponent
signal s(t). After obtaining the ridge η∧1(t), t ∈ T by the ridge
dectection algorithm, we estimate r

∧

1,t by (32) with η

∧

(t) =
η

∧

1(t) and recover one component, denoted by f1(t) given by

f1(t) = 2Re
{√

1− j2πσ2r

∧

1,tV
σ
s (t, η

∧

1(t))
}
.

After that, we consider s(t) − f1(t), and repeat the above
process to obtain η∧2(t) and f2(t); and then η∧3(t) and f3(t) and
so on until we obtain all components with a possible residual
d(t) of x(t). Thus we have

x

∧

(t) = A

∧

0(t) +
∑
p

fp(t) + d(t). (46)

In Algorithm 1, we provide the pseud-codes for the detailed
iteration process. Note that Steps 3-13 in Algorithm 1 are the
ridge detection algorithm proposed above including γ1 and γ2
as thresholds for the sake of noise. Here we let γ2 < γ1. We
also smooth σR(t) and r∧p,t in Algorithm 1 with some low-pass
filters. In addition, observe that the duration of a component
Tp, p = 1, 2, 3, ... resulted from Algorithm 1 may different
from another.

In Algorithm 1, we call σR(t) the global optimal time-
varying parameter, with which all components are expect to
be well-separated in the ASSO plane. To further increase
the recovery accuracy, we define σp,t = σp(t) as the local
optimal time-varying parameter, with which the component
corresponding to η

∧
p(t) are expect to be well-separated from

other components. We will provide the methods to estimate
σp(t) in the following subsection.

Algorithm 1 Adaptive recovering process

1. Input: Uniform samples s(p)(t) = s(t) with t ∈ T =
{t1, t2, ..., tN}, 4t = t2 − t1 and p = 1.
2. Calculate σ = σR(t) for s(p)(t) with (48) in §III-D.
3. Let (tm, ηm) = arg max

∣∣V σ
s(p)

(t, η)
∣∣, η∧p(tm) = ηm.

4. If
∣∣V σ
s(p)

(tm, ηm)
∣∣ > γ1

5. Search the ridge towards the right. Let t← tm+4t,
ηm = arg maxη∈Dt−4t

∣∣V σ
s(p)

(t, η)
∣∣. 1©

6. While
∣∣V σ
s(p)

(t, ηm)
∣∣ > γ2,

7. t← t+4t,
8. Update ηm by 1© , and let η∧p(t) = ηm.
9. Search the ridge towards the left. Let t← tm−4t,

ηm = arg maxη∈Dt+4t
∣∣V σ
s(p)

(t, η)
∣∣. 2©

10. While
∣∣V σ
s(p)

(t, θm)
∣∣ > γ2,

11. t← t−4t,
12. Update ηm by 2© , and let η∧p(t) = ηm.
13. Estimate r∧p,t with (32) with η∧(t) = η

∧

p(t).
14. fp(t) = 2Re

{√
1− j2πσ2r

∧

p,tV
σ
s(p)

(t, ηrp,t)
}

.
15. s(p+1)(t) = s(p)(t)− fp(t), t ∈ Tp.
16. p← p+ 1, goto Step 2.
17. Else d(t) = s(p)(t).
18. End if.
19. Outputs: components {fp(t), p = 1, 2, 3, ...} and the
residual d(t).

D. Estimation of the time-varying parameter

When we recover a particular component xk(t), we assume
(42) holds for some σ = σk(t). If we know φ′`(t) and φ′′` (t),
for ` = k − 1, k, k + 1, then we choose a minimum σk(t)
with (42) holding true so that we have an accurate recovery
of xk(t). However in practice, we in general have no prior
knowledge of φ′k(t) and φ′′k(t). Hence, we need to have a
method to obtain a suitable σk(t).

First, we use the Rényi entropy to obtain a preliminary
choice of σ(t). The Rényi entropy is a commonly used
measurement to evaluate the concentration of a time-frequency
representation such as STFT in (3), Wigner-Ville distribution
[52] (WVD), SST etc. of a signal of x(t), see [53], [54], [55],
[56], [25].

In this paper, we define the local Rényi entropy for V σx (t, η)
as

Eζ,σ(t) := 5 log2

∫ t+ζ
t−ζ

∫∞
0
|V σx (b, η)|2 dηdb

−2 log2

∫ t+ζ
t−ζ

∫∞
0
|V σx (b, η)|5dηdb,

(47)

where ζ is the localization parameter to determine the length
of local time. One may refer to [54] for other measures of
time-frequency concentrations. Note that the smaller the Rényi
entropy, the better the time-frequency resolution. So for a fixed
time t and parameter ζ, we use (47) to find a σR (denoted
by σR(t)) such that V σR

x (t, θ) has the best time-frequency
concentration, namely,

σR(t) := argmin
σ>0

{Eζ,σ(t)} . (48)

We call σR(t) the global optimal time-varying parameter.

Next, for a fixed t, we consider a smaller σ(t), to say
σR(t)−4, where 4 > 0 denotes a decrement for σ. Then we
consider the difference between the original and the updated
ridges

∣∣η(q)p (t)− η(q+1)
p (t)

∣∣. If the difference is small enough,
we consider a further smaller σ(t) which is σR(t)−24. Er is
a threshold to measure the difference, which is related to λp,t.
One may choose Er = ελp,t, where ε ∈ (0, 0.1). The detailed
procedure is provided in Algorithm 2 (for a fixed t ∈ Tp).

Algorithm 2 Searching for the local optimal parameter

1. Input: s(p)(t), ηp(t) = η

∧

p,t and σR(t), t ∈ Tp from
Algorithm 1.
2. Initialize q = 1, η(q)p (t) = ηp(t), σ(q)(t) = σR(t).
3. Let σ(q)(t)← σ(q)(t)−4σ .
4. η

(q+1)
p (t) = arg maxη∈Ht

∣∣V σ(q)

s(p)
(t, η)

∣∣.
5. If

∣∣η(q)p (t)− η(q+1)
p (t)

∣∣ < Er,
6. q ← q + 1, goto Step 3.
7. End if.
8. Output: σp(t) = σ(q)(t).

IV. NUMERICAL EXPERIMENTS

In this section, we provide some numerical examples to fur-
ther illustrate the effectiveness and robustness of our method
in component recovery.
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A. Synthetic signal

First we consider a mono-component LFM signal to show
how the linear chirp local approximation-based SSO formula
(35) improves the recovery accuracy when compared with the
conventional sinusoidal signal local approximation-based SSO
method. Let x(t) = cos(34πt+ 37πt2), where t ∈ [0, 1] with
512 sampling points. Here we simple let σ = 0.02 (a constant).
The left panel of Fig.1 shows the recovery errors |x(t)−x∧(t)|
with these two methods, where the ground truth φ′′k(t) is used
in (35), while the right panel of Fig.1 is the recovery errors,
where r∧t,k is used in (35) as an estimate of φ′′k(t). Because of
the bound effect, here we just consider the center part of the
signal, namely t ∈ [0.2, 0.8]. Observe that the recovery error is
dramatically reduced by using the proposed linear chirp model.
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Fig. 1. Comparison of linear chirp model and sinusoidal models. Left: ground
truth φ′′k(t) is used in (35); Right: an estimate of φ′′k(t) is used in (35).

Next we consider a three-component nonlinear FM signal,

s(t) = s1(t) + s2(t) + s3(t)
= cos (2.7πt+ 6 cos(0.2πt)) + 2

3 cos (4.7πt+ 4 cos(0.2πt))
+ 1

2 cos (6.4πt+ 2 cos(0.2πt)) ,
(49)

where t ∈ [0, 20]. The number of sampling points is N =
512, namely sampling rate is Fs = 25.6 Hz. The IFs of
s1(t), s2(t) and s3(t) are φ′1(t) = 1.35 − 0.6 sin(0.2πt),
φ′2(t) = 2.35−0.4 sin(0.2πt) and φ′3(t) = 3.2−0.2 sin(0.2πt),
respectively. The chirp rates of s1(t), s2(t) and s3(t) are
φ′′1(t) = −0.12π cos(0.2πt), φ′′2(t) = −0.08π cos(0.2πt) and
φ′′3(t) = −0.04π cos(0.2πt), respectively. Fig.2 shows the IFs
of the three components and STFT of s(t).
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Fig. 2. IFs (left panel) and STFT (right panel) of s(t) in (49).

Fig.3(a), (b) and (c) show the absolute errors
∣∣s∧k(t) −

sk(t)
∣∣, k = 1, 2, 3 for s1(t), s2(t) and s3(t), respectively.

We compare the three methods here, namely the ASSO with
sinusoidal signal-based model (sinusoidal-model) in (28), the

recovery equation (40) derived from [50] and our proposed
ASSO with linear-chirp model in (43). Based on Algorithm 1
and 2, we recover the three components one by one. Here
for both ASSO methods with sinusoidal-model and linear-
chirp model, we update the time-varying window parameters
σR(t) and σp(t) for each component. For the method in [50],
namely (40), the IF estimation ω̂

[2]
f (t, ϕk(t)) and the chirp

rate estimation q̂f
(
t, ϕk(t)

)
are obtained as those in [50] with

ϕk(t) as the IF estimation from the 2nd-order SST.

Meanwhile, since [50] considers constant window, for the
sake of fairness, we also update the window parameter σ for
each component as the average of σp(t) used for ASSO, see
Fig.3(d). Obviously, the recovery error of our ASSO of linear-
chirp model is less than the other two methods for all the three
components. Due to the boundary effect, the recovery errors
at the two ends of the signal are larger than the center. It is
worth to note that the proposed algorithm in this paper is a
localized method which is suitable to process the real-world
signal with consecutive input efficiently.

Next we consider the performance of our proposed method
in a noisy environment. We add Gaussian noises to the source
signal s(t) in (49) with signal-to-noise ratio (SNR) ranging
from 10dB to 20dB. We use the mean-square error (MSE) to
evaluate the recovery performance, which is defined by

MSEs =
1

K

K∑
k=1

‖sk(t)− s∧k(t)‖2
‖sk(t)‖2

, (50)

where s∧k(t) is the recovery function of sk(t). We also perform
the conventional SSO in [4], CWT-based SST (WSST) in
[5] and the second-order STFT-based SST (FSST2) in [20]
for comparison. Fig.4 demonstrates that the proposed ASSO
scheme of linear-chirp model is more accurate than the other
methods for component recovery. Because of the bound effect
mentioned above, here we just consider the center part of the
signal, namely t ∈ [2.5, 17.5], to calculate the MSE in (50).

B. Radar echoes

Here we consider the real data from a conventional low-
resolution very-high-frequency (VHF) surveillance radar. The
pulse-repetition frequency (PRF) of the radar is 400 Hz.
Fig.5(a) shows a truncation of the data to be processed, which
consists of 300 discrete samples (we have more data outside
this truncation). Note that these samples are corresponding to
each radar echoes, which means the samples are obtained after
the radar signal processing of matched filtering. Therefore the
sampling rate here is equal to the PRF, namely 400Hz. Fig.5(c)
and (d) shows the recovered waveforms by the proposed
ASSO. Fig.5(e) and (f) show the IF estimation results by
ASSO and FSST2, respectively.

Observe that there are two signal components. Actually, the
data here is collected when two targets in formation fly past the
radar. The IFs are corresponding to the Doppler frequencies
aroused the changes of targets’ aspects and speeds with respect
to the radar. Since the two targets in formation are close,
they are located at the same range unit of the conventional
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Fig. 3. Comparison of our proposed ASSO scheme of linear chirp model
(solid red lines) with other methods: the recovery errors of the three com-
ponents s1(t) (a), s2(t) (b) and s3(t) (c) with different methods, and the
estimated time-varying parameters σp(t) for the three components (d).
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Fig. 4. Comparison of our proposed ASSO scheme of linear chirp model
(red circles) with other methods: recovery MSE under different SNRs.

low-resolution radar. It is hardly to distinguish the two targets
and estimate their Doppler frequencies by conventional Fourier
analysis, see Fig.5(b) for the spectrum. It shows the Doppler
frequency of aerial target varies approximate linearly and
smoothly in [57]. To be fair, the window parameters σ for
FSST2 is equal to the average value of the global time-
varying parameter σR(t) estimated in Step 2 of Algorithm
1. All the IFs in Fig.5 are estimated by the ridges directly
(without filtering or curve fitting). Observe that the results of
our method are much smoother than those of FSST2.

C. Audio signals

First we consider a music signal with sampling rate 44.1
KHz, see Fig.6(a) and (b) for the waveform and spectrum of
the signal, respectively. Note that there are 22,528 samples
here, which is processed with a localized truncated Gaussian
window with length of 256 points. Observe that this signal is a
fundamental tone of music with three main harmonics, marked
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Fig. 5. Radar data and its estimation results: source data (a), spectrum (b),
recovered Component 1 (c), recovered Component 2 (d) IF estimated by ASSO
(e) and IF estimated by FSST2 (f).

as Component 1, 2 and 3. The IFs of the three components are
near to constant. Fig.6(c) and (d) show the estimated IFs and
the recovered waveforms, respectively. The results in Fig.6(c)
and (d) are corresponding to the three frequencies in (b).

Finally we test our method on a bat echolocation signal
emitted by a large brown bat (Eptesicus Fuscus) in real world.
Fig.7 (a) and (b) show the waveform and spectrum of the Bat
echolocation signal, respectively. There are 400 samples with
the sampling rate 143 KHz. The data can be downloaded from
the website of DSP at Rich University [58]. The IF represen-
tation of this bat signal has been studied with the second-
order FSST [24] and the instantaneous frequency-embedded
synchrosqueezing wavelet transform [21] respectively. From
the results in [21], we know the bat echolocation signal is made
of four components, and all the components are approximated
to linear chirp modes.

Fig.7(c) and (d) show the results of IF estimation and
waveform reconstruction, respectively. Observe that the four
components are decomposed clearly. Different from the ex-
isting ridge detection methods, which usually assumes the
number of components is known, we use Algorithm 1 to
extract each ridge by the local maxima without any prior
knowledge.
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Fig. 6. Music signal and its estimation results: source data (a), spectrum (b),
IF estimation (c) and waveform reconstruction (d).

The proposed method is suitable to process sub-signals
with different supported time intervals, such as the results in
Fig.6(d) and Fig.7(d). The EMD methods cannot decompose
both music signal and the bat signal above correctly. Since the
space limitation, we will not give these experiment results in
this paper.
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Fig. 7. Bat signal and its estimation results: source data (a), spectrum (b), IF
estimation (c) and waveform reconstruction (d).

V. CONCLUSION

In this paper, we introduce a direct signal separation method
via extraction of local frequencies. We derive more accurate
component recovery formulae based on the linear chirp signal
local approximation. A recovery scheme, together with a
ridge detection method, is also proposed to extract the signal
components one by one, and the time-varying parameter is
updated for each component. The proposed method works like
the EMD approach, can separate complicated multicomponent
non-stationary signal adaptively and automatically without
any prior knowledge. By the approximation of linear chirp
modes and derivation of separation conditions, we show the
proposed method is capable to separate components with
closer IFs than the existing state-of-the-art methods. Moreover,
for real signals, the proposed method can be implemented
by FFT, which is suitable for engineering applications. The
further study is to consider how to take advantage of the
ASSO for separating multicomponent signals with crossings
of instantaneous frequency curves.
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