

矩阵论

主讲教师:徐乐

2014年12月10日星期三

- ❖第16讲 Penrose广义逆的性质
 - {1}-逆的性质
 - {1}-逆与{1, 2}-逆

{1}-逆的性质

❖引理: rank(AB)≤min (rankA,rank B)

❖定理

■ 设
$$A \in C^{m \times n}, B \in C^{n \times P}$$
 $\lambda \in C$, $\lambda^{\dagger} = \begin{cases} \lambda^{-1} & \lambda \neq 0 \\ 0 & \lambda = 0 \end{cases}$

{1}-逆的性质

- $AA^{(1)}$ 和 $A^{(1)}$ A均为幂等矩阵且与A同秩 ($P^2 = P$)
- $R(AA^{(1)}) = R(A), N(A^{(1)}A) = N(A), R((A^{(1)}A)^{H}) = R(A^{H})$

$$A^{(1)}A = I_n \Leftrightarrow rank(A) = n$$

$$A^{(1)}A = I_n \Leftrightarrow rank(A) = n$$

$$AA^{(1)} = I_m \Leftrightarrow rank(A) = m$$

$$AB(AB)^{(1)}A = A \Leftrightarrow rank(AB) = rank(A)$$

 $B(AB)^{(1)}AB = B \Leftrightarrow rank(AB) = rank(B)$

$$B(AB)^{(1)}AB = B \Leftrightarrow rank(AB) = rank(B)$$

- 定理
 - 矩阵A当且仅当A 为满秩方阵时具有唯一的 $\{1\}$ 逆 $A^{(1)} = A^{-1}$

{1}-逆与{1,2}-逆

- ❖定理1
 - 设 Y, Z \in A{1}, 则YAZ \in A{1, 2}
- **☆**定理 2
 - 给定矩阵A及Z ∈ A{1}, 则Z ∈ A{1, 2}的充要
 条件是 rank(A)=rank(Z)

第17讲 Penrose广义逆与Moore广义逆

- *****{1}-逆与{1, 2, 3}-逆、{1, 2, 4}-逆
- **❖**关于**A**+
- * 广义逆的计算
 - 由Hermite标准形求{1}-逆
 - 由满秩分解求广义逆
- ❖ 投影矩阵与Moore-Penrose逆
 - 投影算子与投影矩阵
 - 正交投影算子与正交投影矩阵
 - 投影矩阵与广义逆矩阵

{1}-逆与{1, 2, 3}-逆、{1, 2, 4}-逆

- ❖引理:对任意矩阵A均有
 - rank (A^HA) = rankA = rank (AA^H)
 - 证明 $\forall x \in N(A) \longrightarrow A x = 0 \longrightarrow A^H A x = 0$

$$N(A^{H}A) = N(A)$$

$$N(A) \subseteq N(A^{H}A)$$

$$\forall x \in N(A^{H}A)$$

$$N(A^{H}A) \subseteq N(A)$$

$$Ax = 0 \leftarrow x^{H}A^{H}Ax = 0 = (Ax)^{H}(Ax)$$

A^HA与A的列数均为 n → dimN(A)=n-rankA

$$rank(A^{H}A) = rankA \qquad dim N(A^{H}A) = n - rank(A^{H}A)$$

$$A \leftrightarrow A^{H} \qquad rank(AA^{H}) = rankA^{H} = rankA$$

${1}-$ 逆与 ${1, 2, 3}-$ 逆、 ${1, 2, 4}-$ 逆

❖定理3: 给定矩阵A,则

$$Y=(A^HA)^{(1)}A^H \in A\{1,2,3\}$$

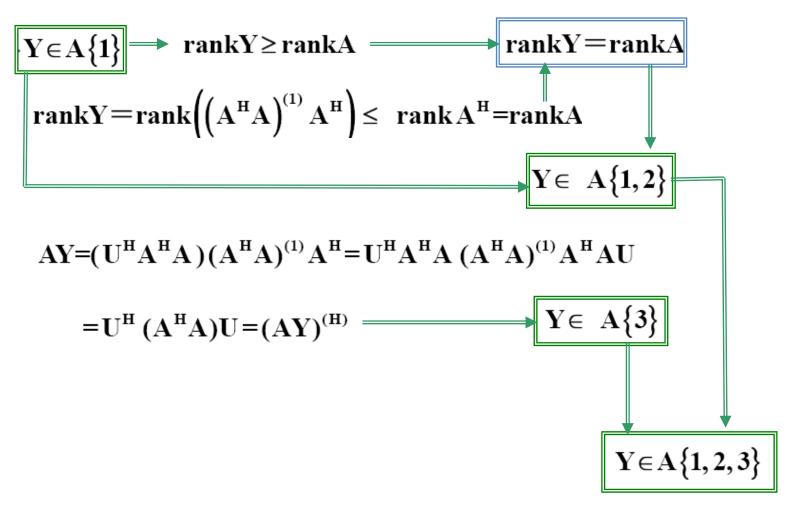
$$Z=A^{H}(AA^{H})^{(1)} \in A\{1,2,4\}$$

■ 证明 显然 $R(A^HA) \subseteq R(A^H)$ 由引理可知 $R(A^HA) = R(A^H)$

$$A=U^HA^HA$$
 年在 U 使 $A^H=A^HAU$

$$AYA = (U^H A^H A)[(A^H A)^{(1)} A^H]A = U^H A^H A = A 满足(i)$$

${1}-$ 逆与 ${1, 2, 3}-$ 逆、 ${1, 2, 4}-$ 逆



*定理4: 给定矩阵A
$$A^+ = A^{(1,4)} AA^{(1,3)}$$

■ 证明:

$$A^{(1,4)} AA^{(1,3)} \stackrel{\Delta}{=} X \in A\{1,2\}$$
 定理 1

 $AX = A A^{(1,4)} AA^{(1,3)} \stackrel{i}{=} AA^{(1,3)} \stackrel{iii}{=} (AA^{(1,3)})^{H} = (AX)^{H}$
 $AZA = A$
 $XA = A^{(1,4)} AA^{(1,3)} A \stackrel{i}{=} A^{(1,4)} A \stackrel{iv}{=} (A^{(1,4)}A)^{H} = (XA)^{H}$
 $AZA = A$

$$X \in A\{1,2,3,4\} = A^+$$

- ❖定理5: 给定矩阵A,则
 - (1) $\operatorname{rank} A^+ = \operatorname{rank} A \Longrightarrow A^+ \in A\{1,2\} \Longrightarrow \operatorname{rank} A^+ = \operatorname{rank} A$

Penrose 方程中 (i)↔(ii), (iii)↔(iv) 互为对称

(2)
$$(A^+)^+ = A^- = A^- = A^-$$

(3)
$$(A^H)^+ = (A^+)^H$$
 , $(A^T)^+ = (A^+)^T$ 直接采用四个方程验证

(4)
$$(A^H A)^+ = A^+ (A^H)^+$$
, $(A A^H)^+ = (A^H)^+ A^+$

(5)
$$A^+ = (A^H A)^+ A^H = A^H (AA^H)^+$$

(6)
$$R(A^+) = R(A^H), N(A^+) = N(A^H)$$

- 证明: (5) $A^+ = (A^H A)^+ A^H = A^H (AA^H)^+$
 - \diamondsuit $\mathbf{X} = (A^H A)^+ A^H$
 - 由<u>定理3</u>知 X∈A{1,2,3}
 - 显然(A^HA)+是 (A^HA)⁽⁴⁾

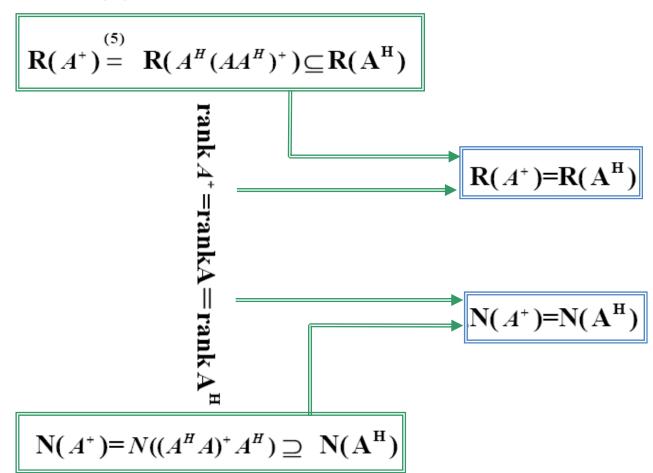
$$\mathbf{X}\mathbf{A} = (A^{H}A)^{+}A^{H}A = ((A^{H}A)^{+}A^{H}A)^{H} = (XA)^{H}$$

$$\Rightarrow \mathbf{X} \in \mathbf{A} \{1, 2, 3, 4\}$$

另式同理可证

lexu@mail.xidian.edu.cn

■ 证明 (6) $R(A^+) = R(A^H), N(A^+) = N(A^H)$



推论1 若A∈C_n^{m×n}(列满秩矩阵) , 则A=(A^HA)⁻¹A^H
 A∈C_m^{m×n}(行满秩矩阵) , 则A*=A^H(AA^H)⁻¹

*推论2 对非零列向量 α , $\alpha^+ = (\alpha^H \alpha)^{-1} \alpha^H$ 对非零行向量 β , $\beta^+ = \beta^H (\beta \beta^H)^{-1}$; $\alpha^H \alpha$, $\beta \beta^H 均为数$

❖ Note A,B 可逆,则 $(AB)^{-1} = B^{-1}A^{-1}$,但一般 $(AB)^{+} \neq B^{+}A^{+}$

由Hermite标准形求{1}-逆

- ❖任何矩阵都可由初等行变换化为Hermite标 准形
 - 设 $A \in \mathbb{C}_r^{m \times n}$
 - 存在满秩矩阵 $\mathbf{E} \in \mathbf{C}_{\mathbf{m}}^{\mathbf{m} \times \mathbf{m}}$
 - 使EA=B(Hermite标准形)
 - 采用置換矩阵P $P = \begin{bmatrix} e_{l_1} & e_{l_2} & \cdots & | & \text{其它}e_{i} \end{bmatrix}_{n \times n}$ $A = E^{-1} \begin{bmatrix} I_r & K \\ 0 & 0 \end{bmatrix} P^{-1} \longleftarrow EAP = \begin{bmatrix} I_r & K \\ 0 & 0 \end{bmatrix}$

由Hermite标准形求{1}-逆

* 求{1}-逆的方法
$$A = E^{-1} \begin{vmatrix} I_r & K \\ 0 & 0 \end{vmatrix} P^{-1}$$

$$A\{1\} = \left\{ P \begin{bmatrix} I_r & M \\ N & L \end{bmatrix}_{n \times m} E \middle| KN = 0 \right\}$$
 取阶数合适的M、L

■ [证明]
$$\diamondsuit$$
 $X = P \begin{bmatrix} I_r & M \\ N & L \end{bmatrix} E$

$$\mathbf{x} = \mathbf{A} \{ \mathbf{1} \}$$

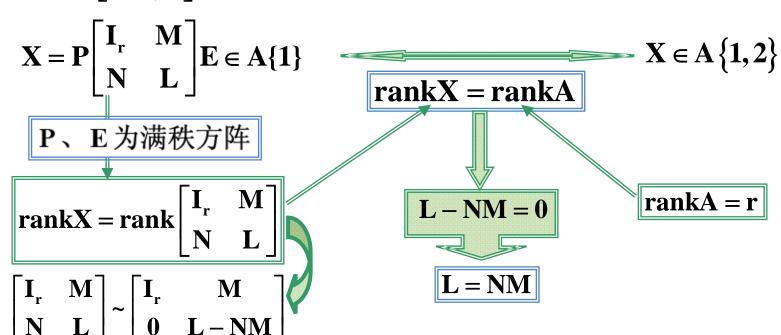
$$\begin{aligned} \mathbf{A}\mathbf{X}\mathbf{A} &= \mathbf{E}^{-1} \begin{bmatrix} \mathbf{I}_{\mathbf{r}} & \mathbf{K} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{P}^{-1} \mathbf{P} \begin{bmatrix} \mathbf{I}_{\mathbf{r}} & \mathbf{M} \\ \mathbf{N} & \mathbf{L} \end{bmatrix} \mathbf{E} \mathbf{E}^{-1} \begin{bmatrix} \mathbf{I}_{\mathbf{r}} & \mathbf{K} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{P}^{-1} \\ &= \mathbf{E}^{-1} \begin{bmatrix} \mathbf{I}_{\mathbf{r}} + \mathbf{K}\mathbf{N} & \mathbf{M} + \mathbf{K}\mathbf{L} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{I}_{\mathbf{r}} & \mathbf{K} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{P}^{-1} \\ &= \mathbf{E}^{-1} \begin{bmatrix} \mathbf{I}_{\mathbf{r}} + \mathbf{K}\mathbf{N} & (\mathbf{I}_{\mathbf{r}} + \mathbf{K}\mathbf{N})\mathbf{K} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{P}^{-1} &= \mathbf{A} \end{aligned}$$

由Hermite标准形求{1}-逆

❖求{1, 2}-逆的方法

$$\mathbf{A}\left\{1,2\right\} = \left\{ \mathbf{P} \begin{bmatrix} \mathbf{I}_{\mathbf{r}} & \mathbf{M} \\ \mathbf{N} & \mathbf{L} \end{bmatrix}_{\mathbf{n} \times \mathbf{m}} \mathbf{E} \middle| \mathbf{K} \mathbf{N} = \mathbf{0}, \mathbf{L} = \mathbf{N} \mathbf{M} \right\}$$

• [证明]



由满秩分解求广义逆

- *由满秩分解求广义逆
 - 对A进行满秩分解

$$A = FG$$
, $A \in C_r^{m \times n}$, $F \in C_r^{m \times r}$, $G \in C_r^{r \times n}$

■ [定理]

$$(1) \ G^{(i)}F^{(1)} \in A\{i\} \qquad i = 1, 2, 4$$

$$(2) \ G^{(1)}F^{(i)} \in A\{i\} \qquad i = 1, 2, 3$$

$$(3) \ G^{(1)}F^{+} \in A\{1, 2, 3\}, \ G^{+}F^{(1)} \in A\{1, 2, 4\}$$

$$(4) \ A^{+} = G^{+}F^{(1, 3)} = G^{(1, 4)}F^{+}$$

$$(5) \ A^{+} = G^{+}F^{+} = G^{H}(GG^{H})^{-1}(F^{H}F)^{-1}F^{H} = G^{H}(F^{H}AG^{H})^{-1}F^{H}$$

*投影

- 设L, M为Cn的子空间并构成直和L+M=L⊕M=Cn
 - 即 $\forall x \in C^n$, 3唯一的 $y \in L$, $z \in M$ 使 x=y+z
 - 称 y为x沿着M到L的投影

*定义

- 将任意 $x \in C^n$ 变为其沿着M到L的投影的变换 称为沿着M到L的投影算子,记为 P_{LM}
 - $\mathbb{P} P_{L,M} x = y \in L$
 - 投影算子是线性变换,其矩阵称为投影矩阵,仍记为 $\mathbf{P}_{\mathrm{L,M}}$

- ❖引理
 - 设n阶方阵E为幂等矩阵, 则N(E)=R(I-E)
 - 证明

证明
$$E^{2} = E \qquad E(I - E) = O$$

$$\forall x \in C^{n}, E[(I - E)x] = O$$

$$R(I - E) \subseteq N(E)$$

$$N(E) = R(I - E)$$

$$N(E) \subseteq R(I-E)$$

$$x = Ix - O = Ix - Ex = (I - E)x \in R (I - E)$$

$$\forall x \in N(E)$$
 Ex = 0

- ❖定理
 - n阶方阵P成为投影矩阵的充要条件是P为幂等 矩阵
 - 充分性证明:

$$\forall x \in \mathbb{C}^{n}, \Leftrightarrow y = Px \in R(P), z = (I - P)x \in R \quad (I - P) = N \quad (P)$$

若 R (P)∩N (P)={0},则P=P_{R (P),N (P)}确为投影矩阵

$$x \in R(P), \exists u \in C^n, x = Pu$$
 $\forall x \in R(P) \cap N(P)$ $x \in N(P) \Rightarrow Px = 0$

P成为投影矩阵

$$\mathbf{R}(\mathbf{P}) \cap \mathbf{N}(\mathbf{P}) = \{\mathbf{0}\}$$

 $Px = P^2u = Pu = x \Rightarrow x = 0$

 $P^2 = P$

• 必要性证明:

$$\mathbf{P} = \mathbf{P}_{L,M}$$

 $\forall x \in \mathbb{C}^n$, 3唯一分解 $y \in L, z \in M$

$$x = y + z \perp \!\!\!\perp Px = y$$

$$x \in L, P_{L,M}x = y$$
 $x \in M, P_{L,M}x = 0$

$$P^2x = Py = y = Px$$
 $\xrightarrow{x \in \mathbb{R}} P^2 = P$

*投影矩阵的构造

- 设已知Cn的子空间L、M构成直和L⊕M=Cn
 - 设L为r维子空间,则M为n-r维子空间,下面构造 $P_{L,M}$
 - 取L的一个基 $\{x_1, x_2 ... x_r\}$,M的一个基为 $\{y_1, y_2 ... y_{n-r}\}$
 - 由直和关系知 $\{x_1, x_2 ... x_r; y_1, y_2 ... y_{n-r}\}$ 构成 \mathbb{C}^n 的一个基
 - $\bigcirc \diamondsuit X=[x_1, x_2 \dots x_r], Y=[y_1, y_2 \dots y_{n-r}]$
 - ①则[X Y]为可逆方阵
 - 由投影矩阵性质可知

$$-P_{L,M}$$
的秩为r rank $(P_{L,M}) = \dim R (P_{L,M}) = \dim L$

- *正交投影算子与正交投影矩阵
 - 正交补空间
 - L为Cn的子空间,其正交补空间为 $L^{\perp} = \left\{ x \middle| (x, y) = 0, x \in \mathbb{C}^{n}, y \in L \right\}$
 - **定义**
 - 设L是 C^n 的子空间,则称沿着 L^{\perp} 到L的投影算子为正交投影算子,简记为 P_L
 - 正交投影算子的矩阵称为正交投影矩阵,仍记为 P_L

❖引理(1)

■ 对n阶方阵A, $\forall x \in C^n$ 均有 $x^H A x = 0$ 则 A=0

• [证明]令
$$A = (a_{ij})_{n \times n}$$

•
$$\mathbb{R} \quad \mathbf{x} = \begin{bmatrix} \mathbf{0} \cdots \mathbf{0} \cdots \mathbf{1} \cdots \mathbf{0} \end{bmatrix}^{\mathsf{T}}$$

• $\mathbb{R} \quad \mathbf{x} = \begin{bmatrix} \mathbf{0} \cdots \mathbf{0}, & \boldsymbol{\xi}_{i}, \mathbf{0} \cdots \mathbf{0}, & \boldsymbol{\xi}_{j}, \mathbf{0} \cdots \mathbf{0} \end{bmatrix}^{\mathrm{T}} (\mathbf{i} \neq \mathbf{j})$

$$x^{H}Ax = \overline{\xi_{i}}a_{ij}\xi_{j} + \overline{\xi_{j}}a_{ji}\xi_{i} = x^{H}Ax = \overline{\xi_{i}}a_{ij}\xi_{j} + \overline{\xi_{j}}a_{ji}\xi_{i} + \overline{\xi_{i}}a_{ii}\xi_{i} + \overline{\xi_{j}}a_{jj}\xi_{j}$$

$$- \operatorname{Im} \begin{cases} \xi_i = \xi_j = 1 & \Rightarrow \\ \xi_i = 1, \xi_j = \sqrt{-1} & \Rightarrow \\ a_{ij} + a_{ji} = 0 & \Rightarrow \\ a_{ij} - a_{ji} = 0 & \Rightarrow \\ a_{ij} - a_{ji} = 0 & \Rightarrow \end{cases}$$

 $\mathbf{x}^{\mathbf{H}}\mathbf{A}\mathbf{x} = \mathbf{a}_{\mathbf{i}\mathbf{i}} = \mathbf{0}$

❖引理(2)

 $N(P^{H}) = R^{\perp}(P)$

•
$$[\mathbb{H}] \forall x \in N(P^{H}) \longrightarrow P^{H}x = 0 \longrightarrow x^{H}P = 0$$

$$\forall y \in C^{n} \longrightarrow x^{H}(P^{\psi}y) = 0$$

$$N(P^H) \subseteq R^{\perp}(P)$$
 由y的任意性

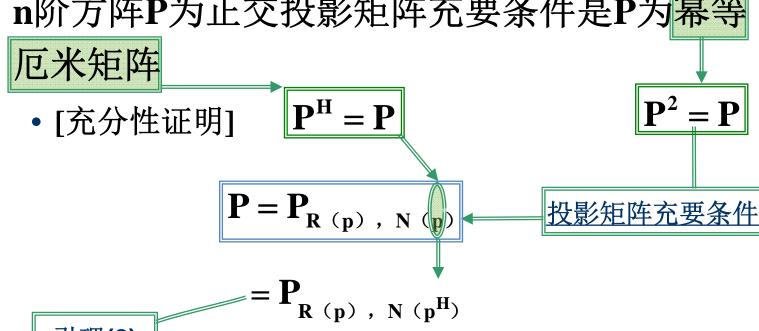
$$- \ \ \stackrel{\sim}{\not{\boxtimes}} \ x \in R^{\perp}(P) \Rightarrow \forall y \in C^{n} \Rightarrow x^{H}(Py) = 0 \Longrightarrow x^{H}P = 0$$

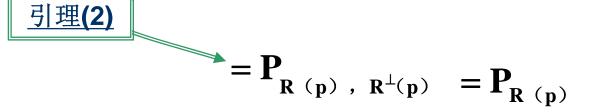
$$N(P^{H}) \supseteq R^{\perp}(P) \Longrightarrow x \in N(P^{H}) \Longleftrightarrow P^{H}x = 0$$

$$\mathbf{N} (\mathbf{P}^{\mathrm{H}}) = \mathbf{R}^{\perp}(\mathbf{P})$$

*充要条件

■n阶方阵P为正交投影矩阵充要条件是P为幂等





• [必要性证明] $P = P_L$ 投影矩阵充要条件 $P^2 = P$

$$\forall x \in C^n, \exists y = Px \in L, z = (I - P)x \in L^{\perp} \notin x = y + z$$

$$\mathbf{x}^{\mathrm{H}}\mathbf{P}^{\mathrm{H}}(\mathbf{I}-\mathbf{P})\mathbf{x}=\mathbf{0}$$
 $\mathbf{y}^{\mathrm{H}}\mathbf{z}=\mathbf{0}$ $\mathbf{y}\in\mathbf{L},\mathbf{z}\in\mathbf{L}^{\perp}$

$$\mathbf{P}^{\mathrm{H}} = \mathbf{P}^{\mathrm{H}}\mathbf{P} = (\mathbf{P}^{\mathrm{H}}\mathbf{P})^{\mathrm{H}} = (\mathbf{P}^{\mathrm{H}})^{\mathrm{H}} = \mathbf{P}$$
 厄米矩阵

P为幂等厄米矩阵

❖正交投影矩阵的构造

- 取L的一个基 $\{x_1, x_2 ... x_r\}$, L^{\perp} 的一个基为 $\{y_1, y_2 ... y_{n-r}\}$,则 $x_i^H y_j = 0$
- $\Rightarrow X=[x_1, x_2 \dots x_r], Y=[y_1, y_2 \dots y_{n-r}], \forall X^HY=0$

$$P_{L} = \begin{bmatrix} \mathbf{X} & \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix}^{-1} \begin{bmatrix} (\mathbf{A}^{-1} = (\mathbf{A}^{H}\mathbf{A})^{-1}\mathbf{A}^{H}) \\ & \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix}^{H} \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix}^{H} \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix}^{H} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{X} & \mathbf{O} \end{bmatrix} \begin{bmatrix} \mathbf{X}^{H}\mathbf{X} & \mathbf{0} \\ \mathbf{0} & \mathbf{Y}^{H}\mathbf{Y} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{X}^{H} \\ \mathbf{Y}^{H} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{X}^{H}\mathbf{X} & \mathbf{X}^{H}\mathbf{Y} \\ \mathbf{Y}^{H}\mathbf{X} & \mathbf{Y}^{H}\mathbf{Y} \end{bmatrix}^{-1}$$

$$= \left[\mathbf{X} (\mathbf{X}^{H} \mathbf{X})^{-1} \quad \mathbf{O} \right] \begin{bmatrix} \mathbf{X}^{H} \\ \mathbf{Y}^{H} \end{bmatrix} = \mathbf{X} (\mathbf{X}^{H} \mathbf{X})^{-1} \mathbf{X}^{H}$$

投影矩阵与广义逆矩阵

*Moore广义逆定义

- - 则X为A的Moore广义逆矩阵
 - 事实上,Moore广义逆矩阵正是A+
 - [证明] 设矩阵A满足

投影矩阵与广义逆矩阵

• 若X为A的Penrose广义逆,则

