
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 4, APRIL 2012 697

VLSI Architecture of Arithmetic Coder
Used in SPIHT

Kai Liu, Evgeniy Belyaev, and Jie Guo

Abstract—A high-throughput memory-efficient arithmetic
coder architecture for the set partitioning in hierarchical trees
(SPIHT) image compression is proposed based on a simple context
model in this paper. The architecture benefits from various opti-
mizations performed at different levels of arithmetic coding from
higher algorithm abstraction to lower circuits’ implementations.
First, the complex context model used by software is mitigated
by designing a simple context model, which just uses the brother
nodes’ states in the coding zerotree of SPIHT to form context sym-
bols for the arithmetic coding. The simple context model results
in a regular access pattern during reading the wavelet transform
coefficients, which is convenient to the hardware implementation,
but at a cost of slight performance loss. Second, in order to avoid
rescanning the wavelet transform coefficients, a breadth first
search SPIHT without lists algorithm is used instead of SPIHT
with lists algorithm. Especially, the coding bit-planes of each zero
tree are processed in parallel. Third, an out-of-order execution
mechanism for different types of context is proposed that can
allocate the context symbol to the idle arithmetic coding core with
a different order that of the input. For the balance of the input rate
of the wavelet coefficients, eight arithmetic coders are replicated in
the compression system. And in one arithmetic coder, there exists
four cores to process different contexts. Fourth, several dedicated
circuits are designed to further improve the throughput of the
architecture. The common bit detection (CBD) circuit is used
for unrolling the renormalization stage of the arithmetic coding.
The carry look-ahead adder (CLA) and fast multiplier-divider
are also employed to shorten the critical path in the architecture.
Moreover, an adaptive clock switch mechanism can stop some
invalid bit-planes’ clock for the power saving purpose according
to the input images. Experimental results demonstrate that the
proposed architecture attains a throughput of 902.464 Mb/s at its
maximum and achieves savings of 20.08% in power consumption
over full bit-planes coding scheme based on field-programmable
gate arrays (FPGAs).

Index Terms—Arithmetic coding, common bit detection (CBD)
circuit, context model, out-of-order execution, set partitioning in
hierarchical trees (SPIHT), VLSI arithmetic coder architecture.

Manuscript received May 14, 2010; revised September 14, 2010; accepted
January 19, 2011. Date of publication February 24, 2011; date of current ver-
sion March 12, 2012. This work was supported in part by the National Natural
Science Foundation of China under Grant 60802076, by the Fundamental Re-
search Funds for the Central Universities under Grant JY10000903003, and by
the Open Research Funds of State Key Laboratory for novel software technology
under Grant KFKT2010B28. This work was done in part at the State Key Lab-
oratory for Novel Software Technology, Nanjing University, China.

K. Liu is with the Computer School, Xidian University, Shaanxi 710071,
China (e-mail: kailiu@mail.xidian.edu.cn).

E. Belyaev is with Saint-Petersburg Institute for Informatics and Automation
of the Russian Academy of Sciences, Saint-Petersburg 199178, Russian Feder-
ation (e-mail: e_beliaev@mail.ru).

J. Guo is with the Communication School, Xidian University, Xi’an, Shaanxi
710071, China (e-mail: jguo@mail.xidian.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2011.2109068

I. INTRODUCTION

A S arithmetic coding (AC) [1], [2] method can obtain op-
timal performance for its ability to generate codes with

fractional bits, it is widely used by various image compression
algorithms, such as the QM in JPEG [3], the MQ in JPEG2000
[4]–[6], and the context-based adaptive binary arithmetic coder
(CABAC) [7], [8] in H.264. Especially, the set partitioning in
hierarchical trees (SPIHT) [9] uses an AC method to improve
its peak signal-to-noise ratio (PSNR) about 0.5 dB. Although
the theory and program code of AC are mature, the complicated
internal operations of AC limit its application for some real time
fields, such as satellite image and high speed camera image com-
pressions. In order to achieve performance gains, high speed ar-
chitecture of AC in compression scenarios must be designed to
meet the throughput requirement.

Thus both industrial and academic research groups have put
their efforts to AC hardware architectures for various image
compression systems. However, there are two main challenges
in hardware architecture design for high speed applications. One
is data dependencies in AC which require the result of iteration

before next run can commence during the adaptive model up-
date and internal loops. The other one is that AC requires in-
creasingly greater precision as more data arrive. In order to deal
with such difficulties, several architectures are proposed in the
past years.

Wiseman [10] proposed a systolic hardware architecture for
a quasi AC which is a simple version of AC. In [10], the archi-
tecture uses a pipeline processing to compute each stage of AC,
which eliminates an internal high frequency clock and utilizes
a fast lookup table for state transitions. Although the architec-
ture can improve the speed of the internal operations, such as
the probability interval update and cumulative calculations, it
cannot offer supports for multi-contexts AC processing in image
compression fields. For the QM coder in JPEG, Andra’s [11]
gave a new architecture which decreases operations for the more
probable symbol (MPS) and used a non-overlap window style
for the speedup purpose. In [11], the probability interval par-
tition is accelerated by exchange of the less probable symbol
(LPS) interval with the MPS interval. Thus the amount of op-
erations is reduced by 60%–70% compared with other coders.
Another highlight of [11] is the non-overlap window that is ap-
plied to the continuous MPS in order to simplify renormaliza-
tion operation. Due to simple operations in Andra’s coder, the
performance is slightly lowered by 1%–3%.

In SPIHT algorithm aspect, many researchers proposed var-
ious modifications to improve performance of SPIHT. Some
algorithms aim for better PSNR values, which do not concern

1063-8210/$26.00 © 2011 IEEE

698 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 4, APRIL 2012

about hardware issues. Kassim [12] introduced a method for se-
lecting an optimal wavelet packet transform (WPT) basis for
SPIHT, which efficiently compacts the high-frequency subband
energy into as few trees as possible and avoids parental con-
flicts. Their proposed SPIHT-WPT coder achieved improved
coding gains for highly textured images. Ansari [13] proposed
a context based SPIHT (CSPIHT) method, which used a seg-
mentation and interactive method for selecting the contextual
region of interest mask to achieve a better performance results
in medical images. In order to reduce memory and speed up
SPIHT software, Akter [14] used one list to store the coordi-
nates of wavelet coefficients instead of three lists of SPIHT and
merged the sorting pass with the refinement pass together as one
scan pass. On the other side, Wheeler [15] proposed a modified
SPIHT algorithm which does not use lists. Because of no insert
and search operations for list, the speed of algorithm can be im-
proved greatly.

In SPIHT implementation area, corresponding architectures
are mainly designed for SPIHT algorithm without AC. Memory
bands for storing the wavelet coefficients are used in SPIHT
coder [16], [17]. But for some large width images, for example,
satellite images, it is difficult to integrate many memories on
board in the memory bands architectures. Fry and Hauck [18]
realized a configurable SPIHT coder with field programmable
gate array (FPGA) devices, which can reach a throughput of
244 Mpixels/s. Huang [19] gave his SPIHT implementation ar-
chitecture which modified the coefficient scanning process of
SPIHT and used a 1-D addressing method for the wavelet co-
efficients. The throughput of [19] can be 30 frames per second
with CIF images. Ritter [20] proposed an SPIHT coder with
reduced access to random memory. Pan [21] proposed a listless
modified SPIHT which reduced memory in hardware architec-
ture. Unfortunately, all of these architectures mentioned above
did not give a detailed AC part description in their coders.
However for some critical applications, an AC part in SPIHT is
nontrivial in order to further improve the performance. There-
fore it is necessary to design a high speed AC architecture for
SPIHT.

As far as architecture is concerned, there are three stages
during implementation. The first step for designing an AC
in SPIHT is to set a context model suitable for hardware
processing. One of context model is designed in the QccPack-
SPIHT by Fowler [22]. In the architecture, a simple context
model based on the QccPackSPIHT software is designed,
which just exploits the relationship of nodes in one zerotree and
establishes four types of context for current position value, cur-
rent position sign, descendant set (D set) and grant descendant
set (L set). The second step is to remove the internal loops of
AC and arrange different modules for hardware. The last step
is to connect all modules by different paths to build one AC.
The main contributions of this architecture can be summarized
as follows.

1) A simple context state model which is based on the
neighbor pixels’ significant states is designed for hard-
ware implementation.
In order to achieve high speed architecture, we adopt a
fixed breadth first search scan order for SPIHT coding
instead of variable scan order to avoid rescanning the

wavelet coefficients. Based on this scanning order,
we design a simple context model which just uses the
brother nodes’ states in the coding tree for the fast
processing purpose. The degradation of performance
in PSNR values compared with the QccPackSPIHT
context model is slight through the experimental results.

2) According to the context model, different context sym-
bols formed by SPIHT algorithm are processed in par-
allel by the arithmetic coder for the speedup purpose.
In order to improve the throughput of our arithmetic
coder, we utilize two methods to remove the bottlenecks
in the whole image coding process. One method is a
bit-plane parallel scheme for all wavelet coefficient bit-
planes, which changes the process order of bit-plane
from sequential to parallel manner. The other important
way is an out of order mechanism for the execution in
the arithmetic coder. By the out of order execution for
multiple contexts, the coding speed can be accelerated
greatly. Thus the architecture is able to consume mul-
tiple input symbols in one clock cycle.

3) In order to reduce memory size, an internal memory
array is used for the cumulative probability values. Carry
look-ahead adder (CLA) circuits are employed for the
update of probability variables.
Since the architecture uses an FPGA platform as pro-
totype, plenty of flip-flops in the device can be used
for the memory array instead of external RAM struc-
ture. Therefore the access time can be improved sig-
nificantly for the internal memory array. At the same
time, the critical path is shortened by the advanced
calculation circuit structure, such as the CLA and fast
multiplier-divider.

4) For power efficient design, a dedicated adaptive power
management module is used to stop clocks for the in-
valid bit-plane, which contains no information about the
wavelet coefficients. And the memory access pattern is
also compacted for power saving purpose.

According to SPIHT, the number of bit-planes used for rep-
resenting the wavelet coefficients varies with different images.
The rich content images may use more bits to represent the
wavelet coefficients. On the other hand, the poor content im-
ages may require fewer bits to represent these coefficients. Then,
we can stop some bit-plane coders by cutting its input clock
according to the maximal coefficient in wavelet domain adap-
tively. We also analyze the pattern of memory access and opti-
mize the memory behavior in the architecture to reduce power
consumption.

The rest of this paper is organized as follows. Section II
provides an overview of AC and SPIHT algorithms. The chal-
lenges for SPIHT arithmetic coding architecture are also shown
in that section. In Section III, after the bit-plane parallel SPIHT
with breadth first search is described, the proposed context
symbol model based on the wavelet coefficient’s magnitude and
sign characteristic is described in detail for architecture design.
The architecture of arithmetic coder and the whole SPIHT
coding structure are given in Section IV. The experimental
results would be given in Section V. Section VI provides a brief
summary.

LIU et al.: VLSI ARCHITECTURE OF ARITHMETIC CODER USED IN SPIHT 699

II. BACKGROUND AND MOTIVATION

A. Principle of Arithmetic Coding

Let be a set of symbols. Every symbol , gets
a probability when . Codeword
for symbols sequence is repre-
sented as bits of number,

, where and are the
probability and the cumulative probability of sequence
accordingly. In practice, integer implementation of arith-
metic coder is based on three -size registers: low, high, and
range [23].

Let be the cumulative counts for the symbol ,
i.e., . Then the interval for the symbol

is . If the current probability in-
terval is , then the update can be done by the fol-
lowing formula:

range high low
high low range

low low range
(1)

The precision of registers low, high, and range grows with
increment. For decreasing coding latency and avoiding registers
underflowing, the normalization procedure is used as follows.

1) If high HALF, where HALF , then a “0” bit
is written into output bitstream.

2) If low HALF, then a “1” bit is written into output bit-
stream.

3) Otherwise, output bit is not defined. In this case, a
bit_to_follows counter is increased. Then if condition 1 is
satisfied then a “0” bit and bit_to_follows ones are written
into output bitstream. If condition 2 is satisfied then a
“1” bit and bit_to_follows zeros are written into output
bitstream.

After the above conditions, the registers low, high are scaled
to avoid underflowing. The corresponding codes are shown in
Fig. 7.

Basically, AC will shorten the length of the coding interval
continuously as new symbols arrive. If the input symbol’s
probability is high, the shrink of the coding interval will be
slow. Otherwise, if there are some rare symbols in the coder,
the speed of shrink will be fast. Thus, the coding interval will be
large at the end of coding for high probability symbols which
consume fewer bits for final codes than those of low frequency
symbols.

In practical applications, conditional probabilities of symbols
have better performance than non-conditional probabilities do.
Then the context-based AC is widely used in the various fields.
The context means conditions for current symbol. As far as the
image coding is concerned, the context refers to neighbor pixels’
states. After the transform stage in compression, the coefficients
have the property of energy compaction. Then different coeffi-
cients form different context windows using a preset model. The
different contexts will be sent to independent coding parts for
updating the interval and emitting the code bits.

B. SPIHT Image Compression

SPIHT with lists algorithm uses three different lists to store
significant information of wavelet coefficients for image coding
purpose. Three lists are list of insignificant sets (LIS), list of
insignificant pixels (LIP), and list of significant pixels (LSP).
At first, SPIHT combines nodes of a coefficient tree in wavelet
domain and its successor nodes into one set which is denoted
as insignificant. With traveling each tree node, sets in the LIS
are partitioned into four different subsets which are tested for
significant state. The function used for testing set significant
state is defined by the following formula:

otherwise.
(2)

Note: is the coefficient value for position in the
wavelet domain. The stands for the set of coefficients and

is used for significant state of set at bit-plane .
If the magnitudes of nodes in the set are less than some prede-

fined threshold, i.e., the set is insignificant, a bit will be emitted
for the entire set. Because of similarity of coefficients in a ze-
rotree, the strategy used in the partition procedure can be very
efficient for coding transform information. That is why SPIHT
can use fewer bits to code coefficients of one image after wavelet
transform.

During the partition processing, AC consumes coding sym-
bols with its contexts and switches to the different probability
interval. After updating the probability interval, AC outputs the
final coding bits. The key factor of AC performance is its context
scheme. If the context model is simple, the corresponding hard-
ware complexity is low at a cost of performance degradation.
On the contrary, with the complicated context forms, the per-
formance of AC can be improved, but the capacity of memory
and throughput will be a significant bottleneck in architecture.

C. Challenges With SPIHT Arithmetic Coding Architecture

As far as hardware architecture of arithmetic coder in SPIHT
is concerned, there are three main challenges for designers to
solve during real-time implementation. First, a large amount of
coding symbols is supplied to arithmetic coder which can be
a bottleneck for high speed real-time applications. Because the
scheme of SPIHT is a bit-plane based method, which codes each
bit-plane from the most significant bit-plane (MSB) to the least
significant bit-plane (LSB) sequentially, the quantity of context
symbols for arithmetic coder will be proportional to the coded
planes that are determined by the maximal wavelet coefficient.
For the 9/7 wavelet filter, the precision of wavelet coefficient
will be increased compared to the pixel precision after trans-
formation stage. Therefore in order to keep speed balance be-
tween the wavelet transformation and the arithmetic coder, the
throughput of arithmetic coder must match the input rate of the
wavelet stage. For the design of arithmetic coder, we test some
typical images with different pixel precision and compression
ratio using the QccPackSPIHT software. The number of context
symbols used for the arithmetic coding is shown in Tables I–III.
In Tables I–III, the average context symbols per pixel and the
bit-planes used for arithmetic coding are proportional to the bit
rate and the bit depth of pixel. In order to achieve the balance

700 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 4, APRIL 2012

Fig. 1. Travel order of breadth first search.

TABLE I
CONTEXT NUMBER WITH PRECISION AT 8 BIT PER PIXEL AND

TARGET RATE AT 4 BIT PER PIXEL

TABLE II
NUMBER WITH PRECISION AT 10 BIT PER PIXEL AND

TARGET RATE AT 5 BIT PER PIXEL

mentioned above, there are two basic ways for the arithmetic
coder, i.e., increasing the clock frequency of arithmetic coder
without area overhead or multiple arithmetic coders’ replica-
tion without the clock frequency increment. In the architecture,
a replication method is used to alleviate the bottleneck. Second,
the memory size in a single arithmetic coder can be limited for
implementation. The memory used for the probability values
and the cumulative probability values are main parts for the
arithmetic coder. In order to simplify the architecture, we need
small size of memory for these parts. In software, every prob-
ability value is represented by an aligned data type, which is
not efficient as the real range for the probability used. Therefore
in the architecture design, we cannot use simple array for these
memory part as software does. The last challenge comes from
the carry propagation problem caused by the probability update
operation, which increases the critical path of the coder and re-
duces the speed of arithmetic coder.

III. SPIHT WITH BREADTH FIRST SEARCH AND ITS CONTEXT

MODEL FOR ARITHMETIC CODING

A. Bit-Plane Parallel SPIHT With Breadth First Search

In order to prevent multiple scan of the wavelet coefficients
that is difficult for the real-time hardware implementations, we

uses the breadth first search (BFS) for traveling a zerotree. The
SPIHT-BFS visits each coefficient only once and outputs coding
information to form context symbols according to the corre-
sponding context model for hardware.

After the SPIHT-BFS is defined, the main challenge for hard-
ware implementation comes from the sequential processing
style of bit-planes. In order for bit-plane parallel processing,
all kinds of significant information for each bit-plane, i.e., the
pixel significant information, the set and the set significant
information should be achieved simultaneously. According to
the significant test function, if a pixel turns to be significant at
the th bit-plane, then it will be permanently significant for
the other bit-planes from the th to the LSB bit-plane. On the
other side, if the magnitude bit of a pixel at the th bit-plane
is 1, but the current state of the pixel is insignificant, then the
pixel also becomes significant. Therefore a pixel’s significant
state at the th bit-plane is defined by the following formula:

(3)

Note: is the significant state for pixel at of th
bit-plane, stands for the corresponding magnitude
value.

After expanding formula (3), the relationship between signifi-
cance of each coefficient and magnitude bit can be obtained. For
the architecture design, an OR gates array can be exploited for
the significant states. Then the significant information is inde-
pendent on the coding planes. For the set significant state and
the set significant state, we can also exploit some logic gates
and delay unit to realize parallel processing. Then all informa-
tion needed for coding a tree is ready for parallel processing.

Because the set significant state bits can only be resolved by
logic gates after one tree is visited, a whole tree needs to be
stored. Fig. 1 draws the travel order of zerotree by the breadth
first search with three levels of wavelet transform. The pipeline
can be used for the SPIHT-BFS and the latency is just one ze-
rotree clocks.

B. Context Model for AC in SPIHT With Breadth First Search

In SPIHT-BFS, wavelet coefficients are organized into
zerotrees through bands. The coding information is formed
during each run of visiting from the MSB bit-plane to the LSB
bit-plane. And for the tradeoff between memory constraint and
coding performance, the context model should be confined to
only one zerotree. In order to reduce complexity, only four

LIU et al.: VLSI ARCHITECTURE OF ARITHMETIC CODER USED IN SPIHT 701

TABLE III
CONTEXT NUMBER WITH PRECISION AT 16 BIT PER PIXEL AND TARGET RATE AT 8 BIT PER PIXEL

TABLE IV
CONTEXT DESIGN OF FOUR TYPES OF INFORMATION

Fig. 2. Node’s position in the zero tree.

types of information is used to form context model in the coding
stage, i.e., the current position significant, the magnitude value,
the current position sign value, the current position descendant
set value and the current position grant descendant set value.

In SPIHT-BFS, each node in the zerotree can emit four types
of information, i.e., FC (for the current position significant or
magnitude value), FSign (for the current position sign value),
FD (for the current position descendant set value), and FL (for
the current position grant descendant set value). Four bits will
output at most if all information are valid. If all kinds of infor-
mation are invalid, there is no bit emitted in the code stream.
During the context design, the context type is divided into four
categories according to the four types above. For a node in a
zerotree, the root node and non-root nodes can be treated by
different ways. Fig. 2 shows the position of two kinds of nodes.
The root node has no brother in the same level, but has three son
nodes in the next level. On the other hand, a non-root node has
four son nodes in the next level. For the simplicity, the label is

used in Fig. 2 as the context window for both root and non-root
nodes. Then the context model can be built on the state of these
four nodes. When the node is visited in a zerotree, the context
of current node is depended on the other three neighbor nodes’
state. For each type of information, there are contexts.
And the total context number is for the four types of
information. The symbol of each context is 0 or 1, which means
significant state for the FC, FD, FL, or FSign state for the cur-
rent node. In order to reduce the context number, we decrease
each type of information’s context to 4. Then the total number
of context can be reduced to 16. Table IV gives the detailed con-
text form.

IV. ARCHITECTURE OF ARITHMETIC CODER

A. Whole SPIHT Architecture

In Fig. 3, the detailed architecture of SPIHT encoding is
shown.

The original images are transformed by the line based lifting
wavelet engine [24] at first. The transformed coefficients are
written into the wavelet coefficients buffer. The processor dis-
patcher receives coefficients in the breadth first way from the
wavelet coefficients buffer and allocates these coefficients to one
of arithmetic coders (ACs) from eight processors array through
the internal bus. In order to adapt a wide precision and com-
pression ratio range, eight arithmetic coders are symmetric and

702 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 4, APRIL 2012

Fig. 3. Architecture of SPIHT encoding.

Fig. 4. Arithmetic coder’s core structure.

work in parallel. The output of each arithmetic coder is sent
to the internal bus and is distributed to the corresponding code
FIFO by the code FIFO dispatcher. The Read FIFO and Trun-
cate module are responsible for the final code stream formation,
which reads each code FIFO from top to bottom and truncates
the code stream according to the bit rate requirement. Besides
the main parts in the architecture, there are some auxiliary mod-
ules in Fig. 3. The power management part will stop the clock
input for the unused bit-planes of each arithmetic coder based
on the maximal bit-plane register file for power reduction. The
configuration and control part is responsible for the parameters
setting such as image resolution, wavelet type, decomposition

level and target bit rate. The control signals for the whole archi-
tecture are also asserted by this part.

From Fig. 3, the arithmetic coder in the overall architecture
plays an important role during the coding process. The arith-
metic coder consists of three main parts, i.e., the tree construc-
tion noted as Tree Con, the bit plane context FIFOs array and
the coding core. The tree construction part visits the wavelet co-
efficients by the breadth first search order. During the reading
process, the context values of each bit-plane are formed based
on the context model mentioned. For speedup, all valid bit-
planes are scanned in parallel. The invalid bit-planes are idle by
stopping the corresponding clock. The bit plane context FIFOs

LIU et al.: VLSI ARCHITECTURE OF ARITHMETIC CODER USED IN SPIHT 703

TABLE V
EXAMPLE OF OUT OF ORDER EXECUTION

Fig. 5. Internal structure of arithmetic coder.

array includes twelve FIFOs, which store the context values of
twelve bit-planes. The size of each FIFO is 256 5 bits be-
cause each code tree has 256 nodes and 16 different contexts
will use 4 bits, the last bit is used for the binary context symbol.
The coding core part reads these context first-input–first-outputs
(FIFOs) sequentially and calculates the corresponding context
to form code bytes.

B. Architecture of AC Core

The structure of the core part is illustrated in Fig. 4. The input
signals can be divided into two categories, i.e., the context related
and the control related. When the context label and binary code

symbol arrive, the context switch differentiates the input context
and sends the context value to the context dispatcher by different
paths. The main task of the context dispatcher is to schedule the
order of the input contexts, which are sent to different calculation
cores. In order for speedup, the context dispatcher can emit the
context values to each core by a disorder, which means that ex-
ecution order can be different from that of input. A small buffer
for context value is set in the context dispatcher to implement re-
organizing the processing order. Table V shows an example of
execution using twelve different contexts. Each of four coding
cores has its state register to indicate whether the coding core
can receive new context. When there is no context in the buffer,

704 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 4, APRIL 2012

Fig. 6. Calculation units for update of the probability interval.

Fig. 7. Loop unrolling structure.

the state of core is set to idle. If a context symbol arrives, the
state of core is set to the context label to block any new context.
The dispatcher checks the states to find if there is an idle core.
Then the dispatcher combines several contexts and emits them
to the corresponding cores. The context and its binary symbol
are emitted to the corresponding calculation cores, i.e., FC core,
FSign core, FD core, and FL core through the internal bus. If
the incoming context is blocked, it will be delayed in the dis-
patcher and wait for the next clock cycle to be emitted. At be-
ginning, four cores are ready for processing the contexts. Then in
the first clock cycle, four contexts are emitted simultaneously. In
the second clock cycle, two new contexts arrive. As
context pair is not finished, context pair is blocked.
Only context pair can be emitted to the FC core be-
cause has been done by the FC core. But in the third
clock cycle, the context pair can be emitted to the
FD core because the FD core is ready to process new pair.

From Fig. 4, every code core works independently, which al-
lows multi-contexts being calculated in parallel. Then the out-
puts of each core are connected with another bus. The code
stream reorder buffer is used to sort the order of each code core
as the execution order differs from the input order. The code
stream multiplex module collects all code bits emitted by the
code cores and assembles these bits into bytes. The code stream
bytes are finally emitted to external by output ports. The internal
structure of each code core is identical, as shown in Fig. 5.

Fig. 8. CBD structure.

Fig. 9. Explanation of leading bit check and bit follow check.

For each core, the Read Context and Symbol part compares
the context label with its internal register to judge whether the
context label conforms to its own tag. Then the correct label is
transmitted to Boundary Update part. In this part, the upper and

LIU et al.: VLSI ARCHITECTURE OF ARITHMETIC CODER USED IN SPIHT 705

Fig. 10. Bit follow check structure.

Fig. 11. LBC16 and BFC16 structures.

lower bounds are computed by two different parts, i.e., Upper
Bound Update and Lower Bound Update. The coding symbol
probability register file records the symbol probability values
for the symbol . The cumulative probabilities and

, which are stored in the cumulative probability
register file, accompanied with the old bound values high and
low to compute new bounds for the probability interval. The
outputs of two update parts, i.e., new_high and new_low, are
calculated by these variables based on the formula (1). Fig. 6
gives the detailed calculation units for these values. There are
only one adder and one multiplier in the unit which is suitable
for high speed implementation with FPGA devices. For speedup
purpose, a CLA and a fast multiplier array are employed to re-
duce the delay of critical path. The new bound values are then
registered and connected to the common bit detector (CBD) part
which unrolls the internal loop and records the same bits from
the MSB to the LSB between two registers. At last the same bits
are collected to form byte-align code stream in the Bit Assembly.
These bytes are supplied directly to the Code Stream Output part
for emitting bytes to the external bus. The Coding Control part
is responsible for the whole code core’s running and sending the
various commands and control signals.

C. CBD Structure

For AC, the code bits are generated by an internal loop, which
is essential to the architecture design. In Fig. 7, a CBD module
is used to unroll the internal loop.

The inputs of CBD are low and high values after calculation
of formula (1). The bit_valid_count signals the output bit count
from the MSB to the LSB of bit_value register. The bit_value is
just a concatenation of common bits and bits_to_follow which is
used for underflow. The low_update and high_update registers

Fig. 12. State machine for coding control.

are shifted values for two bounds used for the next run. Fig. 8
illustrates the detailed structure inside the CBD module.

In CBD, the leading bit check (LBC) detects the common bits
between low and high registers which consists of a 16-XOR gate
and a leading zero detector for 16 bits (LZD16) circuit used
by [25]. The bit follow check (BFC) module is an array for
checking the mode of underflow, which is explained by Fig. 9.
For speedup purpose, we check 15 possible cases for the bit
follow check, which means that the pos_sel of LBC se-
lects one of the bit follow values from 15 cases based on the
proper common bit position. Fig. 10 shows the internal struc-
ture for the BFC. The BFC denotes the bit follow check of two
vectors, which can be implemented by a simple logic gate and
an LZD circuit in Fig. 11. The corresponding bit follow value is
then registered in the Bit Follow Register File, which is used for
the output and the shift of two bounds. Three register files are
employed for the output, low and high registers. The low and
high registers are shifted left according to the values of pos_sel

and the bit_to_follow register. And the output register
emits the proper common bits and the underflow bits according
to these registers.

706 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 4, APRIL 2012

Fig. 13. Timing order of arithmetic coder.

TABLE VI
PSNR RESULTS IN dB

For the cumulative frequency update, each cumulative fre-
quency value behind the current code symbol and total cumu-
lative frequency should be added by 1 as drawn in the following
formula:

(4)

As for hardware, in order to avoid updating each cumulative
frequency value sequentially, an independent register is used
for each symbol’s cumulative frequency value. Then one clock
cycle can be used for all frequency values’ calculations.

Fig. 12 shows the state machine for the control logic part.
The state machine stays at the IDLE waiting for a new coding

LIU et al.: VLSI ARCHITECTURE OF ARITHMETIC CODER USED IN SPIHT 707

TABLE VII
SYNTHESIS RESULTS OF THE WHOLE COMPRESSION SYSTEM

TABLE VIII
SYNTHESIS RESULTS OF THE ARITHMETIC PART

TABLE IX
MEMORY CAPACITY FOR CUMULATIVE PROBABILITIES

symbol. When a new symbol arrives, the state machine asserts
a read signal for the lookup table of the cumulative probability
and jumps to the CALCULATE state. In the CALCULATE, the
probability interval bounds are updated. The control signals of
the Bit Assembly and Stream Output parts are sent by the state
machine in this state. The next state is the UPDATE state which
provides a write signal for the cumulative ram and starts the cu-
mulative probability update process. After all cumulative proba-
bility values are renewed, the state machine returns to the initial
IDLE state for next symbol.

Fig. 13 illustrates the timing order for the whole pipeline
stages of the architecture. Due to pipelining style, the coder
can consume one symbol per clock cycle. The pipeline has four
stages: context switch, probability bounds update, bit emit/cu-
mulative update, and code stream output. In the pipeline, the
code symbol and context label are processed every clock at each
stage based on the analysis of the architecture. After the pipeline
sets up, the code stream bytes can outflow every clock.

V. EXPERIMENTAL RESULTS

A. Software Results

The experimental results come in two folds, i.e., software and
hardware. First, PSNR results for typical images using different
SPIHT methods are recorded, including SPIHT with arithmetic,
SPIHT without arithmetic, SPIHT without lists and arithmetic
and our SPIHT prototype. Table VI lists the detailed data. From
the results, SPIHT-HW is slightly lower than SPIHT-AC as the
precision is limited during the wavelet transform and a simple
context model is involved.

B. Hardware Results Based on FPGA Device

The overall architecture including the wavelet part and
the arithmetic part is synthesized and simulated by VHDL
using XC2V3000 as target device. The results are reported by
XILINX ISE9.1-XST and shown in the Table VII. The maximal

Fig. 14. Power saving curves with different pixel precisions in arithmetic
coding part.

708 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 4, APRIL 2012

TABLE X
PERFORMANCE COMPARISONS OF DIFFERENT SPIHT CODERS ON FPGA DEVICES

TABLE XI
PERFORMANCE COMPARISONS OF AC CODERS

clock frequency is 56.404 MHz. For hardware implementa-
tion, the input is confined to gray images with resolution of
1024 1024 and the precision of pixel from 8 bits to 16 bits.
Thus the throughput of whole compression system is 56.404
frames per second (fps). Then for pixel precision of 16 bits
with resolution 1024 1024, the throughput of coder can be

902.464 Mb/s at its maximum. In
order to test arithmetic part independently, we also synthesize
this part and record the results in the Table VIII. There are
four contexts processed simultaneously in the architecture.
Each context uses one bit for symbols. Then four symbols
can be consumed simultaneously. The throughput is 71.05
4 MSPS/s, i.e., 284.2 MSPS/s.

C. Memory, Throughput and Power Analysis

As the memory size is important, the memory capacity of
arithmetic coder in SPIHT-HW is analyzed briefly. In the arith-
metic coder, a short type integer is used for the symbol proba-
bility. The main part of memory is composed by the cumulative
probability storage. Table IX gives the cumulative probability
memory content in the architecture. Only 512 bits are allocated
for storage requirement and one block ram unit in the device is
enough for this. Another two parts of memory come from the

context FIFOs and the code FIFOs, which are responsible for
the context buffer and the code stream buffer. The number of the
context FIFOs is 12 8 and the total bits are
122 880 bits. Each code FIFO can be set to 128 8 bits. Then
the size of the code FIFOs is 8192 bits. Therefore,
the total size of memory used in the architecture is 128.5 kb.

For comparisons, Table X lists the results of different SPIHT
image compression systems based on FPGA devices. And
Table XI shows the throughput comparison with other AC
coders. From the experimental results, the proposed SPIHT
image compression systems and the AC coder can obtain good
score in many advanced architectures.

The power saving effect is also tested by several typical
images. Fig. 14 illustrates the detailed results reported from
XPower Analyzer tool with compression ratio at 8:1. From
the experimental results, the power saving rate can be about
20.08% on average due to the method of stopping the clock of
invalid bit-planes.

VI. CONCLUSION

Arithmetic coding makes itself a standard technique for its
high efficiency. However, as far as hardware implementation is

LIU et al.: VLSI ARCHITECTURE OF ARITHMETIC CODER USED IN SPIHT 709

concerned, the complexity of calculation limits AC in the filed
of high speed real-time coding. For improvement of throughput
purpose, we propose a high speed architecture of AC used in
SPIHT without lists algorithm. In the architecture, a simple con-
text scheme is used first to reduce the memory size. Then high
speed calculation units are employed for speedup purpose. Es-
pecially, a power control module can reduce the power dissipa-
tion efficiently. It is a high parallelism and calculation device
that makes the speed of context processing fast. From the sim-
ulation results, our AC architecture can meet many high speed
image compression requirements. And the degradation of per-
formance incurred by the fixed point calculation is slight.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their helpful
comments and revisions.

REFERENCES

[1] J. Rissanen, “Generalized kraft inequality and arithmetic coding,” IBM
J. Res. Developm., vol. 20, no. 3, pp. 198–203, May 1976.

[2] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM J. Res. De-
velopm., vol. 23, no. 2, pp. 149–162, Mar. 1979.

[3] ISO/IEC JTC1 Information Technology-Digital Compression and
Coding of Continuous-Tone Still Images-Part 1: Requirements and
Guidelines, ISO/IEC International Standard 10918-1, ITU-T Rec.
T.81, 1993.

[4] JPEG2000 Part I Final Draft International Standard, ISO/IEC JTC1/
SC29/WG1 N1890, Sep. 2000.

[5] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Trans. Image Process., vol. 9, no. 7, pp. 1158–1170,
Jul. 2000.

[6] B. Cao, Y.-S. Li, and K. Liu, “VLSI architecture of MQ encoder in
JPEG2000,” J. Xidian Xuebao, vol. 31, no. 5, pp. 714–718, Oct. 2004.

[7] Draft ITU-T Recommendation and Final Draft International Standard
of Joint Video Specification (ITU-T Rec. H.264 ISO/IEC 14496-10
AVC), JVT-G050, Joint Video Team of ITU-T and ISO/IEC JTC 1,
Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Mar.
2003.

[8] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive
binary arithmetic coding in the H.264/AVC video compression stan-
dard,” IEEE Trans. Circuits Syst. for Video Technol., vol. 13, no. 7, pp.
620–636, Jul. 2003.

[9] A. Said and W. A. Pearlman, “A new ,fast and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. for Video Technol., vol. 6, no. 3, pp. 243–249, Mar. 1996.

[10] Y. Wiseman, “A pipeline chip for quasi arithmetic coding,” IEICE
Trans. Fundamentals, vol. E84-A, no. 4, pp. 1034–1041, Apr. 2001.

[11] K. Andra, T. Acharya, and C. Chakrabarti, “A multi-bit binary
arithmetic coding technique,” in Proc. Int. Conf. Image Process.,
Vancouver, BC, Canada, Sep. 2000, vol. 1, pp. 928–931.

[12] A. A. Kassim, N. Yan, and D. Zonoobi, “Wavelet packet transform
basis selection method for set partitioning in hierarchical trees,” J. Elec-
tron. Imag., vol. 17, no. 3, p. 033007, Jul. 2008.

[13] M. A. Ansari and R. S. Ananda, “Context based medical image com-
pression for ultrasound images with contextual set partitioning in hier-
archical trees algorithm,” Adv. Eng. Softw., vol. 40, no. 7, pp. 487–496,
Jul. 2009.

[14] M. Akter, M. B. I. Reaz, F. Mohd-Yasin, and F. Choong, “A modi-
fied-set partitioning in hierarchical trees algorithm for real-time image
compression,” J. Commun. Technol. Electron., vol. 53, no. 6, pp.
642–650, Jun. 2008.

[15] F. W. Wheeler and W. A. Pearlman, “SPIHT image compression
without lists,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., Istanbul, Turkey, Jun. 2000, pp. 2047–2050.

[16] J. Bac and V. K. Prasanna, “A fast and area-efficient VLSI architecture
for embedded image coding,” in Proc. Int. Conf. Image Process., Oct.
1995, vol. 3, pp. 452–455.

[17] J. Singh, A. Antoniou, and D. J. Shpak, “Hardware implementation of
a wavelet based image compression coder,” in Proc. IEEE Symp. Adv.
Digit. Filter. Signal Process., Jun. 1998, pp. 169–173.

[18] T. W. Fry and S. A. Hauck, “SPIHT image compression on FPGAs,”
IEEE Trans. Circuits Syst. for Video Technol., vol. 15, no. 9, pp.
1138–1147, Sep. 2005.

[19] W.-B. Huang, A. W. Y. Su, and Y.-H. Kuo, “VLSI implementation of
a modified efficient SPIHT encoder,” IEICE Trans. Fundamentals, vol.
E89-A, no. 12, pp. 3613–3622, Dec. 2006.

[20] H. J. Ritter, “Wavelet based image compression using FPGAs,” Ph.D.
dissertation, Martin Luther Univ., Halle-Wittenberg, Germany, 2002.

[21] H. Pan, W.-C. Siu, and N.-F. Law, “A fast and low memory image
coding algorithm based on lifting wavelet transform and modified
SPIHT,” Signal Process.: Image Commun., vol. 23, no. 3, pp. 146–161,
Mar. 2008.

[22] J. E. Fowler, A. G. Tescher, Ed., “Qccpack: An open-source software li-
brary for quantization, compression and coding,” in Appl. Digit. Image
Process. XXIII, Proc. SPIE 4115, Aug. 2000, pp. 294–301.

[23] I. C. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Commun. ACM, vol. 30, no. 6, pp. 520–540, Jun. 1987.

[24] C. Chrysafis and A. Ortega, “Line based, reduced memory, wavelet
image compression,” IEEE Trans. Image Process., vol. 9, no. 3, pp.
378–389, Sep. 2000.

[25] V. G. Oklobdzija, “An algorithmic and novel design of a leading zero
detector circuit: Comparison with logic synthesis,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 2, no. 1, pp. 124–128, Mar. 1994.

[26] R. R. Osorio and B. Vanhoof, “High speed 4-symbol arithmetic en-
coder architecture for embedded zero tree-based compression,” J. VLSI
Signal Process., vol. 33, no. 3, pp. 267–275, Mar. 2003.

[27] B. Vanhoof, M. Peón, G. Lafruit, J. Bormans, L. Nachtergaele, and I.
Bolsens, “A scalable architecture for MPEG-4 wavelet quantization,”
J. VLSI Signal Process.-Syst. for Signal, Image, Video Technol., vol. 23,
no. 1, pp. 93–107, Oct. 1999.

[28] M. Dyer, D. Taubman, and S. Nooshabadi, “Concurrency techniques
for arithmetic coding in JPEG2000,” IEEE Trans. Circuits Systems I,
Reg. Papers, vol. 53, no. 6, pp. 1203–1213, Jun. 2006.

[29] L. W. Chew, W. C. Chia, L.-M. Ang, and K. P. Seng, “Very low-
memorywavelet compression architecture using strip-based processing
for implementation in wireless sensor networks,” EURASIP J. Embed.
Syst., vol. 2009, p. 16, Jan. 2009.

[30] J. Jyotheswar and S. Mahapatra, “Efficient FPGA implementation of
DWT and modified SPIHT for lossless image compression,” J. Syst.
Arch., vol. 53, no. 7, pp. 369–378, Jul. 2007.

[31] P. Corsonello, S. Perri, P. Zicari, and G. Cocorullob, “Microprocessor-
based FPGA implementation of SPIHT image compression subsys-
tems,” Microprocess. Microsyst., vol. 29, no. 6, pp. 299–305, Aug.
2005.

[32] R. Stefo, J. L. Núñez, C. Feregrino, S. Mahapatra, and S. Jones,
“FPGA-Based modelling unit for high speed lossless arithmetic
coding,” Field-Program. Logic Appl. Lecture Notes Comput. Sci., vol.
2147/2001, pp. 643–647, 2001.

[33] K. M. Marks, “A JBIG-ABIC compression engine for digital document
processing,” IBM J. Res. Developm., vol. 42, no. 6, pp. 753–758, Jun.
1998.

[34] S. Kuang, J. Jou, and Y. Chen, “The design of an adaptive on-line bi-
nary arithmetic coding chip,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 45, no. 7, pp. 693–706, Jul. 1998.

[35] H. Printz and P. Stubley, “Multialphabet arithmetic coding at 16
MBytes/sec,” in Proc. Data Compression Conf., Mar. 1993, pp.
128–137.

Kai Liu received the B.S. and M.S. degrees in
computer science and the Ph.D. degree in signal
processing from Xidian University, Xi’an, China, in
1999, 2002, and 2005, respectively.

Currently, he is an Associate Professor of com-
puter science and technology with the Xidian
University. His major research interests include
VLSI architecture design and image coding.

710 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 20, NO. 4, APRIL 2012

Evgeniy Belyaev received the Master’s (engi-
neer) degree in automated systems of information
processing and control and the Ph.D. (candidate
of science) degree in technical sciences from the
State University of Aerospace Instrumentation
(SUAI), Saint-Petersburg, Russia, in 2005 and 2009,
respectively.

He is the Research Scientist with the Laboratory of
Information Technologies in Systems Analysis and
Modeling, Saint-Petersburg Institute for Informatics
and Automation, and Assistant Professor in SUAI.

His research interests include real-time video compression and transmission,
video source rate control, scalable video coding, motion estimation and arith-
metic encoding.

Jie Guo received the B.S. degree in telecommunica-
tion engineering and the Ph.D. degree in information
and communication engineering from Xidian Univer-
sity, Xi’an, China, in 2005 and 2010, respectively.

He is currently a Lecturer with the School of
Telecommunication Engineering, Xidian University.
His research interests include VLSI design and
implementation for discrete wavelet transform and
image coding.

