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Rate-Improved Permutation Codes for Correcting a Single Burst of Deletions

Hui Han , Jianjun Mu , Yu-Cheng He , Member, IEEE, Xiaopeng Jiao , and Wenping Ma

Abstract— Permutation codes are widely studied due to their
promising applications in flash memories. Based on the theory of
permutation groups and subgroups, two classes of permutation
codes are constructed to correct a single burst deletion of
length up to a designated parameter. The proposed codes can
achieve larger rates than available codes while maintaining simple
interleaving structures. The decoding methods for the proposed
codes are provided in proofs and verified by examples.

Index Terms— Flash memories, rank modulation scheme, per-
mutation codes, symbol-invariant deletions, permutation groups.

I. Introduction

PERMUTATION codes have recently attracted much atten-
tion due to their promising applications in flash storage

systems [1]–[4]. To overcome the difficulty of exactly pro-
gramming each flash memory cell to its designated level,
Jiang et al. first proposed a rank modulation scheme to
represent information in permutations [1]. In such a scheme,
the information is stored in the form of ranking of the cells’
charges rather than their absolute values.

Error-correcting codes in flash memory have been investi-
gated under rank modulation [2]–[7]. Levenshtein first studied
the deletion channel using Varshamov-Tenengolts (VT) codes
[8], and constructed a class of asymptotically optimal binary
codes against a single deletion [9]. Later, he utilized linear con-
gruence equation to construct a class of binary codes correct-
ing a single burst deletion of length up to two [10]. By using
Levenshtein’s binary codes, Tenengolts first proposed non-
binary codes against a single deletion [11]. Furthermore, Lev-
enshtein constructed the perfect permutation codes correcting
a single deletion [12]. Motivated by hardware implementation
of rank modulation in flash memory [13]–[15], Gabrys et al.
proposed two deletion models: symbol-invariant/permutation-
invariant deletion (SID/PID), and constructed permutation
codes correcting a single deletion [6].

Burst deletions are a severe type of corruptions occurring
in adjacent cells due to capacitative coupling between the
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cells [16]. Chee et al. proposed two classes of codes against a
single burst deletion under the PID and SID models, respec-
tively [17]–[19]. Han et al. proposed two classes of permu-
tation codes against a burst SID (BSID) [20]. More recently,
two classes of multi-permutation codes were proposed against
a single burst of unstable deletions [21]. To the best of our
knowledge, the optimal permutation codes against a single
BSID have not been found in literature. By optimal, it is meant
to achieve the highest code rate with code length given.

In this letter, we propose two new constructions of permu-
tation codes against a single BSID of length up to t for t
being a code parameter. The first construction is based on
the permutation group of length t and can achieve higher
code rates than [20, Construction 1]. The second construction
is based on a stabilizer subgroup and can achieve higher
code rates than [20, Construction 2]. These four constructions
employ an interleaving framework and thus have simpler
structures than [19, Construction 2].

II. Preliminaries

A. Basic Definitions

For integers m ≤ n, define [m, n] � {m,m + 1, . . . , n} and
[n] � {1, 2, . . . , n}. A permutation α = (α(1), α(2), . . . , α(n))
is defined as a self-bijection on the set [n]. Any pair of
elements (α(i), α( j)) is called an inversion in α if i < j and
α(i) > α( j). Let Sn be the full set of permutations over [n].
Then, it has cardinality |Sn| = n!. For a subset of positions
P ⊆ [n], define α (P) � {α(i) : i ∈ P}, which is an ordered
subset of the elements in α. For integer k ∈ [n], define
k(P) � k − |{i ∈ P : i < k}| ∈ [n].

An SID is a stable deletion that does not change the values
and relative positions of the surviving symbols. The SID model
can be defined as follows [6].

Definition 1: For a permutation α = (α(1), α(2), . . . , α(n)) ∈
Sn and a subset of positions P ⊆ [n] of size |P| = t ∈ [0, n], it
is said that the permutation α suffers t SIDs in P, resulting in
the vector α̂ = (α̂(1), α̂(2), . . . , α̂(n − t)), if α̂(i) = α(k) holds
for k ∈ [n]\P and i = k(P).

Definition 2: A code C ⊆ Sn is called a t-SID permutation
code if it can correct up to t SIDs, or a ≤ t-BSID permutation
code if it can correct a single burst SID of length up to t.

Definition 3: A set of l vectors ρi = (ρi(1), ρi(2), . . . , ρi(ni)),
i ∈ [l], with lengths n1 ≥ n2 ≥ · · · ≥ nl ≥ n1 − 1, can be
interleaved as a vector α = ρ1◦ρ2◦· · ·◦ρl of length n =

�l
i=1 ni

by alternately placing the elements of ρ1, ρ2, . . . , ρl in order.
Then, α = (α(1), α(2), . . . , α(n)) is called the interleaved vector
with α( j) = ρi(� j/l�) for j ∈ [n] and i ≡ j (mod l), where �x�
is the smallest integer equal to or larger than the real x [4].
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B. Levenshtein’s Permutation Codes

Levenshtein’s permutation codes were proposed to correct
a single SID by signing non-binary vectors as follows [11].

Definition 4: The signature of a length-n nonbinary vector
σ = (σ1, σ2, . . . , σn) can be defined as a length-(n− 1) binary
indicator vector μ(σ) = (μ(σ1), μ(σ2), . . . , μ(σn−1)) with

μ(σi) =

⎧⎪⎪⎨⎪⎪⎩
1, σi+1 ≥ σi

0, σi+1 < σi
, i ∈ [n − 1]. (1)

Proposition 1: For all a ∈ Zn � [0, n − 1], the class of
Levenshtein’s permutation codes in Sn are constructed as

Ca
n =
�
σ ∈ Sn :

�n−1
i=1 i · μ(σi) ≡ a (mod n)

�
. (2)

It was shown that the n Levenshtein’s permutation codes in
Sn are disjoint and have the same cardinality of (n− 1)!, thus
partitioning the permutation group Sn [12, Theorem 3.1].

For a permutation code C in Sn, the rate is defined as

R(C) =
log |C|
log |Sn| . (3)

III. Constructions of ≤ t-BSID permutation Codes

In this section, we propose two kinds of permutation codes
for correcting a single BSID of length up to t. The correspond-
ing decoding methods are included in the proofs.

A. Construction Based on the Symmetric Groups

Definition 5: Let B = {b1, b2, . . . , bn} be a set of n distinct
integers b1 < b2 < · · · < bn. A permutation over the set B can
be defined from a permutation α = (α(1), α(2), . . . , α(n)) over
the set [n] as follows

fB(α) = (bα(1), bα(2), . . . , bα(n)) ∈ SB, (4)

where SB denotes the full set of permutations over B. Clearly,
SB is isomorphic to Sn and has the same cardinality of n!.

Definition 6: The projection of α ∈ Sn onto a subset A ⊆
[n] is defined as α↓A ∈ SA that collects from α all the elements
in A while maintaining their relative order in α [6].

Example 1: Suppose that n = 5 and α = (4, 1, 3, 5, 2) ∈ S5.
If B = {4, 7, 8, 9, 12}, then fB(α) = (9, 4, 8, 12, 7) ∈ SA. If
A = {2, 3, 5} ⊆ [n], then α↓A = (3, 5, 2) ∈ SA.

Construction 1: Given two positive integers t and n, the set
[tn] can be partitioned into t order-n congruent classes

Ai = { j ∈ [tn] : j ≡ i (mod t)} , i ∈ [t]. (5)

Then, given any integer a ∈ Zn and the symmetric group St, a
permutation code in Stn can be constructed from Levenshtein’s
permutation code Ca

n as

C1(t, n, a) =
	
π∈St



fAπ(1) (α1) ◦ fAπ(2) (α2) ◦ · · · ◦ fAπ(t) (αt) :

αi ∈ Ca
n, i ∈ [t]

�
. (6)

Remark 1: Based on the class of Levenshtein’s permutation
codes Ca

n in Sn, there exist n distinct codes C1(t, n, a) in Stn,
each having cardinality |C1| = |St| · |Ca

n|t = t![(n − 1)!]t.
Theorem 1: The code C1(t, n, a) of length tn from Construc-

tion 1 is a ≤ t-BSID permutation code in Stn.

Proof: Suppose that α = (α(1), α(2), . . . , α(tn)) is a
permutation codeword in C1(t, n, a) and it suffers a single BSID
of length s ≤ t over positions I = [d, d + s − 1] for some
d ∈ [tn − s + 1]. Let α� = (α�(1), α�(2), . . . , α�(tn − s)) be the
received permutation of length tn − s.

Due to the interleaving codeword structure, a single BSID
of length s ≤ t in α yields the deletion of at most one symbol
in each Ai for i ∈ [t]. Equivalently, a projection α�↓Ai

of α�
onto Ai has exactly one symbol deleted if and only if it has
length n−1, otherwise it must have length n without suffering
deletion. By Definitions 5 and 6, fAi (αi) = α↓Ai . Then, fAi (αi)
is recovered from α�↓Ai

of length n − 1 in two steps:
1) The deleted symbol in α�↓Ai

is identified by comparing
α�↓Ai

and Ai;
2) The position of the deleted symbol in α�↓Ai

is determined
by using the decoder of Levenshtein’s permutation code Ca

n.
To determine π ∈ St, we check if there exists any i ∈ [t] such

that the deleted symbol in α�↓Ai
is located at the first position

of fAi (αi). If so, let π(i) = α�(i) (mod t) for i ∈ [t(n−1)+1, tn].
Otherwise, let π(i) = α�(i)(mod t) for all i ∈ [t].

Finally, interleaving the t permutations fAπ(i) (αi) in the order
specified by π yields the unique recovery of α ∈ C1(t, n, a).

Example 2: Consider the ≤ 4-BSID permutation code
C1(t, n, a) with t = 4, n = 8, and a = 0. By (5), the congruent
partition of the set [tn] consists of the t classes

A1 = {1, 5, 9, 13, 17, 21, 25, 29},
A2 = {2, 6, 10, 14, 18, 22, 26, 30},
A3 = {3, 7, 11, 15, 19, 23, 27, 31},
A4 = {4, 8, 12, 16, 20, 24, 28, 32}. (7)

Given π ∈ S4 and α1, α2, α3, α4 ∈ C0
8, a unique permutation

codeword is generated as α = fAπ(1) (α1)◦ fAπ(2) (α2)◦ fAπ(3) (α3)◦
fAπ(4) (α4), where fAπ(i) (αi) = α↓Aπ(i) ∈ SAπ(i) for i, π(i) ∈ [1, 4].

Suppose that π = (2, 4, 1, 3), α1 = (1, 7, 6, 5, 4, 3, 2, 8),
α2 = (2, 1, 7, 6, 5, 4, 8, 3), α3 = (3, 2, 1, 6, 5, 8, 7, 4), and α4 =

(6, 7, 8, 5, 3, 4, 2, 1). The four associated permutations fAπ(i) (αi)
can be obtained by (4) and organized in the matrix form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fAπ(1) (α1)
fAπ(2) (α2)
fAπ(3) (α3)
fAπ(4) (α4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 26 22 18 14 10 6 30
8 4 28 24 20 16 32 12
9 5 1 21 17 29 25 13
23 27 31 19 11 15 7 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Reading the above matrix column-wise yields the permutation
codeword α = (2, 8, 9, 23, 26, 4, 5, 27, 22, 28, 1, 31, 18, 24,
21, 19, 14, 20, 17, 11, 10, 16, 29, 15, 6, 32, 25, 7, 30, 12, 13, 3).

Suppose that α suffers a single BSID of length 3 at positions
I = {9, 10, 11}, i.e., the three adjacent symbols {22, 28, 1} in
α are deleted, yielding α� = (2, 8, 9, 23, 26, 4, 5, 27, 31, 18, 24,
21, 19, 14, 20, 17, 11, 10, 16, 29, 15, 6, 32, 25, 7, 30, 12, 13, 3).

It is easy to justify the burst length being s = 3 by measuring
the length of α�. To recover α from α�, we first obtain the four
projections of α�, without knowing π, as follows

α�↓A1
= (9, 5, 21, 17, 29, 25, 13),

α�↓A2
= (2, 26, 18, 14, 10, 6, 30),

α�↓A3
= (23, 27, 31, 19, 11, 15, 7, 3),

α�↓A4
= (8, 4, 24, 20, 16, 32, 12).
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By comparing each α�↓Ai
and the corresponding Ai, the

deleted symbols are identified to be 1, 22, and 28 in α�↓A1
,

α�↓A2
, and α�↓A4

, respectively. By using the decoder of C0
8, the

positions of the deleted symbols are determined to be all 3
in the three projections of length 7. Now that fAi (αi) can be
recovered from α�↓Ai

for all i ∈ [1, 4].
Since no deletion occurs at the first position of each fAi (αi)

for i ∈ {1, 2, 4}, we obtain π = (2, 4, 1, 3) by setting π(i) =
α�(i) (mod 4) for all i ∈ [1, 4]. Finally, α is uniquely recovered
by interleaving the four recovered permutations fAπ(i) (αi) in the
order specified by π.

Corollary 1: For t fixed, the code C1(t, n, a) of length tn
from Construction 1 is asymptotically optimal as n→ ∞.

Proof: By Stirling’s formula n! ∼ nn, it is derived that

R(C1) =
ln
�
t![(n − 1)!]t�

ln(tn)!
∼ tn ln n + O(n)

tn ln n + O(n)
∼ 1. (8)

B. Construction Based on the Stabilizer Subgroups

Definition 7: For i ∈ [n], the stabilizer subgroup of Sn

about the ith coordinate is defined as [22]

S(i)
n = {π = (π(1), . . . , π(i), . . . , π(n)) ∈ Sn : π(i) = i} , (9)

where |S(i)
n | = (n − 1)!.

Example 3: When n = 3, there are three stabilizer sub-
groups S(1)

n = {(1, 2, 3), (1, 3, 2)}, S(2)
n = {(1, 2, 3), (3, 2, 1)},

and S(3)
n = {(1, 2, 3), (2, 1, 3)}. Clearly, they have the identity

permutation (1, 2, 3) in common, and thus are not disjoint.
Definition 8: An even permutation in Sn is a permutation

in Sn that has an even number of inversions. Denote by Seven
n

the set of all the even permutations in Sn, then |Seven
n | = n!/2.

Construction 2: Given two positive integers t and n, the
set [tn] can be partitioned into t disjoint order-n classes Ai as
shown in (5). Then, given any Levenshtein’s permutation code
Ca

n in Sn and the stabilizer subgroup S(1)
t of St, a permutation

code in Stn can be constructed as

C2(t, n, a) =
	
π∈S(1)

t



fAπ(1) (α1) ◦ fAπ(2) (α2) ◦ · · · ◦ fAπ(t) (αt) :

α1 ∈ Ca
n; αk ∈ Seven

n , k ∈ [2, t]
�
. (10)

Remark 2: Similarly, based on the class of Levenshtein’s
permutation codes Ca

n in Sn, there also exist n distinct codes
C2(t, n, a) in Stn, each of which has cardinality

|C2| = |S(1)
t | · |Ca

n| · |Seven
n |t−1 = (t − 1)!(n − 1)! (n!/2)t−1 .

Theorem 2: The code C2(t, n, a) of length tn from Construc-
tion 2 is a ≤ t-BSID permutation code in Stn.

Proof: Suppose that the transmitted permutation α =
(α(1), α(2), . . . , α(tn)) ∈ C2(t, n, a) suffers a single BSID of
length s ≤ t over positions I=[i, i+ s−1] for some i ∈ [tn− s],
yielding a received sequence α�=(α�(1), α�(2), . . . , α�(tn − s)).

Suppose that α is obtained by interleaving the t permutations
fAπ(i) (αi) with α1 ∈ Ca

n and αi ∈ Seven
n , i ∈ [2, t]. The

interleaving order is specified by π ∈ S(1)
t . To recover α from

α�, we first determine the burst length s from the length of α�,
and then consider the following two cases.

Case 1 (s = t): Firstly, a single BSID of length t in α must
have exactly one symbol in each Ai deleted from α. By the
structure of the stabilizer subgroup, π can be recovered from
α� by setting π(i) = α�(i) (mod t) for all i ∈ [t].

Secondly, each projection α�↓Ai
of α� must have exactly one

deleted symbol in Ai. Thus, the deleted symbols can be found
simply by comparing α�↓Aπ(i) and Aπ(i) for all i ∈ [t].

Thirdly, the position p of the deleted symbol in α�↓Aπ(1)

can be determined by using the decoder of Levenshtein’s
permutation code Ca

n. Thus, fAπ(1) (α1) is recovered from α�↓Aπ(1)
.

Next, by the interleaving structure of α and the characteristic
of BSID, it is easily deduced that the position of the deleted
symbol in α�↓Aπ(2)

must be either p − 1 or p, and only one of
them can lead to an even permutation after inserting the deleted
symbol into α�↓Aπ(2)

. Therefore, α↓Aπ(2) and hence fAπ(2) (α2) can
be uniquely recovered from α�↓Aπ(2)

. Similarly, α↓Aπ(i) and hence
fAπ(i) (αi) can be uniquely recovered from α�↓Aπ(i) for all i ∈ [3, t].

Finally, the transmitted permutation can be uniquely deter-
mined as α = fAπ(1) (α1) ◦ fAπ(2) (α2) ◦ · · · ◦ fAπ(t) (αt).

Case 2 (s < t): Firstly, define a sequence α�� with tn − s
elements α��(i) = α�(i) (mod t) ∈ [t], i ∈ [tn− s]. By Construc-
tion 2, the permutation π ∈ S(1)

t will appear periodically in α��
except for the elements congruent to the deleted symbols from
α, thus making π easily and uniquely determined.

Secondly, since a single BSID does not change the symbols
at other positions, the deleted symbols {a1, a2, . . . , as} from α
can easily be identified by comparing α� and [tn].

Thirdly, the starting position p of the single BSID in α can
be determined in the following three disjoint cases.

1) If α�(1) � 1 (mod (t)), then p = 1, due to the fact that
π(1) = 1 such that ϕAπ(1) (α1) = ϕA1 (α1);

2) If there exists i ∈ [2, tn − s] such that α�(i) − α�(i − 1) �
π(i (mod t)) − π(i − 1 (mod t)) (mod t), then p = i;

3) Otherwise, p = tn− s+ 1, i.e., the single BSID occurs at
the last s positions in α.

Upon knowing the positions of the single BSID, the deleted
symbols {a1, a2, . . . , as} can be arranged as ak1 , ak2 , . . . , aks with
aki ≡ π(p + i − 1 (mod t)) (mod t) for all i ∈ [s]. Finally, the
transmitted permutation α is uniquely determined.

Example 4: Consider the code C2(t, n, a) with t = 4, n = 8,
and a = 0. The congruent partition A1,A2,A3,A4 of the set
[tn] is shown in (7). Given π ∈ S(1)

4 , α1 ∈ C0
8, and α2, α3, α4 ∈

Seven
8 , a unique permutation codeword can be generated as α =

fAπ(1) (α1) ◦ fAπ(2) (α2) ◦ fAπ(3) (α3) ◦ fAπ(4) (α4), where fAπ(i) (αi) =
α↓Aπ(i) ∈ SAπ(i) for i, π(i) ∈ [1, 4].

Suppose that π = (1, 4, 3, 2), α1 = (3, 2, 1, 5, 4, 8, 7, 6),
α2 = (2, 1, 4, 3, 6, 5, 8, 7), α3 = (1, 3, 2, 5, 4, 8, 6, 7), and α4 =

(1, 2, 5, 4, 3, 8, 6, 7). The four associated permutations fAπ(i) (αi)
can be obtained by (4) and organized in the matrix form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fAπ(1) (α1)
fAπ(2) (α2)
fAπ(3) (α3)
fAπ(4) (α4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 5 1 17 13 29 25 21
8 4 16 12 24 20 32 28
3 11 7 19 15 31 23 27
2 6 18 14 10 30 22 26

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Reading the above matrix column-wise yields the permutation
codeword α = (9, 8, 3, 2, 5, 4, 11, 6, 1, 16, 7, 18, 17, 12, 19, 14,
13, 24, 15, 10, 29, 20, 31, 30, 25, 32, 23, 22, 21, 28, 27, 26).
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Suppose that α suffers a single BSID of length s ≤ t at
positions I = [i, i + s − 1] for some i ∈ [tn − s], yielding a
received sequence α� of length tn− s. To show how to recover
α from α�, we consider the following two cases.

1) s = t = 4: Suppose that I = {9, 10, 11, 12}, i.e., the four
adjacent symbols {1, 16, 7, 18} are deleted from α, yielding
α� = (9, 8, 3, 2, 5, 4, 11, 6, 17, 12, 19, 14, 13, 24, 15, 10, 29, 20,
31, 30, 25, 32, 23, 22, 21, 28, 27, 26).

Letting π(i) = α�(i) (mod 4) for all i ∈ [1, 4] yields π =
(1, 4, 3, 2) ∈ S(1)

4 . It follows that

α�↓Aπ(1)
= (9, 5, 17, 13, 29, 25, 21),

α�↓Aπ(2)
= (8, 4, 12, 24, 20, 32, 28),

α�↓Aπ(3)
= (3, 11, 19, 15, 31, 23, 27),

α�↓Aπ(4)
= (2, 6, 14, 10, 30, 22, 26).

By comparing α�↓Aπ(i) and Aπ(i) for all i ∈ [4], the deleted
symbols are identified to be 1, 16, 7, and 18, respectively in the
four projections above. By using the decoder of Levenshtein’s
permutation code C0

8, the position of the deleted symbol in
α�↓Aπ(1)

is uniquely determined as p = 3. The position of the
deleted symbol in α�↓Aπ(2)

is also determined as p = 3 since
only the insertion of 16 into that position of α�↓Aπ(2)

gives rise
to an even permutation. Similarly, the positions of the deleted
symbols 7 in α�↓Aπ(3)

and 18 in α�↓Aπ(4)
are all determined as 3.

Now that fAπ(i) (αi) is uniquely recovered for all i ∈ [4], and
their interleaving in order leads to the unique recovery of α.

2) s = 3 < t: Suppose that I = {9, 10, 11}, yielding α� =
(9, 8, 3, 2, 5, 4, 11, 6, 18, 17, 12, 19, 14, 13, 24, 15, 10, 29, 20, 31,
30, 25, 32, 23, 22, 21, 28, 27, 26) of length 29. By comparing α�
and [1, 32], the three adjacent symbols deleted from α can be
identified as {1, 16, 7} without knowing their order.

Let α��(i) = α�(i) (mod 4) such that α��(i) ∈ [1, 4] for
i ∈ [1, 29]. Then, α�� = (1, 4, 3, 2, 1, 4, 3, 2, 2, 1, 4, 3, 2, 1, 4,
3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2), in which it is easily detected
that the permutation π = (1, 4, 3, 2) ∈ S(1)

4 appears periodically
except for the ninth position.

Let p be the starting position of the single BSID in α. Since
α�(1) ≡ π(1) (mod (t)), then p � 1. It is searched sequentially
in [2, 29] that only p = 9 satisfies the inequality

α�(p)−α�(p−1)�π(p (mod 4))−π(p−1 (mod 4)) (mod 4),

since α�(9)−α�(8) ≡ 4 (mod 4), whereas π(9 (mod 4)) = π(1),
π(8 (mod 4)) = π(4), and π(1) − π(4) ≡ 3 (mod 4). Therefore,
the three positions are determined to be 9, 10, and 11.

Finally, since π(9 (mod 4)) ≡ 1, π(10 (mod 4)) ≡ 16, and
π(11 (mod 4)) ≡ 7, all in modulo-4, we obtain the unique
arrangement that {1, 16, 7}, whose insertion into the position
p = 9 of α� completes the recovery of α.

Corollary 2: For t fixed, the code C2(t, n, a) of length tn
from Construction 2 is asymptotically optimal as n→ ∞.

Proof: Similarly by n! ∼ nn, it is derived that

R (C2)=
ln[(t−1)!(n−1)!( n!

2 )t−1]

ln(tn)!
∼ tn ln n + O(n)

tn ln n + O(n)
∼ 1.

(11)

TABLE I

Rate Comparison Between Different ≤ t-BSID Permutation Codes in Sn

Fig. 1. Rate comparison among the constructions proposed here and in [19]
and [20] for the code length n ∈ [3, 150] and the burst length t = 3.

Fig. 2. Rate comparison among the constructions proposed here and in [19]
and [20] for the code length n ∈ [3, 150] and the burst length t = 4.

C. Rate Comparison for Different Codes

For fair comparison, consider a unified pair of n and t
for comparing different ≤ t-BSID permutation codes in Sn.
Table I presents the rates and constraints for five codes,
where the rate for C3 is a lower bound [19]. Given t, it is
shown that R(C2) − R(C1) =

(t−1) ln n
2−t ln t

ln n! > 0 for n > 2t
t

t−1 ,
R(C1) − R(C4) = ln t!

ln n! > 0 for n > t, and R(C2) − R(C3) =
ln{2[ n2

2 ( n
t )!]t [(4t)!]2}−ln[n2n!]

ln n! , the third comparison result being not
straightforward.
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Intuitively, Figs. 1 and 2 show the rate distributions versus
n ∈ [3, 150] for t = 3 and t = 4, respectively. It is seen that

R(C2) > R(C1) for (n > 10, t = 3) and (n > 12, t = 4);

R(C2) > R(C3) for (n < 60, t = 3) and (n < 96, t = 4);

R(C1) > R(C3) for (n < 60, t = 3) and (n < 96, t = 4);

R(C2) > R(C5) for n > t; and R(C1) > R(C4) for n > t.

However, for (n ≥ 60, t = 3) and (n ≥ 96, t = 4), both the
proposed codes yield lower rates than C3. In these cases, the
proposed codes may still be favored due to their advantage in
flexibly matching the code parameters t and n, in addition to
the fact that they achieve much higher rates than C3 over a
wider range of n as t grows.

IV. Conclusion

Two classes of permutation codes have been constructed
under the interleaving framework for correcting a single BSID
of length up to t. The use of a symmetric group or a stabilizer
subgroup enlarges the code cardinality as much as possible,
while maintaining the advantage in flexibly choosing the code
parameters for practical applications in flash memories.
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