
270 Int. J. Web and Grid Services, Vol. 13, No. 3, 2017

TrDup: enhancing secure data deduplication with
user traceability in cloud computing

Jianfeng Wang

State Key Laboratory of Integrated Service Networks (ISN),

Xidian University,

Xi’an, P.R. China

Email: wjf01@163.com

Xiaofeng Chen∗

State Key Laboratory of Integrated Service Networks (ISN),

Xidian University,

Xi’an, P.R. China

and

Fujian Provincial Key Laboratory of Network Security and Cryptology,

Fujian Normal University,

Fuzhou, P.R. China

Email: xfchen@xidian.edu.cn
∗Corresponding author

Jin Li

School of Computer Science and Educational Software,

Guangzhou University,

Guangzhou, P.R. China

Email: lijin@gzhu.edu.cn

Kamil Kluczniak and Mirosław Kutyłowski

Department of Computer Science,

Wrocław University of Technology,

Wrocław, Poland

Email: kamil.kluczniak@pwr.edu.pl

Email: miroslaw.kutylowski@pwr.edu.pl

Abstract: Data deduplication is a special type of resource usage optimisation.
It leads to reduction of the used storage space and network bandwidth by
eliminating duplicate copies of the same data file. Convergent encryption, as the
state-of-art approach, has been widely adopted to perform secure deduplication
in the cross-user scenario. However, all prior solutions do not support user
traceability: there is no way to trace the identities of malicious users in case of
duplicate faking attacks. To cope with this problem, we propose a deduplication
scheme called TrDup. It realises traceability of malicious user’s identity by
incorporating traceable signatures with message-locked encryption technique.
The TrDup construction is followed by its formal security analysis.

Copyright c© 2017 Inderscience Enterprises Ltd.



Secure data deduplication with user traceability 271

Keywords: message-locked encryption; proof of ownership; secure
deduplication; traceable signatures.

Reference to this paper should be made as follows: Wang, J., Chen X., Li, J.,
Kluczniak, K. and Kutyłowski, M. (2017) ‘TrDup: enhancing secure data
deduplication with user traceability in cloud computing’, Int. J. Web and Grid
Services, Vol. 13, No. 3, pp.270–289.

Biographical notes: Jianfeng Wang received MS in Mathematics and PhD
in Cryptography from Xidian University, in 2013 and 2016, respectively. His
research interests include applied cryptography and secure outsourced storage.

Xiaofeng Chen received BS and MS in Mathematics from Northwest University,
China in 1998 and 2000, respectively. He got PhD in Cryptography from Xidian
University in 2003. Currently he is a Professor at Xidian University. His research
interests include applied cryptography and cloud computing security. He has
published over 100 research papers in refereed international conferences and
journals. He is in the Editorial Board of IEEE Transactions on Dependable
and Secure Computing (TDSC), Security and Communication Networks (SCN),
Computing and Informatics (CAI), and International Journal of Embedded
Systems (IJES) etc. He has served as the program/general chair or program
committee member in over 30 international conferences.

Jin Li received BS (2002) in Mathematics from Southwest University and PhD
in Information Security from Sun Yat-sen University in 2007. Currently he is a
Professor at Guangzhou University. He has been selected as one of the science
and technology new stars in Guangdong province. His research interests include
security in cloud computing and applied cryptography. He has published over 80
research papers in refereed international conferences and journals and has served
as the Program Chair or Program Committee Member in many international
conferences.

Kamil Kluczniak was a PhD Student at Wrocław University of Technology
during preparation of this work. He submitted a dissertation on domain
signatures at Polish Academy of Sciences. He received MSc (2012) in Computer
Science from Wrocław University of Technology. Most of the work presented
in this paper has been done when during his visit at Xidian University in
2015. He participated in several research projects concerning privacy for digital
identity documents. His research interests include provable security, pairing-
based cryptography, privacy issues for authentication protocols, design of
electronic signature schemes and domain signature schemes.

Mirosław Kutyłowski is a Full Professor at Wroclaw University of Technology.
He is a member of Research Council of Institute of Computer Science
at Polish Academy of Sciences and an elected member of Polish State
Commission for Academic Titles. In his career, he was a Humboldt Fellow at
Technical University of Darmstadt, Hochschuldozent at Heinz Nixdorf Institute
at University of Paderborn, and professor at Institute of Computer Science,
Wroclaw University. He has received MISTRZ Award from Foundation for
Polish Science, IBM Faculty Award in Cyber Security and 2013 Award from
Polish Chamber of Information Technology and Telecommunications, He has
been active in different bodies concerning e-government issues, in particular
concerning interface between ICT and legal systems. His research is focused on
algorithms in distributed systems, privacy, security and cryptography.



272 J. Wang et al.

This paper is a revised and expanded version of a paper entitled ‘A new
secure data deduplication approach supporting user traceability’, presented at
the 10th International Conference on Broadband and Wireless Computing,
Communication and Applications, Krakow, Poland, November, 2015,
pp.120–124.

1 Introduction

Today we observe a rapid development of cloud computing. More and more individuals

and enterprises move their own data into the cloud high-quality data services without

maintaining local data systems. Moreover, the resource-constrained users can enjoy seemly

unlimited computation resources by outsourcing computation-intensive task to the cloud

server. Plenty of research works on outsourcing computation have been done (Atallah et al.,

2002; Hohenberger and Lysyanskaya, 2005; Chen et al., 2014, 2015a,b).

Undoubtedly, current development of cloud computing can be attributed mainly to

a strong commitment of the IT industry. Today’s commercial cloud storage providers,

such as Dropbox, Amazon S3 and Google Drive, provide online storage services, from

simple backup services to cloud storage infrastructures (Harnik et al., 2010). As a result,

an increasing amount of data are being outsourced into the cloud and the volume of such

data increases almost exponentially. According to the recent analysis of IDC (Turner et al.,

2014), the total volume of digital data that we create and copy annually will reach 44 ZB in

2020. Inevitably, this leads to a cost explosion of data storage. This concerns not only cost

of the hardware and software necessary for keeping data but also rapidly growing energy

consumption in storage systems. Therefore, one of the most critical challenges today is

how to efficiently manage the ever-increasing datum and, at least, avoid wasteful resource

utilisation. Deduplication - avoiding to store in the system the same data multiple times -

is one of the important countermeasures against waste of storage space and has attracted

considerable attention from both academic and industrial community.

Traditional data deduplication approach is as follows: after a given file is uploaded to

the system for the first time by some user, all subsequent users do not have to perform

upload operations, instead the system returns a link to the data copy already stored in the

system. In case of data redundancy, this techniques enable us not only to save storage space

but also significantly reduces communication overhead.

Unfortunately, data deduplication leads also to new security challenges. One of the

most significant ones is that data deduplication is incompatible with traditional encryption.

Specifically, to protect data confidentiality, users encrypt their files before outsourcing them

to the cloud. If different encryption keys are used, then an identical data file shared by

different users will result in different ciphertexts, which makes cross-user deduplication

impossible. On the other hand, sharing the encryption keys between users might be

practically impossible - users of the same data might be unaware of themselves. Moreover,

personal data protection rules may prohibit showing who is holding a copy of a given file

and therefore make distribution of the encryption keys nearly impossible.

As a promising solution, convergent encryption (CE) Douceur et al. (2002)

encrypts/decrypts a data file with a convergent key derived from the cryptographic hash

value of the file contents. Since CE uses a deterministic symmetric encryption scheme

and the key depends only on the file contents, each copy generates the same ciphertext.

This makes deduplication with encrypted data feasible. Bellare et al. (2013) defined a new



Secure data deduplication with user traceability 273

cryptographic primitive called message-locked encryption (MLE), which can be viewed as

a generalisation of CE.

Furthermore, to enhance performance of deduplication, a randomised convergent

encryption (RCE) scheme has been proposed. It can efficiently accomplish the necessary

operations (i.e. key generation, message encryption and tag production). However, an

Achilles heel of RCE is its vulnerability to so-called duplicate faking attack. Specifically,

an honest user might be unable to retrieve his original file, since it can be replaced by a

fake one in an undetectable way. To tackle this problem, an interactive version of RCE,

called interactive randomised convergent encryption (IRCE), has been presented in Bellare

and Keelveedhi (2015). In IRCE, a user can check consistency of a file tag by interacting

with the server. In this way, the user can ensure that the original ciphertext is stored by the

server. However, an adversary may upload a perverse ciphertext C ′ instead of the correct

ciphertext C of a file F. When the subsequent user intends to upload a ciphertext of F, he

gets a link to C ′. He may interact with the system and find that C ′ is incorrect. However,

the cloud server cannot check consistency between the tag and the ciphertext, since he

has no access to the original plaintext. Thus, the cloud server cannot resolve which user

is dishonest. From the point of view of practical applications, this is a major drawback.

Preferably, it should be possible not only to identify which of these two users is malicious

but also to trace him - i.e. identify all ciphertexts uploaded by him. This is nontrivial, if in

principle a user might remain anonymous or appear under different identities.

1.1 Our contribution

In this paper, we focus on the problem of tracing malicious users performing duplicate

faking attack against data deduplication systems. Our contribution is as follows:

• We introduce user traceability functionality in secure data deduplication. It enables

to trace a malicious user in case of duplicate faking attack.

• We propose a concrete deduplication scheme TrDup enabling tracing of malicious

users. Specifically, each user generates a kind of anonymous signature for the

uploaded file - a variant of traceable signature scheme is used. Once a duplicate

faking attack happens, the tracing agent can reveal the identity of the malicious user

without revealing identities of other users or linking their files in the cloud system.

• We discuss security and efficiency issues of TrDup.

This is the full version of the paper that has been presented in BWCCA 2015 (Wang et al.,

2015). The main differences between this paper and the conference version are as follows:

First, we present the related work on secure data deduplication in Section 1.2. Second, We

present the detailed security analysis of the proposed scheme in Section 5. Finally, we add

a new Section 6 to provide a thorough experimental evaluation of the proposed scheme.

1.2 Related work

1.2.1 Secure deduplication

With the advent of the big data era, secure data deduplication has attracted considerable

attention from the research community. Plenty of work on deduplication over encrypted

data has been presented in the literature (Douceur et al., 2002; Storer et al., 2008;

Abadi et al., 2013; Bellare et al., 2013; Keelveedhi et al., 2013; Stanek et al., 2014;



274 J. Wang et al.

Li et al., 2014, 2015; González-Manzano and Orfila, 2015). Douceur et al. (2002) first

introduced the idea of convergent encryption, which enables data confidentiality while

performing deduplication. Bellare et al. (2013) formalised convergent encryption as MLE

and explored its applications for creating space-efficient outsourced storage. Stanek et al.

(2014) proposed a novel deduplication encryption scheme that can provide different

security levels for data files according to their popularity that refers to how frequently

the file is shared among users. In this way, they can achieve a more fine-grained trade-

off between the storage efficiency and data security for the outsourced data. In order

to improve confidentiality level for the outsourced data, Li et al. (2015) proposed a

fine-grained deduplication mechanism based on user privileges. A user can perform a

duplication check only for the files marked with matching privileges.

Unfortunately, all schemes mentioned above are vulnerable to the duplicate faking

attack. As the first attempt, Bellare and Keelveedhi (2015) presented an IRCE scheme,

which enables a user to check whether the correct ciphertext is stored by the cloud system.

This procedure can be run by the user interacting with the cloud server during the phases of

file upload and download. However, if an incorrect file is detected, we get no information

about validity of other files stored in the system.

1.2.2 Group signatures

The system proposed in this paper reuses the idea of group signatures introduced by

Chaum and van Heyst (1991). A group signature scheme allows any member of a group

to anonymously sign a message on behalf of the group, while keeping the identity of the

signer hidden. Only a group manager (or a group of users playing the role of a manager)

can open the signature and identify the original signer in case of need. Group signature

schemes have been widely adopted in many applications such as anonymous attestation

(Brickell et al., 2004), identity escrow (Ateniese et al., 2000) and data integrity auditing

(Wang et al., 2012).

Boneh et al. (2004) constructed a short group signature scheme based on the

strong Diffie-Hellman assumption and the decision linear assumption in bilinear groups.

According to this construction, the signatures have length 1,533 bits, which is below the

recommended size of RSA signatures but provide a comparable security level. Nguyen

and Safavi-Naini (2004) presented a group signature scheme based on bilinear parings.

This scheme provides stronger anonymity features and be extended to support membership

revocation.

So far, the existing group signature schemes enable tracing the signatures issued by a

certain user by opening all signatures corresponding to a certain group. Note that this might

be highly undesirable as privacy of the remaining users might be violated and we have to

reveal much more data that we really wish. To address this issue, Kiayias et al. (2004) have

introduced traceable signatures, where the group manager can generate a tracing token

for each group user. With the tracing token, all signatures issued by a given user can be

identified by a third party, called Tracing Agent, while neither revealing any information

on the signer’s identity nor linking the signatures of the other users. In a subsequent work

(Choi et al., 2006), a short traceable signature scheme is constructed - its size is less than

one-third of the size of the signature from Kiayias et al. (2004).

1.2.3 Proof of ownership

Halevi et al. (2011) introduced the concept of proof of ownership (PoW), which can

be used to ensure data privacy and confidentiality in case of client-side deduplication.



Secure data deduplication with user traceability 275

Namely, a user can efficiently prove to the cloud storage server that he indeed owns a

file without uploading it. Three concrete PoW constructions have been presented - they

are based on a Merkle hash tree (MHT) built from the content of a data file. Specifically,

a challenge/response protocol is performed between a server and a client. Each time the

server requires the client to a valid verification object for the requested subset of MHT leaf

nodes (the leaf nodes constitute the data file). Using a PoW, the cheat attack of malicious

user can be prevented. That is, a user that knows only a hash signature of a file cannot

convince the cloud server that he holds that file. Di Pietro and Sorniotti (2012) proposed

an efficient PoW scheme, where each challenge is a seed for a pseudorandom generator

and the response are the values in the file at bit positions derived by the generator from the

seed. Every time a file is uploaded to the server, the latter computes a set of challenges for

that file and stores them for a later check. Blasco et al. (2014) presented a PoW scheme

based on a Bloom filter, which is efficient both on the server and the client side.

1.3 Paper organisation

The rest of the paper is organised as follows. In Section 2, we briefly present some

preliminaries. In Section 3, we present the system and adversary model for the proposed

deduplication scheme. A concrete deduplication scheme with user traceability is presented

in Section 4. Section 5 is devoted to the security analysis of the proposed scheme.

Its performance evaluation is given in Section 6. Finally, the conclusions are given in

Section 7.

2 Preliminaries

2.1 Bilinear pairings

Let G1 and G2 be cyclic multiplicative groups of a prime order p, generated by g1 and g2,

respectively. Let GT be a cyclic multiplicative group of order p. A bilinear pairing is a

mapping e : G1 ×G2 → GT with the following properties:

1 bilinear: e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ Z
∗
p

2 non-degenerate: e(g1, g2) �= 1

3 computable: there is an efficient algorithm to compute e(u, v) for given u ∈ G1,

v ∈ G2.

2.2 Complexity assumptions

Definition 2.1 (q-Strong Diffie-Hellman Assumption): The q-Strong Diffie-Hellman

(q-SDH) problem in (G1, G2) is defined as follows Boneh et al. (2004): given a tuple

(g1, g2, g
γ
2 , . . . , g

(γq)
2 ) of length q + 2 and γ ∈R Z

∗
p as input, output a pair (g

1/γ+x
1 , x)

where x ∈ Z
∗
p. We say that the q-SDH assumption holds in (G1, G2), if for every

probability polynomial time algorithm A, there exists a negligible function negl(·) such

that

Pr[A(g1, g2, g
γ
2 , . . . , g

(γq)
2 ) = (g

1/γ+x
1 , x) for some x] ≤ negl(·).



276 J. Wang et al.

Definition 2.2 (SDH Representation): For G = (p,G1, G2,GT , g1, g2, e) and (u, v =
gγ2 ) with an unknown γ, an SDH representation is a tuple (A, x, t) with A ∈ G1 and x, t ∈
Z
∗
p such that A = (gx1 · u)1/γ+t.

Note that the tuple (A, x, t) satisfies e(A, gt2 · v) = e(gx1 · u, g2).

Definition 2.3 (Decision Linear Diffie-Hellman Assumption): The decision linear

Diffie-Hellman (DLDH) problem in G1 is defined as follows: Given {u, v, h, ua, vb, hc} ∈
G

6
1 as input, output yes if a+ b = c and no otherwise. We say that the DLDH assumption

holds in G1 if for every probability polynomial time algorithm A, there exists a negligible

function negl(·) such that

∣∣∣Pr[A(u, v, h, ua, vb, ha+b) = yes : u, v, h
R
← G1, a, b

R
← Zp]

−Pr[A(u, v, h, ua, vb, η) = yes : u, v, h, η
R
← G1, a, b

R
← Zp]

∣∣∣ ≤ negl(·).

Definition 2.4 (Linear Encryption Boneh et al., 2004): In linear encryption, a user’s

public key is a tuple of generators u, v, h ∈ G1, and the corresponding private key is x, y ∈
Zp such that ux = vy = h. A ciphertext LE(m) of m ∈ G1 is computed as follows:

LE(m) := (ua, vb,m · ha+b), where a, b
R
← Zp.

2.3 Bloom filter

A Bloom filter (BF) (Bloom, 1970) is a space-efficient data structure used to approximately

represent a large set S and to perform membership queries over it, which consists of a

binary array of size w, together with k independent hash functions hi : {0, 1}
� → [1, w]

for 1 ≤ i ≤ k. Initially, all positions of the array are set to 0. To insert an element x to the

BF, we set the bit value to 1 at k positions depending on x, i.e. we set BF [hi(x)] = 1 for

i = 1, 2, . . . , k.

A BF enables an efficient membership test: if there exists some i ∈ {1, 2 . . . , k} such

that B[hi(x)] = 0, then x is definitely not in the set S. Otherwise, we might assume that

x is a member of S (which might be false with a probability growing with the number of

elements inserted to the BF).

3 Problem formulation

3.1 System model

In this work, we consider a data deduplication system supporting user traceability, which

involves four parties: the data user, the cloud server, the group manager and the tracing

agency as illustrated by Figure 1.

Data User: A data user refers to an entity who wants to outsource data to the cloud server.

In a data deduplication system, the user uploads a file only when a duplicate check

shows that the file is still not stored in the cloud.

Cloud Server: The cloud server provides the data outsourcing service and stores data on

behalf of the users. To reduce the storage cost, the cloud server stores only a one copy



Secure data deduplication with user traceability 277

of each file (of course, we mean here one logical copy, some physical redundancy

might be necessary to resist hardware and software crashes).

Group Manager: The group manager is responsible for user enrollment and revocation.

We assume that the group manager is trusted and does not collude with other

entities. Besides, the group manager may reveal the identity of any malicious user

and generates trace tokens for the tracing agency in order to trace all the signature

generated by a malicious user.

Tracing Agent: The tracing agent is an entity that provides the user traceability service.

Using the trace tokens from the group manager, the tracing agent may check whether

data are uploaded by the malicious user. Note that the process of checking can be

performed independently in parallel by many tracing agents.

Figure 1 Architecture for traceable secure deduplication (see online version for colours)

3.2 Adversary model

We assume that both the cloud server and the tracing agent are ‘honest-but-curious’. That

means, they follow the protocol, but try to find out as much secret information as possible

based on data they hold and receive during the protocol execution. On the other hand, a

malicious user would attempt to replace the original file ciphertext with a perverse one

without being detected.



278 J. Wang et al.

Based on the above assumptions, our adversary model considers two types of

attackers:

1 An external attacker may obtain some knowledge (e.g. a hash value) of a data file. He

plays the role of a data user and may interact with the cloud server. The goal of this

adversary is to get access to the complete data file.

2 An internal attacker refers to a data user who tries to upload an incorrect ciphertext.

The attacker may collude with some data users.

3.3 Design goals

Our main goal is to address the problem of user traceability in data deduplication system.

According to the above attacker model, we aim to achieve the following design goals:

Data Soundness: We require that each user can perform deduplication operations and

recover his original data file, even if the adversary exists and colludes with other

malicious users. It implies that a malicious behaviour of an adversary will not violate

the benefits of an honest user.

Data Confidentiality: We require that data aresecure against an adversary who does not

own the data. That is, the user cannot get ownership of the data from the cloud server

by running the PoW protocol if the user does not hold the file.

User Traceability: We require that the files uploaded by a certain user can be linked by a

tracing agency in cooperation with the group manager. That is, in case of detection

of misbehaviour, all files uploaded by a rogue user can be identified.

4 TrDup: a concrete construction

In this section, we present a concrete secure deduplication scheme that supports user

traceability.

4.1 System description

• Setup(1λ): Let 1λ be the security parameter. Let G1, G2, and GT be cyclic

multiplicative groups of a prime order p, let g1, g2 be generators of G1, G2,

respectively. Let e be a bilinear pairing e : G1 ×G2 → GT . Let H , H1 be two

cryptographic hash functions, where H : {0, 1}∗ → Zp, H1 : {0, 1}B → {0, 1}l,
where B and l represent the block size and the token size, respectively. Let

P : {0, 1}l × {0, 1}� → {0, 1}κ be a pseudorandom function. The Setup procedure

is performed as follows:

1 The group manager randomly selects γ, ξ1, ξ2
R
← Z

∗
p, m

R
← G1,

h
R
← G1 \ {1G1

}, ω
R
← G2 \ {1G2

}. Then computes n = gγ2 , u = hξ−1
1 ,

v = hξ−1
2 . The system public key is published as PK = {m,n, ω, u, v, h}. The

master private key of the group manager is MSK = {γ, ξ1, ξ2}. Note that

u, v, h are three generators of G1 and ω is a generator of G2.



Secure data deduplication with user traceability 279

2 In order to join the system, a user Ui randomly chooses xi ∈ Z
∗
p as his private

key uski = xi and computes and sends gxi
1 to the group manager. Upon

receiving a request, the group manager randomly selects ti ∈ Z
∗
p and computes

Ai = (gxi
1 ·m)

1
γ+ti and then sends (i, Ai, ti) to the user Ui. The user Ui checks

whether the equation e(Ai, g
ti
2 · n) = e(gxi

1 ·m, g2) holds and stores

(i, Ai, ti, xi). The group manager adds a tuple Li = (gxi
1 , Ai, ti) to the user

list L.

• Encrypting a File: Suppose that a user Ui wants to upload a data file F. First, Ui

picks at random a key K and computes a conventional ciphertext C1 = Enc(K,F)
and a key KF = H(F). Here Enc is a symmetric encryption algorithm and H is a

collision-resistant hash function. Then, the user Ui computes C2 = K ⊕KF and a

tag TF = H(KF) of the file F. Furthermore, Ui initialises a Bloom filter BFF and

splits F into a set of blocks {Bi} of the same length. For each block Bi, the user

performs the following operations:

1 Ui computes the block token TBi
= H1(Bi) and a pseudorandom value

EBi
= P (TBi

, i);

2 Ui inserts the EBi
into the Bloom filter BFF, which will be used to prove the

file ownership for the users.

Finally, the user generates the final ciphertext CF = (C1, C2, TF, BFF).

• Sign: Before uploading the file ciphertext, the user Ui has to sign it with his private

key in an anonymous manner. The details of the signing process using the private

key (Ai, ti, xi) are described below:

1 Ui selects r1, r2, r3
R
← Zp, at random, and computes d1 = ti · r1, d2 = ti · r2,

and obtained the following values:

T1 = ur1 , T2 = vr2 , T3 = Ai · h
r1+r2 , T4 = ωr3 , T5 = e(g1, T4)

xi .

2 Ui chooses br1 , br2 , bd1
, bd2

, bti , bxi
∈ Zp at random and then computes the

following values:

B1 = ubr1 , B2 = vbr2 , B3 = T
bti
1 · u−bd1 , B4 = T

bti
2 · v−bd2 ,

B5 = e(g1, T4)
bxi ,

B6 = e(T3, g2)
bti · e(h, g2)

−bd1−bd2 · e(h, n)−br1−br2 · e(g1, g2)
−bxi .

3 Ui computes a challenge c = H(CF, T1, . . . , T5, B1, . . . , B6).

4 With the aforementioned parameters, Ui computes the following values:

sr1 = br1 + cr1, sr2 = br2 + cr2, sd1
= bd1

+ cd1, sd2
= bd2

+ cd2,

sxi
= bxi

+ cxi, sti = bti + cti.

5 The user Ui composes the signature σ for file F as

(T1, . . . , T5, c, sr1 , sr2 , sd1
, sd2

, sxi
, sti).

• File Upload: To upload a file F, the user computes the tag TF and sends it to the

cloud server. Upon receiving this upload request, the cloud server first checks

whether the tag TF already exists.



280 J. Wang et al.

1 If there is no duplicate on the cloud server, the user sends the ciphertext CF as

well as the signature σ to it. The cloud server will check the integrity of the

uploaded file F as follows:

a The cloud server computes the following values:

B̃1 = usr1 · T−c
1 , B̃2 = vsr2 · T−c

2 , B̃3 = T
sti
1 · u−sd1 ,

B̃4 = T
sti
2 · v−sd2 , B̃5 = e(g1, T4)

sxi · T−c
5 ,

B̃6 = e(T3, g2)
sti · e(h, g2)

−sd1−sd2 · e(h, n)−sr1−sr2 · e(g1, g2)
−sxi ·

e(T3, n)
c · e(m, g2)

−c.

b The cloud server checks correctness of the signature σ by checking the

equation: c
?
= H(CF, T1, . . . , T5, B̃1, . . . , B̃6). If it holds, then the cloud

server stores the file ciphertext CF together with file signature σ and

returns a link to these data to the user Ui.

2 If a duplicate of the tag TF is found by the cloud server in the cloud storage,

then the user has to perform a PoW protocol for the uploaded file by interacting

with the cloud server. More specifically, the cloud server randomly chooses κ
blocks, say Bk1

, . . . , Bkκ
, and sends the set of their identities T = {k1, . . . , kκ}

to the user. Upon receiving the set T , the user computes the tokens

Tj = H1(Bkj
), for j ∈ [1, κ]. Then the user sends the tokens Tj back to the

cloud server. The cloud server performs the following operations:

a For each 1 ≤ j ≤ κ, the cloud server computes EBkj
= P (Tj , kj) with Tj

received from the user.

b The cloud server checks whether all EBj
belongs to the BFF, if yes, a

corresponding link is assigned to the user. Otherwise, the process is

aborted.

After the PoW check is accomplished, the cloud server computes h = H(C1)
and sends h,C2 to the user. The user computes K

′

= C2 ⊕KF and checks

whether H(Enc(K
′

,F))
?
= h. If yes, then a link to the ciphertext of F will be

assigned to the user. If the equality does not hold, then the user may claim that

the ciphertext is invalid. In this case, he sends the file hash H(F) to the group

manager and reports the problem.

• User Trace: Upon receiving the tracing request, the group manager first checks the

correctness of the ciphertext to judge which user is dishonest. The procedure is as

follows:

1 The group manager computes the file tag T
′

= H(H(F)) and requests the

corresponding ciphertext CF from the cloud server.

2 The group manager recovers the file encryption key K
′

= C2 ⊕H(F) and

obtains the file F
′

= Dec(K
′

, C1). Finally, the group manager checks whether

H(F
′

) = H(F). If the equality holds, then the group manager claims that the

ciphertext CF is valid. Otherwise, the group manager will reveal the signer’s

identity by opening the signature with the following steps:



Secure data deduplication with user traceability 281

a The group manager computes Ã = T3/(T
ξ1
1 · T ξ2

2 ) using the master private

key MSK and then looks for an element Ak on the user list L such that

which item satisfies the equation Ak = Ã.

b If the group manager has enough evidence that the user Uk is malicious,

then he sends gxk
1 to all tracing agents.

c Using the token gxk
1 , the tracing agent checks all file signatures. Namely,

a given signature is linked to the malicious user if e(gxk
1 , T4) = T5. All

such signatures are returned to the group manager.

d The group manager deletes all links assigned to the malicious user.

Remark 1: Although the hash of the uploaded file needs to be revealed to the

group manager, it will not cause security threat because the group manager is trusted

by all users. As a complementary mechanism, if the group manager confirms that the

ciphertext CF is valid, it means that the user who launched the tracing request is

dishonest, then he might be revoked from the system as a penalty. Otherwise the

group manager will recover the identity index of the encipherer by opening the

signature. Furthermore, a tracing token will be distributed to all tracing agents for

tracing independently all the signatures generated by the dishonest user.

• File Retrieve: To download a file F, the user sends the link for F to the cloud server

and fetches the ciphertext CF together with the signature σ. Finally, the user decrypts

the ciphertext with his convergent key KF to obtain the original plaintext F.

4.2 Correctness of the proposed construction

We will show the correctness of our scheme according to the model defined in Choi et al.

(2006).

• Signature Correctness.

Note that

B̃1 = usr1 · T−c
1 = ubr1+cr1 · (ur1)−c = B1 (1)

B̃2 = vsr2 · T−c
2 = vbr2+cr2 · (vr2)−c = B2 (2)

B̃3 = T
sti
1 · u−sd1 = T

bti+cti
1 · u−(bd1+cd1)

(3)

= T
bti
1 · (ur1)cti · u−(bd1+cti·r1) = B3

B̃4 = T
sti
2 · v−sd2 = T

bti+cti
2 · v−(bd2+cd2)

(4)

= T
bti
2 · (vr2)cti · v−(bd2+cti·r2) = B4

B̃5 = e(g1, T4)
sxi · T−c

5 (5)

= e(g1, T4)
bxi

+cxi · e(g1, T4)
−cxi = B5

B̃6 = e(T3, g2)
sti · e(h, g2)

−sd1−sd2 · e(h, n)−sr1−sr2

·e(g1, g2)
−sxi · e(T3, n)

c · e(m, g2)
−c



282 J. Wang et al.

= e(T3, g2)
bti+cti · e(h, g2)

−(bd1+bd2 )−(cd1+cd2)

·e(h, n)−(br1+br2 )−(cr1+cr2) · e(g1, g2)
−bxi

−cxi

·e(T3, n)
c · e(m, g2)

−c

= B6 · e(T3, g2)
cti · e(h, g2)

−c(d1+d2) · e(hr1+r2 , n)−c (6)

·e(g1, g2)
−cxi · e(T3, n)

c · e(m, g2)
−c

= B6 · e(T3, g2)
cti · e(hr1+r2 , g2)

−cti · e(hr1+r2 , n)−c

·e(g1, g2)
−cxi · e(Ai · h

r1+r2 , n)c · e(m, g2)
−c

= B6 · e(Ai, g2)
cti · e(Ai, n)

c · e(g1, g2)
−cxi · e(m, g2)

−c

= B6 · e(Ai, g
ti
2 · n)c · e(gxi

1 ·m, g2)
−c = B6

Thus, c = H(CF, T1, . . . , T5, B̃1, . . . , B̃6).

• Open-Correctness.

For all signature generated by user ui, we have

Ã = T3/(T
ξ1
1 · T ξ2

2 ) = Ai · h
r1+r2/[(ur1)ξ1 · (vr2)ξ2 ] = Ai.

• Trace-Correctness. Obviously, if Uk has created the signature containing T4, T5,

then e(gxk
1 , T4) = e(g1, T4)

xk = T5 and the positive result is justified. On the other

hand, for a signature created by other user Ui, we have

e(gxk
1 , T4) = e(g1, T4)

xk �= e(g1, T4)
xi = T5.

5 Security analysis

Our scheme is designed to solve the user traceability problem in secure data deduplication

in the case of a duplicate faking attack happens. Some basic tools have been adopted to

construct our solution. In order to show the security of our construction, it is assumed

that the underlying building blocks are secure. These basic tools include the RCE scheme,

traceable signatures, and the proof of ownership PoW scheme. Based on this assumption,

we show that TrDup is secure with respect to the following security issues.

5.1 Soundness of secure data deduplication

By soundness, we mean that if a user stores a file to the cloud system, then he should be

able to recover the same file with a high probability or a party manipulating the file should

be detected. This property should hold if the user actually uploads the file as well as in the

case when the cloud system returns a link to a file already stored in the system.

Each file uploaded to the system is signed with an anonymous traceable signature,

which covers the (double) hash TF of the file. As shown in Choi et al. (2006), the traceable

signatures are unforgeable based on the q-SDH assumption, hardness of discrete logarithm

problem in G1, semantic security of linear encryption and properties of the hash function.

This ensures that the uploaded ciphertext originates from a legitimate user. Of course, the

first user uploading a file with a given tag may provide a perverse ciphertext CF. However,

another user holding the file with the same tag can discover manipulations by obtaining

partial ciphertext (h = H(C1), C2) from the cloud server after passing the PoW check. As

he holds KF, the hash preimage of the tag, he can derive the encryption key K = C2 ⊕KF



Secure data deduplication with user traceability 283

and then check whether H(Enc(K,F)) = h. A successful manipulation would mean that

the rogue user can create a file with the same hash value and therefore a collision for

the hash function can be computed. In case when that the hash value does not match the

decrypted file, the tracing functionality enables identification of the rogue user.

5.2 Confidentiality of the outsourced data

Confidentiality of files stored in the cloud with TrDup should be considered from two

points of view. The first one is confidentiality against a party having access only to

the ciphertext CF. Note that the data files are protected with the RCE scheme before

outsourcing into the cloud server. According to the security notion of Bellare et al. (2013),

RCE can achieve privacy against chosen distribution attack security, which guarantees that

the encryptions of two unpredictable messages should be indistinguishable. That is, RCE

can achieve semantic security when messages have high min-entropy.

The second important threat is that a rogue user U that has some partial information

of a file F stored in the cloud gets access to the whole file. The necessary conditions are:

• U must know the tag TF of the file F

• execution of the PoW protocol must yield a positive result.

The second condition fails with a high probability if U holds only a fraction of blocks of

file F, the size of the Bloom filter ensures that the probability of a false positive is small

and the number of trials κ during the PoW procedure is large enough.

Nevertheless, we should be aware that if U holds almost all blocks of F, then the PoW

protocol will give a positive result and U will get a link to the whole file. If U knows KF

as well, then he would be able to retrieve the whole file F and thereby learn the missing

blocks.

5.3 Traceability of user identity

Based on the traceable signatures, the group manager can easily trace the identity of the

signer for any signature. Specifically, the group manager computes Ã = T3/(T
ξ1
1 · T ξ2

2 )
using his master private key and then checks the user list to find Ai = Ã. Note that the

group manager is trusted by all users and does reveal signer’s identities.

On the other hand, the following attack scenarios may occur:

• Framing Attack. An adversary is allowed to act as a group manager and/or control

some users. He attempts to construct a signature that traces to an innocent user or

may claim a signature that was generated by an innocent user as its own. Note that

the purpose of framing might be to prepare signatures under rogue data which can be

used to cause revoking signatures created by an honest user via tracing functionality.

• Anonymity Attacks. The adversary is allowed to observe the operation of the

system while the users are added, and they produce signatures. He may control some

number of users as well as request tracing results for signatures of his choice. Then,

he choose a message and two target users (not controlled by himself) and receives a

signature of the message signed by one of these users - the one chosen at random by

the challenger. Finally, the adversary has to guess which of the two signers produced

the signature.

Fortunately, the detailed proofs show that the proposed traceable signature scheme resists

the above attacks, which are already given in Choi et al. (2006).



284 J. Wang et al.

6 Performance evaluation

In this section, we present results from a thorough experimental evaluation of TrDup. Our

experiments are based on an implementation using Pairing-Based Cryptography (PBC)

Library (http://crypto.stanford.edu/pbc) and OpenSSL Project (https://www.openssl.org)

on a Linux machine with the Intel Core i5-3470 3.20 GHz CPU and 4 GB memory. We

performed 100 runs for each test and take the average. Note that in order to precisely

measure the overhead both at the cloud server and the user side, all experiments were

performed on the same machine.

Table 1 presents the computation overhead of TrDup. Let P denotes a pairing operation,

Exp denotes an exponentiation in G1, Exp denotes an exponentiation in GT , Enc denotes

a symmetric encryption operation (resp., Dec stands for a decryption operation), H(F)
denotes a hashing operation of file F (resp., by H(B) means a hashing operation of a

file block B). Let n denote the number of users and N denote the number of signatures

generated.

Table 1 Performance evaluation on TrDup

Exponent. Exponent.

Procedure Pairings in G1 in GT Encryptions Hashes

Setup (server) − (3+n) − − −
Setup (user) 2 2 − − −
Uploading a file 1 10 6 1Enc (κ+1)H(B)

+2H(F)

Deduplication

(cloud server) 3 8 7 − 1H(F)

Deduplication

(data user) − − − 1Enc 1H(F)

Tracing cost N 2 − 1Dec 1H(F)

In the following experiments, we fix the number of hash functions of Bloom filter as

κ=16, the ratio of the length of Bloom filter and file block number is fixed to 23, then the

false positive is approximately equal to 2−16. We fix the block size as B = 4 KB, where

each block will be inserted into the Bloom filter of the file. We implement cryptographic

operations of hashing and encryption with the OpenSSL library. The operations of pairing

and exponentiation are implemented with the PBC library.

In this paper, our experiments mainly focus on the computation overhead introduced by

user tracing, including system setup, data outsourcing, data deduplication and user tracing.

We evaluate the overhead by varying some specific factors, such as the number of system

users, the file size and the number of signatures.

6.1 Computational complexity of system setup

In the system setup phase, the main computation overhead is dominated by pairing and

exponentiation operations, which are used to generate system parameters (i.e. the pairs).

More precisely, the cloud server needs to conduct (3 + n) exponentiation operations,

which is used to initialise the system parameters and generate anonymous identity tokens.



Secure data deduplication with user traceability 285

To join the TrDup system, each user conducts only two pairing and two exponentiation

operations.

In our experiment, we have considered the number of users ranging from 10 to 1,280,

at each step doubling the number of users. As shown in Figure 2, the cloud server needs

about 4 s when the total number of users reach 1,000. Note that the cost of each user is

constant. The result indicates that the time is acceptable in practice.

Figure 2 Impact of the number of system users on the system setup cost (see online version for
colours)

6.2 Computational complexity of data outsourcing

In order to simultaneously achieve data privacy and deduplication, the data user could

encrypt the data file with RCE before outsourcing it. The total computation overhead

consists of three parts: RCE encryption, creating a traceable signature, and generation of a

Bloom filter. Specifically, it includes 1 pairing, 10 exponentiations in G1, 6 exponentiations

in GT , 1 RCE encryption, (κ+ 1) block hashings and 2 hash operations for creating KF

and TF. Note that the time cost of computing KF is substantial and grows linearly with

the file size. On Figure 3), it can be seen that the most computation time is stem from

construction of the Bloom filter. Although the computation overhead is somewhat high,

we remark that the outsourcing work is done once and most of the effort concerns offline

activity. Still, the computation time is linear in the file size and linear on the parameter κ
(note that the scale on Figure 3b is logarithmic!).

6.3 Computational complexity of data deduplication

Upon receiving an upload request, there are two cases:

• The cloud server claims that the file is uploaded for the first time and then checks the

integrity of the uploaded ciphertext by verifying the signature.

• The file has been already uploaded by somebody else. The user retrieves part of

ciphertext and checks the integrity of the ciphertext by recomputing file tag.



286 J. Wang et al.

Figure 3 Impact of file size on data outsourcing time complexity. (a) Ciphertext generation time
(b) Bloom filter generation time (see online version for colours)

Figure 4 shows the time cost linearly increases with the file size. It should be pointed out

that the cost of data user becomes higher than the cloud server’s. The reason is that the

cost of encryption and hash operation increases with the file size. On the other hand, the

number of operations due to signature verification, such as pairing and exponentiation, is

constant.

Figure 4 Impact of file size on data deduplication time complexity (see online version for colours)

6.4 Computational complexity of user tracing

To trace the identity of the malicious user, the group manager first checks integrity of

the ciphertext requested by the user. Then, the group manager generates the tracing token

with his master key in a constant number of operations. Furthermore, the tracing token is

distributed to all tracing agents to trace all the signatures generated by the malicious user.



Secure data deduplication with user traceability 287

Figure 5 shows that the user tracing is very efficient, e.g. it takes only 0.5 s to check a

data file with the size of 128 MB. Although the computation overhead of the tracing agents

is a little expensive when the number of signatures is large, all tracing agents can execute

this operation in parallel. It shows that TrDup can be acceptable in a real-world scenario.

Figure 5 Impact of the file size and the number of signatures on user tracing time cost. (a) Group
manager cost in user tracing (b) Tracing agent cost in user tracing (see online version for
colours)

7 Conclusion

In this paper, we studied the problem of user traceability in secure data deduplication

system. Note that the state-of-the-art secure deduplication scheme called IRCE does not

consider the issue of identity tracing of the malicious user when a duplicate faking attack

happens. To address the above issue, we introduced the concept of user traceability into

secure data deduplication. Specifically, we have designed a novel concrete deduplication

scheme called TrDup, which applies traceable signatures and PoW on random convergent

encryption to achieve user traceability within data deduplication system. Security and

efficiency evaluation show that TrDup can achieve the desired security goals, while

providing a comparable computation overhead.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.

61572382), China 111 Project (No. B16037), National High Technology Research and

Development Program (863 Program) of China (No. 2015AA016007), Doctoral Fund

of Ministry of Education of China (No. 20130203110004), Program for New Century

Excellent Talents in University (No. NCET-13-0946), the Fundamental Research Funds

for the Central Universities (No. BDY151402) and Fujian Provincial Key Laboratory of

Network Security and Cryptology Research Fund (Fujian Normal University) (No. 15009).

This work was supported by Faculty of Fundamental Problems of Technology, Wrocław

University of Technology. This work is also a result of Polish-Chinese cooperation



288 J. Wang et al.

venture of Xidian University and Wrocławaw University of Technology on Secure Data

Outsourcing in Cloud Computing.

References

Abadi, M., Boneh, D., Mironov, I., Raghunathan, A. and Segev, G. (2013) ‘Message-
locked encryption for lock-dependent messages’, Proceedings of Advances in Cryptology
(CRYPTO’13), 18–22 August, 2013, Santa Barbara, CA, USA, pp.374–391.

Atalla, M.J., Pantazopoulos, K., Rice, J.R. and Spafford, E.E. (2002) ‘Secure outsourcing of scientific
computations’, Advances in Computers, Vol. 54, pp.215–272.

Ateniese, G., Camenisch, J., Joye, M. and Tsudik, G. (2000) ‘A practical and provably
secure coalition-resistant group signature scheme’, Proceedings of Advances in Cryptology
(CRYPTO’00), 20–24 August, 2000, Santa Barbara, California, USA, pp.255–270.

Bellare, M. and Keelveedhi, S. (2015) ‘Interactive message-locked encryption and secure
deduplication’, Proceedings of the 18th International Conference on Practice and Theory
in Public-Key Cryptography (PKC’15), 30 March–1 April, 2015, Gaithersburg, MD, USA,
pp.516–538.

Bellare, M., Keelveedhi, S. and Ristenpart, T. (2013) ‘Message-locked encryption and secure
deduplication’, Proceedings of EUROCRYPT 2013, 26–30 May, 2013, Athens, Greece,
pp.296–312.

Blasco, J., Di Pietro, R., Orfila, A. and Sorniotti, A. (2014) ‘A tunable proof of ownership scheme for
deduplication using Bloom filters’, Proceedings of 2014 IEEE Conference on Communications
and Network Security (CNS’14), 29–31 October, 2014, San Francisco, CA, USA, pp.481–489.

Bloom, B.H. (1970) ‘Space/time trade-offs in hash coding with allowable errors’, Communications
of the ACM, Vol. 13, No. 7, pp.422–426.

Boneh, D., Boyen, X. and Shacham, H. (2004) ‘Short group signatures’, Proceedings of Advances in
Cryptology (CRYPTO’04, 15–19 August, 2004, Santa Barbara, California, USA, pp.41–55.

Brickell, E., Camenisch, J. and Chen, L. (2004) ‘Direct anonymous attestation’, Proceedings of the
11th ACM Conference on Computer and Communications Security (CCS’04), 25–29 October,
2004, Washington, DC, USA, pp.132–145.

Chaum, D. and van Heyst, E. (1991) ‘Group signatures’, Proceedings of EUROCRYPT 1991, 8–11
April, 1991, Brighton, UK, pp.257–265.

Chen, X., Huang, X., Li, J., Ma, J. and Lou, W. (2015a) ‘New algorithms for secure outsourcing
of large-scale systems of linear equations’, IEEE Transactions on Information Forensics and
Security, Vol. 10, No. 1, pp.69–78.

Chen, X., Li, J., Ma, J., Tang, Q. and Lou, W. (2014) ‘New algorithms for secure outsourcing of
modular exponentiations’, IEEE Transactions on Parallel and Distributed Systems, Vol. 25,
No. 9, pp.2386–2396.

Chen, X., Susilo, W., Li, J., Wong, D.S., Ma, J., Tang, S. and Tang, Q. (2015b) ‘Efficient
algorithms for secure outsourcing of bilinear pairings’, Theoretical Computer Science, Vol. 562,
pp.112–121.

Choi, S., Park, K. and Yung, M. (2006) ‘Short traceable signatures based on bilinear pairings’,
Proceedings of the 1st International Workshop on Security (IWSEC’06), 23–24 October, 2006,
Kyoto, Japan, pp.88–103.

Di Pietro, R. and Sorniotti, A. (2012) ‘Boosting efficiency and security in proof of ownership
for deduplication’, Proceedings of the 7th ACM Symposium on Information, Compuer and
Communications Security (CCS’12), 2–4 May, 2012, Seoul, Korea, pp.81–82.

Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D. and Theimer, M. (2002) ‘Reclaiming space from
duplicate files in a serverless distributed file system’, Proceedings of the 22nd International
Conference on Distributed Computing Systems (ICDCS’02), 2–5 July, 2002, Vienna, Austria,
pp.617–624.



Secure data deduplication with user traceability 289

González-Manzano, L. and Orfila, A. (2015) ‘An efficient confidentiality-preserving proof of
ownership for deduplication’, Journal of Network and Computer Applications, Vol. 50,
pp.49–59.

Halevi, S. Harnik, D. Pinkas, B. and Shulman-Peleg, A. (2011) ‘Proofs of ownership in remote
storage systems’, Proceedings of the 18th ACM Conference on Computer and Communications
Security (CCS’11), 17–21 October, 2011, Illinois, USA, pp.491–500.

Harnik, D., Pinkas, B. and Shulman-Peleg, A. (2010) ‘Side channels in cloud services: deduplication
in cloud storage’, IEEE Security & Privacy, Vol. 8, No. 6, pp.40–47.

Hohenberger, S. and Lysyanskaya, A. (2005) ‘How to securely outsource cryptographic
computations’, Proceedings of the 2nd Theory of Cryptography Conference (TCC’05), 10–12
February, 2005, Cambridge, MA, USA, pp.264–282.

Keelveedhi, S., Bellare, M. and Ristenpart, T. (2013) ‘DupLESS: server-aided encryption for
deduplicated storage’, Proceedings of the 22th USENIX Security Symposium, 14–16 August,
2013, Washington, DC, USA, pp.179–194.

Kiayias, A., Tsiounis, Y. and Yung, M. (2004) ‘Traceable signatures’, Proceedings of EUROCRYPT
2004, 2–6 May, 2004, Interlaken, Switzerland, pp.571–589.

Li, J., Chen, X., Li, M., Li, J., Lee, P.C. and Lou, W. (2014) ‘Secure deduplication with efficient and
reliable convergent key management’, IEEE Transactions on Parallel and Distributed Systems,
Vol. 25, No. 6, pp.1615–1625.

Li, J., Li, Y., Chen, X., Lee, P. C. and Lou, W. (2015) ‘A hybrid cloud approach for secure
authorized deduplication’, IEEE Transactions on Parallel and Distributed Systems, Vol. 26,
No. 5, pp.1206–1216.

Nguyen, L. and Safavi-Naini, R. (2004) ‘Efficient and provably secure trapdoor-free group signature
schemes from bilinear pairings’, Proceedings of ASIACRYPT 2004, 5–9 December, 2004
Jeju Island, Korea, pp.372–386.

OpenSSL Project, Available at: https://www.openssl.org. (Accessed 10 July 2015).

Pairing-Based Cryptography Library, Available at: http://crypto.stanford.edu/pbc/. (Accessed 21
June 2015).

Stanek, J., Sorniotti, A., Androulaki, E. and Kencl, L. (2014) ‘A secure data deduplication scheme for
cloud storage’, Proceedings of the 18th International Conference on Financial Cryptography
and Data Security (FC’14), 3–7 March, 2014, Christ Church, Barbados, pp.99–118.

Storer, M.W., Greenan, K.M., Long, D.D. and Miller, E.L. (2008) ‘Secure data deduplication’,
Proceedings of the 2008 ACM Workshop on Storage Security and Survivability (StorageSS’08),
31 October, 2008, Alexandria, VA, USA, pp.1–10.

Turner, V., Gantz, J.F., Reinsel, D. and Minton, S. (2014) ‘The digital universe of opportunities: rich
data and the increasing value of the internet of things’, International Data Corporation, White
Paper, IDC_1672, 2014.

Wang, B., Li, B. and Li, H. (2012) ‘Knox: privacy-preserving auditing for shared data with
large groups in the cloud’, Proceedings of the 10th International Conference on Applied
Cryptography and Network Security (ACNS’12), 26–29 June, 2012, Singapore, pp.507–525.

Wang, J., Chen, X., Li, J., Kluczniak, K. and Kutyłowski, M. (2015) ‘A new secure data deduplication
approach supporting user traceability’, Proceedings of the 10th International Conference on
Broadband and Wireless Computing, Communication and Applications (BWCCA’15), 4–6
November, 2015, Krakow, Poland, pp.120–124.


