

基于图像的输电设备检测技术研究

谢倩楠

Contents

01 课题背景及研究意义 | 选题背景及研究的必要性

架空输电线路特点:

- ① 数量多、输电总里程长
- ② 穿越各种复杂的地理环境(山川、农田等)
- ③ 架设高度高
- ④ 易受天气的影响出现线路故障,影响输电线路的稳定运行

研究导线和杆塔检测技术的必要性:

- ◆ 提高无人机巡检的效率和智能化程度
- ★ 可以为导线舞动、导线覆冰、杆塔倒伏、工程 车入侵等提供技术支撑
- ◆ 为无人机巡检的自主飞行提供导航依据。

01 课题背景及研究意义 | 国内外研究现状

传统数字图像处理算法

将基于数字图像处理的导线检测算法归结为直线检测任务,通过边缘检测和直线提取两个步骤实现图像中导线的检测。 优点:检测速度较快 缺点:复杂背景下检测准确率差、受背景干扰严重

深度学习检测算法

基于深度学习的导线检测算法归结为导线的语义分割任务。 优点:自动提取导线特征、分割精度较高 缺点:受硬件条件的限制检测速度较慢

01 课题背景及研究意义 | 国内外研究现状

传统数字图像处理技术

杆塔图像种直线特征较多,采用边缘检测算子及直线拟合完成杆塔 轮廓的提取及检测。 缺点:检测步骤繁琐、杆塔种类多人工设计特征繁琐。

传统数字图像处理与机器学习相结合

通过杆塔的线性、方向梯度直方图、灰度值等特征训练分类器,实现杆塔检测。

缺点:大图检测的计算量大、检测准确率一般

深度学习检测算法

将基于深度学习的杆塔检测算法归结为对杆塔进行目标检测任务。 优点:自动提取杆塔特征、检测准确率高、泛化能力强 缺点:受硬件条件的限制检测速度较慢

01 课题背景及研究意义 | 现存的主要问题

Contents

Contents

2.1 输电导线初步检测 | 建立导线数据集

输电线路图像中导线特点:

- 导线所占像素比例小
- 导线像素宽度极小
- 导线位置和角度各异
- 背景复杂、干扰严重

人工标注的标签图

2.1 输电导线初步检测 | 建立导线数据集

通过水平镜像、旋转、对比度 变换等方式进行数据增强

2

1

通过平移方式将大尺寸的导线 图像和标签图裁剪为512×512 大小的图像

2.1 输电导线初步检测 | DeepLab v3+网络模型

2.1 输电导线初步检测 | 网络模型的训练

训练环境配置:

- + 计算机系统: Ubuntu 18.04
- + CPU : Intel(R) Core(TM) i3-9100F @3.60GHz
- + GPU : NVIDIA Geforce GTX 2080 Ti
- + 运行内存:32GB
- + 软件平台: Pycharm 2019
- + 深度学习框架: Pytorch 1.17.0

NVIDIA Jetson Xavier NX环境配置

- + 计算机系统: Jetpack4.4
- + CPU: NVIDIA Carmel ARM®v8.2 64位
- + GPU: 384核NVIDIA VoltaTM GPU
- + 运行内存:8GB
- + 深度学习框架: Pytorch 1.17.0

训练参数设置

网络模型	DeepLab v3+ (Xception或者ResNet)
数据集数量	6055
数据集尺寸	512×512
初始学习率	0.007
学习率更新策略	poly
批尺寸	4
训练周期数	100

2.1 输电导线初步检测 评价指标

01

主观感受 关注导线分割结果中,导 线的位置、分割准确度以 及导线的完整性及连续性。

02

客观评价指标 (PA)

所有类别被正确预测的像素个数 占图像中所有像素个数的比例。

$$PA = \frac{\sum_{i=0}^{k} p_{ii}}{\sum_{i=0}^{k} \sum_{j=0}^{k} p_{ij}}$$

图像中导线像素与背景像素所占比重差距极大,因此PA并不能准确评价导线分割任务的准确度。

客观评价指标(mloU)

03

通过计算每个类别IoU值的平均值得到,其 中IoU为两个集合的交集和并集之比,这两 个集合是真实标签图中导线像素(或背景像 素)的集合和DeepLab v3+网络分割结果中 导线像素(或背景像素)的集合。

语义分割任务中标准的评价指标,用来衡量 该模型分割的准确度,即网络分割结果与标 签图的吻合程度。

$$mIoU = \frac{1}{k+1} \sum_{i=0}^{k} \frac{p_{ii}}{\sum_{j=0}^{k} p_{ij} + \sum_{j=0}^{k} (p_{ji} - p_{ii})}$$

2.1 输电导线初步检测 实验结果分析

从主观角度来看,在极其复杂的背景下:

- 1. DeepLab v3+(ResNet101)网络的导线分割效果最好,与标签的相似度最高;而DeepLab v3+(Xception) 网络的导线分割结果相对较差。
- 2. 传统的hough变换效果极差,将田埂、道路边缘误检为导线

2.1 输电导线初步检测 实验结果分析

从主观角度来看,当导线的背景为天空,且有道路、田埂等复杂背景物的干扰下:

- 1. DeepLab v3+(Xception)、DeepLab v3+(ResNet101)均能很好地分割出图像中的导线,导线 分割结果都比较完整连续。
- 2. 传统的hough变换仅仅能够检测出部分导线,检测准确率低;且存在比较多的误检。

2.1 输电导线初步检测 实验结果分析

实验 编号	网络结构	模型大小 (M)	PA (%)	mIoU (%)	NVIDIA Jetso 设备中的检测	on Xavier NX 则速度(fps)
-71-0		(112)		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1280×720	1920×1080
1	DeepLab v3+(Xception65)	438.8	98.67	75.4	1.11	0.40
2	DeepLab v3+(ResNet101)	375.3	98.83	77.4	1.24	0.59

分析DeepLab v3+网络的结构参可知: 特征提取网络Xception (或ResNet) 和ASPP结构中,特征图的通道数过大 导致网络的参数量大幅度增加,模型 的加载速度和检测速度变慢。 **特征提取网络:**搭建层数更少、卷积核通道数更 少,但仍具有较强的特征提取能力和特征表达能 力的网络。

ASPP结构:采用深度可分离卷积代替ASPP结构 中的普通卷积,大幅度将低ASPP结构的参数量。

解码器部分: 在低层特征和高层特征在通道维度● 叠加后,引入CBAM模块,充分学习并筛选出对导线预测贡献较大的特征通道和空间区域。

● ● ● MobileNetV3网络模型 ● ● ●

							Input
Input	Operator	exp size	#out	SE	NL	S	224 ² ×3
$224^{2} \times 3$	conv2d, 3×3	-	16	-	HS	2	$112^{2} \times 16$
$112^{2} \times 16$	bneck, 3×3	16	16	\checkmark	RE	2	$112^{2} \times 16$
$56^{2} \times 16$	bneck, 3×3	72	24	-	RE	2	$56^2 \times 24$
$28^2 \times 24$	bneck, 3×3	88	24	-	RE	1	$56^2 \times 24$
$28^{2} \times 24$	bneck, 5×5	96	40	\checkmark	HS	2	$28^2 \times 40$
$14^{2} \times 40$	bneck, 5×5	240	40	\checkmark	HS	1	$28^2 \times 40$
$14^{2} \times 40$	bneck, 5×5	240	40	\checkmark	HS	1	$28^2 \times 40$
$14^{2} \times 40$	bneck, 5×5	120	48	\checkmark	HS	1	$14^2 \times 80$
$14^{2} \times 48$	bneck, 5×5	144	48	\checkmark	HS	1	$14^2 \times 80$
$14^{2} \times 48$	bneck, 5×5	288	96	\checkmark	HS	2	$14^2 \times 80$
$7^2 \times 96$	bneck, 5×5	576	96	\checkmark	HS	1	14×80 $14^2 \times 80$
$7^2 \times 96$	bneck, 5×5	576	96	\checkmark	HS	1	$14^{2} \times 112$
$7^2 \times 96$	conv2d, 1×1	_	576	\checkmark	HS	1	14×112 $14^2 \times 112$
$7^2 \times 576$	pool, 7×7	_	-	-	-	1	72×160
$1^{2} \times 576$	conv2d, 3×3 , NBN	_	1280	-	HS	1	7×160 $7^2 \times 160$
$1^{2} \times 1280$	conv2d, 3×3 , NBN	_	k	-	-	1	$7^{-} \times 160$
		<u> </u>					/~ × 160
							$7^2 \times 960$

• ● ● MobileNetV3网络模型 ● ● ●

Input	Operator	exp size	#out	SE	NL	S
224 ² ×3	conv2d, 3×3	-	16	-	HS	2
$112^{2} \times 16$	bneck, 3×3	16	16	-	RE	1
$112^{2} \times 16$	bneck, 3×3	64	24	-	RE	2
56 ² ×24	bneck, 3×3	72	24	-	RE	1
56 ² ×24	bneck, 5×5	72	40	\checkmark	RE	2
28 ² ×40	bneck, 5×5	120	40	\checkmark	RE	1
28 ² ×40	bneck, 5×5	120	40	\checkmark	RE	1
28 ² ×40	bneck, 3×3	240	80	-	HS	2
$14^{2} \times 80$	bneck, 3×3	200	80	-	HS	¹ Large版本
$14^{2} \times 80$	bneck, 3×3	184	80	-	HS	1
$14^{2} \times 80$	bneck, 3×3	184	80	-	HS	1
$14^{2} \times 80$	bneck, 3×3	480	112	\checkmark	HS	1
14 ² ×112	bneck, 3×3	672	112	\checkmark	HS	1
14 ² ×112	bneck, 5×5	672	160	\checkmark	HS	2
7 ² ×160	bneck, 5×5	960	160	\checkmark	HS	1
$7^2 \times 160$	bneck, 5×5	960	160	\checkmark	HS	1
$7^2 \times 160$	conv2d, 1×1	-	960		HS	1
$7^2 \times 960$	pool, 7×7	-	-	-	-	1
$1^{2} \times 960$	conv2d, 3×3 , NBN	-	1280	-	HS	1
$1^{2} \times 1280$	conv2d, 3×3 , NBN	-	k	-	-	1

Small版本

conv layer

Spatial Attention

[MaxPool, AvgPool]

• ● ● CBAM模块 ● ● •

CBAM模块主要包含两部分:通道注意力模块 CAM(Channel Attention Module)和空间注意力模块 SAM(Spatial Attention Module)。 CAM模块:关注特征图不同通道之间重要程度。

SAM模块:关注特征图中像素的位置信息。

2.2 模型轻量化设计 | 模型优化设计

2.2 模型轻量化设计 | 对比实验及结果分析

从主观角度来看,当图像中的导线仅有2到3像素宽且处于复杂背景下,虽然与DeepLab v3+(ResNet)相比,MDeepLab v3+网络的分割效果中导线的连续性相对较差,但比DeepLab v3+(Xception)的结果好很多。

2.2 模型轻量化设计 | 对比实验及结果分析

结论

当图像中导线的背景为天空时,背景比较简单,本文提出的轻量化 网络MDeepLab v3+亦能很好地分割出图像中的导线,且导线分 割结果都比较完整连续。

2.2 模型轻量化设计 | 对比实验及结果分析

实验 编号	网络结构	模型大小 (M)	$\begin{array}{ c c } PA & n \\ (\%) & (\end{array}$	mIoU (%)	NVIDIA Jets 设备中检测	on Xavier NX 速度(fps)
, i i i i i i i i i i i i i i i i i i i		(/		.,.,	1280×720	1920×1080
1	DeepLab v3+	375 3	98.83	77 4	1 24	0.59
1	(ResNet101)	575.5	70.05	//.⊤	1.27	0.57
2	本文方法	10.3	98 16	73.6	11 71	6 80
2	MDeepLab v3+	17.5	70.40	75.0	11./1	0.00

不管是从主观角度还是客观指标评价的角度,本论文所设计的轻量化 语义分割网络MDeepLab v3+更适用于输电线路中的导线检测任务。

 2
 输电导线检测算法研究

 2.1
 输电导线初步检测

 2.2
 模型轻量化设计

 2.3
 精细化处理

① 问题

□ 进行断点连接,保证检测结果的连续性□ 去除伪导线

DeepLabv3+检测结果

② 处理思路

- □ **伪导线特点**:长度较短、分布散乱
- □ 断裂导线特点:待连接部分间隔近
- □ 思路:连接算法进行断点连接,长度阈 值去除伪导线。

③ 处理流程

目录

Contents

03 输电杆塔检测算法研究 | 建立杆塔数据集

1

2

输电线路图像中杆塔特点:

- 结构复杂
- 塔材之间存在大量的背景像素
- 背景复杂

使用水平镜像、旋转、缩放、对比度变换中的一种 或多种组合的方式,进行数据增强。

借助LabelImg软件,通过矩形框标注出图像中的杆塔,生成xml格式的标签文件。

<annotation>

<folder>JPEGImages</folder><filename>1554.jpg</filename>

LabelImg软件的标注界面

面房電子斜核大學 Xidian University

03 输电杆塔检测算法研究 | уосоузмая фед

03 输电杆塔检测算法研究 | 轻量化网络模型的设计

03 输电杆塔检测算法研究 | 轻量化网络模型的设计

- 去除MobileNetV3-Large网络最 后的一个卷积层、两个全连接层 及一个池化层,然后将其作为 YOLOv3的特征提取网络;
- 2. 多尺度检测网络包含3个检测层

	7个卷积 核尺寸	7个卷积核的通 道数依次为
第1个检测层Scale1	依次为 1×1、 3×3、 1×1、 3×3、 1×1、 3×3、 1×1、	112、160、112、 160、112、160、 112
第2个检测层Scale2		40、112、40、 112、40、112、 40
第3个检测层Scale3		24、40、24、40、 24、40、24

03 输电杆塔检测算法研究 | 网络模型的训练

训练环境配置:

- + 计算机系统: Ubuntu 18.04
- + CPU : Intel(R) Core(TM) i3-9100F @3.60GHz
- + GPU : NVIDIA Geforce GTX 2080 Ti
- + 运行内存:32GB
- + 软件平台: Pycharm 2019
- + 深度学习框架: Pytorch 1.17.0

NVIDIA Jetson Xavier NX环境配置

+ 计算机系统: Jetpack4.4

- + CPU: NVIDIA Carmel ARM®v8.2 64位
- + GPU: 384核NVIDIA VoltaTM GPU
- + 运行内存:8GB
- + 深度学习框架: Pytorch 1.17.0

杆塔数据集的信息

	数量/张
训练集	2892
验证集	723
测试集	957
总数	4572

03 输电杆塔检测算法研究 | 评价指标

		预测	则结果
		杆塔	非杆塔
真实	杆塔	ТР	FN
标签	非杆塔	FP	TN

03 输电杆塔检测算法研究 | 实验结果及分析

YOLOv3

YOLOv3-Tiny

YOLOv5

本论文改进的轻量化网络

03 输电杆塔检测算法研究 | 实验结果及分析

YOLOv3

YOLOv3-Tiny

YOLOv5

本论文改进的轻量化网络

网络模型	网络参数量/个	模型大小/M	mAP值/%	NVIDIA Jetson Xavier NX 上的平均检测速度/fps
YOLOv3	6152 3734	123.4	94.7	6.57
YOLOv3-Tiny	866 9876	16.6	82.9	-
YOLOv5	4739 3334	90.8	96.7	9.14
本论文的轻量化网络	240 8001	5.1	93.6	21.73

- 1. YOLOv5的检测准确率最高, YOLOv3次之, 但二者在NVIDIA Jetson Xavier NX开发板上的检测速度均低于10帧/s。
- 2. 与YOLOv3相比,本论文的轻量化网络在检测准确率仅降低1.1%的情况下,在NVIDIA Jetson Xavier NX 开发板上的检测速度可达21.73帧/s,能够满足实时检测的目标。

Contents

04 总结与展望 | 研究总结

04 总结与展望 | 展望

展望

- **1.数据集方面:**后续可在更丰富的场景下,采集包含各种角度、各种 形态的导线和杆塔目标的输电线路图像,进一步丰富导线和杆塔数据集。
- 2. **导线检测方面:**进一步优化网络结构,在保证分割精度的同时提高 导线的检测速度。
- 3. **实际应用方面:**在后续研究的过程中,可以在本文研究工作的基础 上,进行后续的无人机巡检、故障检测等研究工作,搭建一个完整的巡 检系统用于实际的电力巡检。