

基于图像的输电设备检测技术研究

谢倩楠

目录

Contents

- 1 背景及研究意义
- 2 输电导线检测算法研究
- 3 输电杆塔检测算法研究
- 4 总结与展望

01 课题背景及研究意义 选题背景及研究的必要性

架空输电线路特点:

- ① 数量多、输电总里程长
- ② 穿越各种复杂的地理环境(山川、农田等)
- ③ 架设高度高
- ④ 易受天气的影响出现线路故障,影响输电线路的 稳定运行

研究导线和杆塔检测技术的必要性:

- ◆ 提高无人机巡检的效率和智能化程度
- ◆ 可以为导线舞动、导线覆冰、杆塔倒伏、工程 车入侵等提供技术支撑
- ◆ 为无人机巡检的自主飞行提供导航依据。

01 课题背景及研究意义 │ 國內外研究现状

传统数字图像处理算法

将基于数字图像处理的导线检测算法归结为直线检测任务,通过边

缘检测和直线提取两个步骤实现图像中导线的检测。

优点:检测速度较快

缺点:复杂背景下检测准确率差、受背景干扰严重

导线 检测 算法

深度学习检测算法

基于深度学习的导线检测算法归结为导线的语义分割任务。

优点:自动提取导线特征、分割精度较高 **缺点**:受硬件条件的限制检测速度较慢

01 课题背景及研究意义 │ 國內外研究现状

传统数字图像处理技术

杆塔图像种直线特征较多,采用边缘检测算子及直线拟合完成杆塔轮廓的提取及检测。

缺点:检测步骤繁琐、杆塔种类多人工设计特征繁琐。

杆塔 检测 算法

传统数字图像处理与机器学习相结合

通过杆塔的线性、方向梯度直方图、灰度值等特征训练分类器,实现杆塔检测。

缺点:大图检测的计算量大、检测准确率一般

深度学习检测算法

将基于深度学习的杆塔检测算法归结为对杆塔进行目标检测任务。

优点:自动提取杆塔特征、检测准确率高、泛化能力强

缺点:受硬件条件的限制检测速度较慢

01 课题背景及研究意义 现存的主要问题

目录

Contents

- 1 背景及研究意义
- 2 输电导线检测算法研究
- 3 输电杆塔检测算法研究
- 4 总结与展望

目录

Contents

- 2 输电导线检测算法研究
 - 2.1 输电导线初步检测
 - 2.2 模型轻量化设计
 - 2.3 精细化处理

2.1 输电导线初步检测 | 建立导线数据集

输电导线图像采集

通过无人机和架设在杆塔上的监控摄像头采集输电线路图像。

尺寸: 1280×720或1920×1080

格式: JPEG

输电导线图像

输电线路图像中导线特点:

- 导线所占像素比例小
- 导线像素宽度极小
- 导线位置和角度各异
- 背景复杂、干扰严重

人工标注

借助Photoshop软件、人工逐像素标注90幅输电导线图像。

尺寸: 1280×720或1920×1080

格式: BMP

人工标注的标签图

2.1 输电导线初步检测 | 建立导线数据集

1

通过水平镜像、旋转、对比度 变换等方式进行数据增强

2

通过平移方式将大尺寸的导线 图像和标签图裁剪为512×512 大小的图像

2.1 输电导线初步检测 | DeepLab v3+网络模型

DeepLab v3+网络结构:

- ★由编码器和解码器构成
- →编码器结构包含两部分: DCNN和多空空间金字塔池化结构ASPP结构。其中DCNN代表特征提取网络,可采用Xception、ResNet等网络。
- ★通道数叠加实现特征融合
- ★端到端的语义分割网络

特点:

- →优点: 分割精度高、对位置及细节信息敏感
- **→缺点:** 网络层数深、计算量大、对硬件的运算性能有较高的要求

2.1 输电导线初步检测 | 网络模型的训练

训练环境配置:

→ 计算机系统: Ubuntu 18.04

→ CPU : Intel(R) Core(TM) i3-9100F @3.60GHz

→ GPU: NVIDIA Geforce GTX 2080 Ti

+ 运行内存: 32GB

→ 软件平台: Pycharm 2019

→ 深度学习框架: Pytorch 1.17.0

NVIDIA Jetson Xavier NX环境配置

→ 计算机系统: Jetpack4.4

+ CPU: NVIDIA Carmel ARM®v8.2 64位

→ GPU: 384核NVIDIA VoltaTM GPU

+ 运行内存:8GB

→ 深度学习框架: Pytorch 1.17.0

训练参数设置

网络模型	DeepLab v3+ (Xception或者ResNet)			
数据集数量	6055			
数据集尺寸	512×512			
初始学习率	0.007			
学习率更新策略	poly			
批尺寸	4			
训练周期数	100			

2.1 输电导线初步检测 评价指标

01

主观感受

关注导线分割结果中,导 线的位置、分割准确度以 及导线的完整性及连续性。

02

客观评价指标 (PA)

所有类别被正确预测的像素个数 占图像中所有像素个数的比例。

$$PA = \frac{\sum_{i=0}^{k} p_{ii}}{\sum_{i=0}^{k} \sum_{j=0}^{k} p_{ij}}$$

图像中导线像素与背景像素所占比重差距极大,因 此PA并不能准确评价导线分割任务的准确度。

03

客观评价指标(mloU)

通过计算每个类别IoU值的平均值得到,其中IoU为两个集合的交集和并集之比,这两个集合是真实标签图中导线像素(或背景像素)的集合和DeepLab v3+网络分割结果中导线像素(或背景像素)的集合。

语义分割任务中标准的评价指标,用来衡量 该模型分割的准确度,即网络分割结果与标 签图的吻合程度。

$$mIoU = \frac{1}{k+1} \sum_{i=0}^{k} \frac{p_{ii}}{\sum_{j=0}^{k} p_{ij} + \sum_{j=0}^{k} (p_{ji} - p_{ii})}$$

2.1 输电导线初步检测 实验结果分析

从主观角度来看,在极其复杂的背景下:

- DeepLab v3+(ResNet101)网络的导线分割效果最好,与标签的相似度最高;而DeepLab v3+(Xception) 网络的导线分割结果相对较差。
- 2. 传统的hough变换效果极差,将田埂、道路边缘误检为导线

2.1 输电导线初步检测 实验结果分析

从主观角度来看,当导线的背景为天空,且有道路、田埂等复杂背景物的干扰下:

- 1. DeepLab v3+(Xception)、DeepLab v3+(ResNet101)均能很好地分割出图像中的导线,导线分割结果都比较完整连续。
- 2. 传统的hough变换仅仅能够检测出部分导线,检测准确率低;且存在比较多的误检。

2.1 输电导线初步检测 实验结果分析

实验编号	网络结构	模型大小(M)	PA (%)	mIoU (%)	NVIDIA Jetso 设备中的检测	on Xavier NX 則速度(fps)
,,,, ,		(-1-7)	.,,,,	., .,	1280×720	1920×1080
1	DeepLab v3+(Xception65)	438.8	98.67	75.4	1.11	0.40
2	DeepLab v3+(ResNet101)	375.3	98.83	77.4	1.24	0.59

目录

Contents

2 输电导线检测算法研究

- 2.1 输电导线初步检测
- 2.2 模型轻量化设计
- 2.3 精细化处理

分析DeepLab v3+网络的结构参可知:特征提取网络Xception(或ResNet)和ASPP结构中,特征图的通道数过大导致网络的参数量大幅度增加,模型的加载速度和检测速度变慢。

特征提取网络: 搭建层数更少、卷积核通道数更少,但仍具有较强的特征提取能力和特征表达能力的网络。

ASPP结构:采用深度可分离卷积代替ASPP结构中的普通卷积,大幅度将低ASPP结构的参数量。

解码器部分: 在低层特征和高层特征在通道维度 叠加后,引入CBAM模块,充分学习并筛选出对 导线预测贡献较大的特征通道和空间区域。

• ● ● MobileNetV3网络模型 ● • •

MobileNetV2的倒残差模块

- ◆具有非线性的倒残差模块
- ◆深度可分离卷积
- ★引入轻量级的注意力模块SE
- ◆引入新的激活函数h-swish

$$swish(x) = x \cdot sigmoid(x)$$

$$h - swish(x) = x \cdot \frac{\operatorname{Re} LU6(x+3)}{6}$$

• ● ● MobileNetV3网络模型 ● ● ●

Input	Operator	exp size	#out	SE	NL	S
$224^{2} \times 3$	conv2d, 3×3	-	16	-	HS	2
$112^2 \times 16$	bneck, 3×3	16	16	$\sqrt{}$	RE	2
$56^2 \times 16$	bneck, 3×3	72	24	-	RE	2
$28^2 \times 24$	bneck, 3×3	88	24	-	RE	1
$28^2 \times 24$	bneck, 5×5	96	40	$\sqrt{}$	HS	2
$14^2 \times 40$	bneck, 5×5	240	40	$\sqrt{}$	HS	1
$14^2 \times 40$	bneck, 5×5	240	40	$\sqrt{}$	HS	1
$14^2 \times 40$	bneck, 5×5	120	48	$\sqrt{}$	HS	1
$14^2 \times 48$	bneck, 5×5	144	48	$\sqrt{}$	HS	1
$14^2 \times 48$	bneck, 5×5	288	96	$\sqrt{}$	HS	2
$7^2 \times 96$	bneck, 5×5	576	96	$\sqrt{}$	HS	1
$7^2 \times 96$	bneck, 5×5	576	96	$\sqrt{}$	HS	1
$7^2 \times 96$	conv2d, 1×1	-	576	$\sqrt{}$	HS	1
$7^2 \times 576$	pool, 7×7	-	-	-	-	1
$1^2 \times 576$	conv2d, 3×3, NBN	-	1280	-	HS	1
$1^2 \times 1280$	conv2d, 3×3, NBN	-	k	-	-	1

Input	Operator	exp size	#out	SE	NL	S
$224^{2} \times 3$	conv2d, 3×3	-	16	-	HS	2
$112^2 \times 16$	bneck, 3×3	16	16	-	RE	1
$112^2 \times 16$	bneck, 3×3	64	24	-	RE	2
$56^2 \times 24$	bneck, 3×3	72	24	-	RE	1
$56^2 \times 24$	bneck, 5×5	72	40	\checkmark	RE	2
$28^2 \times 40$	bneck, 5×5	120	40	\checkmark	RE	1
$28^2 \times 40$	bneck, 5×5	120	40	\checkmark	RE	1
$28^2 \times 40$	bneck, 3×3	240	80	_	HS	2
$14^2 \times 80$	bneck, 3×3	200	80	-	HS	¹ Large版本
$14^2 \times 80$	bneck, 3×3	184	80	-	HS	1
$14^2 \times 80$	bneck, 3×3	184	80	-	HS	1
$14^2 \times 80$	bneck, 3×3	480	112	\checkmark	HS	1
$14^{2} \times 112$	bneck, 3×3	672	112	\checkmark	HS	1
$14^2 \times 112$	bneck, 5×5	672	160	\checkmark	HS	2
$7^2 \times 160$	bneck, 5×5	960	160	\checkmark	HS	1
$7^2 \times 160$	bneck, 5×5	960	160	\checkmark	HS	1
$7^2 \times 160$	conv2d, 1×1	-	960		HS	1
$7^2 \times 960$	pool, 7×7	-	-	-	-	1
$1^2 \times 960$	conv2d, 3×3, NBN	-	1280	-	HS	1
$1^2 \times 1280$	conv2d, 3×3, NBN	-	k	-	-	1

Small版本

• • ● CBAM模块 ● • •

CBAM模块主要包含两部分:通道注意力模块
CAM(Channel Attention Module)和空间注意力模块
SAM(Spatial Attention Module)。

CAM模块: 关注特征图不同通道之间重要程度。

SAM模块: 关注特征图中像素的位置信息。

2.2 模型轻量化设计 | 模型优化设计

MDeepLab v3+网络结构

2.2 模型轻量化设计 | 对比实验及结果分析

从主观角度来看,当图像中的导线仅有2到3像素宽且处于复杂背景下,虽然与DeepLab v3+(ResNet)相比,MDeepLab v3+网络的分割效果中导线的连续性相对较差,但比DeepLab v3+(Xception)的结果好很多。

2.2 模型轻量化设计 | 对比实验及结果分析

当图像中导线的背景为天空时,背景比较简单,本文提出的轻量化 网络MDeepLab v3+亦能很好地分割出图像中的导线,且导线分 割结果都比较完整连续。

2.2 模型轻量化设计 | 对比实验及结果分析

实验编号	网络结构	模型大小 (M)	PA mIoU (%)		· l · · · · · · · · · · · · · · · · · ·		
711-4					1280×720	1920×1080	
1	DeepLab v3+ (ResNet101)	375.3	98.83	77.4	1.24	0.59	
2	本文方法 MDeepLab v3+	19.3	98.46	73.6	11.71	6.80	

不管是从主观角度还是客观指标评价的角度,本论文所设计的轻量化语义分割网络MDeepLab v3+更适用于输电线路中的导线检测任务。

目录

Contents

- 2 输电导线检测算法研究
 - 2.1 输电导线初步检测
- 2.2 模型轻量化设计
 - 2.3 精细化处理

①问题

- □ 进行断点连接,保证检测结果的连续性
- □ 去除伪导线

DeepLabv3+检测结果

② 处理思路

- □ 伪导线特点:长度较短、分布散乱
- □ 断裂导线特点:待连接部分间隔近
- □ **思路**:连接算法进行断点连接,长度阈值去除伪导线。

③ 处理流程

断点连接 算法步骤

- 1)**骨架化**。采用细化算法对导线进行骨架化,获得单像素的导线骨架图;
- 2) **断点搜索**。搜索单像素骨架图中的断点。断点 判断准则:如果该像素点为前景像素,且该像素的八邻 域有且只有一个前景像素,则认为该像素点为断点;
- 3) **断点匹配**。对骨架图中的每一个断点B,搜索与之匹配断点C,判断是否满足以下匹配准则:最小距离准则、共向准则、共线准则;若三个准则均满足,则认为两个断点匹配;
- 4) **断点连接**。由于输电线路图像中导线基本呈现 直线状态,且导线断裂部分不影响导线总体状态,因此 可以采用直线连接步骤3) 匹配到的两个断点。

断点匹配准则图

处的连接, 有效去 除背景噪声。

能够完成导线断裂

导线编号结果

网络检测结果 精细化处理结果 导线编号结果

目录

Contents

1 背景及研究意义

- 2 输电导线检测算法研究
- 3 输电杆塔检测算法研究
- 4 总结与展望

03 输电杆塔检测算法研究 | 建立杆塔数据集

输电线路图像中杆塔特点:

- 结构复杂
- 塔材之间存在大量的背景像素
- 背景复杂

1 使用水平镜像、旋转、缩放、对比度变换中的一种 或多种组合的方式,进行数据增强。

借助LabelImg软件,通过矩形框标注出图像中的杆塔,生成xml格式的标签文件。

LabelImg软件的标注界面

xml文件

03 输电杆塔检测算法研究 | YOLOV3网络模型

YOLOv3网络结构:

- ◆由特征提取结构(Darknet-53网络)和多尺度 检测结构(包含3个检测层)组成
- ★多尺度检测结构借鉴FPN的思想
- ★通道数叠加实现特征融合

特点:

- **→优点**: 检测准确率高,尤其对小目标的检测效果更好
- ◆缺点: 网络层数深、实际应用过程中速度较慢

03 输电杆塔检测算法研究 | 经量化网络模型的设计

影响模型的检测速度。

03 输电杆塔检测算法研究 | 经量化网络模型的设计

- 1. 去除MobileNetV3-Large网络最后的一个卷积层、两个全连接层及一个池化层,然后将其作为YOLOv3的特征提取网络:
- 2. 多尺度检测网络包含3个检测层

	7个卷积 核尺寸	7个卷积核的通 道数依次为
第1个检测层Scale1	依次为 1×1、 3×3、	112、160、112、 160、112、160、 112
第2个检测层Scale2	1×1, 3×3, 1×1,	40、112、40、 112、40、112、 40
第3个检测层Scale3		24、40、24、40、 24、40、24

03 输电杆塔检测算法研究 | 网络模型的训练

训练环境配置:

→ 计算机系统: Ubuntu 18.04

+ CPU: Intel(R) Core(TM) i3-9100F @3.60GHz

→ GPU: NVIDIA Geforce GTX 2080 Ti

+ 运行内存: 32GB

→ 软件平台: Pycharm 2019

→ 深度学习框架: Pytorch 1.17.0

NVIDIA Jetson Xavier NX环境配置

→ 计算机系统: Jetpack4.4

+ CPU: NVIDIA Carmel ARM®v8.2 64位

→ GPU: 384核NVIDIA VoltaTM GPU

+ 运行内存:8GB

→ 深度学习框架: Pytorch 1.17.0

杆塔数据集的信息

	数量/张		
训练集	2892		
验证集	723		
测试集	957		
总数	4572		

03 输电杆塔检测算法研究 | 评价指标

根据真实标签和预测结果将杆塔预 测框分为TP、TN、FP

准确率(mAP) 的计算步骤

计算精确率Precision和召回率Recall

$$Precision = \frac{TP}{TP + FP} \qquad \text{Re } call = \frac{TP}{TP + FN}$$

在所有的Recall的可能取值情况下, 计算所有的Precision的平均值AP

$$AP = \int_0^1 p(r)dr$$

计算各个类别的AP值,然后取所有类别 AP的平均值作为该网络模型的mAP值。

		预测结果		
		杆塔	非杆塔	
真实	杆塔	TP	FN	
标签	非杆塔	FP	TN	

03 输电杆塔检测算法研究 | 实验结果及分析

YOLOv3

YOLOv3-Tiny

YOLOv5

本论文改进的轻量化网络

03 输电杆塔检测算法研究 | 实验结果及分析

03 输电杆塔检测算法研究 | 实验结果及分析

网络模型	网络参数量/个	模型大小/M	mAP值/%	NVIDIA Jetson Xavier NX 上的平均检测速度/fps
YOLOv3	6152 3734	123.4	94.7	6.57
YOLOv3-Tiny	866 9876	16.6	82.9	-
YOLOv5	4739 3334	90.8	96.7	9.14
本论文的轻量化网络	240 8001	5.1	93.6	21.73

- 1. YOLOv5的检测准确率最高,YOLOv3次之,但二者在NVIDIA Jetson Xavier NX开发板上的检测速度均低于10帧/s。
- 2. 与YOLOv3相比,本论文的轻量化网络在检测准确率仅降低1.1%的情况下,在NVIDIA Jetson Xavier NX 开发板上的检测速度可达21.73帧/s,能够满足实时检测的目标。

目录

Contents

- 1 背景及研究意义
- 2 输电导线检测算法研究
- 3 输电杆塔检测算法研究
 - 4 总结与展望

04 总结与展望 | 研究总结

使用DeepLab v3+语义分割 网络完成导线检测任务,并 对检测结果进行评估。 使用YOLOv3目标检测网络完成杆塔 检测任务,并提出一种网络的轻量 化改进方案,提高算法的检测速度

DeepLab v3+网络模型

数据集

针对导线和杆塔数据集缺乏的问题,分别采用合适的方法对数据集进行扩充,并分别通过人工逐像素和矩形框的方式完成导线和 杆塔的标注工作。

精细化处理和 模型优化设计

提出精细化处理方案解决DeepLab v3+检测结果中少量断裂和伪导线的情况,获取完整的导线检测结果。并对DeepLab v3+网络进行优化设计,提高算法的检测速度。

展望

- **1.数据集方面:**后续可在更丰富的场景下,采集包含各种角度、各种 形态的导线和杆塔目标的输电线路图像,进一步丰富导线和杆塔数据集。
- **2. 导线检测方面:**进一步优化网络结构,在保证分割精度的同时提高导线的检测速度。
- **3. 实际应用方面:**在后续研究的过程中,可以在本文研究工作的基础上,进行后续的无人机巡检、故障检测等研究工作,搭建一个完整的巡检系统用于实际的电力巡检。