第四篇 图论

第6章 图论

第27－28课时 6.1 图的基本概念
第29课时 6.2 路径与回路
第30课时 6.3 图的矩阵表示
第31－32课时 6.4 欧拉图与汉密尔顿图
第33课时 6.5 平面图
第34课时 6.6 图的着色
第35课时 6.7 树（1）
第37－38课时 6.8 图的应用
§6.7.1 无向树

无向树

连通且无简单回路的无向图称为无向树，简称树。树中度为 1 的结点称为树叶，度数大于 1 的结点称为分支点或内点。仅含一个孤立结点的树称为平凡树。

森林

无简单回路的无向图称为森林。
§6.7.1 无向树

※『定理』给定一个 n 个结点 m 条边的无向图 T。以下关于 T 是无向树的定义是等价的。

（1）连通且无简单回路。

（2）无简单回路且 $m=n-1$。

（3）连通且 $m=n-1$。

（4）无简单回路，但增加任一新边，得到一条且仅一条基本回路。

（5）连通，但删去一条边后便不连通。（$n \geq 2$）

（6）每一对结点之间有且仅有一条基本路径。（$n \geq 2$）
§6.7.1 无向树

证明：采用循环论证方法。

（1）连通且无简单回路。
（2）无简单回路且 m = n - 1。

对树 T 中的结点数 n 进行归纳。
当 n = 1 时，必有 m = 0，因此有 m = n - 1 成立。假设当 n = k 时命题成立，现证明当 n = k + 1 时命题成立。

由于树 T 是连通的且无简单回路，所以在树 T 中至少有一个度为 1 的结点 v，从 T 中删除结点 v 及其关联的一条边 e，得到 k 个结点且无简单回路的连通图 T - v。根据归纳假设有 T - v 中有 k - 1 条边。现将结点 v 及其关联的边 e 放回从而恢复原图 T，这样 T 中必含有 k + 1 个结点和 k 条边，满足公式 m = n - 1。

所以树是无简单回路且 m = n - 1 的图。
§6.7.1 无向树

（2）无简单回路且 \(m = n - 1 \)。

（3）连通且 \(m = n - 1 \)。

用反证法。假设图 \(T \) 不连通，并设 \(T \) 中有 \(k \) (\(k \geq 2 \)) 个连通分支 \(T_1, T_2, \ldots, T_k \)，其中结点数分别为 \(n_1, n_2, \ldots, n_k \)，边数分别为 \(m_1, m_2, \ldots, m_k \)，且有

\[
\sum_{i=1}^{k} m_i = m,
\]

于是有

\[
m = \sum_{i=1}^{k} m_i = \sum_{i=1}^{k} (n_i - 1) = n - k < n - 1
\]

得出矛盾。所以树 \(T \) 是连通且 \(m = n - 1 \) 的图。
（3）连通且 $m = n - 1$。
（4）无简单回路，但增加任一新边，得到一条且仅一条简单回路。

(3) \Rightarrow (4)

首先，证明 T 中无简单回路，对结点数 n 进行归纳。
当 $n=1$ 时，$m=n-1=0$，显然无简单回路。
假设当 $n=k-1$ 时 T 中无简单回路，现考察当 $n=k$ 时的情况。此时 T 中至少有一个结点 v 的度数为 1，因为若 k 个结点的度数均大于等于 2，则 T 中的边数将不小于 k，这与 $m = n - 1$ 矛盾。现将一个度为 1 的结点 v 及其关联的一条边从 T 中删除，得到一个含 $k-1$ 个结点的图 $T-v$。根据归纳法 $T-v$ 中无简单回路，再将 v 及其关联的一条边放回，恢复图 T，T 也必无简单回路。

其次，证明增加任一新边 (v_i, v_j) 得到一个且仅一个基本回路。
由于图 T 是连通的，从 v_i 到 v_j 有一条基本路径 P，这条基本路径 P 与 (v_i, v_j) 就构成了一条简单回路。假设增加边 (v_i, v_j) 后得到不止一个基本回路，这说明从 v_i 到 v_j 还有与 P 不同的另外一条基本路径 P'，那么 P 与 P' 各构成的回路中必包含简单回路。这与 T 中无简单回路矛盾。

所以树中无简单回路，但增加任一新边，得到一条且仅一条基本回路。
§6.7.1 无向树

(4) 无简单回路，但增加任一新边，得到一条且仅一条简单回路。
(5) 连通，但删去一条边后便不连通。（n ≥ 2）

(4) ⇒ (5)
假设图T不连通，则存在两个结点vi和vj间无路径，若T中增加一条新边(vi, vj)不会产生简单回路，这与题设矛盾。由于T中无简单回路，所以删去任一边，图便不连通。
(5) 连通，但删去一条边后便不连通。 \((n \geq 2)\)
(6) 每一对结点之间有且仅有一条基本路径。 \((n \geq 2)\)

(5) \implies (6)

因为T是连通的，所以T中的任意两个不同结点间至少有一条路径，从而也有一条基本路径。若此路径不唯一，则T中含有简单回路，删除此回路上的任一条边不影响图T的连通性，这与题设矛盾。所以这条基本路径是唯一的。

所以若树中至少有2个结点数，则每一对结点之间有且仅有一条基本路径。

(1) 连通且无简单回路。

(6) \implies (1)

显然T是连通的。若T中含有简单回路，则回路上任意两点间有两条基本路径，这与题设矛盾。
定理 任一棵非平凡树中至少有两片树叶。

证明：设非平凡树 $T = <V, E>$, $|V| = n$, $|E| = m$. 由于 T 是连通的，因此对任意 $v_i \in V$, $\deg(v_i) \geq 1$, 且有

$$\sum_{v \in V} \deg(v) = 2m = 2(n-1) = 2n - 2.$$

(i) 若 T 中没有树叶，则每个结点的度数均大于等于 2。则有：

$$\sum_{v \in V} \deg(v) \geq 2n$$

这与 $\sum_{v \in V} \deg(v) = 2n - 2$ 矛盾。

(ii) 若 T 中仅有一片树叶，而其它结点的度数均大于等于 2。则有：

$$\sum_{v \in V} \deg(v) \geq 2(n-1) + 1 = 2n - 1$$

这与 $\sum_{v \in V} \deg(v) = 2n - 2$ 也矛盾。
给定一个无向图 G，若 G 的一个生成子图 T 是一棵树，则称 T 为 G 的生成树或支撑树。
§6.7.2 生成树

※【定理】一个连通无向图至少有一棵生成树。

证明：（构造法）
设G是连通无向图，若G中没有简单回路，则G本身就是生成树。
若G中存在简单回路，任选一条简单回路C1，从C1中删去一条边得到G1。若G1中无简单回路了，则G1是G的一棵生成树，若G1中仍有简单回路，则从G1中任选一条简单回路C2，从C2中删去一条边得到G2，...
重复上述过程，由于G中的简单回路数是有限的，故最终可以得到G的一棵生成树。
设 $G = \langle V, E, \omega \rangle$ 是一个边赋权的连通无向图，任取 $e \in E$，e 的权为实数 $\omega(e)$. 若 T 是 G 的一棵生成树，T 中树枝的权值之和称为树 T 的权，记为 $W(T) = \sum_{e \in T} \omega(e)$. G 的所有生成树中，权最小的那棵生成树称为图 G 的最小生成树.
设 $T=\langle V', E' \rangle$ 是 $G=\langle V, E \rangle$ 的一棵最小生成树，经典的最小生成树算法有以下几种：

1. **Prim 算法**
 (1) 从 V 中任意选取一个结点 v_0，令 $V' = \{v_0\}$。
 (2) 在 V' 与 $V - V'$ 之间选一条权最小的边 $e = (v_i, v_j)$，其中 $v_i \in V'$, $v_j \in V - V'$。

并且令 $E' = E' \cup \{e\}$, $V' = V' \cup \{v_j\}$.
§6.7.3 最小生成树

设 $T=<V', E'>$ 是 $G=<V, E>$ 的一棵最小生成树，经典的最小生成树算法有以下几种：

2. Kruskal 算法

首先将 E 中的边按权值由小到大排序，得到边的有序序列 S。

(1) 令 $i=1$，令 $E'={S[1]}$；

(2) 令 $i=i+1$。选取边 $S[i]$，如果 $S[i]$ 与 E' 中的边不构成简单回路，则令 $E'=E' \cup \{S[i]\}$。

(3) 重复 (2)，直到 $|E'|=|V|-1$ 为止。
§6.7.3 最小生成树

设 $T = <V', E'> < G = <V, E>$ 的一棵最小生成树，经典的最小生成树算法有以下几种：

3. 删圈法
 (1) 令 $E' = E$；
 (2) 选取 E' 中的一条简单回路 C，设 C 中权最大的边为 e，令 $E'' = E' - \{e\}$；
 (3) 重复步骤 (2)，直到 $|E''| = |V| - 1$ 为止。

不停的选取图 G 中的一条简单回路，从回路中删去权值最大的一条边，直到图中无简单回路为止。
【例题】分别用 Prim 算法、Kruskal 算法和破圈法求下图所示的连通图 $G=<V, E>$ 的一棵最小生成树。↓
§6.7.3 最小生成树

普里姆算法

西安电子科技大学
软件学院
§6.7.3 最小生成树

普里姆算法

大学
软件学院

最小生成树

普里姆算法

大学
软件学院
§6.7.3 最小生成树 克鲁斯卡尔算法

克鲁斯卡尔算法的步骤如下：

1. 将每条边按照权重从小到大排序。
2. 遍历排序后的每条边，对于每一条边，如果其两个顶点不在同一集合中，则将该边加入生成树，并将两个顶点所在集合合并。
3. 重复步骤2，直到生成树包含所有顶点。
§6.7.3 最小生成树

克鲁斯卡尔算法

西安电子科技大学

软件学院

最小生成树

(6)

(7) 最小生成树
内容总结和延伸

无向树

连通且无简单回路的无向图。

生成树

连通无向的一个生成子图且是一棵无向树。

最小生成树

带权和最小的一棵生成树。
本次课结束，谢谢大家！

作业（左孝凌书）：$P_{327}(1,2,3,4,5,6)$;