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Abstract: Recently, classification methods based on deep learning have attained sound results for the
classification of Polarimetric synthetic aperture radar (PolSAR) data. However, they generally require
a great deal of labeled data to train their models, which limits their potential real-world applications.
This paper proposes a novel semi-supervised deep metric learning network (SSDMLN) for feature
learning and classification of PolSAR data. Inspired by distance metric learning, we construct
a network, which transforms the linear mapping of metric learning into the non-linear projection
in the layer-by-layer learning. With the prior knowledge of the sample categories, the network also
learns a distance metric under which all pairs of similarly labeled samples are closer and dissimilar
samples have larger relative distances. Moreover, we introduce a new manifold regularization to
reduce the distance between neighboring samples since they are more likely to be homogeneous.
The categorizing is achieved by using a simple classifier. Several experiments on both synthetic and
real-world PolSAR data from different sensors are conducted and they demonstrate the effectiveness
of SSDMLN with limited labeled samples, and SSDMLN is superior to state-of-the-art methods.

Keywords: metric learning; semi-supervised classification; manifold regularization

1. Introduction

As the synthetic aperture radar (SAR) sensors can work independently in various weather
conditions, they have been widely applied to disaster detection and military reconnaissance.
The Polarimetric SAR (PolSAR) observations may contain rich information of the ground target,
such as the scattering properties, direction of arrival, and geometric shapes. The interpretation of
PolSAR imageries have become significant. Researchers have proposed numerous classification
algorithms during the last few years. These methods broadly fall into the following three categories:
supervised, unsupervised, and semi-supervised methods.

The unsupervised classification methods infer the label of each sample from the input dataset
without pre-existing labels. These methods play a main role in the early years (e.g., the late 20th
century) for PolSAR data. Researchers rely on the electromagnetic scattering and the polarimetric
target decomposition to classify pixels. For example, Lee et al. [1] based on the Cloude decomposition
and Wishart distribution of the covariance matrix, proposed the H/a-wishart classification. A fuzzy
C-means clustering algorithm [2] is used for unsupervised segmentation of PolSAR image. Lee et al. [3]
presented a clustering algorithm combined with the Wishart distribution of the data. Liu et al. [4]
integrated the color features with the statistical model for unsupervised classification. The classification
results benefit from the direct analysis on the physical scattering mechanisms and the statistical
characteristics of terrain types. Nevertheless, these unsupervised methods rarely yield high
classification accuracies due to the lack of prior knowledge of the terrain classes.
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Furthermore, the supervised learning has been applied to PolSAR classification, for example,
the classical SVM [5,6] and random forest [7]. Most of these methods are pixel-wise classifications.
In [6], each pixel/sample is represented by a feature vector composed of elements from decompositions,
after training with certain numbers of samples, the rest are input to SVM for attaining labels. What is
more, as the emergence of deep learning, many neural networks have been designed for PolSAR
classification, such as the stack auto-encoder (SAE) [8], Wishart-based Deep Stacking Network
(WDSN) [9], and Convolutional Neural Network (CNN) [10]. Although these supervised approaches
have obtained fine classification accuracy, both the conventional and deep learning-based supervised
methods require large amounts of labeled data to train the models, and this is not practical for
large-scale remote sensing imageries, which are quite expensive with on-the-spot investigations and
labeling work. When the labeled data is insufficient, the classification accuracy of these methods is
still unsatisfactory.

Recently, semi-supervised learning (SSL) methods have been proposed for classification,
which includes the conventional and deep learning-based methods. The two classes of these methods
use both a small amount of labeled data and a large amount of unlabeled data for training a classifier.
Some conventional SSL methods, such as the graph model-based SSL methods [11–13], attempt to
construct a graph to represent the dataset and then conduct label propagation from a few labeled
nodes/samples to lots of unlabeled nodes/samples. Moreover, the self-training and co-training based
SSL methods such as [14,15] also obtain sound classification results. Self-training employs one classifier
to select the most reliable data from an unlabeled dataset to add them to the training set, and the
co-training method applies two classifiers based on two distinct feature spaces to select the most reliable
data and add those data to the other classifier. In addition, a growing number of deep learning-based
SSL methods, such as Deep Sparse Filtering Network (DSFN) [16], neighborhood preserved deep
neural network (NPDNN) [17], are proposed for PolSAR feature learning and classification as there
emerges a wide range of applications of deep learning models and algorithms. The aforementioned
methods have attained sound results on the classification of various terrains. However, the prior
knowledge of the categories is not exploited sufficiently in the algorithms, which may result in the
coarse divisions for the terrains, and the classification accuracy still can be improved.

To address the issues mentioned above, we present a novel Semi-Supervised Deep Metric Learning
Network, named SSDMLN, to enhance the classification performance for PolSAR data. We are inspired
by the classical metric learning [18,19] and propose a new deep metric learning method, which
automatically learns a distance metric for input samples with supervised information and preserves
the relation of distance among the training samples. We transform the linear mapping of metric
learning into a non-linear projection by deep learning. Meanwhile, we construct a metric learning
network in which the input is the feature vector with the utilization of the prior knowledge from the
data categories. By the layer-by-layer learning, the proposed network maintains a closer distance for
similar pixels and a further larger distance for dissimilar pixels. Furthermore, to make full use of
massive unlabeled pixels we introduce a new manifold regularization to reduce the distance between
neighboring pixels since the neighboring samples pixels are more likely to be homogeneous. Finally,
our network determines the category of each pixel by the extracted discriminative features from a few
labeled pixels and a great number of unlabeled pixels. Therefore, compared with existing algorithms,
the contributions of this work are listed below.

• A new deep semi-supervised metric learning network is proposed to learn the intuitive features
from PolSAR data. SSDMLN maps the discriminative information from the classical metric
learning into a layer-by-layer network, which enhances the classification capability of the
proposed network.

• The new manifold regularization is constructed for our SSDMLN method, and it utilizes a great
deal of unlabeled pixels to learn features with large discrimination capability, which greatly
reduces the requirement for the labeled data for PolSAR classification.
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• The proposed SSDMLN is evaluated on three datasets of the real-world PolSAR imagery from
different radar sensors. It consistently improves the classification accuracy of both heterogeneous
and homogeneous land types with limited labeled data.

The rest of our paper is structured as follows. In Section 2, related work is briefly introduced.
Section 3 presents our SSDMLN. Experimental results on synthetic and real-world PolSAR datasets
are demonstrated and analyzed in Section 4. Finally, our work is concluded and the future work is
discussed in Section 5.

2. Related Work

The related studies on PolSAR classification and the distance metric learning are briefly introduced
in this section.

2.1. Classification Methods

The deep learning-based classifications for PolSAR data are addressed below. There are supervised
methods, for example, in 2014, Xie et al. [8] exploited an SAE network to learn the features of PolSAR
imagery, overcoming the difficulty of manually extracting features. They input nine dimensional
features for training the SAE network, fine tuned it with 10% samples, and utilized a Softmax for
pixel-wise classification for the other 90% samples. Moreover, based on the Wishart distribution of
PolSAR data, Liu et al. [9] stacked the restricted Boltzmann machines, and proposed a WDSN for
modeling PolSAR data and classification. These two networks use unsupervised pre-training but adopt
the supervised learning for predicting labels. A deep CNN was proposed for PolSAR categorization
by Zhou et al. [10]. It employs a number of labeled samples for training the network. The input data is
converted into a hypercube in the size of H×W (i.e., height and width) with six channels, and an 8× 8
sliding window is used for convolution computation. Each pixel is classified based on surrounding
pixels in the sliding window. This method is of region-wise.

The semi-supervised methods are depicted. For example, Liu et al. [16] designed a DSFN to
preserve the spatial relation of pixels. The sparse filtering is combined within the layer-wise feature
learning to further improve the performance of the semi-supervised classification model with a few
optimized parameters. The authors in [17] further propose an NPDNN network. The PauliRGB
image is initially segmented into relatively homogeneous regions to use the spatial relation and
reduce speckle noise. Then a few labeled samples and its unlabeled nearest neighbors, which are
the most similar ones, are utilized to preserve the structure of the input data during pre-training
and fine-tuning the parameters of the deep network. Note that PauliRGB image is constructed from
the Pauli decomposition. The Pauli decomposition describes the measured scattering matrix that
characterizes the scattering process of the target, in the Pauli basis. The three components from Pauli
decomposition can be coded as the RGB channels, respectively. The represented image is named as the
PauliRGB image.

2.2. Distance Metric Learning

The classical distance metric learning is briefly introduced in this section. We denote by X ∈ Rd×N

a training set, where d is the number of features and the number of training samples is denoted by
N. The distance metric learning in the conventional Mahalanobis framework attempts to seek for
a positive semi-definite matrix S ∈ Rd×d, by which the distance between any two samples xi and xj
can be calculated as:

dS(xi, xj) =
√
(xi − xj)TS(xi − xj). (1)
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Naturally, the distance dS(·, ·) has the properties of symmetry, non-negativity, and triangle
inequality. Due to the property of symmetric and positive semi-definite matrices, the decomposition of
S can be given by S = RT R. Then, the distance dS(·, ·) can be rewritten as:

dS(xi, xj) = ‖R(xi − xj)‖2, (2)

where ‖ · ‖2 is the Euclidean norm, i.e., ‖α‖2 =
√

∑i α2
i .

Equation (2) indicates that learning a distance metric dS is to seek a linear transformation R by
which each sample xi can be projected onto a subspace. Moreover, a Large Margin Nearest Neighbor
(LMNN) algorithm [20] is proposed to learn a linear transformation by a large margin between
differently labeled samples. The goal of LMNN is to pull similar samples closer together and penalize
a large distance between them, and to push differently labeled samples further apart. Thus, the loss
function consists of the following two parts:

Lss = (1− µ) ∑
i,j→i
‖R(xi − xj)‖2 + µ ∑

i,j→i
∑

l
(l − yil)ξ, (3)

where µ is a coefficient to balance the weight between the pull and the push. The notation j → i
represents that xj is a neighbor of xi, the variable yil = 1 if and only if yi = yl , and yil = 0 otherwise.
ξ = [1 + ‖R(xi − xj)‖2 − ‖R(xi − xl)‖2]+, and [e]+ = max(e, 0) denotes the hinge loss in a standard
form, and the second term is used to penalize a short distance between samples with different labels.
However, LMNN is a supervised and linear learning algorithm. It requires a large amount of trained
data to train, and it may not be effective for data with non-linear features.

3. Proposed Method

In this section, a novel semi-supervised deep metric learning network (SSDMLN) is proposed for
the classification of PolSAR data.

It is well known that conventional distance metric learning methods cannot map the non-linear
structure of training data, since it only seeks for a linear transformation. Several non-linear feature
extraction methods [17,21–24] have achieved relatively high classification accuracies, which verifies
that the PolSAR data has non-linear features. Therefore, we propose a deep distance metric learning
network, as shown in Figure 1, for PolSAR feature extraction and classification, which learns both the
linear and non-linear hierarchical relations within samples.

Input Hidden1 Hidden 2 Hidden k Output

PolSAR 

data

Predicted 

labels

BPBP BPBP

Layer-wise 

pre-training

Class A labeled

SSL 

regularization

Distance metric

Class B unlabeled

Class A unlabeled

Class B labeled

Class C labeled

Class C unlabeled

Class A labeled

SSL 

regularization

Distance metric

Class B unlabeled

Class A unlabeled
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Class C labeled

Class C unlabeled

Figure 1. The architecture of our semi-supervised deep metric learning network (SSDMLN)
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Suppose a deep neural network with V hidden layers, and for each hidden layer, Nk,
k = 1, 2, . . . , V is the number of hidden units. The output of the network uses the Softmax function
as a classifier. X ∈ RM×N denotes the input data, where M is the dimension of the features, and N
represents the number of samples. The matrix W1 ∈ RN1×N0 denotes the weight connecting the first
layer and input data, where N0 = M. The matrix Wk ∈ RNk×Nk−1 denotes the weight of k-th and
(k−1)-th hidden layer. For one input vector xj ∈ RM×1(j = 1, 2, ..., N), the unit i in the first hidden
layer is formulated as follows:

h1
i = δ(∑

j
W1

ijxj + b1
i ), (4)

where b1 ∈ RN1×1 is the bias of the first hidden layer, δ(•) denotes an activation function, for example,
a common sigmoid function δ(z) = (1 + exp(−z))−1. When we input h1

i (i = 1, 2, ..., N1) to the
network, we can obtain the output of the second hidden layer as follows:

h2 = δ(W2h1 + b2). (5)

We greedily train the network layer-by-layer. The k-th hidden layer can be given by

hk = δ(Wkhk−1 + bk). (6)

As we have introduced, the metric learning seeks a linear transformation matrix R to project x to
another space f (x) = Rx. Inspired by this, we equal the weight matrix W in the hidden layer to the
transformation matrix R, as the weight matrix W also has to be learned. Then the metric optimization
objective in the first hidden layer is defined as,

J1 = min
W1

(1− λ) ∑
i,j→i
‖W1(xi − xj)‖2 + λ ∑

i,j→i
∑

l
(1− yil)βijl , (7)

where βijl = [1 + ‖W1(xi − xj)‖2 − ‖W1(xi − xl)‖2]+, and λ ≥ 0 is regularization parameter. For the
supervised learning methods mentioned above, when there are insufficient labeled samples for training,
the model may be over-fitting, and the performance of the model may degrade dramatically. To address
the deficiency of labeled samples and maintain the performance of learning, we design a manifold
regularization term for our model to utilize unlabeled data as follows:

J2 = Aij ∑
i,j
‖ f (xi)− f (xj)‖2 = Aij ∑

i,j
‖W1(xi − xj)‖2, (8)

where Aij represents the similarity relation between two samples xi and xj.
As it is known that the covariance matrix follows a complex Wishart distribution, we use Wishart

distance Dw as a metric to calculate the similarity between samples xi and sample xj. It is defined
as follows:

Dw(xi, xj) = ln(
|Σi|
|Σj|

) + Tr(Σ−1
i Σj), (9)

where Σi denotes the covariance matrix for sample xi, | · | denotes the matrix determinant, and Tr(·) is
the trace of a matrix. Then the nearest neighbor relation for sample xi is

Aip =

{
exp(−Dw(xi ,xp)

2 ) xp ∈ Ω(xi)

0 xp /∈ Ω(xi)
(10)

where xp ∈ Ω(xi) denotes that xp is within the K-nearest neighbor of xi. The goal of manifold
regularization is to penalize the large distance between labeled data xi and unlabeled data xp to reduce
the relative distance between the nearest neighbors.
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Therefore, the total optimization objective for the first hidden layer is given as,

min
W1
{λ1 ∑

i,j→i
‖W1(xi−xj)‖2 + λ2 ∑

i,j→i
∑

l
(1− yil)βijl + λ3 Aij ∑

i,j
‖W1(xi−xj)‖2 + λ4‖W1‖2

F}, (11)

where λ1, λ2, λ3, and λ4 are coefficients to balance the weight of each term, and ‖ · ‖F denotes the
Frobenius norm. Then the total optimization objective for the k-th hidden layer is

minWk{λ1∑i,j→i ‖Wk(hk−1
i −hk−1

j )‖2 + λ2∑i,j→i ∑l(1− yil)βk
ijl + λ3 Aij∑i,j ‖Wk(hk−1

i −hk−1
j )‖2 + λ4‖Wk‖2

F}, (12)

where βk
ijl = [1 + ‖Wk(hk−1

i − hk−1
j )‖2 − ‖Wk(xk−1

i − hk−1
l )‖2]+.

This function can be solved by traditional stochastic gradient descent algorithms (called
backpropagation algorithms, BP). The algorithm of the proposed SSDMLN for classification is listed in
Algorithm 1.

Algorithm 1 SSDMLN for classification of PolSAR data

Input: A dataset of PolSAR X ∈ RM×N with M dimensional features and N samples (L labeled
samples XL = {(xi, yi)}L

i=1, the rest are unlabeled XU = {xi}N
i=L+1 ). The label yi ∈ ZV×1 denotes

the vector of class labels, and V denotes the number of classes for terrains.
1: Initialize randomly a weight matrix W1 and bias b1 for the first hidden layer;
2: Calculate the K nearest neighbors for sample xi (i = 1, 2, ..., N) according to Equation (10);
3: Pre-train the network layer-by-layer according to Equation (12);
4: Fine-tune both W and b by using the BP algorithm;
5: Predict the class for unlabeled data XU using SSDMLN;

Output: Classification result: the label matrix Y ∈ ZV×(N−L).

4. Experimental Results and Discussions

In this section, we perform many experiments on one synthetic data set and three real-world
PolSAR data sets from different radar systems to evaluate the effectiveness of our SSDMLN.

4.1. Experimental Settings

The information of the four PolSAR datasets is given as follows:

• The synthetic data is obtained by the Monte-Carlo method ([25] Ch.4.5.2) with a size of
120× 150 pixels, and it contains nine categories that are represented by C-1 to C-9, respectively.

• The Flevoland data set: This data set is acquired by the NASA/JPL AIRSAR system, and it is
publicly available from the European Space Agency (ESA) (https://earth.esa.int/web/polsarpro/
data-sources/sample-datasets). It is L-band four-look data, its resolution is 12 × 6 m, and the
image size is 750× 1024 pixels. It has 15 types of terrain: peas, stem beans, lucerne, forest, beet,
potatoes, wheat, rapeseed, barley, bare soil, wheat2, grass, wheat3, buildings, and water.

• The San Francisco data set: This data set is from the RADARSAT-2 system, which is also
publicly available from the ESA (https://earth.esa.int/web/polsarpro/spaceborne-data-sources).
It is a C-band single-look full-polarization SAR data. The image size is 1300 × 1300 pixels,
which represents the bay of San Francisco with the golden gate bridge. It includes five classes:
low-density urban, water, high-density urban, the developed, and vegetation.

• The Xi’an data set: This data set is imagery of the Xi’an city in China, and it is also acquired
by RADARSAT-2, which is purchased by our institution. A sub-region in the western region is
selected for the experiment, and the image size is 512× 512 pixels for our experiments.

https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
https://earth.esa.int/web/polsarpro/data-sources/sample-datasets
https://earth.esa.int/web/polsarpro/spaceborne-data-sources
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Moreover, we implemented the following five algorithms, which are related and state-of-the-art
ones for comparison. Among them, SAE [8] and WDSN [9] are both supervised classification methods
with unsupervised pre-training. CNN [10] is a typical supervised neural network without pre-training,
and both DSFN [16] and NPDNN [17] are semi-supervised methods.

The parameters for all the methods are listed below:

• SAE [8]: The parameter for sparsity is between [0.05, 0.09] for each layer; the parameter of the
sparsity penalty is set to 1; the learning rate or step-size is between [0.1, 0.9].

• WDSN [9]: This network has two hidden layers, and the number of nodes for each is 50 and 100,
respectively; the thresholds τ0 is [0.95, 0.99], and ρ0 is 0; the window size is [3, 5]; and the learning
rate is 0.01.

• CNN [10]: The network includes two convolutional layers, one fully connected layer and two
max-pooling layers; the sizes of the first and the second convolutional filters are 3× 3, and 2× 2,
respectively; the size of pooling is 2× 2; the momentum parameter is 0.9; the weight decay rate is
5× 10−4.

• DSFN [16]: The rate of weight decay is chosen from the internal [1× 10−4, 1× 10−3].
• NPDNN [17]: The nearest-neighbor number is chosen in the interval [10, 20] and the parameter

of regularization α is fixed at 1; the learning rate and weight decay rate are chosen in the range
[0.01, 0.1].

• The proposed SSDMLN: The learning rate is 0.2; the weight reduction factor is 5 × 10−6,
and dropout rate is 0.5; the number of nearest neighbors is between [5, 30], respectively.

Additionally, other parameters of all the methods are manually tuned to their best results
according to the data sets. We run all the methods for 20 times, and report the overall accuracy
(OA) on average. The implementations are on a computer in which the GPU is with 11GB memory.
For each dataset, we randomly select 1% data as labeled samples, and the Lee filtering [26] with 5× 5
window size is applied for preprocessing to reduce noise.

4.2. Parameter Analysis

The main parameters of SSDMLN are chosen by experience and experiments. We take the
synthetic dataset as an example. The network includes five layers, and the numbers of nodes in the
hidden layers are 25, 100, and 50, respectively. The parameters are shown as follows:

(1) The weight coefficients λ1, λ2, λ3, and λ4

The coefficient λ1: The OA versus the varying parameter λ1 is shown in Figure 2a, when we set
λ2 = 0.4 , λ3 = 0.3, and λ4 = 0.5, and the increasing step for λ1 is 0.1. It indicates that when λ1 is
greater than 0.6, the OA falls. The accuracy for λ1 = 0.6 is superior to the result at λ1 = 0.5. Therefore,
the coefficient λ1 should be set to 0.6 for this dataset.

The coefficient λ2: The OA versus the varying parameterλ2 is shown in Figure 2b, when we set
λ1 = 0.6 , λ3 = 0.3, and λ4 = 0.5. It indicates that the coefficient λ2 should be set to 0.4 for this dataset.

The coefficient λ3: The OA versus the varying parameterλ3 is shown in Figure 2c, when we set
λ1 = 0.6 , λ2 = 0.4, and λ4 = 0.5. It indicates that the coefficient λ3 should be set to 0.3 for this dataset.

The coefficient λ4: The OA versus the varying parameterλ4 is shown in Figure 2d, when we set
λ1 = 0.6 , λ2 = 0.4, and λ3 = 0.3. It indicates that the coefficient λ4 should be set to 0.5 for this dataset.

(2) The number of nearest neighbors K

The classification accuracies vary with the number of nearest neighbors K, which is shown in
Figure 3. It indicates that K is set 8 for this data set.
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Figure 2. Classification accuracy versus different weight coefficients on the synthetic PolSAR dataset.
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Figure 3. The overall accuracy varies with the number of nearest neighbors on the synthetic PolSAR
data set.

4.3. Experimental Results

(1) The synthetic dataset is shown in Figure 4a,b, and classification results by different algorithms
on this dataset are demonstrated in Figure 4c–h. It shows that our SSDMLN attains the best visual
result for each class, and the misclassified pixels are much fewer than those of other algorithms,
even if for the curved boundary on the left of the image. It also indicates that SSDMLN has fine
capability for division of non-linear boundary, which may benefit from the layer-wise feature learning.
The overall accuracies are shown in Table 1. It demonstrates that the OA of SSDMLN is highest at
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99.38%, which is better than state-of-the-art semi-supervised networks including DSFN and NPDNN.
It is likely that the class discriminative information for SSDMLN plays a role in the layer-by-layer
learning. Although CNN has been reported satisfactory performance for many pattern recognition
tasks, it is inferior to other networks, such as SAE, WDSN and NPDNN, on this dataset. The main
reason for these semi-supervised approaches obtaining high accuracies with only 1% labeled samples
is that they make good use of prior knowledge from unlabeled samples, while the supervised CNN
may be overfitting and works poorly with insufficient labeled samples.

(a) PauliRGB image (b) Ground truth image (c) SAE (d) WDSN

(e) CNN (f) DSFN (g) NPDNN (h) SSDMLN

C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9

Figure 4. Comparison of classification results on the synthetic data set using 1% labeled data.
(a) PauliRGB image. (b) Ground truth image. (c) SAE [8]. (d) WDSN [9]. (e) CNN [10]. (f) DSFN [16].
(g) NPDNN [17]. (h) SSDMLN (ours).

Table 1. Classification results (%) on the synthetic data set with 1% labeled data where C-1 to C-9
denote 9 different categories.

Methods C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 OA

SAE [8] 96.14 99.47 92.36 100.0 98.72 98.99 92.57 92.21 99.66 96.15
WDSN [9] 95.37 98.36 89.56 97.21 94.38 89.76 89.32 90.47 91.89 92.36
CNN [10] 95.81 100.0 90.88 97.82 95.26 98.51 98.65 85.15 90.26 94.17
DSFN [16] 98.61 98.84 94.33 99.95 97.68 91.14 97.70 98.70 99.32 97.80

NPDNN [17] 98.77 99.85 96.80 99.95 98.81 94.98 99.35 98.37 99.49 98.70
SSDMLN (ours) 99.74 99.93 99.02 99.69 99.60 98.66 98.98 98.52 99.81 99.38

(2) Classification results by different algorithms on the Flevoland dataset are given in Figure 5c–h.
It is obvious that our SSDMLN has a satisfactory visual result compared with that of other algorithms.
The reason is because our algorithm exploits the information from both the few labeled pixels and large
quantities of unlabeled pixels with metric learning. The classification accuracies are listed in Table 2.
SSDMLN obtains the highest OA, and it reaches 94.85%. Especially for stembeans, potatoes, peas,
lucerne, barley, grass, and water, it achieves the highest accuracy. On the contrary, the semi-supervised
DSFN and NPDNN have lower accuracies for these terrains, and SAE and WDSN, which are based on
the unsupervised pre-training, perform poorly with 1% labeled samples. This also indicates that our
proposed metric learning-based network has a robust distinguishing ability for homogenous terrain.
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(a) PauliRGB image (b) Ground truth image (c) SAE (d) WDSN

(e) CNN (f) DSFN (g) NPDNN (h) SSDMLN

Beet Rapeseed Peas Potatoes Stembeans Wheat2 Bare Soil Wheat3

Forest Barley Buildings Grasses Lucerne Water Wheat

Figure 5. Comparison of classification results on the Flevoland data set using 1% labeled data.
(a) PauliRGB image. (b) Ground truth image. (c) SAE [8]. (d) WDSN [9]. (e) CNN [10]. (f) DSFN [16].
(g) NPDNN [17]. (h) SSDMLN (ours).

Table 2. Classification results (%) on the Flevoland data set with 1% labeled data.

Methods SAE [8] WDSN [9] CNN [10] DSFN [16] NPDNN [17] SSDMLN (ours)

Peas 93.36 80.42 85.15 93.15 95.30 96.32
Stembeans 93.25 62.55 93.47 96.56 96.01 96.62

Lucerne 92.11 88.31 70.10 91.57 94.10 95.49
Forest 87.83 88.45 99.88 91.96 93.03 92.03
Beet 94.35 80.21 99.72 95.25 96.15 96.80

Potatoes 87.07 85.53 91.20 90.26 91.02 92.39
Wheat 90.24 79.66 94.99 91.56 90.46 92.57

Rapeseed 83.16 76.32 97.66 89.04 88.46 89.94
Bare Soil 94.54 87.89 97.68 93.14 97.70 97.54
Wheat2 79.82 79.34 84.97 88.96 89.10 87.82
Grasses 73.11 78.06 45.20 90.53 82.58 93.08
Wheat3 90.86 89.65 99.81 90.25 95.10 94.60
Barley 94.97 67.24 33.67 94.16 94.83 97.40

Buildings 87.59 86.35 87.35 91.24 90.35 92.62
Water 99.08 95.11 88.19 93.10 98.54 99.42

OA 88.12 83.41 88.12 92.25 93.57 94.85

(3) Classification results by different algorithms on the San Francisco dataset are demonstrated
in Figure 6c–h. It can be seen that the visual result of SSDMLN is still the best among the other
algorithms, especially on the low-density urban area, which is challenging to categorize for this
heterogeneous terrain. Moreover, the classification accuracies are listed in Table 3. SSDMLN still
attains the highest OA, and it achieves an increase of 8% and 7% compared with WDSN and CNN,
respectively. Especially on the low-density urban and the developed area, it is nearly 20% higher than
other algorithms. The reason for the low accuracy of WDSN and CNN is that the labeled samples are
quite limited for their training. Nevertheless, on one side, SSDMLN utilizes metric learning to increase
the discriminative ability of classes, and on the other, it uses manifold regularization to decrease the
dependence on labeled data.
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(a) PauliRGB image (b) Ground truth image (c) SAE (d) WDSN

(e) CNN (f) DSFN (g) NPDNN (h) SSDMLN

High-Density Urban Low-Density Urban Vegetation Developed Water

Figure 6. Comparison of classification results on the San Francisco data set using 1% labeled data.
(a) PauliRGB image. (b) Ground truth. (c) SAE [8]. (d) WDSN [9]. (e) CNN [10]. (f) DSFN [16].
(g) NPDNN [17]. (h) SSDMLN (ours).

Table 3. Classification results (%) on San Francisco data set with 1% labeled data.

Methods Water Vegetation L-Urban H-Urban Developed OA

SAE [8] 98.94 83.14 55.85 85.78 63.44 87.95
WDSN [9] 98.28 76.35 53.11 82.23 66.48 86.41
CNN [10] 98.84 81.70 53.71 85.31 62.28 87.96
DSFN [16] 99.90 91.62 55.92 86.46 68.59 90.00

NPDNN [17] 99.94 91.74 69.70 87.95 74.85 92.36
SSDMLN (ours) 99.98 93.55 75.91 91.15 81.23 94.49

(4) The Classification results generated by all the algorithms on the Xi’an data set are illustrated
in Figure 7c–h. The original image in RGB is reported in Figure 7a. The urban regions, where there
are many build-ups, are mainly on the left. The River Weihe is in the middle of the image, and it is
one primary branch of Yellow River in China. The Weihe Bridge spans the River Weihe. A railway
also spans the river. The grass and the trees are around the rivers. Figure 7b shows the ground truth.
Reference data were collected from aerial photographic interpretation, Google satellite images and the
fieldwork. The visual results demonstrate that SSDMLN is superior to other algorithms. Furthermore,
the overall accuracies are reported in Table 4. It indicates that SSDMLN obtains the highest accuracy
not only for the terrain of urban, river and grass, which have relatively more samples, but also for the
terrain of the bridge and crop, which are of much fewer samples in total. Especially for the bridge,
SSDMLN has an accuracy of 34.30%, which is significantly higher than that of the other algorithms.
It indicates that SSDMLN can identify the classes with very few labeled samples. It is probably because
the metric learning together with the manifold regularization takes full advantage of lots of unlabeled
pixels, and thus reduces the dependence on labeled pixels.

In fact, there are really significant differences in the classification accuracies on the studied datasets.
This is likely because the datasets from different radar systems have different characteristics (e.g., in terms
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of imaging mode, noise level, the observed target, etc.), which can bring a significant difference in the
classification results. This phenomenon also appears in other research work (e.g., [10,11,14]). It may be
data driven, and the performance of the presented model can be exactly repetitive, since in our studies, we
run each classification experiment for 20 times. One can draw similar results as presented in our paper.

(a) PauliRGB image (b) Ground truth image (c) SAE (d) WDSN

(e) CNN (f) DSFN (g) NPDNN (h) SSDMLN

Urban River Grass Bridge Crop

Figure 7. Comparison of classification results on the Xi’an data set using 1% labeled data. (a) PauliRGB
image. (b) Ground truth. (c) SAE [8]. (d) WDSN [9]. (e) CNN [10]. (f) DSFN [16]. (g) NPDNN [17].
(h) SSDMLN (ours).

Table 4. Classification results (%) on the Xi’an data set with 1% labeled data.

Methods Urban River Grass Bridge Crop OA

SAE [8] 74.19 82.85 75.05 26.19 18.30 72.59
WDSN [9] 74.58 83.68 73.33 16.38 15.95 71.69
CNN [10] 75.54 76.01 74.23 85.31 12.12 71.40
DSFN [16] 77.01 86.68 80.79 17.31 13.78 76.48

NPDNN [17] 79.03 87.37 80.11 27.39 15.64 77.14
SSDMLN (ours) 84.43 86.77 80.59 34.30 40.13 82.10

5. Conclusions

A novel semi-supervised deep metric learning network (SSDMLN) was proposed for the
classification of PolSAR data in this work. The metric learning is utilized to construct a layer-wise
network, which transforms the linear mapping to the non-linear projection for learning the intuitive
features from PolSAR data. Meanwhile, we presented a manifold regularization to make full use
of unlabeled samples, which can reduce the distance between neighboring samples. The extensive
experiments on both synthetic and real-world datasets demonstrated the effectiveness of the proposed
network compared with existing methods. The strengths of our SSDMLN method were also confirmed
by extensive experimental results: (1) The linear metric learning embedded in the non-linear network
can extract intuitive features and thus improves the classification performance for both heterogeneous
and homogenous terrains. (2) During the layer-wise learning, our manifold regularization is
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very effective for semi-supervised learning, which cuts down the number of labeled samples for
classification. This provides inspirations for the design of semi-supervised deep neural networks for
other research work. It is noticed that the method for selection of weight coefficients is not optimal.
In the future, more sophisticated methodologies, such as random search [27] and gradient-based
search [28], will be studied to tune the weight coefficients in various real-world applications.
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