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Abstract—In a 1-D linear vehicular ad hoc network (1-DL-VANET),
some vehicles may leave the network (e.g., at highway exits), which may
make the 1-DL-VANET disconnected. Thus, it is important to analyze the
connectivity of the 1-DL-VANET. When removal of any (k − 1) arbitrary
nodes from a network does not disconnect the network, the network is
said to be k-connected. In this paper, we investigate the k-connectivity
of the 1-DL-VANET. Sufficient and necessary conditions are derived for
the 1-DL-VANET to be k-connected, and based on this, a method is
provided, with the help of matrix decomposition, to obtain expression of
the probability of the 1-DL-VANET being k-connected. The expectation
of the maximum number of tolerable vehicle departures is also derived.
Simulation results confirm the accuracy of our analysis and indicate that
the expectation of the maximum number of tolerable vehicle departures
almost linearly increases with the total number of vehicles.
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I. INTRODUCTION

A vehicular ad hoc network (VANET) consists of a group of moving
vehicles and probably a fixed infrastructure (such as roadside units),
supporting intervehicle communications, and vehicle-to-infrastructure
communications. Typical information transmitted in a VANET in-
cludes safety messages (such as accident notifications, road condition
warnings, and emergency braking alarms) and interactive communi-
cations (such as instant message and online games). In this work, we
consider intervehicle communications among a group of vehicles on
a highway. Considering that the road width of highways is usually
much smaller than the wireless transmission range and that the curves
on highways are usually not sharp, we can approximately model the
group of vehicles as a 1-D linear VANET (1-DL-VANET). A similar
model is adopted in [1] and [2]. Here, we consider only intervehicle
communications, and thus, roadside units are not involved. In a 1-DL-
VANET, some vehicles may leave or quit the current network, e.g., due
to arriving at their exits on the highway or due to mechanical faults.
Upon departures of those vehicles, it is desired that any two remaining
vehicles can still communicate with each other. In other words, the
high connectivity level of the 1-DL-VANET is desired. In specific, if
there exists a one- or multiple-hop communication path between any
two nodes in a network, the network is said to be connected; otherwise,
the network is said to be unconnected or disconnected. A network is
called k-connected if removal of any (k − 1) arbitrary nodes does not
disconnect the network [3]. In particular, biconnectivity means that
k = 2, which is a popular connectivity measure [4]–[8].

In the literature, connectivity has been well investigated for ad hoc
networks. Existing research efforts are focused on how to achieve
connectivity or biconnectivity by the following: 1) setting the wire-
less transmission range or node density or 2) changing the network
topology by adjusting transmission power or by node movement inside
the network. On the other hand, research on the expression of the
probability of a network being connected, biconnected, or k-connected
is still in its infancy. Current limited research efforts are focused on the
probability of a 1-D network being connected or biconnected.

1) The probability of a 1-D network being connected is investigated
in [9]–[12]. In [9], by considering all realizable networks as in a
polytope, the probability of a network being connected is derived
in closed form. In [10], the probability of a network consisting of
at most C(≥ 1) clusters is first calculated, which is equal to the
probability that the Cth largest spacing (the distance between
consecutive vehicles) is smaller than the wireless communica-
tion range denoted R. In particular, when C = 1, the probability
of all spacings smaller than R is actually the probability that
the network is connected. A queuing model is utilized in [11] to
analyze the connectivity of 1-D networks. The exact results of
the coverage probability, the node isolation probability, and the
connectivity distance for several node placements are obtained.
In [12], asymptotic analysis for 1-D network connectivity is
obtained. It is concluded that, as the number of nodes goes
to infinity, the probability of the network being connected is
approximately 1 when the wireless transmission range (i.e., R)
is larger than a threshold and 0 when R is smaller than that
threshold.

2) In [13], the probability of a 1-D network being biconnected is
approximated as the product of the probabilities of two events:
the network is connected, and there are no cut nodes. (If the
removal of a node makes the remaining network disconnected,
the node is called a cut node.) The independence of the two
events is validated through simulation.

0018-9545/$26.00 © 2011 IEEE
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Fig. 1. System model for a 1-DL-VANET.

To the best knowledge of the authors, there is no research in the
literature to investigate the probability of a network being k-connected.

In this paper, we investigate the k-connectivity of a 1-DL-VANET.
In particular, we find an insightful sufficient and necessary condition
for the 1-DL-VANET to be k-connected, i.e., the sum of any k
consecutive spacings is less than the communication range. Based
on the sufficient and necessary condition, a method is provided to
derive the probability of the 1-DL-VANET being k-connected. The
expectation of the maximum number of tolerable vehicle departures is
also derived. Simulation results validate our analysis. It is also shown
that the expectation of the maximum number of tolerable vehicle
departures in the 1-DL-VANET almost linearly increases with the total
number of vehicles.

The rest of this paper is organized as follows: Section II describes
the system model. Section III gives sufficient and necessary conditions
for a 1-DL-VANET to be k-connected, and Section IV derives the
probability of a 1-DL-VANET to be k-connected and the expectation
of the maximal number of tolerable vehicle departures. Section V is
devoted to performance evaluation, followed by concluding remarks
in Section VI.

II. SYSTEM MODEL

We consider a snapshot of the 1-DL-VANET, as shown in Fig. 1,
where one source node S and one destination node D are located at the
ends of a finite length of road, e.g., [0, L]. Here, S and D can be the
first and last vehicles of a 1-DL-VANET on a highway. In the sequel,
the terms “vehicle” and “node” are interchangeably used. Empirical
measurement has shown that intervehicle spacings can be modeled as
exponentially distributed i.i.d. random variables [14]. Then, according
to [15], the positions of the N vehicles between S and D have the same
distribution as the order statistics1 corresponding to N i.i.d. uniform
random variables over [0, L]. Therefore, in the following, we assume
that there are N nodes in our 1-DL-VANET over [0, L] between S
and D, and these N nodes are uniformly distributed over [0, L]. The
indexes of the N nodes are denoted according to the positions of
the nodes in [0, L], which are denoted as S = {1, 2, . . . , N}. The
communication range of S, D, and all nodes in S is R. Let xi (i =
1, . . . , N) denote the position of the ith node. For consistency, we
define S’s location to be x0 = 0 and D’s location to be xN+1 = L.
Let yj = xj − xj−1 (j = 1, . . . , N + 1) be the distance between two
consecutive nodes, which is referred to as spacing.

We have four definitions.

1) Neighbor: Two nodes u and v are said to be neighbors of each
other if their distance is less than R.

2) Path: A path is defined as a one-hop or multihop communication
link from a source node to its destination node. We use the
vector of nodes along a path to denote the path, where any
two consecutive nodes in the vector are neighbors. For example,
vector (a1, a2, . . . , al) denotes the path a1 → a2 → · · · → al,
in which nodes ai and ai+1 (i = 1, 2, . . . , l − 1) are neighbors.
Without loss of generality, for a path, assume the node at the
left end as the source node and the node at the right end as
the destination node. In this paper, we consider only paths that

1For a number of statistical samples, the kth smallest value is the kth-order
statistic [16].

always travel toward the right-hand side. This is because, if a
path turns back toward the left-hand side at some point, we can
easily find a new path that always travels toward the right-hand
side and is formed by a subset of the original node set of the
original path.

3) Node-disjoint paths: If (s, a1, a2, . . . , al, t) and (s, b1, b2, . . . ,
bm, t) are two paths from node s to node t and {a1, a2, . . . ,
al} ∩ {b1, b2, . . . , bm} = ∅ (empty set), then these two paths are
said to be node-disjoint paths.

4) k-connectivity of two nonneighboring nodes: Two nonneigh-
boring nodes are said to be k-connected if they can still be
connected upon removal of any (k − 1) arbitrary nodes in
the network.2 An equivalent definition for two nonneighboring
nodes being k-connected is as follows: If there are k node-
disjoint paths between two nonneighboring nodes, then the two
nodes are k-connected.

In this paper, we are interested in the expression of the probability
of the 1-DL-VANET being k-connected, which is denoted as P≥(k).
Note that, if the 1-DL-VANET is (k + n)-connected (n > 0), then it
is also k-connected. Let P (k) denote the probability that the 1-DL-
VANET is k-connected but not (k + 1)-connected. Then, we have

P (k) =P≥(k) − P≥(k + 1)

P≥(k) =

kmax∑
i=k

P (i) (1)

where kmax is the maximal possible connectivity level of the network,
i.e., the network can be at most kmax-connected. Recall that there are
N nodes between S and D. Thus, we have kmax ≤ N + 1. When
kmax = N + 1, it means that S and D are neighbors. A tighter bound
of kmax will be given in Section IV-C.

III. SUFFICIENT AND NECESSARY CONDITIONS FOR

k-CONNECTIVITY OF THE 1-D LINEAR VEHICULAR

AD HOC NETWORK

Without loss of generality, we assume that nodes S and D are
nonneighboring, i.e., L > R.

Based on the definitions of the k-connectivity of a network and
two nonneighboring nodes, it can be concluded that the 1-DL-VANET
is k-connected if and only if any two nonneighboring nodes are
k-connected. Furthermore, because of the linear topology of the
1-DL-VANET, if nodes S and D can be connected upon removal of
any (k − 1) arbitrary nodes in the 1-DL-VANET (i.e., S and D are k-
connected), apparently any two nonneighboring nodes in S ∪ {S, D}
can also be connected upon removal of any (k − 1) arbitrary nodes
(i.e., the two nodes are also k-connected). Thus, the 1-DL-VANET is
k-connected if and only if nodes S and D are k-connected.

Based on the equivalent definition of k-connectivity of two non-
neighboring nodes in Section II, we have the following lemma:

Lemma 1: Assume that two nonneighboring nodes, e.g., nodes a
and b, are k-connected, and that node a is on the left-hand side of
node b. For node a, denote its k nearest nodes on the right-hand side
of itself as a1, a2, . . . , ak. For node b, denote its k nearest nodes
on the left-hand side of itself as b1, b2, . . . , bk. Then, there exist k
node-disjoint paths from node a to node b, and in each path, the
node immediately after node a is from {a1, a2, . . . , ak}, and the node
immediately before node b is from {b1, b2, . . . , bk}.

2Any two neighboring nodes are, of course, still connected upon removal of
any (k − 1) arbitrary nodes. Thus, we focus on nonneighboring nodes when
discussing k connectivity of two nodes.
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Proof: See Appendix A. �
Lemma 1 means that node ai (i = 1, 2, . . . , k) exists in one and

only one of the k paths, as the node immediately after node a in the
path, whereas node bi (i = 1, 2, . . . , k) exists in one and only one of
the k paths, as the node immediately before node b in the path.

Then, we have the following two theorems for the k-connectivity of
the 1-DL-VANET:

Theorem 1: The 1-DL-VANET is k-connected if and only if two
conditions hold.

1) Node S has at least k neighbors, and node D has at least k
neighbors.

2) Any two nonneighboring nodes in S are k-connected.

Proof: See Appendix B. �
Theorem 2: A sufficient and necessary condition for the 1-DL-

VANET being k-connected is that the sum of any k consecutive
spacings in the 1-DL-VANET is less than R.

Proof: See Appendix C. �

IV. PROBABILITY OF THE 1-D LINEAR VEHICULAR

AD HOC NETWORK BEING k-CONNECTED

In the sequel, we use upper case boldface letters (e.g., X) to denote
matrices and lower case boldface letters (e.g., x) to denote vectors.

We first use an example to illustrate how to calculate the prob-
ability of the 1-DL-VANET being k-connected, i.e., P≥(k). Sup-
pose that N = 5 and k = 4. Recall that yi (i = 1, 2, . . . , N + 1)
means the spacing between two consecutive nodes. Then, according to
Theorem 2, we have

P≥(4) = Prob

(
y1 + y2 + y3 + y4 < R
y2 + y3 + y4 + y5 < R
y3 + y4 + y5 + y6 < R

)

= Prob(A3,6y ≺ r) (2)

where

A3,6 =

(
1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1

)

y = (y1, y2, y3, y4, y5, y6)
T , and r = (R, R, R)T . Here, Prob(·)

means the probability of an event, and superscript T means transpose
operation. v1 ≺ v2 (or v1 	 v2) means that any element in vector v1

is smaller than (or no less than) its counterpart in vector v2.
For the general case of P≥(k), we have

P≥(k) = Prob(y1+y2+· · ·+yk <R, y2+y3+· · ·+yk+1

< R, . . . , yN−k+2+yN−k+3+· · ·+yN+1 <R)

= Prob(AN−k+2,N+1y ≺ r) (3)

where AN−k+2,N+1 is an (N − k + 2) × (N + 1) matrix whose
ith (1 ≤ i ≤ N − k + 2) row has k consecutive elements being 1s,
starting from the ith column, and has other elements being 0s; y =
(y1, y2, . . . , yN+1)

T ; and r = (R, R, . . . , R)T , with |r|=N−k+2.
To calculate (3), we consider a more general case of AN−k+2,N+1.

Define A as a p × q (p ≤ q ≤ N + 1) binary matrix with the follow-
ing structure:

1) The ith (1 ≤ i ≤ p) row has a block of consecutive 1s, starting
from the aith column to the bith column; other elements in the
ith row are all 0s.

2) 1 = a1 < a2 < · · · < ap; b1 < b2 < · · · < bp = q, and ai+1 ≤
bi + 1, i ∈ {1, 2, . . . , p − 1}.

If, for any 1 ≤ i ≤ p − 1, we have ai+1 = bi + 1, then we say that
A is disjoint3; otherwise, we say that A is overlapped. For overlapped
matrix A, if, for any 1 ≤ i ≤ p − 1, we have ai+1 < bi + 1, we say
that A is nondiagonal overlapped; otherwise (i.e., there exists i ∈
{1, 2, . . . , p − 1} such that ai+1 = bi + 1), we say that A is diagonal
overlapped.

As an example, matrix(
1 1 0 0 0
0 0 1 1 0
0 0 0 0 1

)

is disjoint (since a2 = b1 + 1 and a3 = b2 + 1), matrix(
1 1 0 0 0
0 1 1 0 0
0 0 1 1 1

)

is nondiagonal overlapped (since a2 < b1 + 1 and a3 < b2 + 1), and
matrix (

1 1 0 0 0
0 1 1 0 0
0 0 0 1 1

)

is diagonal overlapped (since a2 < b1 + 1 but a3 = b2 + 1).
In the following, Prob(Ay ≺ r) is derived for disjoint A and

overlapped A, respectively.

A. Case With Disjoint A

Define Si =
∑

ai≤j≤bi
yj and li = bi − ai for 1 ≤ i ≤ p. Then,

from [17, eq. (9)], we have

Prob(Ay 	 r) = Prob(S1 ≥ R, S2 ≥ R, . . . , Sp ≥ R)

=

l1∑
k1=0

l2∑
k2=0

· · ·
lp∑

kp=0

(
N

k1, . . . , kp

)

·
(

R

L

)∑p

i=1
ki (

1 − p
R

L

)N−
∑p

i=1
ki

+
(4)

where (x)+ = max(0, x) and k1, k2, . . . , kp are integers, and(
N

k1, . . . , kp

)
=

N !

k1!k2! · · · kp!
(
N −

∑p

i=1
ki

)
!
.

For simplicity of representation, define

QN (α, β) =

{(
N
α

) (
R
L

)α (
1 − β R

L

)(N−α)
, if β R

L
< 1

0, if β R
L

≥ 1

with nonnegative integers α and β. In terms of QN , (4) can be
rewritten as

Prob(Ay 	 r)

=

l1∑
k1=0

l2∑
k2=0

· · ·
lp∑

kp=0

( ∑p

i=1
ki

k1, . . . , kp

)
QN

(
p∑

i=1

ki, p

)
. (5)

Recall that AN−k+2,N+1 in (3) is a special case of A. Since
AN−k+2,N+1 is a disjoint matrix when k = 1, we can use (5) to solve
(3) with k = 1, as (6), shown at the bottom of the next page, where
�·� denotes the floor function, (a) comes from the i.i.d. feature of yi’s
(i ∈ {1, 2, . . . , N + 1}), and (b) comes from (5). Note that (6) denotes
the probability of the 1-DL-VANET to be connected (k = 1).

3If A has only one row, it can be viewed as a special case of disjoint matrix.
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A similar result is also obtained in [10] and [11] in different ways. In
[10], a connected component of a 1-D network is called a cluster, and
the probability of the network containing at most C clusters is obtained
by calculating Prob(y(C) < R), where y(C) is the Cth largest spacing.
When C = 1, the probability of only one cluster is just the probability
of network connected, where

y(1) = max
1≤i≤N+1

yi.

Therefore, the probability of the network being connected is

Prob

(
max

1≤i≤N+1
yi < R

)
.

A queueing model is introduced in [11], where the constant servant
time corresponds to the wireless communication radius R, and the
interarrival times between customers correspond to the intervehicle
spacings yi’s. A time duration is called a busy period if all the N + 1
interarrival times of customers are less than R. The probability of the
network connected is equal to the probability of a busy period larger
than L, which is the distance between S and D.

B. Case With Overlapped A

In the following, we discuss how to calculate Prob(Ay ≺ r) for
nondiagonal-overlapped matrix A. When A is diagonal overlapped, A
can be expressed in the form of a number of nondiagonal-overlapped
matrices and 0s. Here, 0 means a matrix with all elements being 0s.
As an example

A =

(
B 0
0 C

)

where B and C are nondiagonal-overlapped matrices. Then, methods
similar to that for the nondiagonal-overlapped matrix (as follows) can
be individually applied to B and C. See [17] for details.

According to [18, Th. 1], for the nondiagonal-overlapped p × q
matrix A, we have

Prob(Ay ≺ r) =

q∑
i=1

ciProb(Ai(w)y ≺ r) (7)

where c = (c1, . . . , cq)
T satisfies

∑q

i=1
ci = 1, and w = Ac. Sub-

matrix Ai(w) is obtained by replacing the ith column of A by w. The
process in (7) is called decomposition, i.e., it decomposes matrix A
into multiple submatrices Ai(w). For simplicity of presentation, we
can write (7) in a short form as

A ⇒
∑

1≤i≤q, ci �=0

ciAi(w).

For decomposition in (7), we need to determine vector c. We adopt
the marking algorithm for a binary matrix proposed in [17] to deter-
mine c. Recall that each row of A has a consecutive block of element
1s, and ai and bi (1 ≤ i ≤ p) are the indexes of the ith row’s starting
and ending points of its block of element 1s, respectively. If aj =
bi + 1 (1 ≤ i, j ≤ p, i �= j), we call the jth row as the “adjacent”
row of the ith row (but not vice versa). Then, the marking process
is given as follows: Initialize c = (c1, . . . , cq)

T = (0, 0, . . . , 0)T ; let
the first row be the marking row, i.e., let m = 1; and mark cam = 1
and cbm = −1. If the mth row (the marking row) has adjacent row
j and j > m (i.e., aj = bm + 1), then let m = j (which means that
the jth row becomes the marking row) and mark cam = 1, cbm = −1.
The aforementioned marking process is repeated until the marking row
does not have an adjacent row. Finally, if bm = q (i.e., the last marking
row is the last row of A), mark cbm = 0; otherwise, mark cbm+1 = 1.

It can be seen that we have
∑q

i=1
ci = 1 when the marking process

is completed. If the last marking row is the last row of A, we have
w = (0, 0, . . . , 0, 1)T ; otherwise, we have w = (0, 0, . . . , 0, 0)T .

After the marking process, operations defined in the following
property [17] can be applied to submatrices Ai(w).

Property 1: For any binary matrix B, Prob(By ≺ r) remains the
same when matrix B has one or more of four operations.

1) Delete a row, e.g., the ith row, if the following condition is
satisfied: there exists a row, e.g., the jth row, such that, for any
element equal to 1 in the ith row, the counterpart element in the
jth row is also equal to 1.

2) Delete a column if all its elements are equal to 0. (The cardinality
of y and r is also reduced by one.)

3) Permute the columns (due to the i.i.d. feature of yi’s, i ∈
{1, 2, . . . , N + 1}).

4) Permute the rows.

P≥(1) = Prob(AN+1,N+1y ≺ r) = Prob(y1 < R, y2 < R, . . . , yN+1 < R)

= 1 − Prob ({y1 ≥ R} ∪ {y2 ≥ R} ∪ · · · ∪ {yN+1 ≥ R})

= 1 −

( ∑
1≤i≤N+1

Prob(yi ≥ R) −
∑

1≤i1<i2≤N+1

Prob(yi1 ≥ R, yi2 ≥ R)

+
∑

1≤i1<i2<i3≤N+1

Prob(yi1 ≥ R, yi2 ≥ R, yi3 ≥ R) − · · · + (−1)N Prob(y1 ≥ R, . . . , yN+1 ≥ R)

)

(a)
= 1 −

(
N + 1

1

)
Prob(y1 ≥ R) +

(
N + 1

2

)
Prob(y1 ≥ R, y2 ≥ R)

−
(

N + 1
3

)
Prob(y1 ≥ R, y2 ≥ R, y3 ≥ R) + · · · + (−1)N+1Prob(y1 ≥ R, . . . , yN+1 ≥ R)

(b)
=

min{�L
R �,N+1}∑
i=0

(−1)i

(
N + 1

i

)
QN (0, i) =

min{�L
R �,N+1}∑
i=0

(−1)i

(
N + 1

i

)(
1 − i

R

L

)N

(6)
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In specific, if ci �= 0, we have the following operation to Ai(w).

1) When w = (0, 0, . . . , 0, 0)T , we can remove the ith column in
Ai(w) (which is (0, 0, . . . , 0, 0)T ).

2) When w = (0, 0, . . . , 0, 1)T , we can move the ith column in
Ai(w) (which is (0, 0, . . . , 0, 1)T ) to be the last column of
Ai(w).

By these two operations and possibly the first two operations defined
in Property 1, Ai(w) has the same structure as A. (Recall that
the structure of A is described at the beginning of Section IV.) If
Ai(w) is disjoint, we can use the method in Section IV-A to calculate
Prob(Ai(w)y ≺ r); otherwise, we need to use (7) again to decompose
Ai(w), i.e., a new iteration of decomposition is needed to decompose
Ai(w)’s that are not disjoint. This procedure is repeated until all
submatrices are disjoint.

Then, a question is raised: Can the procedure be completed within
finite iterations? The answer is yes, with the reasons given as follows.

It can be seen that the decomposition of A to Ai(w) is actually to
delete a column in A or to replace a column that is not in the form of
(0, 0, . . . , 0, 1)T by (0, 0, . . . , 0, 1)T and move the column to be the
last column of the matrix. Therefore, after at most (q − 1) iterations
of deleting columns and (q − 1) iterations of replacing columns, the
obtained submatrices, after operations specified in Property 1, are
either disjoint or in the form of (1, 1, . . ., 1) (which is actually
also considered disjoint). In other words, the number of iterations is
bounded by (2q − 2).

Now, we return to our original research problem in (3). For
AN−k+2,N+1 in (3), the number of iterations of decomposition is
bounded by 2(N + 1) − 2 = 2N . After all the iterations are com-
pleted, matrix AN−k+2,N+1 is decomposed to disjoint submatrices.
Then, similar to (5) and (6), P≥(k) = Prob(AN−k+2,N+1y ≺ r) can
be expressed in terms of QN (·, ·). Note that the first integer parameter
in QN (·, ·) is bounded by N , whereas the second integer parameter is
bounded by �L/R� (because when the second parameter is larger than
the bound, QN (·, ·) equals 0). Therefore, in the expression of P≥(k),
the number of terms QN (·, ·) is bounded by �L/R�(N + 1), and the
computational complexity for P≥(k) is O(N).

We use

A3,6 =

(
1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1

)

as an example, i.e., N = 5 and k = 4, to demonstrate the iterations of
decomposition and show how to calculate (2). First, let the first row be
the marking row. Since the first row does not have an adjacent row, we
have c = (1 0 0 − 1 1 0)T , and therefore, w = A3,6c = (0 0 0)T .
Since there are three nonzero items in c, A3,6 can be decomposed
[based on (7)] into the following three submatrices:

(
0 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1

)

(
1 1 1 0 0 0
0 1 1 0 1 0
0 0 1 0 1 1

)

(
1 1 1 1 0 0
0 1 1 1 0 0
0 0 1 1 0 1

)
.

After operations in Property 1, we have the following short form for
the decomposition:

A3,6 ⇒
(

1 1 1 1 0
0 1 1 1 1

)
−

(
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

)

+

(
1 1 1 1 0
0 0 1 1 1

)
.

Since none of the three submatrices is disjoint, we continue to
decompose each of them, and eventually, we have

A3,6 ⇒ 3 ( 1 1 1 1 ) − 3 ( 1 1 1 )

+

(
1 1 0 0
0 0 1 1

)
−

(
1 0 0 0
0 1 1 1

)
+

(
1 1 0
0 0 1

)
. (8)

In (8), each submatrix is disjoint. Therefore, we have

P≥(4) = Prob(A3,6y ≺ r)

= 3Prob(y1 + y2 + y3 + y4 < R)

− 3Prob(y1 + y2 + y3 < R)

+ Prob(y1 + y2 < R, y3 + y4 < R)

− Prob(y1 < R, y2 + y3 + y4 < R)

+ Prob(y1 + y2 < R, y3 < R)

(c)
= 1 − 3Prob(y1 + y2 + y3 + y4 ≥ R)

+ 4Prob(y1 + y2 + y3 ≥ R)

− 3Prob(y1 + y2 ≥ R)

+ Prob(y1 + y2 ≥ R, y3 + y4 ≥ R)

− Prob(y1 ≥ R, y2 + y3 + y4 ≥ R)

+ Prob(y1 + y2 ≥ R, y3 ≥ R)

= 1 − 2Q5(0, 1) − 2Q5(1, 1) + Q5(2, 1)

− 3Q5(3, 1) + Q5(0, 2) + 2Q5(1, 2) + Q5(2, 2)

where (c) follows a similar method in (6).
As another example, when k = N , according to the marking

process, we have

P≥(N) = Prob(A2,N+1y ≺ r)

= 2Prob(y1+y2+· · ·+yN <R) − Prob(A2,Ny≺r)

= · · · = 2Prob(y1 + y2 + · · · + yN < R)

− 2Prob(y1 + y2 + · · · + yN−1 < R)

+ 2Prob(y1 + y2 + · · · + yN−2 < R)

− · · · + (−1)N · 2Prob(y1 + y2 < R)

+ (−1)(N−1)Prob(y1 < R, y2 < R)

=

⎧⎪⎨
⎪⎩

1 − QN (0, 2)

−2
∑N/2

i=1
QN (2i − 1, 1) (for even N )

1 + QN (0, 2)

−2
∑(N−1)/2

i=0
QN (2i, 1) (for odd N ).
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C. Tolerable Vehicle Departures

Let Nf denote the maximum number of arbitrary vehicle departures
such that the remaining network is still connected. The expectation of
Nf is given as

E[Nf ] =

kmax∑
k=2

(k − 1)P (k). (9)

To compute E[Nf ], P (k) and kmax should be known. Note that
P (k) can be computed using (1), where P≥(k) can be calculated
as in Sections IV-A and B. Next, we determine kmax, which is the
maximal level of connectivity. From Theorem 2, the sum of any kmax

consecutive spacings is less than R. Then, for the whole distance from
node S to node D, the first distance of R includes at least kmax nodes
(excluding node S), and the jth (j = 2, 3, . . . , �L/R�) distance of
R also includes at least kmax nodes. As the total number of nodes
(excluding node S) is N + 1, we have kmax�L/R� ≤ N + 1, which
leads to

kmax ≤ (N + 1)

�L/R� .

Therefore, we use

kmax =

⌊
(N + 1)

�L/R�

⌋

when we calculate E[Nf ] using (9).

V. PERFORMANCE EVALUATION

Simulation is carried out to validate our analysis. To simulate the
maximum number of node-disjoint paths between S and D of a
specific 1-DL-VANET topology, we use flow network simulation [19].
In specific, a flow in a flow network can be viewed as a water flow in
a water network, where the amount of water flow should be no greater
than the capacity of the water pipes. We view each node in the 1-DL-
VANET to be a water pipe with unit capacity and each link between
two neighboring nodes to be a water pipe with infinite capacity. Then,
the 1-DL-VANET is mapped to a water network (or flow network). A
path from S to D in the 1-DL-VANET corresponds to a water flow
from the source to the sink in the flow network, and the maximum
number of node-disjoint paths between S and D in the 1-DL-VANET
corresponds to the maximum amount of flow in the flow network. The
push-relabel Algorithm in [19] can be used to compute the maximum
amount of flow of a flow network.

In our analysis and simulation, communication range R varies from
100 to 700 m with a step size of 60 m. For each R value, 10 000
random scenarios are generated, where N = 14 nodes are uniformly
distributed over a line segment of length L = 1000 m. Fig. 2 shows
the analyzed and simulated average probability that there are at least
k node-disjoint paths between S and D, i.e., P≥(k). It can be seen
that the simulation and the analysis match well, which confirms the
accuracy of our analysis.

The expected maximum number of tolerable vehicle departures
(E[Nf ]) is another interesting metric for a 1-DL-VANET. Let L =
1000 m, N vary from 10 to 17 and R vary from 300 to 800 m.
Fig. 3 shows the values of E[Nf ]. As the node number N and/or
communication range R increases, E[Nf ] also increases. With fixed
R, E[Nf ] almost linearly increases with N , which can be explained
as follows.

Consider two 1-DL-VANETs: Case-1 network with N = N1 and
Case-2 network with N = N2. Assume that the expected maximum
number of tolerable vehicle departures in the two networks is A1 and

Fig. 2. P≥(k) versus R.

Fig. 3. Expected maximum number of tolerable vehicle departures.

A2, respectively. If we arbitrarily remove A1 nodes and A2 nodes
from the Case-1 and Case-2 networks, respectively, the remaining
networks in the two cases are expected to be connected but not
biconnected. Considering the random positions of nodes in the two
original networks, if we randomly add one node into the two remaining
networks, the two remaining networks should have the same probabil-
ity, which is denoted as ρ, to become biconnected. In other words,
one additional node is with probability ρ to make either the remaining
network tolerate one more arbitrary node departure (without network
disconnection). This means that, when N changes from N1 to N1 + 1
or from N2 to N2 + 1, the value of E[Nf ] is increased by the same
value ρ. This explains the linearity of the curves in Fig. 3.

An upper bound of the value of ρ can be given as follows. For a
1-DL-VANET, we arbitrarily remove E[Nf ] nodes one by one. Then,
before the last removal, the network is biconnected; and after the
last removal, the network is connected but not biconnected. Assume
that node v is the last removed node. Before the removal of node v,
the two nearest nodes on the left-hand side of node v are denoted
nodes a and b, whereas the two nearest nodes on the right-hand
side of node v are denoted as nodes c and e, as shown in Fig. 4.
The distance between node a and node b, between node b and node
c, and between node c and node e is d1, x, and d2, respectively.
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Fig. 4. Network topology when node v is removed.

Since the network is biconnected before the removal of node v but
becomes not biconnected after that, according to Theorem 2, we
have x < R, d1 + x + d2 < 2R, and max(d1, d2) + x > R. After
the removal of node v, we randomly add one node into the remaining
network. If the additional node is within the effective region shown
in Fig. 4, then the remaining network becomes biconnected, i.e., can
tolerate one more arbitrary node departure. The length of the effective
region is Δ = (R − d1) + (R − d2) − x = 2R − (d1 + d2 + x) <
2R − (max(d1, d2) + x) < 2R − R = R. Then, the probability that
the additional node makes the remaining network (after the removal
of node v) become biconnected is the probability that the additional
node is within the effective region and is denoted as ρ = Δ/L, which
is bounded by R/L. Since the slope of curve E[Nf ] versus N is ρ,
the slope is also bounded by R/L. In particular, Fig. 3 shows that the
slope of the E[Nf ] versus N curve is 0.50R/L, 0.70R/L, 0.79R/L,
0.84R/L, 0.88R/L, and 0.92R/L, when R is 300, 400, 500, 600, 700,
and 800 m, respectively.

VI. CONCLUSION

In this work, we have analyzed the k-connectivity of a 1-DL-
VANET. We have found a simple but insightful sufficient and neces-
sary condition for the 1-DL-VANET to be k-connected, i.e., the sum
of any k consecutive spacings is less than the communication range.
The probability of the 1-DL-VANET being k-connected has been then
derived with the help of matrix decomposition. The results are helpful
in evaluating the tolerance level of the 1-DL-VANET to simultaneous
vehicle departures (such as at highway exits) and other faults. Future
research topics include the evaluation of the sojourning time when
the 1-DL-VANET keeps k-connected and the sojourning time when
the 1-DL-VANET does not remain k-connected, considering a specific
mobility model of the vehicles.

APPENDIX A
PROOF OF LEMMA 1

Since node a and node b are k-connected, we can have k
node-disjoint paths from node a to node b, which are denoted as
P1,P2, . . . , and Pk. We have the following modification to path
Pi (i ∈ {1, 2, . . . , k}): if two or more nodes in path Pi are neighbors
of node a (which means that those nodes are consecutive nodes after
node a in path Pi), then we remove all those nodes, except the last one
from path Pi. By this means, in path Pi, we have one and only one
neighbor of node a, which is the node immediately after node a in the
modified path.

Among the k modified paths (P1,P2, . . . , and Pk), denote l as
the number of paths in which the node immediately after node a is
from {a1, a2, . . . , ak}. The nodes immediate after node a in the l
paths form a set A (|A| = l). Then, we can insert the (k − l) nodes in
{a1, a2, . . . , ak} \ {A} immediately after node a in the other (k − l)
paths, respectively (with one node inserted to one path). By this
means, the k paths are still node disjoint, and in each path, the node
immediately after node a is from {a1, a2, . . . , ak}.

Fig. 5. k + 1 nearest nodes from S and k + 1 nearest nodes from D.

Similarly, we can prove that, after some modifications, the k paths
are still node disjoint, and in each path, the node immediately before
node b is from {b1, b2, . . . , bk}.

APPENDIX B
PROOF OF THEOREM 1

The necessity is obvious. Next, we focus on sufficiency.
As shown in Fig. 5, denote the (k + 1) nearest nodes from node

S as s1, s2, . . . , sk+1 and the (k + 1) nearest nodes from node D as
dk+1, dk, . . . , d2, d1. Then, s1, s2, . . . , sk are neighbors of node S,
and d2, d3, . . . , dk+1 are neighbors of node D.

First, consider the case when nodes s1 and dk+1 are neighbors.
Then, any two nodes between s1 and dk+1 are neighbors.

1) If there are common nodes between sets {s1, s2, . . . , sk}
and {d2, d3, . . . , dk+1}: Assume that the number of com-
mon nodes is m. Then, the common nodes are sk−m+1

(which is also d2), sk−m+2 (which is also d3), . . ., and sk

(which is also dm+1). We can find k node-disjoint paths
from S to D: the first (k − m) paths are (S, s1, dm+2, D),
(S, s2, dm+3, D), . . . , and (S, sk−m, dk+1, D); and the re-
maining m paths are (S, sk−m+1, D), (S, sk−m+2, D), . . . ,
and (S, sk, D). Thus, nodes S and D are k-connected.

2) If there is no common node between sets {s1, s2, . . . , sk} and
{d2, d3, . . . , dk+1}: Then, we can find k node-disjoint paths
from S to D, with the ith (1 ≤ i ≤ k) path as (S, si, di+1, D).
Thus, nodes S and D are k-connected.

Next, we consider the case when nodes s1 and dk+1 are not
neighbors. Then, nodes s1 and dk+1 are k-connected since any two
nonneighboring nodes in S are k-connected. According to Lemma 1,
there exist k node-disjoint paths from s1 to dk+1, and each path
is in the form of (s1, si, . . . , dj , dk+1), where i ∈ {2, 3, . . . , k + 1}
and j ∈ {1, 2, . . . , k}. We have the following transformation for path
(s1, si, . . . , dj , dk+1).

1) If i ≤ k, then replace node s1 with node S; if i = k + 1, then
add node S in front of node s1.

2) If j = 1, then add node D after node dk+1; if j ≥ 2, then replace
node dk+1 with node D.

It can be seen that the newly formed k paths are k node-disjoint
paths from node S to node D. Therefore, node S and node D are
k-connected, which means that the 1-DL-VANET is k-connected.

APPENDIX C
PROOF OF THEOREM 2

First, we prove the necessity. Consider any node u ∈ S ∪ {S}, and
consider the k consecutive spacings starting from node u (to the right-
hand side). Note that we need to consider only node u that has at least
k nodes on its right-hand side. If nodes u and D are neighbors, then
apparently the sum of the k spacings starting from node u is less than
R. If nodes u and D are not neighbors, then according to Theorem 1,
nodes u and D are k-connected, and then, node u has at least k
neighbors on its right-hand side. Thus, the sum of the k consecutive
spacings starting from node u is less than R.

Next, we prove the sufficiency. Recall that the number of nodes in
S = {1, 2, . . . , N} is N . We express N in the format N = mk + n,
where m is a nonnegative integer, and n ∈ {0, 1, 2, . . . , k − 1}. Then,
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we have the following k node-disjoint paths from node S to node D,
for cases when n = 0 and n �= 0, respectively.

1) When n = 0: The ith (1 ≤ i ≤ k) path is (S, i, i + k, i +
2k, . . . , i + (m − 1)k, D). Between any two consecutive nodes
in the ith path there are no more than k spacings. Therefore, any
two consecutive nodes in the ith path are neighbors. The k paths
are node disjoint.

2) When n �= 0: For i ∈ {1, 2, . . . , n}, the ith path is (S, i, i +
k, i + 2k, . . . , i + (m − 1)k, i + mk, D); for i ∈ {n + 1, n +
2, . . . , k}, the ith path is (S, i, i + k, i + 2k, . . . , i + (m −
1)k, D). Between any two consecutive nodes in the ith path,
there are no more than k spacings. Therefore, any two consec-
utive nodes in the ith path are neighbors. The k paths are node
disjoint.

Therefore, nodes S and D are k-connected, which means that the
1-DL-VANET is k-connected.
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A Multihop Transmission Scheme With
Detect-and-Forward Protocol and Network Coding in

Two-Way Relay Fading Channels
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and Yonghui Li, Senior Member, IEEE

Abstract—In this paper, we propose and analyze a multihop transmis-
sion scheme based on detect-and-forward (DF) relay protocol and network
coding (NC) for two-way relay channels. In this scheme, the odd relays
perform hard detection and then forward the detected signals to the next
hop, whereas the even relays perform NC on the detected signals from the
two adjacent nodes and broadcast them to the next hop. By separating
the network into multiple two-hop subsystems, we develop closed-form
expressions for bit error rate (BER) in flat Rayleigh fading channels.
Our results are given as both lower bound and asymptotic expression
based on an accurate upper bound of the end-to-end signal-to-noise ratio
(SNR). It is shown that the proposed scheme has the same asymptotic
BER performance and a much higher throughput compared with the
conventional bidirectional relay scheme based on four transmission phases.
Therefore, the proposed scheme is efficient for practical wireless applica-
tions. Simulation results are provided to validate the analysis.

Index Terms—Bidirectional relaying, detect-and-forward (DF), fading
channels, multihop transmission, network coding (NC).

I. INTRODUCTION

The application of network coding (NC) [1] in a two-way relay
channel (TWRC) brings the benefits of overall network throughput
increase and spectral efficiency improvement [2]–[4]. A popular
three-node dual-hop TWRC model in additive white Gaussian noise
(AWGN) channel has been widely studied in the recent literature,
in particular from information-theoretic perspective. Achievable rate
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