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a b s t r a c t

Compliant mechanisms have been used in many engineering areas where high precision and sensitivity
are required. One of the major challenges of designing compliant mechanisms lies in understanding and
analyzing the nonlinear deflections of flexible members. The pseudo-rigid-body model (PRBM) method,
which simplifies the modeling of the nonlinear deflection by approximating it as motion of rigid links, has
been accepted as one of the most important tools for synthesis and analysis of compliant mechanisms.
In this paper, a review of various PRBMs is presented. The 3R PRBM whose characteristic parameters
are independent of external loads is discussed in detail. For the purpose of finding the optimal set of
the characteristic parameters for the 3R PRBM, a six-dimensional objective function is formulated by
combining the approximation errors of both tip point and tip slope for the two extreme load cases, i.e.,
pure moment load and pure vertical force load. A particle swarm optimizer was employed to conduct
a continuous search on the objective function. The resulting 3R PRBM with the optimized characteristic
parameters shows better performance in predicting large deflections of cantilever beams over the original
3R PRBM.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Compliant mechanisms, which achieve at least some of their
mobility from the deflection of flexible segments rather than from
articulated joints only, offer many advantages over their rigid coun-
terparts such as increased precision, ability to be miniaturized (e.g.,
compliant microelectromechanical systems), and reduced wear,
backlash and part number [1]. For this reason, the study and appli-
cation of compliant mechanisms have gained increasing popularity
in recent years, especially in the society for precision engineer-
ing. Since many of the flexible segments undergo large deflection,
the major challenge of designing compliant mechanisms lies in the
difficulty in accurately modeling the nonlinear deflection.

The pseudo-rigid-body model (PRBM) method [1], which sim-
plifies the modeling of the nonlinear deflection by approximating it
as motion of rigid links, has been widely accepted as one of the most
important tools for synthesis and analysis of compliant mecha-
nisms. The use of PRBM enables us to apply the knowledge available
in the field of rigid-body mechanisms to compliant mechanisms. So
far, PRBM has been successfully used to identify bistability [2] and
tristability [3], characterize dynamic behaviors [4,5], and evaluate
workspace [7] of compliant mechanisms.

∗ Corresponding author. Tel.: +86 138 9280 9948.
E-mail address: guimin.chen@gmail.com (G. Chen).

Although a great deal of work has been done on various PRBMs,
there still exists a need for a PRBM that is load-independent and
able to approximate exceptionally large deflection. Su [6] recently
proposed an interesting PRBM consisting of four rigid links joined
by three torsion springs (as shown in Fig. 1), which addresses
this need well. This PRBM will be referred to as 3R PRBM in the
following. The characteristic radius factors (� i, i = 0, 1, 2, 3, and∑3

i=0�i = 1) of 3R PRBM were optimized by Su [6] using a discrete
three-dimensional search routine with grid size of 0.05, and then
they were used to compute the optimal values of the stiffness coef-
ficients (K�i, i = 1, 2, 3) by averaging over a wide range of external
loads. A detailed description of this process is given in Section 2. It’s
worth noting that the discrete search and the two-step optimiza-
tion used by Su [6] might skip better results. Therefore, the current
paper employs the particle swarm optimizer [17] (which is a con-
tinuous search technique inspired by the swarm behavior of birds
flocking, animals herding and fish schooling) to conduct a contin-
uous six-dimensional search for the optimal set of characteristic
parameters (including � i and K�i). The six-dimensional objective
function is formulated by combining the approximation errors of
both tip point and tip slope for the two extreme load cases, i.e., pure
moment load and pure vertical force load. By doing this, we are able
to make a comprehensive compromise between approximations of
motion and load-deflection characteristics of the 3R PRBM in a sin-
gle step and guarantee that the globally optimal set of characteristic
parameters is achieved.

0141-6359/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.precisioneng.2011.02.006
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Fig. 1. A 3R PRBM for cantilever beam without inflection.

The rest of this paper is organized as follows: Section 2 presents
a brief summary of various PRBMs for cantilever beams. The fitness
function for optimizing the 3R PRBM is formulated in Section 3.
Section 4 describes the implementation of the particle swarm opti-
mizer on the fitness function. The optimization results is presented
and discussed in Section 5. Section 6 has concluding remarks.

2. Pseudo-rigid-body modeling techniques: a survey

The solutions to the large-deflection equations show that the
deflected tip locus for a flexible cantilever beam subject to an end
force or an end moment is nearly a circular arc, which makes it
possible to approximate the locus by a rigid link rotating around a
fixed point. Therefore, Howell and Midha [1] proposed a PRBM that
consists of two rigid links joined at a “characteristic pivot” along
the beam, as shown in Fig. 2(b). A torsional spring is attached at
the characteristic pivot to approximate the stiffness of the beam.
This PRBM is referred to as the 1R PRBM in this paper. The 1R
PRBM uses three characteristic parameters to identify kinematic
and force-deflection characteristics of a flexible segments, namely,
the characteristic radius factor (�), the stiffness coefficient (K�),
and the parametric angle coefficient (c�). The characteristic pivot is
located at a length of � l from the beam tip in its undeflected posi-
tion, where l is the length of the beam. The spring stiffness of the
torsion spring, k, can be expressed as a nondimensional constant

k = �K�
EI

l
(1)

Once � is determined, the tip locus of the deflected beam can be
parameterized in terms of �, the pseudo-rigid-body angle. It was
found that there is a nearly linear relationship between the beam
tip angle �o and �, which can be approximately expressed as

�o = c�� (2)

When a force F is applied, � , K� and c� can be represented as
functions of the force direction angle � but � = 0.85, K� = 2.65 and
c� = 1.24 are usually chosen for simplicity. For a pure moment load,
it was found that � = 0.7346, K� = 2.0643, and c� = 1.5164. The exis-
tence of c� in the 1R PRBM complicates modeling of potential energy
stored in flexible members subject to combined loads [5].

Fig. 3. A 2R PRBM for cantilever beam with an inflection.

Saxena and Kramer [8] modified the 1R PRBM by replacing the
two rigid links with axially compressible links for the purpose of
modeling flexible beams subject to combined loads. The use of
axially compressible links accounts for the displacement of the
characteristic pivot and the decrease in the characteristic radius,
thus improves the approximation accuracy of the PRBM. Dado [9]
proposed a variable parametric PRBM based on the 1R PRBM, whose
parameters are determined by using two correlation functions
between the applied end load and the characteristic parameters.
These two PRBMs are effective in determining the path, but require
iteration when the load actuated on flexible members varies during
the motion of a compliant mechanism, since the parameters for the
PRBMs are not load-independent.

Lyon et al. [10] classified combined force and moment load-
ing conditions into three cases (i.e., the force and moment are in
the same direction, the force and moment are in opposite direc-
tions and no inflection is produced, and the force and moment are
in opposite directions and an inflection is produced), and corre-
spondingly developed three PRBMs. These PRBMs are valuable in a
few cases but limited because the loading conditions of the flexible
segments in compliant mechanisms may be different at different
positions [3].

Kimball et al. [11] presented a PRBM consisting of three rigid
links joined by two torsion springs, which is able to model a flex-
ible beam with an inflection point, as shown in Fig. 3. This model
can be considered as a 2R PRBM. By specifying a linear relationship
between the two joint angles, namely, �s = c�e, where c is a con-
stant, the model was reduced to a single degree-of-freedom model.
An optimization algorithm was employed to determine the param-
eters �s, �e and c. As a result, these parameters, which were given as
functions of two non-dimensional load-parameters, can vary sig-
nificantly depending on the loading condition. A similar PRBM with
�s = �e was studied by Lyon and Howell [12].

As aforementioned, the load actuated on a flexible member can
vary significantly during the motion of a compliant mechanism,
thus a PRBM with the characteristic parameters remaining con-
stant regardless of the change of load modes can be very useful
in the design and analysis of compliant mechanisms. Therefore, a
new 3R PRBM whose characteristic radius factors and stiffness coef-
ficients are independent of external loads was proposed by Su [6].
This PRBM is able to accurately approximate very large deflection
over a wide range of load modes when there is no inflection point in

Fig. 2. (a) A cantilever beam subject to a combined end force and moment at the free end and (b) its 1R PRBM.
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Table 1
The characteristic parameters given in Ref. [6].

�0 �1 �2 �3 K�1 K�2 K�3

Characteristic parameters in Ref. [6] 0.1 0.35 0.4 0.15 3.51 2.99 2.58

the deflected beam. The characteristic parameters for the 3R PRBM
were determined using the following process [6]:

• Suppose that each of � i (i = 0, 1, 2, 3) falls in the range of [0.05,0.5],
which is divided evenly with step size of 0.05. Repeatedly pick a
set of � i that satisfies

∑3
i=0�i = 1, and compute corresponding

sets of K�i (i = 1, 2, 3) based on the load-deflection characteristics
of the model for two extreme load cases, i.e., pure moment load
and pure vertical force load, respectively. Then the set of � i that
has the minimum difference between the sets of K�i for the two
extreme load cases was selected as the best.

• For the purpose of finding a set of K�i that fits all load modes
well, K�i should be computed by averaging over a wide range
of external loads for the optimal set of � i. It was found that K�i
are slightly correlated to force direction angle �. Therefore, the
averaging was made over � ∈ [0,25] with � = �/2, where � is the
load ratio defined as

� = M2

2FEI
(3)

Table 1 lists the optimized characteristic parameters obtained in
Ref. [6], where the relationship between the stiffness coefficients
(K�i) and the spring stiffnesses (ki) of the torsion springs can be
expressed as

K�i = l

EI
ki, i = 1, 2, 3 (4)

Although the 3R PRBM is relatively complex as compared to the
other PRBMs aforementioned, it offers several advantages such as
decoupling of the characteristic parameters and loads, and elimi-
nation of the parametric angle coefficient c� .

Considering that the discrete search and the two-step optimiza-
tion incorporated in Ref. [6] may skip better results for the 3R PRBM,
we employ in this paper, a population-based searching technique
called particle swarm optimizer, to conduct a six-dimensional con-
tinuous search for the optimal set of characteristic parameters. The
six tuning variables include �1, �2, �3, K�1, K�2, and K�3 (note that
�0= 1 − �1 − �2 − �3). We assume that there is no inflection point
in the deflected beam as Su did in Ref. [6]. In the following section,
a six-dimensional objective function for finding the optimal set of
characteristic parameters for the 3R PRBM is formulated.

3. Problem formulation

For different load modes, the most suitable characteristic
parameters for PRBMs might change significantly. The objective of
this paper is to find an optimal set of the characteristic parameters
(including �1, �2, �3, K�1, K�2 and K�3) for the 3R PRBM that fits
all load modes well. As discussed in Ref. [6] two load modes, i.e.,
the pure end moment load and the pure vertical end force load, can
represent two extreme load cases for determining the character-
istic parameters (since the two load cases represent the extreme
cases, the approximation error for other load modes can be guar-
anteed to be small). Therefore, the problem may be formally stated
as follows: Find the values of the characteristic parameters, which
minimize the approximation errors of the 3R PRBM for the two
extreme load cases.

For convenience, the actual tip deflections calculated using the
analytic methods are denoted by xpj/l, ypj/l (coordinates of tip point

“Pj” expressed in nondimensional form) and �oj, while the approx-
imate tip deflections calculated using the 3R PRBM are denoted by
xQj/l, yQj/l (coordinates of tip point “Qj” expressed in nondimen-
sional form) and �oj, where j means the jth load step, as will be
explained in the following.

It should be noted that our optimization takes the approxima-
tion error of the tip slope angle into account for the purpose of
taking advantage of one of the aforementioned features of the 3R
PRBM namely, elimination the parametric angle coefficient c� .

3.1. End moment load

First, we assume a pure moment is applied at the free end of
the beam. The moment is increased step by step until the tip slope
�o reaches �o max (�o max is set to 3�/2 for pure moment load). At
the jth load step, by defining a nondimensional moment “index” ˇj
corresponding to Mj as

ˇj = Mjl

EI
(5)

where Mj is the applied moment at the jth load step, the actual tip
deflection can be calculated as [1]⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�oj = Mjl

EI
= ˇj

xPj

l
= sin �oj

�oj

yPj

l
= 1 − cos �oj

�oj

(6)

On the other hand, the tip deflection predicted by the 3R PRBM
for given ˇj can be calculated as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�oj = �1j + �2j + �3j

xQj

l
= �0 + �1 cos(�1j) + �2 cos(�1j

+ �2j) + �3 cos(�1j + �2j + �3j)
yQj

l
= �1 sin(�1j) + �2 sin(�1j + �2j)

+�3 sin(�1j + �2j + �3j)

(7)

where, �1j = ˇj/K�1, �2j = ˇj/K�2, and �3j = ˇj/K�3.
Correspondingly, we define the approximation error of 3R PRBM

for end moment load (eM) as the sum of square errors between the
predicted and the actual tip deflections at each load step (totally 50
load steps):

eM =
50∑
j=1

[(xPj

l
− xQj

l

)2
+

(yPj

l
− yQj

l

)2
+ (�oj − �oj)

2

]
(8)

3.2. Vertical end force load

We use the elliptic integral method [1] to solve the actual tip
deflections when a vertical end force is actuated. Because it is not
convenient to calculate the tip deflections with given end forces,
we use given tip slope at jth load step, �oj (�o max is set to 9�/20
because �o max < �/2 for a vertical end force load), to solve for the
corresponding force Fj (or nondimensionalized as ˛j). The ellip-
tic integral solution is presented in the following and the detailed
derivation can be found in Ref. [1].
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The force at the jth load step can be expressed as

Fj =
˛2

j
EI

l2
(9)

where ˛j is the nondimensional force index expressed as

˛j = F(tj) − F(�j, tj) (10)

where

�j = arcsin

√
1

1 + 	j
(11)

and

tj =
√

1 + 	j

2
(12)

where

	j = sin �oj (13)

Then, the tip point (normalized values) is given by:⎧⎪⎨⎪⎩
xPj

l
= 1

˛j
[
√

2(1 + 	j) cos �j]

yPj

l
= 1

˛j
[F(tj) − F(�j, tj) + 2E(�j, tj) − 2E(tj)]

(14)

In Eqs. (10)and (14), F( ) and E( ) represent the elliptic integrals of
the first and second kinds, respectively.

Given the vertical force at the jth load step (˛j) on the free end
of the 3R PRBM, the torques at the three pin joints can be expressed
as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩


1 = k1�1 = Fjl[�3 cos(�1j + �2j + �3j)

+ �2 cos(�1j + �2j) + �1 cos(�1j)]


2 = k2�2 = Fjl[�3 cos(�1j + �2j + �3j)

+ �2 cos(�1j + �2j)]


3 = k3�3 = Fjl�3 cos(�1j + �2j + �3j)

(15)

which can be rewritten in a nondimensional form as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K�1�1

˛2
j

= �3 cos(�1j + �2j + �3j) + �2 cos(�1j + �2j)

+ �1 cos(�1j)

K�2�2

˛2
j

= �3 cos(�1j + �2j + �3j) + �2 cos(�1j + �2j)

K�3�3

˛2
j

= �3 cos(�1j + �2j + �3j)

(16)

For a given set of (�1, �2, �3, K�1, K�2, K�3), Eq. (15) can be
solved numerically (using, e.g., the “fsolve” function in MATLAB) to
obtain �1j, �2j, and �3j by assuming l = 1 without loss of generality.
Then, the tip deflection predicted by the 3R PRBM can be expressed
as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�oj = �1j + �2j + �3j

xQj

l
= �0 + �1 cos(�1j) + �2 cos(�1j + �2j)

+ �3 cos(�1j + �2j + �3j)
yQj

l
= �1 sin(�1j) + �2 sin(�1j + �2j)

+�3 sin(�1j + �2j + �3j)

(17)

Then, we define the approximation error of the 3R PRBM for
vertical end force load (eF) as the sum of square errors between the

predicted and the actual tip deflections at each load step (totally 50
load steps):

eF =
50∑
j=1

[(xPj

l
− xQj

l

)2
+

(yPj

l
− yQj

l

)2
+ (�oj − �oj)

2

]
(18)

3.3. Formulation of fitness function for the 3R PRBM

By adding the two approximation errors associated with the
two extreme load cases (i.e., pure moment load and pure vertical
force load), a fitness function can be formulated as a minimization
objection function as follows:

Minimize Fitness = eM + eF

subject to k�1 > 0, k�2 > 0, k�3 > 0

�0 > 0, �1 > 0, �2 > 0, �3 > 0

�0 + �1 + �2 + �3 = 1

(19)

where the optimization parameters include �1, �2, �3, K�1, K�2,
and K�3. These parameters define a six-dimensional solution space
in which the PSO is employed to search for the optimal solution.

4. The particle swarm optimizer

The particle swarm optimizer (PSO), which was first devel-
oped by Kennedy and Eberhart [14] in 1995, is a population-based
optimization technique inspired by sociological behavior of bird
flocking and fish schooling. In PSO, the population is called the
swarm and the individuals are called the particles. Each particle
“flies” through the solution space based on the previous expe-
riences of its own and the particles within its neighborhood in
search of better solution. Since its first publication, PSO has gained
increasing popularity due to its simplicity of implementation and
high computational efficiency in performing difficult optimization
tasks. It is important to note that PSO was originally designed
for real-valued problems, which makes it particularly suitable for
optimizing the continuous fitness function defined in Eq. (19)
as compared to the genetic algorithm (no binary conversion is
required).

PSO starts with generating a population of particles (the swarm)
with random positions in the solution space and assigning each par-
ticle with a random velocity. Each particle in the swarm represents
a possible solution to the problem being solved and each parti-
cle’s fitness is evaluated according to the fitness function. Assume
there are m particles in the swarm. In a d-dimension solution space,
the position and velocity of the ith particle (1 ≤ i ≤ m) at iteration
t can be represented as vectors Xi(t) = [xi,1(t), . . ., xi,1(t), . . ., xi,d(t)]T

and Vi(t) = [vi,1(t), . . ., vi,1(t), . . ., vi,d(t)]T, respectively. Based on fit-
ness evaluation, Pi(t) = [pi,1(t), . . ., pi,1(t), . . ., pi,d(t)]T records the best
position obtained by the ith particle, while Gi(t) = [gi,1(t), . . ., gi,1(t),
. . ., gi,d(t)]T stores the best position discovered by the whole swarm.
The new velocity and position in the jth dimension (1 ≤ j ≤ d) of par-
ticle i for the next iteration are calculated using the following two
equations:

vi,j(t + 1) = wvi,j(t) + c1 Rand()[pi,j(t) − xi,j(t)]

+ c2 Rand()[gj(t) − xi,j(t)] (20)

xi,j(t + 1) = xi,j(t) + vi,j(t + 1) (21)

where w is the inertia weight proposed by Shi and Eberhart [15],
Rand() is a function that generates a random number uniformly
distributed in the range of [0,1], and c1 and c2 denote the acceler-
ation coefficients (usually fixed at 2). There are three independent
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Table 2
Optimized characteristic parameters.

�0 �1 �2 �3 K�1 K�2 K�3

Present characteristic parameters 0.125 0.35 0.388 0.136 3.25 2.84 2.95
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Tip locus Ref. [6]

Tip error Ref. [6]

Present tip error

Fig. 4. Comparison of the tip loci of a beam subject to pure moment load predicted
by the 3R PRBM in Ref. [6] and present 3R PRBM.

parts in Eq. (20) [14]. The first part is the current velocity weighted
by w, which provides the necessary momentum for particles to
roam across the search space. The second part, often regarded as
the “cognitive” component, represents the personal thinking of
each particle and encourages the particles to search around their
own best positions found so far. The third part is considered as
the “social” component, which represents the collaboration of the
particles in the swarm.

In PSO, global exploration is often required during the early
stage of the search to allow the particles to survey the full range
of the solution space. On the other hand, during the latter stage of
the search, when the algorithm has located the area including the
optimal solution, local exploitation is crucial for finding the global
optima efficiently [15]. The inertia weight (w) offers PSO a conve-
nient way to control between exploration and exploitation. Larger
values of the inertia weight always benefit the global exploration,
while smaller ones improve the local exploitation. Therefore, a
strategy of linearly decreasing the inertia weight was proposed by
Shi and Eberhart [16], which initializes the inertia weight to a rel-
atively large value at the beginning of the search and decreases it
linearly as the search proceeds. The mathematical representation
for linearly decreasing the inertia weight can be given as

w = (ws − we) ×
(

T − t

T

)
+ we (22)

where T is the predefined maximum number of iterations, t is the
current iteration number, and ws and we are the initial and final
values of the inertia weight, respectively (typically ws = 0.9 and
we = 0.4).

In the implementation of PSO for optimizing the fitness function
given in Eq. (19), two major changes have been made to improve the
efficiency and guarantee the convergence of the algorithm. The first
change is that we randomly select a particle from the swarm and
initialize it with the characteristic parameters obtained in Ref. [6],
as listed in Table 1. The second change is that a nonlinear decreasing
strategy [17] is employed instead of the linear one, which can be

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

θoj

(t
ip

 e
rr

or
)/

l

Present tip error
Tip error Ref. [6]

Fig. 5. Comparison of the tip errors of the 3R PRBM in Ref. [6] and present 3R PRBM
for a beam subject to pure moment load.

expressed as

w = we ×
(

ws

we

)1/(1+10t/T)
(23)

Numerical results show that this nonlinear decreasing strategy
improves the convergence rates of PSO on a variety of problems
[17].

We carry out the optimization with a swarm size of 40 and
the maximum number of iterations set to 1000. The optimization
results will be presented and discussed in the next section.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
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θoj

(Θ
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−
θ oj

)/
θ oj

Present tip slope error
Tip slope error Ref. [6]

Fig. 6. Comparison of the relative errors of tip slope angle of the 3R PRBM in Ref. [6]
and present 3R PRBM for a beam subject to pure moment load.
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Fig. 7. Comparison of the tip loci of a beam subject to vertical force load predicted
by the 3R PRBM in Ref. [6] and present 3R PRBM.

5. Results and discussion

The optimal set of the characteristic parameters found, in this
study, by the PSO is listed in Table 2. In the following, the per-
formance of the 3R PRBM with these parameters is evaluated by
comparing it with the 3R PRBM parameters given in Ref. [6].

As can be seen from Fig. 4, both of the 3R PRBMs approximate the
actual locus well when pure moment is loaded. However, the pre-
dicted tip deflection using the 3R PRBM in Ref. [6] lags behind the
actual deflection with rather large errors, while present 3R PRBM
predicted the tip deflection very well. From Figs. 5 and 6, it can also
be concluded that the tip error and the tip slope error of the 3R
PRBM in Ref. [6] increase dramatically as the deflection increases,
while the corresponding errors associated with present 3R PRBM
keeps at a very low level over the whole range of deflection (with
the tip error less than 1.5% and the tip slope error of 0.12%). The
relative error of tip slope angle with a pure moment load can also
be determined mathematically as [6]∣∣∣ 1

K�1
+ 1

K�2
+ 1

K�3
− 1

∣∣∣ = 0.12% (24)
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Fig. 8. Comparison of the tip errors of the 3R PRBM in Ref. [6] and present 3R PRBM
for a beam subject to vertical force load.
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Fig. 9. Comparison of the relative errors of tip slope angle of the 3R PRBM in Ref. [6]
and present 3R PRBM for a beam subject to vertical force load.

For vertical end force loads, although the tip locus of present 3R
PRBM deviates from the actual locus as the deflection increases, its
approximation error is smaller than that of the 3R PRBM in Ref. [6],
as can be seen from Fig. 7. The 3R PRBM in Ref. [6] approximates
the actual locus well but with relative large overshoot. As to the tip
error, present 3R PRBM outperforms the 3R PRBM in Ref. [6] over
the whole range of deflection (with errors less than 2%), as shown in
Fig. 8. As can be seen from Fig. 9, the relative error of tip slope angle
for present 3R PRBM is smaller than that of the 3R PRBM in Ref.
[6] when the tip slope is within the range of 0–0.26�, but exceeds
when the tip slope is beyond that range. However, the maximum
relative slope error is only about 1.6%.

6. Conclusions

For the purpose of finding the optimal set of the characteris-
tic parameters (including �1, �2, �3, K�1, K�2 and K�3) for the 3R
PRBM, a six-dimensional objective function is formulated by com-
bining the approximation errors of both tip point and tip slope for
the two extreme load cases, i.e., pure moment load and pure vertical
force load. An improved particle swarm optimizer was employed to
conduct a continuous search on the objective function. The result-
ing 3R PRBM with the optimized characteristic parameters shows
better performance in predicting large deflections of cantilever
beams over the 3R PRBM with the parameters presented in Ref.
[6].
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