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Flexure hinges have been used to produce frictionless and backlashless transmission in a variety of
precision instruments. Many kinds of flexure profile were proposed during the past decade. The
present work brings elliptical arc, parabolic, and hyperbolic profiles together by proposing a
generalized conic flexure hinge model. By utilizing the generalized equation for conic curves in
polar coordinates, all the elements in the compliance and precision matrices for conic flexure hinges
are deduced. These equations were verified by finite element analysis and experimentation. The
analytical results are within 11% error compared to the finite element results and within 6% error
compared to the experimental results. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3137074�

I. INTRODUCTION

Flexure hinges have been used to produce frictionless
and backlashless transmission in a variety of precision in-
struments such as micro- and nanomanipulating platforms,
high-accuracy alignment devices, and displacement amplifi-
ers for piezoelectric actuators. The performance of flexure-
based mechanisms is highly dependent on the characteristics
of flexure hinges; therefore, the design of flexure hinges is of
practical importance.

In the previous work on this subject, flexure hinges of
various cutout profiles have been introduced and discussed.
Paros and Weisbord1 proposed circular flexure hinges and
derived both full theoretical and simplified design equations
for them. Smith et al.2 presented elliptical flexure hinges and
their compliance equations. Chen et al.3 extended the defini-
tion of elliptical hinges by changing the maximum eccentric
angle �m of the cutout profiles from �m=� /2 �semiellipse�
to 0��m�� /2 and correspondingly called them elliptical
arc flexure hinges. The closed-form compliance equations
were derived for elliptical arc flexure hinges using the Car-
tesian coordinates, which can also be used to design circular,
right-circular, and elliptical flexure hinges. Lobontiu et al.4

introduced two new configurations, namely, parabolic and
hyperbolic flexure hinges, and developed their analytical
equations, respectively. The Computerized Numerical Con-
trolled �CNC� machining technology, especially the Wire
electrical discharge machining �WEDM�, enables high-
precision and low-cost fabrication of flexure hinges of arbi-
trary cutout profiles. However, circular flexure hinges are
often used because it is burdensome for a designer to work
with all these types of flexure hinges and their corresponding
design equations in order to find the optimal profile.

There are two chief aspects to consider when designing
flexure hinges for a flexure-based mechanism, namely, the
cutout profile selection and the parameter design of flexure
hinges. Because the two aspects are theoretically indepen-
dent, and there are no clear-cut guidelines for selection of the
cutout profile, flexure hinge design is always performed first
by selecting a certain type of flexure hinge �based on the

designer’s experience� and then designing the parameters us-
ing the corresponding design equations.5–7 This situation pro-
hibits designers from confidently and consistently finding the
most suitable hinge designs �since accounting for all cutout
profiles would prove very burdensome and choosing only
one necessarily excludes others which may be better�. In this
work, we propose a solution to this problem in the form of a
generalized flexure hinge model with one set of design equa-
tions which includes multiple types of conic flexure hinges,
effectively combining the aspects of cutout profile selection
and parameter design into one.

By basing our proposal on the general form of conic
equations in polar coordinates, we are able to propose a gen-
eralized model for conic flexure hinges which encompasses
elliptical arc, parabolic, and hyperbolic flexure hinges. Fig-
ure 1 shows the three-dimensional geometry of a conic flex-
ure hinge. The geometric parameters include the minimum
thickness t, the cutout length l=2a, the cutout depth c, and
the cross-sectional width w. The generalized closed-form
equations, including the compliance equations and precision
equations, are derived for conic flexure hinges using polar
coordinates. These generalized equations allow users to se-
lect cutout profiles and design parameters simultaneously,
drastically improving the chances of selecting the most suit-
able hinge for the application. It should also be noted that
this work extends the definition of hyperbolic flexure hinges
given by Lobontiu et al.,4 which will be discussed in detail in
Sec. III C.

II. THE GENERALIZED EQUATION FOR CONIC
CURVES IN POLAR COORDINATES

Figure 2 shows a conic curve along with its directrix and
focus F. In polar coordinates, the conic curve with focus F
on the pole can be expressed as

r��� =
ep

1 + e cos �
, �1�

where p�p�0� is the distance between the focus and the
corresponding directrix, and e�e�0� is the eccentricity,
which is determined by
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e =
r���
m���

. �2�

If 0�e�1, the conic is an ellipse, if e=1, the conic is a
parabola, and if e�1, it is a hyperbola. Assuming the conic
cutouts of conic flexure hinges start from −�m and end at �m

��m is called the maximum polar angle, as shown in Figs.
3–5. In this generalized model for conic hinges, e, p, and �m

are design parameters for the hinge cutouts�, the cutout
length can be calculated as

l = 2a = 2r��m�sin �m =
2ep sin �m

1 + e cos �m
�3�

and the cutout depth as

c = − r��m�cos �m +
ep

1 + e
= −

ep cos �m

1 + e cos �m
+

ep

1 + e
. �4�

III. CONIC FLEXURE HINGES

A. Elliptical arc flexure hinges

Figure 3 shows an elliptical arc flexure hinge3 and illus-
trates the polar coordinates of the upper cutout. It should be
noted that �=0 is always on the major axis, and the gener-
alized conic flexure hinge model does not include the ellip-
tical arc flexure hinges whose major axes are along the cut-
out length. ra, rb are the major and minor semiaxes of the
ellipse, respectively. The focal length rc can be calculated as

rc = �ra
2 − rb

2, �5�

the eccentricity as

e = rc/ra, �6�

and the distance between one of the foci and the correspond-
ing directrix as

p =
ra

2

rc
− rc =

rb
2

rc
. �7�

If the maximum polar angle �m of an elliptical arc flexure
hinge equals � /2+arctan�rc /rb�, the cutouts become semiel-
lipses and the hinge becomes an elliptical flexure hinge,
which has been discussed in Ref. 2.

As e tends to 0, the hinge converges toward a circular
one. At e=0, the elliptical arc flexure hinge becomes circular,
and we have p=� and r���=ep=ra=rb. Since it is difficult if
not impossible to take the limits of the closed-form solutions
presented in the following, a practical way is to approximate
the results for circular hinges by using a very small value
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FIG. 1. Schematic of a conic flexure hinge.

FIG. 2. �Color online� A conic and its polar coordinates.

FIG. 3. �Color online� Elliptical arc flexure hinge.

FIG. 4. �Color online� Parabolic flexure hinge.
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�e.g., e=10−7� to represent e=0. The approximate results for
a circular hinge are presented and compared with Paros and
Weisbord’s results1 in Sec. VI.

B. Parabolic flexure hinges

Figure 4 shows a parabolic flexure hinge and illustrates
the polar coordinates of the upper cutout. Due to e=1 for a
parabola, the distance between its foci and the directrix is
given by

p = a2/2c , �8�

where l=2a and c are the length and the depth of the para-
bolic cutout, respectively. The maximum polar angle �m can
be calculated using Eq. �4�.

C. Hyperbolic flexure hinges

Lobontiu et al.4 used three parameters, i.e., the minimum
thickness t, the half length of the cutouts a, and the cutout
depth c to define the profile of a hyperbolic flexure hinge. In
their work, the thickness was given by

h�x� =�t2 + 4c�c + t��1 −
x

a
�2

. �9�

Equation �9� indicates that the two symmetric cutouts are
located on the same hyperbola, i.e., t must equal 2ra �ra is the
real semiaxis of the hyperbola�, as shown in Fig. 5�a�. In this
paper, we extend this definition by using four parameters �e,
p, �m, and t� to determine the profile of a hyperbolic flexure
hinge, with t an independent variable to the hyperbolic curve,
as shown in Fig. 5�b�.

Figure 5�b� shows hyperbolic flexure hinges and illus-
trates the polar coordinates of the upper hyperbolic cutout.
For a hyperbola, the distance between one of the foci and the
corresponding directrix is given by

p = rc −
ra

2

rc
=

rb
2

rc
, �10�

where rc is the focal length, and ra and rb are the semimajor
axis �the foci lie on the extension of the major axis of the
hyperbola� and the semiminor axis, respectively.

IV. COMPLIANCE EQUATIONS FOR CONIC FLEXURE
HINGES

Slice the profile of the hinge region of a conic flexure
hinge into vertical infinitesimal strips. The height of the in-
finitesimal strip d� at position � can be expressed uniformly
as

h��� =
2ep

1 + e
+ t − 2r���cos � . �11�

Let s= p / t and

q =
2e

1 + e
+

1

s
, �12�

then h��� can be expressed as

h��� = p�q −
2e cos �

1 + e cos �
� = pg��� . �13�

The relationship between x and � can be expressed as

x = a + r���sin � . �14�

Differentiating Eq. �14� results

dx = �r����sin � + r���cos ��d� =
ep�e + cos ��
�1 + e cos ��2 d� . �15�

A. Compliance matrix

It is assumed that the minimum thickness of a flexure
hinge t is much smaller than the cutout length l, say t
�0.2l, so the hinge can be treated as a six degree-of-freedom
fixed-free beam subject to bending, axial loading, shearing
and torsion, as shown in Fig. 1. By defining the force actu-
ating on the hinge by

F = �Fx,Fy,Fz,Mx,My,Mz�T �16�

and the corresponding deformations of the hinge by

X = ��x,�y,�z,	x,	y,	z�T, �17�

the following relationship is obtained:

FIG. 5. �Color online� Hyperbolic flexure hinge. �a�
The hyperbolic flexure model proposed by Lobontiu et
al. �Ref. 4�, and �b� the extended hyperbolic flexure
model.
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X = ChF , �18�

where Ch is the compliance matrix of the hinge, which can
be expressed by

Ch =�
�x/Fx 0 0 0 0 0

0 �y/Fy 0 0 0 �y/Mz

0 0 �z/Fz 0 �z/My 0

0 0 0 	x/Mx 0 0

0 0 	y/Fz 0 	y/My 0

0 	z/Fy 0 0 0 	z/Mz

	 .

�19�

Because the compliance matrix is symmetric,3 we have
	z /Fy =�y /Mz and 	y /Fz=�z /My. Each element in the com-
pliance matrix is derived from beam theory in the following.

B. Angular compliance about the z axis

The z axis is the input axis of a flexure hinge. The an-
gular compliance corresponding to moment Mz can be ex-
pressed as

	z

Mz
= 


−�m

�m

ep�e + cos ��
�1 + e cos ��2

EIz���
d�

= 

−�m

�m ep�e + cos ��
E�wh3���/12��1 + e cos ��2d� =

12e

Ewp2N1,

�20�

where E is the elastic modulus of the material, Iz��� is the
cross-sectional area moment of inertia about the neutral axis
at the given position �, and

N1 = 

−�m

�m e + cos �

g3����1 + e cos ��2d�

=
q3 + e2�2q + 5q2 − 2q3� + e4�q − 2�2�q − 1� + e�q2�q − 1� − e2�8 + 2q − 7q2 + 2q3� + e4�q − 2�3�cos �m

0.5�e2�q − 2�2 − q2�2�q + e�q − 2�cos �m�2csc �m

−

12e�e2�q − 2� − q�arccoth
�q + e�q − 2��cot��m/2�

�e2�q − 2�2 − q2

�e2�q − 2�2 − q2�5/2 . �21�

The contribution of Fy to 	z equals its equivalent mo-
ment Fy�a−ep sin � / �1+e cos ���. Therefore, the angular
compliance corresponding to force Fy can be calculated as

	z

Fy
= 


−�m

�m
�a −

ep sin �

1 + e cos �
� ep�e + cos ��

�1 + e cos ��2

E�wh3����/12
d�

= 

−�m

�m � aep�e + cos ��
E�wh3�����1 + e cos ��2/12

−
e2p2�e + cos ��sin �

E�wh3�����1 + e cos ��3/12
�d� =

12ae

Ewp2N1. �22�

C. Angular compliance about the y axis

The angular compliance about the y axis corresponding
to moment My is given by

	y

My
= 


−�m

�m

ep�e + cos ��
�1 + e cos ��2

EIy���
d� =

12e

Ew3N2, �23�

where

N2 = 

−�m

�m e + cos �

g����1 + e cos ��2d�

=

2�e2 − 1 arccoth
�e + 1�cot��m/2�

�e2 − 1

e

+

2�q − e2�q − 2��arccoth
�q + qe − 2e�cot��m/2�

�e2�q − 2�2 − q2

e�e2�q − 2�2 − q2
.

�24�

The contribution of Fz to 	y equals its equivalent mo-
ment −Fz�a−ep sin � / �1+e cos ���. Thus, the angular com-
pliance corresponding to force Fy is

	y

Fz
= 


−�m

�m
− �a −

ep sin �

1 + e cos �
� ep�e + cos ��

�1 + e cos ��2

E�w3h����/12
d�

= −
12ae

Ew3 N2. �25�

D. Linear compliance along the z axis

Because the compliance matrix is symmetric, the linear
compliance along the z axis corresponding to moment My is
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�z

My
=

	y

Fz
= −

12ae

Ew3 N2. �26�

The linear compliance along the z axis corresponding to
force Fz can be divided into two parts, namely, the bending
part �denoted as �z

b /Fz� and the shearing part �denoted as
�z

s /Fz�. The shearing part can be calculated as

�z
s

Fz
= 


0

2a k

Gwh�x�
dx =

kep

Gw



−�m

�m e + cos �

h����1 + e cos ��2d�

=
ke

Gw
N2, �27�

where G and k are the shearing modulus and shearing coef-

ficient of the material, respectively. For a beam of rectangu-
lar cross section, k is8

k =
12 + 11


10 + 10

, �28�

where 
 is Poisson’s ratio, and


 =
E

2G
− 1. �29�

The bending part is

�z
b

Fz
= − 


−�m

�m 


−�m

� − �a −
ep sin �

1 + e cos �
� ep�e + cos ��

�1 + e cos ��2

E�w3h���/12�
d��d� ep sin �

1 + e cos �
� =

12a2e

Ew3 N2 +
12e3p2

Ew3 N3, �30�

where

N3 = 

−�m

�m sin2 ��e + cos ��
g����1 + e cos ��4d� =

��q − qe2 + 2e2�2 − 2e2�arccoth
�1 + e�cot��m/2�

�e2 − 1

2e3�e2 − 1

−

�q3 − 2qe2�2 − 3q + q2� + e4�q − 2�3�arccoth
�q − 2e + qe�cot��m/2�

�e2�q − 2�2 − q2

2e3�e2�q − 2�2 − q2
+

q − e2�q − 3� + e�1 + q + 2e2 − qe2�cos �m

2e2 csc �m�1 + e cos �m�2 .

�31�

To sum up, the linear compliance along the z axis due to Fz

is

�z

Fz
= �12a2e

Ew3 +
ke

Gw
�N2 +

12e3p2

Ew3 N3. �32�

E. Linear compliance along the y axis

Again, because the compliance matrix is symmetric, the
linear compliance along the y axis corresponding to moment
Mz is

�y

Mz
=

	z

Fy
=

12ae

Ewp2N1. �33�

By following the derivation of �z /My, the linear compliance
along the y axis corresponding to Fy can be derived as

�y

Fy
=

12a2e

Ewp2 N1 +
12e3

Ew
N4 +

ke

Gw
N2, �34�

where

N4 = 

−�m

�m sin2 ��e + cos ��
g3����1 + e cos ��4d� =

�e2 − 1�3/2

2e3 arctanh
�e − 1�tan��m/2�

�e2 − 1

−

�12e4 − 8e6 − 6q2e2�e2 − 1�2 + �qe2 − q�3 + 6q�e2 − 3e4 + 2e6��arctanh
�qe − q − 2e�tan��m/2�

�4e2 − 4qe2 + q2�e2 − 1�
2e3�4e2 − 4qe2 + q2�e2 − 1��3/2

−
4e4 − 2qe2 − 3q2e2�e2 − 1� + q3�e2 − 1�2 + e�q3�e2 − 1�2 − 8e2�e2 − 1� + 2qe2�6e2 − 7� − q2�6e4 − 9e2 + 3��cos �m

2e2 csc �m�4e2 − 4qe2 + q2�e2 − 1���q + e�q − 2�cos��m/2��2 ,

�35�
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and for parabolic hinges, i.e., e=1, we have

lim
e→1

��e2 � 1 arctanh
�e − 1�tan��m/2�

�e2 − 1
� = 0. �36�

F. Linear compliance along the x axis

The linear compliance along the x axis can be expressed
as

�x

Fx
= 


−�m

�m

ep�e + cos ��
�1 + e cos ��2

Ewh���
d� =

e

Ew
N2. �37�

G. Angular compliance about the x axis

Because each infinitesimal strip of the hinge can be
treated as a constant rectangular cross-sectional beam, ac-
cording to the approximate torsion equation given in Hearn’s
book,9 the angular compliance about the x axis can be ex-
pressed as

	x

Mx
= 


−�m

�m

7w3h��� + 7wh3���
2

ep�e + cos ��
�1 + e cos ��2

Gw4h4���
d�

=
7e

2Gwp2N1 +
7e

2Gw3N2. �38�

V. PRECISION EQUATIONS FOR CONIC FLEXURE
HINGES

The offset of the center point of the hinge profile �point
Q shown in Fig. 1� is often used to characterize the transmis-
sion precision of a flexure hinge for convenience.10 By de-
fining the offset of Q by

H = �
x,
y,
z�T, �39�

the following relationship can be obtained:

H = PhF , �40�

where Ph is the precision matrix of the hinge, which can be
expressed as

Ph = �
x/Fx 0 0 0 0 0

0 
y/Fy 0 0 
y/Mz 0

0 0 
z/Fz 
z/My 0 0
	 . �41�

Each element in the precision matrix is called a precision
factor.

A. Precision factor along the x axis

The precision factor along the x axis can be calculated as


x

Fx
=

e

2Ew
N2. �42�

B. Precision factors along the y axis

The precision factor along the y axis corresponding to
moment Mz can be expressed as


y

Mz
= � ep sin �

1 + e cos �



−�m

� ep�e + cos ��
Ewh3����1 + e cos ��2/12

d��
−�m

0

− 

−�m

0 12e2p2 sin ��e + cos ��
Ewh3����1 + e cos ��3 d� =

12e2

Ewp
N5, �43�

and the precision factor corresponding to force Fy as


y

Fy
= 
 ep sin �

1 + e cos �



−�m

� �a −
ep sin �

1 + e cos �
� ep�e + cos ��

�1 + e cos ��2

Ewh3���/12
d��

−�m

0

−

−�m

0
ae2p2 sin ��e + cos ��

Ewh3����1 + e cos ��3/12
d�

+

−�m

0
e3p3 sin2 ��e + cos ��

Ewh3����1 + e cos ��4/12
d�

+
kep

Gw
−�m

0
e + cos �

h����1 + e cos ��2d� =
12ae2

Ewp
N5 +

6e3

Ew
N4

+
ke

2Gw
N2, �44�

where

N5 = 

0

�m sin ��e + cos ��
g3����1 + e cos ��3d�

=
q − 2e2 + qe2 + 2e�q − 2�cos �m

2e2�q − 2�2�q + e�q − 2�cos �m�2

−
q�1 + e�2 − 2e�2 + e�

2e2�q − 2�2�q − 2e + qe�2 . �45�

C. Precision factors along the z axis

The precision factor along the z axis corresponding to
moment My is given by

TABLE I. Six design examples of conic flexure hinges. For each of the
designs, w=10 mm, a=4 mm, c=2 mm, t=0.2 mm, and the material is 45
grade steel �with a Young’s modulus of 2.07�1011 N /m2 and a shearing
modulus of 8.1�1010 N /m2�.

Example Type e
p

�mm�
�m

�deg�

1 Circular 10−7 5�107 53.13
2 Elliptical arc 0.4 12.1 69.98
3 Elliptical arc 0.7 6.44 80.73
4 Parabolic 1 4.00 90
5 Hyperbolic 1.5 1.83 102.68
6 Hyperbolic 2.2 0.73 115.99
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z

My
= − � ep sin �

1 + e cos �



−�m

�
ep�e + cos ��

Ew3h����1 + e cos ��2/12
d��

−�m

0

+

−�m

0
12e2p2 sin ��e + cos ��
Ew3h����1 + e cos ��3 d� = −

12e2p

Ew3 N6, �46�

the precision factor corresponding to force Fz by


z

Fz
= 
 ep sin �

1 + e cos �



−�m

� �a −
ep sin �

1 + e cos �
� ep�e + cos ��

�1 + e cos ��2

Ew3h���/12
d��

−�m

0

−

−�m

0
ae2p2 sin ��e + cos ��

Ew3h����1 + e cos ��3/12
d�

+

−�m

0
e3p3 sin2 ��e + cos ��

Ew3h����1 + e cos ��4/12
d�

+
kep

Gw
−�m

0
e + cos �

h����1 + e cos ��2d� =
12ae2p

Ew3 N6 +
6e3p2

Ew3 N3

+
ke

2Gw
N2, �47�

where

N6 = 

0

�m sin ��e + cos ��
g����1 + e cos ��3d� =

1

4e2� 2e2 − 2

1 + e cos �m
+ �q

+ 2e2 − qe2��log�q + e�q − 2�cos �m� − log�1

+ e cos �m��� −
1

4e2 �2e − 2 + �q + 2e2 − qe2��log�q

− 2e + qe� − log�1 + e��� . �48�

VI. VERIFICATION OF THE CLOSED-FORM
EQUATIONS

A. Finite element verification

Table I lists the physical parameters and geometric pa-
rameters of six conic flexure hinge designs. All the hinge
designs have the same length �l=2a=8 mm�, cutout depth
�c=2 mm� and minimum thickness �t=0.2 mm� for com-
parison purposes. The analytical results listed in Tables II
and III were calculated by programming the closed-form
equations derived above in MATHEMATICA 6.0. The extended-
precision computation and numerical-precision tracking
technologies implemented in MATHEMATICA facilitate any

TABLE II. Comparison of compliance factors between finite element results �denoted by F� and theoretical results �denoted by C�. The Paros and Weisbord’s
results are denoted by P.

Example
	z /Mz

�rad /N m�
	y /My

��10−4 rad /N m�
�z /My

��10−6 1 /N�
�z /Fz

��10−8 m /N�
�y /Mz

�1/N�
�y /Fy

�m/N�
�x /Fx

��10−9 m /N�

1�C� 0.849 7.549 �3.019 3.246 3.397�10−3 1.387�10−5 6.291
1�P� 0.849 7.549 3.019 2.959 3.397�10−3 1.376�10−5 6.291
1�F� 0.859 7.668 �3.117 3.505 3.440�10−3 1.405�10−5 6.517
2�C� 0.836 7.465 �2.986 3.209 3.345�10−3 1.365�10−5 6.421
2�F� 0.846 7.591 �3.084 3.484 3.386�10−3 1.383�10−5 7.021
3�C� 0.808 7.288 �2.915 3.132 3.234�10−3 1.319�10−5 6.074
3�F� 0.822 7.417 �3.013 3.494 3.289�10−3 1.341�10−5 6.322
4�C� 0.763 7.004 �2.802 3.008 3.054�10−3 1.243�10−5 5.837
4�F� 0.775 7.135 �2.899 3.354 3.100�10−3 1.263�10−5 6.063
5�C� 0.640 6.234 �2.493 2.675 2.560�10−3 1.038�10−5 5.195
5�F� 0.646 6.368 �2.589 2.968 2.608�10−3 1.058�10−5 5.451
6�C� 0.216 3.833 �1.533 1.661 8.630�10−4 3.484�10−6 3.194
6�F� 0.230 3.990 �1.634 1.816 9.574�10−4 3.843�10−6 3.558

TABLE III. Comparison of precision factors between finite element results �denoted by F� and theoretical
results �denoted by C�.

Example

x /Fx

��10−9 m /N�

y /Mz

�1/N�

y /Fy

�m/N�

z /My

��10−7 1 /N�

z /Fz

�m/N�

1�C� 3.145 1.775�10−4 8.525�10−7 �3.921 1.176�10−8

1�F� 3.262 1.810�10−4 8.710�10−7 �4.348 1.121�10−8

2�C� 3.110 1.722�10−4 8.258�10−7 �3.858 1.162�10−8

2�F� 3.232 1.759�10−4 8.453�10−7 �4.285 1.108�10−8

3�C� 3.037 1.614�10−4 7.711�10−7 �3.729 1.132�10−8

3�F� 3.161 1.654�10−4 7.920�10−7 �4.051 1.078�10−8

4�C� 2.918 1.446�10−4 6.872�10−7 �3.530 1.085�10−8

4�F� 3.048 1.481�10−4 7.052�10−7 �3.843 1.033�10−8

5�C� 2.597 1.035�10−4 4.855�10−7 �3.041 9.602�10−9

5�F� 2.738 1.062�10−4 4.991�10−7 �3.335 9.244�10−9

6�C� 1.597 1.840�10−5 8.962�10−8 �2.028 6.051�10−9

6�F� 1.783 1.952�10−5 9.464�10−8 �2.221 6.132�10−9
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precision or number size across all functions and guarantee
high-precision numerical computations. It can be seen from
the analytical results that as e is increased, the hinge be-
comes less compliant �the compliance factors become
smaller�, but more accurate �the precision factors become
smaller as well�.

The finite element software ANSYS was used to check the
generalized compliance and precision equations. The finite
element models of the designs were generated using Solid72
elements. Solid72 is a four-node element with six degrees of
freedom at each node, and is well suited to model irregular
shapes and curved boundaries without much loss of accu-
racy. Each hinge model is fixed at one end, and loaded at the
other end. The smart meshing method, which automatically
refines meshes in higher stress concentration regions, was
used. In order to find out how the mesh influences the accu-
racy of the solution, several models of example 4 with dif-
ferent levels of mesh refinement were solved for 	z /Mz, in
which a model with approximately 65 000 elements was as-
sumed to produce the “exact” solution. By comparing the
results, it has been found that the errors of finite element
modeling are within 1% when there are four �corresponds to
a mesh of approximately 5000 elements� or more elements
generated across the thinnest part of the notch region. If the
smart meshing generated less than four elements across the
thinnest part of the notch region, we refined the local mesh
manually to ensure the accuracy of finite element modeling.
Figure 6 shows one of the hinge models.

Because the compliance matrix is symmetric, only
�x /Fx, �y /Fy, �z /Fz, 	y /My, 	z /Mz, �y /Mz, and �z /My in
the compliance matrix were verified. The analytical and fi-
nite element results in Tables II and III are in good agree-
ment. The errors between the analytical and finite element
results are less than 11%. For the elliptical arc flexure hinges,
these compliance equations have the same results as the ones
developed by Chen et al.3 It should be noted that the com-

pliance results for the circular hinge �example 1� were cal-
culated approximately by using e=10−7 to represent e=0.
Also, the corresponding results using the full theoretical
equations derived by Paros and Weisbord1 are presented. Pa-
ros and Weisbord’s results accord very well with the approxi-
mate ones, except �y /Fy and �z /Fz, because we take shear-
ing coefficient k into consideration. The approximate results
for �y /Fy and �z /Fz �with the shearing coefficient consid-
ered� are more accurate compared to the finite element re-
sults.

B. Experimental verification

Experimentation was used to assess the validity of the
angular compliance equation about the input axis 	z /Mz.
Four conic flexure hinge samples made of 45 grade steel
were machined by using Charmilles Robofil 2050TW
WEDM machine, which has a profile error less than 1.5 �m.
The geometric parameters are listed in Table IV. Each hinge
was machined as an “I-shaped” sample with the upper and
lower horizontal bars being separated by the hinge itself, a
45° wedge on the upper bar exactly above the hinge, and a
triangular cutout on each side of the upper bar, as shown in
Fig. 7.

The experimental setup comprises an optical platform, a
6500 A laser diode, a reflector �mounted on the wedge�, a
position sensitive detector �HAMAMATSU S1880�, and a
hinge sample, as shown in Fig. 8. The lower bar of the hinge
sample, and the position sensitive detector are mounted on
the optical platform to be rigidly held in place. The diode
laser is fixed immediately above the reflector. A laser beam,
which is deflected from the reflector, is directed to the posi-
tion sensitive detector for measuring the position of the laser
spot. The position sensitive detector has a resolution of
1.5 �m over a measuring range of 12 mm. A bandpass filter
having 10 nm bandwidth at a center wavelength of 6500 A is
attached to the position sensitive detector to suppress ambi-
ent light. To improve the measurement precision, the dis-
tance between the position sensitive detector and the tested

FIG. 6. �Color online� Finite element model.

TABLE IV. Comparison of compliance factor 	z /Mz between experimental results �denoted by X� and theo-
retical results �denoted by C�. For each sample, w=10 mm.

Sample Type
�m

�deg�
t

�mm� e
p

�mm�
X

�rad /N m�
C

�rad /N m� % error

1 Parabolic 43.6 0.2 1 5 0.863 0.848 �1.77
2 Hyperbolic 90 0.4 4 0.5 0.109 0.115 5.22
3 Elliptical arc 100 0.2 0.66 3.4 0.592 0.569 �4.04
4 Circular 60 1 10−7 5.774�107 0.016 0.0152 �5.26

Upper Bar

Lower Bar

FIG. 7. Diagram of a sample profile.
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hinge should be as long as possible. In the experiments, the
position sensitive detector is 500 mm away from the hinges.

As discussed in Ref. 2, there are two major error sources
of the experimental results, the uncertainty of the elastic
modulus of the hinge material and the machining error of the
minimum thickness of the hinge sample. The elastic modulus
45 grade steel is estimated to range from 2�1011 to 2.1
�1011 N /m2 and therefore using 2.07�1011 N /m2 as the
elastic modulus may result in an error less than 3.5%. A
digital vernier caliper with a resolution of 5 �m was used to
measure the minimum thickness of each sample. The mea-
sured results are within an error of 10 �m compared to the
corresponding design values. This gives an error no more
than 5% for the thinnest hinge sample of thickness 0.2 mm.
Moreover, it should be noted that the reflected laser beam
doubles the angular deflection of the sample, which improves
the measuring precision by reducing the percentage errors
due to hinge compression and parasitic deflections. There-
fore, a worst case error of �8.5% can be a reasonable esti-
mate for the experimental results.

For each sample, we loaded a mass of 50 g at both
triangular cutouts �force arm of 25 mm� to simulate two
bending load cases, so two compliance values were obtained.
The corresponding angular compliance was calculated as an
average. When the hinge sample deformed due to the load,
the position sensitive detector read the displacement of the
laser spot on itself, which was used to calculate the angular
deflection of the sample. The experimental results are sum-
marized in Table IV. The results are within 6% error com-
pared to the analytical results.

VII. A CASE STUDY

When determining optimal hinge designs for a flexure-
based mechanism, it is necessary to consider the design
specification in terms of the accuracy, load capability, dis-
placement range, allowable hinge volume, and other applica-
tion specific constraints.2 A full-scale discussion on this is
beyond the scope of this paper. Nevertheless, we present a
case study to demonstrate the use of the generalized model in
selecting hinge profiles.

There are many applications where accuracy is the most
important factor while other factors are less important, such
as optical disk systems5 and nanopositioning stages.11 In
these applications, circular flexure hinges are always
chosen5,11 because it has been widely accepted that circular
flexure hinges are more accurate than other types of hinge. It
can be seen from Table III, however, that the circular hinge
has the largest precision factors, which indicates that circular
hinges produce more parasitic deflection than the others in
the conic family of flexure hinges when subject to the same
load. Because designs often require a specified angular
displacement,2 it is necessary and appropriate to compare the
accuracy of different hinges on the basis of a given angular
displacement. We assume that a pure moment Mz is applied,
and we define the ratio of precision factor 
y /Mz and com-
pliance factor 	z /Mz as a new term “relative error:”

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0.5

1

1.5

2

2.5

3
x 10

−4

e

R
e(m

)

a=4mm, c=2mm
a=4mm, c=1mm
a=3mm, c=2mm

FIG. 9. �Color online� The relative errors of conic hinges as a function of
eccentricity e for different �a ,c� pairs. The other parameters used in calcu-
lation are w=10 mm, t=0.2 mm, and E=2.07�1011 N /m2.

FIG. 8. �Color online� The experimental setup.
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Re =

y/Mz

	z/Mz
=

epN5

N1
. �49�

A hinge with a smaller relative error produces less parasitic
motion when outputting the same angular deflection about
the z axis, and is thus more accurate. Figure 9 plots the
relative errors of conic hinges as a function of eccentricity e.
Each curve in Fig. 9 is plotted with equal E, w, a, c, and t,
which ensures that different kinds of flexure hinge are com-
pared on an equal basis. We can see from Fig. 9 that in the
conic family of flexure hinges, the hyperbolic ones �e�1�
are the most precise, while circular ones �e=0� are the least
precise.
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