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Abstract

Numerous possible micromechanism applications (e.g. three-way switches, mechanical
memory and multiplex optical switches) could benefit from a device with three stable
equilibrium positions. In this paper, we present a new class of tristable mechanisms called
double tensural tristable mechanisms (DTTMs) which are fully compliant (i.e. they are
monolithic and get their motion from the deflection of elastic components) and can be
fabricated at the micro scale. A pseudo-rigid-body model (PRBM) for the DTTM has been
developed. DTTMs were fabricated in polysilicon using the SUMMiT V process and tested
for tristability and force–deflection characteristics. The results successfully demonstrate
tristable behavior and show that the PRBM can be used to identify tristable configurations and
predict their performance.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A multistable mechanism has two or more positions within
its range of motion in which the device is stable. In these
positions, the mechanism can maintain stability without power
input and with high repeatability. A compliant mechanism,
which achieves at least some of its mobility from the deflection
of the flexible segments rather than from movable joints
only, offers a solution for multistable mechanisms because
the flexible segments store potential energy as they deflect [1].

Much study and research has been devoted to bistable
mechanisms at both macro [2–5] and micro levels [5–13].
However, few mechanism examples have been presented
that exhibit three or more mechanically stable positions.
Oberhammer et al [14] presented a tristable latching structure
for single-pole-double-throw micro-switches. Pendleton and
Jensen [15] presented a tristable compliant mechanism based
on a symmetric four-bar Grashof mechanism. Han et al
[16] demonstrated a quadstable monolithic mechanism
(provides four stable states), which is realized by nesting
two bistable structures in X and Y directions, respectively.
Foulds et al [9] proposed a mechanical bistable switch based
on a locking mechanism, which can be extended to multi-
stable switches. Ohsaki and Nishiwaki [17] presented an
approach to generating multi-stable compliant mechanisms

using pin-jointed bar elements. In their approach, the unstable
equilibrium state is limited by locking the actuator and the
device behaves as if it is in a stable equilibrium position.
Oh and Kota [18] present a synthesis method of multi-
stable compliant mechanisms by connecting multiple bistable
mechanisms of different load thresholds in series. King et al
[19, 20] proposed an optimization-based synthesis method for
multi-stable mechanisms spanning various energy domains.

2. Tristable mechanisms

Figure 1 shows a ‘ball-on-the-hill’ analogy for a tristable
mechanism. For the series of hills and valleys shown in
the figure, a ball would be stable if placed in any of the
three valleys because the ball would return to its position
after a small disturbance. In a tristable mechanism, three
equilibrium positions are stable, maintaining state despite
small disturbances and requiring no power input to maintain
the state. Numerous possible micromechanism applications
could benefit from a device with three stable equilibrium
positions, including three-way switches [14], mechanical
memory and multiplex optical switches.

In this paper, we present a new class of tristable
mechanisms called double tensural tristable mechanisms
(DTTMs) which are fully compliant and can be fabricated
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Figure 1. The ball-on-a-hill analogy for a mechanically tristable
mechanism.

at the MEMS scale. Because compliant mechanisms use
deflection of flexible members to obtain their motion, the
friction associated with articulating joints is eliminated. It
is also possible to use compliant mechanisms to achieve
sophisticated motions with a single layer of material [1]. The
fully compliant nature of the device provides advantages in
fabrication and friction compared to other possible tristable
devices. Figure 2 shows a scanning electron micrograph of
a DTTM. The pseudo-rigid-body model is also developed,
which can be used to design DTTMs and ensure their
tristability. A schematic of the DTTM in its three stable
equilibrium positions is shown in figure 3.

3. DTTM and its pseudo-rigid-body model

The secrets of the tristable mechanism’s operation are found in
the fundamentals of certain bistable micromechanisms [5, 13]
that use flexible elements experiencing combined tension and
bending. As reported in [13], some double-tensural bistable
mechanism (DTBM) configurations exhibit soft spring-like
behavior when deflected past the second equilibrium position
(post-bistable behavior). Further study reveals that some
DTBM configurations also exhibit soft spring-like behavior
when pulled in the opposite direction from the fabricated
position. The explanation of such behavior is that the tensural
pivots become conventional flexural pivots which undergo
combined compression and bending when DTBMs are pulled

Figure 2. Scanning electron micrograph of a fully compliant tristable mechanism. Position measurements are made using the attached
vernier.

Figure 3. The DTTM illustrated in its three stable equilibrium
positions, including its as-fabricated position (top), second stable
position (middle) and third stable position (bottom).

in the opposite direction. This is key to DTTM behavior
because one DTBM coupled with a DTBM inversion has the
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Figure 4. Half model of the double tensural tristable mechanism
(DTTM). The DTTM is symmetric about the rollers, which
represent the shuttle.

potential for exhibiting tristable behavior. Figure 4 shows the
layout and the design parameters of the half model. In addition
to the parameters shown in figure 4, hc1, hs1, hc2 and hs2 refer
to the out-of-plane thicknesses of the flexible segments with
lengths Lc1, Ls1, Lc2 and Ls2. Likewise, wc1, ws1, wc2 and
ws2 refer to the in-plane thicknesses of these same segments.
The out-of-plane thicknesses and widths of the frames (with
features labeled ai and bi in figure 4) are hf 1, hf 2, wf 1 and
wf 2. When pulling up, the upper part of the model behaves as a
soft spring while the lower part acts like a bistable mechanism.
However, when pulling down, the roles are reversed and the
upper part of the model behaves as a bistable mechanism while
the lower part as a soft spring.

Figure 5 shows a pseudo-rigid-body model [1] of the
DTTM. The PRBM treats the tensural pivots as fixed-
guided segments, which results in three degree-of-freedom
mechanisms for both the upper and lower parts. Although
two of the degrees of freedom for each part are unconstrained,
the principle of virtual work can be used to determine the
mechanism position because the device will tend toward the
position of minimum potential energy.

To facilitate the device description and design, it is
assumed that the upper and lower parts are of the same
dimensions, i.e., Lc1 = Lc2 = Lc, Ls1 = Ls2 = Ls, hc1 =
hc2 = hc, hs1 = hs2 = hs,wc1 = wc2 = wc,ws1 = ws2 =
ws,Lc1 = Lc1 = Lc, Lm1 = Lm2 = Lm,Ln1 = Ln2 =
Ln, a1 = a2 = a and b1 = b2 = b. This symmetry results
in symmetry of the stable equilibrium positions. Selecting
nonsymmetric values can result in nonsymmetric placement
of equilibrium positions. The force characteristics would

Figure 5. The pseudo-rigid-body model of half a double tensural
tristable mechanism. The shuttle is represented with an abstract, but
kinematically accurate, rigid bar connecting the upper and lower
parts. Because the bar is rigid, it can be shown connecting the two
parts directly regardless of where the components lie in space.

also be affected; each direction could be tailored to specific
force–deflection characteristics, which may benefit some
applications. The link lengths, and spring constants for the
model can be calculated as follows:

r1 = r5 = γLc (1)

r2 = r6 = γLs (2)

ϕ1 = ϕ2 = arctan
Ln

Lm

(3)

lm1 = lm2 = Lm +
1 − γ

2
Lc cos θ1o − 1 − γ

2
Ls cos θ2o (4)

ln1 = ln2 = Ln +
1 − γ

2
Lc sin θ1o − 1 − γ

2
Ls sin θ2o (5)

θ4o = 2π − θ8o = arctan
ln1

lm1
(6)

θ3o = 2π − θ7o = arctan
r1 sin θ1o + ln1 − r2 sin θ2o

r1 cos θ1o + lm1 − r2 cos θ2o

(7)

r3o = r7o = r1 cos θ1o + lm1 − r2 cos θ2o

cos θ3o

(8)

K1 = K2 = K6 = K7 = 2γK�

EIc

Lc

(9)

K3 = K4 = K8 = K9 = 2γK�

EIs

Ls

, (10)
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Figure 6. Vector loop diagram superposed on the PRBM.

where γ is the characteristic radius factor, K� is the stiffness
coefficient for the torsional springs, E is the Young’s modulus
of the material, Ic = hcw

3
c

/
12 and Is = hsw

3
s

/
12. In this

paper, γ = 0.65 and K� = 1.45 [22] were used to calculate
the force–deflection behavior of the PRBM.

K5 and K10 are the equivalent spring constants of the
frames together with the tensural pivots for the upper and
lower parts, respectively. These spring constants include the
effects due to axial compression of the frame, axial elongation
of the tensural pivots, and bending of the frame. The spring
constant is found by combining the equivalent springs of these
individual components as springs in series. Assuming all
frame components have the same cross-section,

K5 = K10 = 1
a2b
EI

+ 2a3

3EI
+ b

EA
+ Lc

EAc
+ Ls

EAs

, (11)

where Ac = hcwc,As = hsws, I = hf w3
f

/
12 and A =

hf wf . Although these springs are very stiff and result in small
deflections, these deflections are still critical for the behavior
of the mechanism [12, 22].

3.1. Principle of virtual work

A vector loop [21] for the PRBM of the DTTM upper part
above is written as

�z2 + �z3 = �z4o + �z9 + �z1 (12)

and a vector loop for the lower part is written as

�z6 + �z7 = �z8o + �z9 + �z5 (13)

where the vectors are as shown in figure 6. These vectors
correspond to r1, r2, ..., r9, lm1, ln1, lm2 and ln2 as shown in
figure 5. These vectors may be represented by the Cartesian
vectors:

�XA ⇒ r2 cos θ2 + r3 cos θ3 = lm1 + r1 cos θ1 (14)
�YA ⇒ r2 sin θ2 + r3 sin θ3 = ln1 + r9 + r1 sin θ1 (15)
�XB ⇒ r6 cos θ6 + r7 cos θ7 = lm2 + r5 cos θ5 (16)

�YB ⇒ r6 sin θ6 + r7 sin θ7 = −ln2 + r9 + r5 sin θ5, (17)

where the subscript ‘A’ refers to the upper part and the
subscript ‘B’ refers to the lower part.

The applied force can be expressed in a vector form as

�F = F ĵ = FAĵ + FBĵ , (18)

where FA is the force component needed to actuate the upper
part, and FB is the force component needed to actuate the
lower part.

The force placement (with respect to the origin) is
expressed in a vector form as

�zA = lm1 î + (ln1 + r9)ĵ (19)

�zB = lm2 î + (−lt − ln2 + r9)ĵ (20)

where lt is the length of the shuttle.
Generalized coordinates are selected for the upper (qi)

and lower (pi) parts as

q1 = θ1, q2 = θ2, q3 = θ3,

p1 = θ5, p2 = θ6, p3 = θ7.
(21)

Tables 1 and 2 list the virtual displacements found by
differentiating equations (19) and (20) with respect to the
generalized coordinates. The resulting kinematic coefficients
are based on the partial derivatives (with respect to the
generalized coordinates) of the vector loop equations for the
mechanism:

∂ �XA

∂q
⇒ −r2 sin θ2

∂θ2

∂q
+ cos θ3

∂r3

∂q
− r3 sin θ3

∂θ3

∂q

= −r1 sin θ1
∂θ1

∂q

∂ �YA

∂q
⇒ r2 cos θ2

∂θ2

∂q
+ sin θ3

∂r3

∂q
+ r3 cos θ3

∂θ3

∂q

= ∂r9

∂q
+ r1 cos θ1

∂θ1

∂q
(22)

∂ �XB

∂p
⇒ −r6 sin θ6

∂θ6

∂p
+ cos θ7

∂r7

∂p
− r7 sin θ7

∂θ7

∂p

= −r5 sin θ5
∂θ5

∂p

∂ �YB

∂p
⇒ r6 cos θ6

∂θ6

∂p
+ sin θ7

∂r7

∂p
+ r7 cos θ7

∂θ7

∂p

= ∂r9

∂p
+ r5 cos θ5

∂θ5

∂p
.

The kinematic coefficients are listed in table 3.
The virtual work, δW , due to the input force is the

dot product of the force vector and the virtual displacement
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Table 1. Partial derivatives of coordinates.

Coordinate δ�1 = ∑ ∂φδq1
∂q1

δ�2 = ∑ ∂φδq2
∂q2

δ�3 = ∑ ∂φδq3
∂q3

�zA = lm1 î + (ln1 + r9)ĵ
∂�zA

∂θ1
δθ1 = dr9

dθ1
δθ1

∂�zA

∂θ2
δθ2 = dr9

dθ2
δθ2

∂�zA

∂θ3
δθ3 = dr9

dθ3
δθ3

φ1 = (θ1 − θ1o)
∂φ1
∂θ1

δθ1 = δθ1
∂φ1
∂θ2

δθ2 = 0 ∂φ1
∂θ3

δθ3 = 0

φ2 = [(θ1 − θ1o) − (θ3 − θ3o)]
∂φ2
∂θ1

δθ1 = δθ1
∂φ2
∂θ2

δθ2 = 0 ∂φ2
∂θ3

δθ3 = −δθ3

φ3 = (θ2 − θ2o)
∂φ3
∂θ1

δθ1 = 0 ∂φ3
∂θ2

δθ2 = δθ2
∂φ3
∂θ3

δθ3 = 0

φ4 = [(θ2 − θ2o) − (θ3 − θ3o)]
∂φ4
∂θ1

δθ1 = 0 ∂φ4
∂θ2

δθ2 = δθ2
∂φ4
∂θ3

δθ3 = −δθ3

RA = (r3 − r3o)
∂RA

∂θ1
δθ1 = dr3

dθ1
δθ1

∂RA

∂θ2
δθ2 = dr3

dθ2
δθ2

∂RA

∂θ3
δθ3 = dr3

dθ3
δθ3

Table 2. Partial derivatives of coordinates.

Coordinate δ�5 = ∑ ∂φδp1
∂p1

δ�6 = ∑ ∂φδp2
∂p2

δ�7 = ∑ ∂φδp3
∂p3

�zB = lm2 î + (−lt − ln2 + r9)ĵ
∂�zB

∂θ5
δθ5 = dr9

dθ5
δθ5

∂�zB

∂θ6
δθ6 = dr9

dθ6
δθ6

∂�zB

∂θ7
δθ7 = dr9

dθ7
δθ7

φ5 = (θ5 − θ5o)
∂φ5
∂θ5

δθ5 = δθ5
∂φ5
∂θ6

δθ6 = 0 ∂φ5
∂θ7

δθ7 = 0

φ6 = [(θ5 − θ5o) − (θ7 − θ7o)]
∂φ6
∂θ5

δθ5 = δθ5
∂φ6
∂θ6

δθ6 = 0 ∂φ6
∂θ7

δθ7 = −δθ7

φ7 = (θ6 − θ6o)
∂φ7
∂θ5

δθ5 = 0 ∂φ7
∂θ6

δθ6 = δθ6
∂φ7
∂θ7

δθ7 = 0

φ8 = [(θ6 − θ6o) − (θ7 − θ7o)]
∂φ8
∂θ5

δθ5 = 0 ∂φ8
∂θ6

δθ6 = δθ6
∂φ8
∂θ7

δθ7 = −δθ7

RB = (r7 − r7o)
∂RB

∂θ5
δθ5 = dr7

dθ5
δθ5

∂RB

∂θ6
δθ6 = dr7

dθ6
δθ6

∂RB

∂θ7
δθ7 = dr7

dθ7
δθ7

Table 3. Kinematic coefficients.
∂r3
∂q

∂r9
∂q

∂r7
∂p

∂r9
∂p

dr3
dθ1

= − r1 sin θ1
cos θ3

dr9
dθ1

= − r1 cos(θ1−θ3)

cos θ3

dr7
dθ5

= − r5 sin θ5
cos θ7

dr9
dθ5

= − r5 cos(θ5−θ7)

cos θ7

dr3
dθ2

= r2 sin θ2
cos θ3

dr9
dθ2

= r2 cos(θ2−θ3)

cos θ3

dr7
dθ6

= r6 sin θ6
cos θ7

dr9
dθ6

= r6 cos(θ6−θ7)

cos θ7

dr3
dθ3

= r3 sin θ3
cos θ3

dr9
dθ3

= r3
cos θ3

dr7
dθ7

= r7 sin θ7
cos θ7

dr9
dθ7

= r7
cos θ7

(δW = F · dz). If the moment at spring i is Ti (where
Ti = −Kiφi , with φi the angular displacement of the torsional
spring), then the virtual work, δW , due to the moments is
δW = ∑

Ti · dφi . The potential energy in K5 and K10 can be
modeled as

δWAs =
∑ ∂PAs

∂q
(−δq)

= FAs

(
dr3

dθ1
δθ1 +

dr3

dθ2
δθ2 +

dr3

dθ3
δθ3

)
(23)

δWBs =
∑ ∂PBs

∂p
(−δp)

= FBs

(
dr7

dθ5
δθ5 +

dr7

dθ6
δθ6 +

dr7

dθ7
δθ7

)
. (24)

Applying the principle of virtual work by summing the
virtual work due to the input force, applied moments, and
frame spring and setting equal to zero, results in

δWA = �FA · d�zA + T1 dφ1 + T2 dφ2

+ T3 dφ3 + T4 dφ4 + FAs dRA = 0 (25)

δWB = �FB · d�zB + T5 dφ5 + T6 dφ6

+ T7 dφ7 + T8 dφ8 + FBs dRB = 0. (26)

Combining the partial derivatives in tables 1 and 2 with
the kinematic coefficients in table 3 and grouping the resulting

equations by generalized coordinates, results in the following
equations which define the motion of the system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

FA

dr9

dθ1
+ T1 + T2 + FAs

dr3

dθ1
= 0

FA

dr9

dθ2
+ T3 + T4 + FAs

dr3

dθ2
= 0

FA

dr9

dθ3
− T2 − T4 + FAs

dr3

dθ3
= 0

(27)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

FB

dr9

dθ5
+ T5 + T6 + FBs

dr7

dθ5
= 0

FB

dr9

dθ6
+ T7 + T8 + FBs

dr7

dθ6
= 0

FB

dr9

dθ7
− T6 − T8 + FBs

dr7

dθ7
= 0.

(28)

Considering the shuttle displacement, r9, to be a known
input (with a positive value for r9 representing an upward
displacement), the following relationships result:

θ4 = arctan

(
ln1 + r9

lm1

)
(29)

θ8 = 2π − arctan

(
ln2 − r9

lm2

)
(30)
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Figure 7. Results comparison of the experiment and the PRBM.

r4 =
√

l2
m1 + (ln1 + r9)2 (31)

r8 =
√

l2
m2 + (ln2 − r9)2 (32)

θ3 = arctan
r1 sin θ1 + ln1 + r9 − r2 sin θ2

r1 cos θ1 + lm1 − r2 cos θ2
(33)

r3 = r1 cos θ1 + lm1 − r2 cos θ2

cos θ3
. (34)

θ7 = 2π − arctan
−r5 sin θ5 + ln2 − r9 + r6 sin θ6

r5 cos θ5 + lm2 − r6 cos θ6
(35)

r7 = r5 cos θ5 + lm2 − r6 cos θ6

cos θ7
. (36)

By selecting θ1, θ2 and FA as the three independent
variables for the upper part (equation (27)), and θ5, θ6 and
FB as the three independent variables for the lower part
(equation (28)), this system of virtual work and kinematic
equations can be solved numerically to obtain the force–
deflection behavior of the tristable mechanism.

4. Test device

A DTTM was designed and fabricated to demonstrate that
tristable behavior is achievable, to show that the ideas
discussed above are applicable for micromechanisms, and to
provide a test device with which to gather experimental data
for comparison to the model.

DTTMs were designed in polysilicon for fabricating
in the SUMMiT V process (Sandia National Laboratories).
The following geometric parameters were used in the device
design: Lc = 247 μm, wc = 1.2 μm, hc = 4.65 μm
(Poly3 and Poly4), θ1o = 3.87◦, Ls = 19.3 μm, ws = 1 μm,
hs = 4.5 μm, θ2o = 2.75◦, Lm = 30 μm and Ln = 6.3 μm.
The predicted force–deflection behavior using the PRBM is

(a)

(b)

(c)

(d)

Figure 8. Fabricated position (first stable equilibrium position).
(a) Force gauge, (b) upper part, (c) lower part and (d) vernier.

shown in figure 7. To facilitate data gathering for comparison
to model predictions, a force gauge [23] and a vernier were
included, as shown in figure 8. This set-up allows for
measurement of force–displacement measurements through
much of the motion. This is done by optically measuring
the displacement at the vernier, and determining the required
force to cause that displacement in the force gauge for its
known design and stiffness.

Due to an in-plane over-etch (0.1 μm per side) that is
inherent to SUMMiT V, the thickness of a fabricated beam
is less than its designed value. Because the mechanism’s

6
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Figure 9. The second stable equilibrium position. Note the
deflection in the lower part. The device has moved up relative to its
undeflected position.

deflection is in-plane, this can have a large effect on the
measured results [13]. The design parameters were adjusted
to account for the as-fabricated geometry.

A scanning electron micrograph of a DTTM, without force
gauge, is shown in figure 2. Figure 8 is an optical image of the
DTTM and shows its upper and lower parts. The force gauge
and vernier are also shown and labeled on the figure.

5. Results

5.1. Tristable behavior

Testing successfully demonstrated consistent tristable
behavior for multiple devices. A microprobe was used to
move the devices between stable equilibrium positions. The
measured force–deflection behavior is shown in figure 7.
Figure 8 shows the first stable equilibrium or as-fabricated
position. The second stable equilibrium position is shown in
figure 9. The upper and lower flexible beams have different
deflected shapes in this position, as predicted. The upper part
acts as a bistable mechanism and the lower part as a soft spring.
Figure 10 shows the third stable equilibrium position. Now the
lower part provides the bistable behavior while the upper part
is a soft spring. The second and third positions are symmetric
about the first positions, as expected.

The model successfully predicted the tristable behavior
and made a reasonable prediction for the location of the
stable equilibrium positions. The predicted and measured
values for the stable equilibrium positions are listed in table 4.
The difference between the modeled and predicted values is
attributed to the effects of friction on the measurement devices
(force gauge and vernier) that are suspended from the DTTM

Figure 10. The third stable equilibrium position. Note the
deflection in the upper part. The device has moved down relative to
its undeflected position.

Table 4. The predicted and measured values for the stable
equilibrium positions.

Predicted Measured

First stable position (μm) 0 0
Second stable position (μm) 21.1 19.6
Third stable position (μm) −21.1 −19.7

(the friction between the moving parts and the substrate).
Friction would cause the device to come to equilibrium at
a position sooner than predicted for the ideal case.

5.2. Force–displacement behavior

The force–displacement behavior of the DTTM is shown in
figure 7. The predicted values for the maximum force from
the first stable equilibrium position to the second and third
stable equilibrium positions match the experimental results
well. The small difference can be attributed to the friction
effects caused by the suspended measurement devices. This
is consistent with the measured force, which includes friction
resisting the motion, being larger than the predicted force. It
is also consistent with the differences in equilibrium positions.
The force measured returning from the second or third to the
first stable equilibrium position was lower than predicted, as
shown in figure 7. This difference is likely due to the DTTM
undergoing some out-of-plane motion during that segment of
travel. This would be consistent with the behavior recently
found for some bistable micromechanisms [24]. That research
found that some eccentric loads could cause unanticipated out-
of-plane motion that may result in lower than predicted forces.

7
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This motion can be eliminated by constraining out-of-plane
motion with stops or higher aspect ratio flexures. However,
this part of the force deflection path is noncritical for many
applications and the lower than expected force may actually
be a benefit in some cases.

6. Conclusion

A fully compliant tristable mechanism, in which the flexible
segments undergo tension, compression and bending, is
introduced as the fully compliant double tensural tristable
mechanism (DTTM). A DTTM has been demonstrated to have
the following characteristics:

• The mechanism provides three stable positions.
• The output displacement of the mechanism is linear and

parallel to the mechanism’s shuttle.
• The mechanism is fully compliant (i.e., it does not require

any sliding or rotating joints).
• Tensural pivots are used in the mechanism to achieve

tristability.

Potential applications of the DTTM include three-
way switches (single-pole-double throw switches), multiplex
optical switches and mechanical memory.

A pseudo-rigid-body model (PRBM) for the DTTM has
been developed. Although the model is a six degree-of-
freedom model, the mechanism position can be predicted
with only one input by finding the lowest energy state for
that position. The PRBM can be used to identify tristable
configurations and predict the performance of the DTTMs. It
may be particularly useful to design DTTMs with customized
behavior. The model predicted well the performance of
the DTTM and DTTMs were demonstrated to have tristable
behavior.
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