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SAR Image Segmentation Based on Hierarchical
Visual Semantic and Adaptive Neighborhood
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Abstract—A synthetic aperture radar (SAR) imaging system
usually produces pairs of bright area and dark area when depict-
ing the ground objects, such as a building or tree and its shadow.
Many buildings (trees) are aggregated together to form urban ar-
eas (forests). It means that the pairs of bright and dark areas often
exist in the aggregated scenes. Conventional unsupervised segmen-
tation approaches usually segment the scenes (e.g., urban areas
and forests) into different regions simply according to the gray
values of the image. However, a more convincing way is to regard
them as the consistent regions. In this paper, we aim at addressing
this issue and propose a new SAR image segmentation approach
via a hierarchical visual semantic and adaptive neighborhood
multinomial latent model. In this approach, the hierarchical visual
semantic of SAR images is proposed, which divides SAR images
into aggregated, structural, and homogeneous regions. Based on
the division, different segmentation methods are chosen for these
regions with different characteristics. For the aggregated region,
locality-constrained linear coding-based hierarchical clustering is
used for segmentation. For the structural region, visual seman-
tic rules are designed for line object location, and a geometric
structure window-based multinomial latent model is proposed for
segmentation. For the homogeneous region, a multinomial latent
model with adaptive window selection is proposed for segmenta-
tion. Finally, these results are integrated together to obtain the
final segmentation. Experiments on both synthetic and real SAR
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images indicate that the proposed method achieves promising
performances in terms of the consistencies of the regions and the
preservations of the edges and line objects.

Index Terms—Adaptive neighborhood, hierarchical visual se-
mantic, multinomial latent model, regional map, synthetic aper-
ture radar (SAR) image segmentation.

1. INTRODUCTION

ITH the rapid development of the spaceborne and air-

borne synthetic aperture radar (SAR) systems, massive
quantities of SAR images are available for the increasing num-
ber of applications. Although many methods have got promis-
ing results, SAR image segmentation, as a crucial step for SAR
image understanding and interpretation, is a challenging task
for its heterogeneity of the urban areas and forests [1], [2].
The available SAR image segmentation methods can be roughly
grouped into feature-based methods and model-based methods.
The first category extracts features from SAR images, such as
the gray level co-occurrence matrix (GLCM) [3], [4], Gabor [5],
SAR-SIFT [6], and so on. These features are combined with
the clustering methods [7]-[12] for segmentation. The low-
level features extracted from the SAR images represent only
pixel-level information and are easily influenced by the speckle
noise. The second category often establishes the statistical
models of SAR images and mainly includes level-set methods
[13]-[15], random field methods and their variants [16]-[23],
the multinomial latent model [24], and so on. Since the model-
based methods incorporate the spatial context information into
the segmentation, they are attracting the increasing attentions in
SAR image segmentation.

The Markov random field (MRF) model [17] with Gibbs
prior is a basic context model. However, this model may lead to
oversegmentation, particularly in the urban areas and forests. In
[18], a region-based MRF model was proposed. In the method,
the traditional MRF model was built on the superpixel, and the
edge penalty function was incorporated into the spatial context
model for a better performance. Due to the usage of the region-
based MRF model, the oversegmentation was largely reduced in
the segmentation results. However, inconsistent semantic still
can be found in the results, particularly in the urban areas
and forests. In [19], using the Fisher distribution to model
the local texture property, an improved MRF model was pro-
posed for SAR image segmentation. Furthermore, a hierarchical
MRF model [3] was proposed for SAR image segmentation.
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However, owing to the usage of the quad tree in the hierarchical
model, blocking artifacts were always observed, and the details
were often lost in the results. In [24], an unsupervised classi-
fication approach based on the multinomial latent model with
amplitude and texture features (ATML-CEM) was proposed. In
ATML-CEM, the amplitude and texture features of SAR images
were assembled into a finite mixture model. A multinomial
logistic function was used to describe the spatial context model.
It is noted that the model is built on a fixed neighborhood.
Practically, a large window will produce an accurate segmenta-
tion in the homogeneous regions but poor segmentation nearby
the details (e.g., edges and line objects). A small window is
more appropriate nearby the details. In summary, these methods
based on statistical characteristics with low-level features have
the following disadvantages: 1) the predefined spatial context
model may not be suitable for regions with different charac-
teristics; for example, the spatial contexts of the urban areas
and edges are very different; 2) the semantic is not taken into
account in these methods, which leads to the results without
consistent semantic, particularly in the urban areas and forests;
and 3) the line objects are not considered in most cases, which
are confused with other regions. On the one hand, the content in
SAR images is more related to the structural and shape charac-
teristics of the land covers rather than the spectral responses of
the surface materials [25]. On the other hand, SAR images are
not only a random collection of the pixels but also a meaningful
arrangement of the regions and objects. There is usually a large
semantic gap between the low-level features and the high-level
user semantic [26]. Therefore, segmentation methods without
considering the structure and semantic of SAR images will
produce the segmentation results with unsatisfied details and
inconsistent semantic.

Both consistent regions and details’ preservations are equally
important for SAR image segmentation. It is well known that
SAR images are essentially rich in structures that result from
the surface roughness [25]. Moreover, owing to the side looking
of the SAR imaging system, an object and its corresponding
shadow are usually observed, for example, the building or tree
and its shadow. Since SAR images are usually an observation
of the Earth, an urban area (consisting of many buildings) and
a forest (consisting of many trees) are commonly found in SAR
images. It means that the pairs of the bright and dark areas
are repeated in these aggregated scenes in the SAR image.
Although these aggregated scenes are consistent in semantic,
it is very difficult to obtain a region containing the whole forest
or the whole urban area. Usually, the bright area is segmented
into one class, while the dark shadow is segmented into another.
Therefore, the main challenges of SAR image segmentation are
the segmentation of the regions containing the whole aggre-
gated scene and the preservations of the details simultaneously.

It is well known that the retina has the capability to interpret
the images into meaningful regions. It indicates that our retina
always groups those pixels into meaningful portions. Learning
from the perception of the retina, some semantics are explored
for SAR image segmentation. Many advanced methods have
been done for this [27]-[29]. In [27], a primal sketch graph was
proposed for natural images. By using the sketch information,
the image is divided into sketchable and nonsketchable portions
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for the image reconstruction. Furthermore, the sketch map of
the SAR image was proposed in [28]. In the article, a geomet-
rical kernel function based on the sketch map was proposed
for SAR speckle reduction, and a promising performance was
obtained. The sketch map describes the edge and line features
of SAR images. It is a sparse structure representation of SAR
images.

In this paper, according to the SAR sketch map, a hierarchical
visual semantic of SAR images is proposed, which divides SAR
images into aggregated, structural, and homogeneous regions.
Based on the division, different segmentation methods are
chosen for different regions. For the aggregated region, locality-
constrained linear coding (LLC) [30] based hierarchical clus-
tering [8] is used for segmentation. For the structural region,
in order to locate the line objects, the visual semantic rules are
designed by analyzing the edge model and line model. More-
over, for the edges and line objects, a strong relationship exists
along their directions rather than across them, so an orientation-
based geometric structure window (GSW) is plugged into the
multinomial latent model for segmentation. For the homoge-
neous region, in order to find an appropriate neighborhood to re-
present the central pixel, an adaptive window selection method
is utilized. Then, a multinomial latent model with the adaptive
window is used for segmentation. These results are integrated
together to obtain the final segmentation. Compared with the
available SAR image segmentation approaches, our proposed
approach has the following characteristics: 1) a hierarchical
visual semantic of SAR images is proposed, which divides SAR
images into regions with different characteristics; 2) adaptive
segmentation methods are proposed for different regions; and
3) visual semantic rules are designed to locate the line objects.

The rest of this paper is organized as follows. In Section II,
the hierarchical visual semantic of SAR images is proposed.
Section III describes the segmentation method based on the hi-
erarchical visual semantic and adaptive neighborhood multino-
mial latent model (HVS-ANML). In Section IV, experimental
results and analyses are presented. Section V concludes this
paper and presents some perspectives of our future work.

II. HIERARCHICAL VISUAL SEMANTIC

In this section, according to the SAR sketch map, the hier-
archical visual semantic of SAR images is proposed. On the
hierarchical visual semantic, the first level is the original SAR
image, the second level is the SAR sketch map, and the third
level is the regional map.

Following Marr’s insight [31], Guo et al. [27] proposed a
primal sketch graph for natural images. However, the charac-
teristics of SAR images are different from the natural images.
Considering these different characteristics, Wu et al. [28] pro-
posed a sketch map for SAR images, which is obtained mainly
by the following steps.

1) By designing the edge and line templates at different
scales and orientations, the responses obtained by the
ratio of average, cross-correlation, and gradient operators
are adaptively fused to calculate the edge-line intensity
map of a SAR image.
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Fig. 1. (a) Original synthetic SAR images. (b) Sketch maps. (c) Regional maps, which include aggregated region (in white), structural region (in gray), and

homogeneous region (in black).

2) Using the nonmax suppression and double-threshold-
based connection methods, the curves contained in the
SAR image are extracted.

Each extracted curve is represented as a sketch line via an
approximation method.

According to the properties of SAR images, a pair of para-
doxical hypotheses is built to evaluate the significance of
each sketch line, and only the significant sketch lines are
preserved to constitute the sketch map of the SAR image.

3)

4)

In the SAR sketch map [see Figs. 1(b) and 2(b)], the black
lines are the sketch lines. Each sketch line consists of several
sketch line segments, which are connected end to end. The
end points of each sketch line segment are marked as the solid
dots. Moreover, the sketch lines in the aggregated scenes are
aggregated, while the sketch lines indicating the edges and line
objects are not aggregated. It means that the sketch lines in dif-
ferent regions usually have different characteristics. According
to these different characteristics, the aggregated degree is used
to classify the sketch lines into aggregated and nonaggregated
sketch lines. Then, the region extractor is implemented on the
aggregated sketch lines to obtain the aggregated region [32]
(the details are introduced in the Appendix). The GSW is
operated on the nonaggregated sketch lines to obtain the struc-
tural region, where GSW is an oriented rectangular window.
Specifically, two sides of GSW are parallel to the sketch line,
and the other two sides are vertical to the sketch line. The re-
maining part of the sketch map is the homogeneous region. The
aggregated, structural, and homogeneous regions constitute the
regional map. According to the obtained regional map, a SAR
image is reasonably divided into aggregated, structural, and
homogeneous regions. It is a kind of sparse representation [33]
of SAR images. Specifically, the aggregated scenes are usually
contained in the aggregated portion. The details are always con-

tained in the structural portion. The regions with a slight change
of gray value are mostly contained in the homogeneous portion.
The sketch maps and regional maps of two synthetic SAR
images and seven real SAR images are shown in Figs. 1 and 2,
respectively. In the sketch maps [shown in Figs. 1(b) and 2(b)],
the black lines are the sketch lines. We can see that the sketch
lines in the real SAR images are more complicated than that
in the synthetic SAR images. The regional maps [shown in
Figs. 1(c) and 2(c)] include three portions. The white, gray, and
black portions are the aggregated, structural, and homogeneous
regions, respectively.

From the above, we can see that the sketch map is a primal se-
mantic space which represents the structure of the SAR image.
The primitive of the sketch map is a sketch line. The regional
map is a higher semantic space, whose primitive is a region.
Moreover, the semantic is based on the framework of Marr’s
vision. Therefore, we name it as hierarchical visual semantic,
which is used to guide the SAR image segmentation. Specifi-
cally, the regional map is used to divide SAR images into aggre-
gated, structural, and homogeneous regions. It can improve the
consistencies of the aggregated land covers in the segmentation
process. The sketch map is used to design GSW and visual se-
mantic rules. It can improve the location accuracy of the edges
and line objects in the segmentation process. Since different
levels of semantics are used to deal with regions with different
characteristics, the consistencies of the regions and the details’
preservations will be achieved simultaneously in the segmen-
tation process. The hierarchical visual semantic and its corre-
sponding semantic representation of SAR images are shown in
Fig. 3. Fig. 3(a) shows the hierarchical visual semantic. The
first level is the original SAR image, the second level is the
sketch map, and the third level is the regional map. In Fig. 3(b),
the regional map is mapped into the SAR image, which is
divided into aggregated, structural, and homogenous regions.
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Fig. 2. (a) Original real SAR images. (b) Sketch maps. (c) Regional maps,
which include aggregated region (in white), structural region (in gray), and
homogeneous region (in black).

The aggregated region mainly includes urban areas, forests, and
so on. The structural region mainly includes edges, line objects,
and so on. The homogenous region mainly includes water, farm-
land, and so on.

III. SEGMENTATION BASED ON HVS-ANML

In this section, considering the properties of different re-
gions, the LLC-based hierarchical clustering and adaptive
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Fig. 3. (a) Hierarchical visual semantic. (b) Semantic representation of differ-
ent regions in SAR images.

neighborhood multinomial latent model are used for adaptive
segmentation.

A. Segmentation of the Aggregated Region

The aggregated region is generated by the morphological
close operator (see the Appendix), where the edges may not be
accurate. Since the level-set method can represent the contours
of the complex topology and is able to handle topological
change, the edge-based level-set method [34] is used to re-
fine the edges of the aggregated region. In the evolving process
of the level-set method, the ratio operator [35] is used to
compute the gradient of the original SAR image.

The edges of the aggregated region are located according to
the aforementioned scheme. However, it is not known whether
the several regions included in the aggregated portion belong
to the same class. A well-chosen representation is helpful for
the segmentation. Motivated by bag-of-words approaches [36],
we use GLCM as the feature descriptors and the LLC method
to obtain the final representation. Then, hierarchical clustering
with this final presentation is used for unsupervised segmen-
tation. In addition, from Fig. 2(c), we can see that the areas
of some aggregated regions are very small. This leads to im-
balanced classification [37]. Therefore, we consider the region
whose area is less than 1% of the biggest region as a separate
class.

B. Segmentation of the Structural Region and
Homogeneous Region

In this part, for a better location of the line objects, the visual
semantic rules are designed to extract the sketch lines of line
objects. Moreover, an adaptive neighborhood-based multino-
mial latent model is constructed for the segmentation of the
structural region and homogeneous region.

1) Visual Semantic Rules: In order to locate the line ob-
jects, we need to distinguish the edges and line objects in the
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Fig. 4. Edge model and line model. (a) Edge model. (b) Line object is represented by the single sketch line. (c) Line object is represented by two sketch lines.

structural region. It is well known that line objects are modeled
by two close and parallel edges. It means that the line model
consists of three regions, while the edge model consists of two
regions [38], [39]. In addition, from the sketch lines in the struc-
tural region, we find that the narrower line object is represented
by a single sketch line and the wider line object is represented
by two close and parallel sketch lines. These attributes can be
described as follows: 1) the close and parallel sketch lines are
the sketch lines of line objects, and 2) for the single sketch
line, if there are three regions in its GSW, then this single
sketch line is the sketch line of line objects. It means that the
number of the amplitude change in the GSW is two. Moreover,
orientations are very important for the edges and line objects, so
their models are analyzed in GSW. Fig. 4 shows the edge model
and line model.

It should be noted that one sketch line consists of several
sketch line segments. In other words, one sketch line consists
of several orientations. This makes the orientation of the sketch
line hard to be determined. Considering this, the operators
are implemented on the sketch line segments to constitute
the sketch lines of the line objects. We assume that [, is the
sketch line segment, where s € {1,2,...,S} and S is the
number of the sketch line segment. The Euclidean distance
of I; and [; is Djj. O, is the orientation of the sketch line
segment [;. The distance threshold between two sketch line
segments is 7. In GSW, A; is the average amplitude of the ith
column. The average amplitude difference is defined as AD;,
where AD; = abs(A; — A;11). The label vector is written as
zs, whose elements are zy € {0,1}. If AD; > Tb, 24 = 1;
otherwise, zg; = 0, where T, is a threshold to measure the
amplitude change. z5;; = 1 represents that there is an amplitude
change between the ith column and the (7 4+ 1)th column. /sl is
the set of the sketch lines of line objects. The rule is defined as
follows.

Rule I:
If Dy; < T and abs(O; — O;) < 10°, then [;, 1 € Isl;
If sum(z,) = 2, then I, € Isl.

Here, sum(-) is the sum of the elements in vector z,. T} is the
distance threshold of two sketch line segments. The Euclidean
distance Djy; is written as

Dy; = \/(lﬂUz' - l$j)2 + (ly; — lyj)2 (D

Fig. 5. Sketch lines of line objects (in red) and sketch lines (in green) in
the aggregated region. (a) Sketch lines of line objects (in red) in Chinalake.
(b) Sketch lines of line objects (in red) in Piperiver.

Fig. 6. SR (in gray) in GSW. (a) Most pixels in SR are located on the left of
the sketch line. (b) Most pixels in SR are located on the right of the sketch line.

where (lz;,ly;) and (lz;,ly;) are the midpoint coordinates of
l;and ;.

According to Rule 1, the sketch lines of line objects in the
structural region are extracted. The sketch lines of line objects
(in red) in Chinalake and Piperiver are shown in Fig. 5. We can
see that the sketch lines of line objects are all in the structural
region.

In addition, GSW is operated on the nonaggregated sketch
lines to obtain the structural region. The size of GSW is set em-
pirically, so the structural region needs to be refined. In GSW,
the pixel with the larger edge-line feature [28] is the truth pixel
of the structural region. Otherwise, it belongs to the homoge-
neous region. The refined structural region in GSW is shown
in Fig. 6. We define that the pixel amplitude is y,, n € {1,2,
..., N} and N is the number of the pixels. Gy, is the edge-line
intensity [28] of y,,. SR is the refined structural region. HR is
the homogeneous region. The rule is defined as follows.
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TABLE 1
ALGORITHM DESCRIPTION OF HVS-ANML
Algorithm SAR image segmentation based on hierarchical visual semantic and adaptive
neighborhood multinomial latent model
Input: SAR image,
1. Extracting the sketch map of the input SAR image.
2. Extracting the regional map of the input SAR image.
3. The input SAR image is divided into aggregated, structural and homogeneous regions by the
regional map.
4. For the aggregated region, the level set method is firstly used to refine the edges. Then LLC
based hierarchical clustering is used to segment the aggregated region into c; classes.
5. For the structural and homogeneous regions:
(1)The sketch lines of line objects are extracted in the structural region by using Rule 1,
(2)Refined structural region SR and homogeneous region HR are obtained by using Rule 2,
(3)For SR and HR, initialize the two regions into ¢, classes,
(4)While the number of the label changes in SR and HR >0,do
Estimate the parameters using the equations (23)-(29) in [24];
If y, € SR, calculate the posterior probability by the equation (7) with w, (n) ;
Ify, € HR , calculate the posterior probability by the equation (7) with w(n)mm;
Classitying the pixels according to the posterior probability;
End,
(5)For the close and parallel sketch lines of the line objects, the regions between them are
labeled as the line objects; for the single sketch line of line objects, the elongated region
covers this sketch line is labeled as the line object. All line objects are labeled as one separate
class.
6. Perform the labeling from 1 to ¢, + ¢, +1 on the whole image to obtain the final segmentation
result.
Output: the labels of the SAR image.
Rule 2: 9x9,...) until Ao < T5. It is actually a process of window

If G, > T, then y, € SR; if G, <T, then y,, € HR, where
T is obtained by Otsu’s method.

2) Segmentation: Considering the properties of different
regions, a multinomial latent model with GSW and an adaptive
window selection are proposed for the segmentation of SR and
HR, respectively.

Prior Probabilities: To estimate the prior probabilities on
the obtained segmentation map, different neighborhoods are
considered for SR and HR. For the edges and line objects in SR,
a strong relationship exists along their directions rather than
across them. Therefore, orientation-based GSW is used to
capture the context in SR. Moreover, in order to preserve the
details, the size of the window is usually small. For the homo-
geneous region, an adaptive window selection method is used to
find the suitable window for each pixel. It makes the spatial re-
lationship for each central pixel to be extracted only from the re-
lated pixels in the window. In order to find the suitable window,
the standard deviation o is used as the homogeneity measure
of the window [40]. The variation of the standard deviation Ao
is used to control the evolution of o when the window size is
increased. The process is initiated with a small window of 3 x 3
centered at the current pixel. At each step, the window size
is increased by two rows and two columns (e.g., 5 X 5,7 X 7,

increasing. We assume that w(n)max is the window centered
at y, after the window increasing. Y = {y,|n € N} is the
observed field, and X = {x,|n € N} is the label field. The
prior model is expressed as

exp(n| 1+ > Ou,=k
W (n)
plan) = — — @)
yoexp |1+ > bu,=i
i=1 meW (n)

where K is the number of classes. 0, - = 1 if z,,, = k, and
0z, =k = 0 if ,,, # k. n is the model parameter. W (n) is the
window defined around y,,. We define W (n) as

if y, € SR
if y, € HR

wo(n),

wW(N)max,

W(n) = 3)

where w,(n) is the GSW and w(n)max is the square window
after the window increasing.

Likelihood Probabilities: The likelihood model is regarded
as the feature model. However, the single feature often cannot
completely describe the SAR image. Therefore, it is necessary
to combine different features to improve the performance of the
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SAR image segmentation. In [24], the amplitude and texture
features of SAR images are assembled into a finite mixture
model. The model is written as

P(Unl@n; 0k) = paA(Yn|Tn; 0k)pr (Yon|Xon: 0k) (4

where ygs,, denotes the surrounding pixels of ¥, and xg,, de-
notes the surrounding labels of z,. pa(-) is the amplitude
density, and pp(-) is the texture density. 05 denotes the model
parameters.
The amplitude density is described as the Nakagami
distribution
2

2 <%>uky2““e<“ﬁ;> 5)

F(uk) TEk n

and an autoregressive (AR) model [24] is used to describe the
texture feature. The texture density is written as a ¢ distribution
such that

PAYn|Tn: T, ur) =

' (14 8)/2)
pT(Y8n|X8nyak75kv<ﬂk) - F(ﬁk/z)(ﬂ-ﬁkwk)l/Q
Byt
_vT 21
iy - yhew)® ] ©)
Brpr

where «, is the AR coefficient and 7, uy, Sk, and @y, are the
distribution parameters associated with a specified class.

Posterior Probabilities: The aim of the segmentation here
is to estimate the labels X given a set of observations Y by
maximizing the posterior probability. According to Bayesian’s
rule, the posterior probability is defined as

exp (77 (1 + X 5:cm=k>>
meW (n)
exp [n|{1+ > 0u,,=i
1 meW (n)
(7N

MAP estimation is used to obtain the image labels. 0, = {ry,
U, O, B, Pk} are estimated by the expectation-maximization
(EM) algorithm in [24]. Their analytic expressions are given in
[24, eqs. (23)—(27)]. n is estimated by Newton’s method. Its
corresponding expression is given in [24, eq. (29)].

3) Line Object Location: The sketch lines of line objects
(see Fig. 5) and the aforementioned segmentation result work
together to locate the line objects. Based on the segmentation
map, for two close and parallel sketch lines of line objects, the
regions between them are labeled as the line objects; for the
single sketch line of line objects, the elongated region covering
this sketch line is labeled as the line object.

The main steps of our algorithm are shown in Table I.

The final segmentation result consists of three parts. The
first is the segmentation result of the aggregated region. The
number of the class in the aggregate region is adaptively de-
termined by hierarchical clustering, which is an unsupervised
clustering method. The second is the result of the structural and
homogeneous regions. The number of the class in structural
and homogeneous regions is set empirically according to the

P(@n|Yn, Ok) =D (Yn|xn; Ok)

[N

7
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Fig. 7. Segmentation results of SYNI. (a) SYN1. (b) GLCM-FCM. (c) MRE.
(d) ATML-CEM. (e) SM-ANML. (f) HVS-ANML. (g) Ground truth.

experimental results and the corresponding optical images. The
third is the line objects, which are labeled as one class. Based on
the hierarchical visual semantic (shown in Fig. 3), we can see that
the three parts are uncrossed. It means that the classes in the
aggregated region do not belong to the other two parts and
vice versa. Therefore, we combine the results of the three parts
together directly. We assume that the numbers of the class in
the aggregated region, structural and homogeneous regions, and
line objects are c1, co, and 1, respectively. The final result consists
of ¢ = c1 + co + 1 classes. We perform the labeling from 1 to
c on the whole image to obtain the final segmentation result.

IV. EXPERIMENTS AND ANALYSES

In this section, we perform some experiments on both
synthetic and real SAR images using our proposed method and
some related segmentation approaches, including GLCM-FCM
(fuzzy C-means) [7], MRF [17], ATML-CEM [24], and sketch
map-based adaptive neighborhood multinomial latent model
(SM-ANML). GLCM-FCM is a feature-based method. MRF,
ATML-CEM, and SM-ANML are model-based methods. By
comparing with the first three of them, it shows that the division
of the SAR images is reasonable. The comparison with SM-
ANML is used to prove that the hierarchical visual semantic is
veryimportant for the segmentation of the aggregated land covers.

These compared approaches and their corresponding param-
eters are described as follows. 1) GLCM-FCM: This approach
is based on the GLCM features, and FCM is used for unsu-
pervised segmentation. The GLCM features are extracted in a
13 x 13 window. 2) MRF: It is a statistics-based approach inte-
grating the feature model and the spatial context model. MAP
is used to obtain the labels of the image. 3) ATML-CEM: In
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Fig. 8. Segmentation results of SYN2. (a) SNY2. (b) GLCM-FCM. (c) MRF.
(d) ATML-CEM. (¢) SM-ANML. (f) HVS-ANML. (g) Ground truth.

Fig. 9. Segmentation results of Noerdlinger Ries. (a) Noerdlinger Ries.
(b) GLCM-FCM. (c) MRF. (d) ATML-CEM. (¢) SM-ANML. (f) HVS-ANML.
(g) Optical image.

the approach, the amplitude and texture features are assembled
into a finite mixture model, and a multinomial logistic function
is used to describe the spatial context model. The labels are
obtained by the classification EM (CEM) [24] algorithm. The
size of the window for the texture feature is selected to be 3 x 3.
The window sizes for the spatial context models are selected
to be 7 x 7 for SYN1, SYN2, Noerdlinger Ries, Piperiver,
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)

Fig. 10. Segmentation results of Agriculture. (a) Agriculture. (b) GLCM-FCM.
(c) MRF. (d) ATML-CEM. (e) SM-ANML. (f) HVS-ANML. (g) Optical image.

(2)

Fig. 11. Segmentation results of Chinalake. (a) Chinalake. (b) GLCM-FCM.
(c) MRF. (d) ATML-CEM. (e) SM-ANML. (f) HVS-ANML. (g) Optical image.

Ll _bridge, Pyramid, and Dc_big. The window sizes for the
spatial context models are selected to be 5 x 5 for Agriculture
and Chinalake. 4) SM-ANML.: It is one different version of
our approach. The sketch map is used to guide the SAR image
segmentation. This method is named as SM-ANML. The size
of GSWis 3 x 3.



LIU et al.: SAR IMAGE SEGMENTATION BASED ON HVS-ANML

(2

Fig. 12. Segmentation results of Piperiver. (a) Piperiver. (b) GLCM-FCM.
(c) MRF. (d) ATML-CEM. (e) SM-ANML. (f) HVS-ANML. (g) Optical image.

Y
B,

s

Fig. 13. Segmentation results of L1_bridge. (a) LI_bridge. (b) GLCM-FCM.
(c) MRE. (d) ATML-CEM. (e) SM-ANML. (f) HVS-ANML. (g) Optical image.
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Fig. 14. Segmentation results of Pyramid. (a) Pyramid. (b) GLCM-FCM.
(c) MRF. (d) ATML-CEM. (e) SM-ANML. (f) HVS-ANML. (g) Optical image.

Fig. 15. Segmentation results of Dc_big. (a) Dc_big. (b) GLCM-FCM.
(c) MRF. (d) ATML-CEM. (e) SM-ANML. (f) HVS-ANML. (g) Optical image.

The parameters of HVS-ANML are set as follows. The size
of GSW is 3 x 3. T} and 75 are used in the process of the line
object location, and they are computed only on the real SAR
images. Due to the different resolution and image content, 77 is
estimated for each image and set as 10, 11, 5 16, 10, 8, and 6 for
Noerdlinger Ries, Agriculture, Chinalake, Piperiver, L1_bridge,
Pyramid, and Dc_big, respectively. 75 is used to measure the
amplitude change in GSW and set as 34 for all real SAR images.
T3 is used to measure the homogeneity of the window and set
as 3. The detailed analyses of these parameters are given in the
subsequent section.

A. Test SAR Images

We test these approaches on two synthetic SAR images
and seven real SAR images. The synthetic SAR image SYN1
[shown in Fig. 7(a)] is constituted by four parts, including



4296

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 7, JULY 2016

TABLE II
PRIOR KNOWLEDGE OF THE SAR IMAGES
Images Size Resolution Band Polarization Modalities Location Sensor
SYNI 256 %256 - - - - - -
SYN2 256 %256 - - - - -
Noerqhnger 500 x440 Im X HH High 'resolutlon Swabian Jura TerraSAR
Ries spotlight mode
Agriculture 512 %512 Im X HH High " esolution Swabian Jura TerraSAR
spotlight mode
Chinalake ~ 440x420 3m Ku - Stripmap California  Airborne SAR
Piperiver 600x432 Im Ku - Stripmap New Mexico  Airborne SAR
L1 bridge 210x520 Im X - Stripmap New Mexico  Airborne SAR
Pyramid 700 X525 Im X g Highresolution o TerraSAR
spotlight mode
Dc_big 550 %370 Im Ku - Stripmap Was]l)llrégton Airborne SAR
TABLE III TABLE IV
ACCURACY (IN PERCENT) AND KAPPA OF HVS-ANML, SM-ANML, ACCURACY (IN PERCENT) AND KAPPA OF HVS-ANML, SM-ANML,
ATML-CEM, MRF, AND GLCM-FCM FOR SYN1 ATML-CEM, MRF, AND GLCM-FCM FOR SYN2
Methods Water  Land  Urban Forest Average Kappa Methods Water  Land Urban  Forest Average Kappa
HVS-ANML 100 99.13  99.58  99.98 99.67  0.9951 HVS-ANML 100 99.87  99.04 9946  99.59  0.9946
SM-ANML 100 99.78  38.61 4529 70.81  0.6963 SM-ANML 100 99.69 5249 5381 76.50  0.6867
ATML-CEM  98.89  96.58  84.04  87.99 91.87  0.9102 ATML-CEM  99.99 100 92.45 91.8 96.06  0.9474
MRF 100 98.94  36.09 4582 70.21  0.6899 MRF 100 89.34 4494 4829 70.64  0.6086
GLCM-FCM 9496  91.17  70.13  81.34 84.40  0.8222 GLCM-FCM  95.15  94.89 65.56  58.53 78.53  0.7135

water, land, urban area, and forest, which are from the real SAR
images. The contents of the four parts in SYN2 [shown in
Fig. 8(a)] are the same as that in SYN1, while the scale of the
texture in SYN2 is larger than that of SYN1 and the shapes
of edges in SYN2 are also different from that of SYN1. The
seven real SAR images used are Noerdlinger Ries [shown in
Fig. 9(a)], Agriculture [shown in Fig. 10(a)], Chinalake [shown
in Fig. 11(a)], Piperiver [shown in Fig. 12(a)], LIl_bridge
[shown in Fig. 13(a)], Pyramid [shown in Fig. 14(a)], and
Dc_big [shown in Fig. 15(a)]. The line objects are only an-
alyzed in the real SAR images. We also download the cor-
responding optical images [shown in Figs. 9(g)-15(g)] from
Google Earth for comparison. The prior information of the
used SAR images is shown in Table II. “~” represents that
the information is not provided. More information about these
images can be found from the website http://www.sandia.gov/
radar/imagery/index.html.

B. Segmentation Results of the Synthetic SAR Images

We produce two synthetic SAR images SYN1 and SYN2 to
test the performance of our method. Due to the availability of
the ground truth, two quantitative indexes, including accuracy
and Kappa coefficient, are used for evaluation. The higher accu-
racy means a better performance of the method. A higher Kappa
coefficient implies a better consistency in the segmentation. The
visual results of SYN1 are shown in Fig. 7, and the numerical
indexes are calculated in Table III. The visual results of SYN2
are shown in Fig. 8, and the corresponding numerical indexes
are shown in Table IV.

From the segmentation results of GLCM-FCM [shown in
Figs. 7(b) and 8(b)], we can see that the edges are not well
preserved. The main reason is that the GLCM is extracted in a

predefined and larger window. For the results of MRF [shown
in Figs. 7(c) and 8(c)], the edges are well preserved, but some
oversegmentation occurs, particularly in the urban areas and
forests. It is because the predefined spatial context model is
not suitable for the aggregated scenes. In the ATML-CEM
method [shown in Figs. 7(d) and 8(d)], both the amplitude and
texture densities are considered in the likelihood model. The
smooth constraints are included in the spatial context model.
Therefore, the regions in ATML-CEM are more homogeneous
than those in GLCM-FCM and MREF, while the edges are not
accurate; this is because the window size of the spatial context
model is set empirically. In the SM-ANML method [shown in
Figs. 7(e) and 8(e)], the SAR image is divided into structural
and nonstructural regions. The urban areas and forests are
regarded as the structural portions to be preserved. This leads to
the extremely poor consistency in the urban areas and forests.
From the results of HVS-ANML [shown in Figs. 7(f) and 8(f)],
it is noted that various classes such as water, lands, urban areas,
and forests are identified clearly. Particularly in the urban
areas and forests, consistent regions are obtained rather than
the noisy results. Meanwhile, the edges are preserved clearly.
This is because the SAR image is divided into regions with
different characteristics by the hierarchical visual semantic.
For each region, the adaptive method is chosen for the
segmentation. The comparisons between Figs. 7(e) [8(e)] and
Figs. 7(f) [8(f)] indicate that the hierarchical visual semantic
is crucial to the consistencies of the urban areas and forests.
Figs. 7(g) and 8(g) are the ground truths of the two synthetic
SAR images. Among all the visual results in Figs. 7 and 8,
Figs. 7(f) and 8(f) are the closest to the ground truths. From
the above, we can see that no one single method performs
perfectly in SAR image segmentation. Each method has its
own benefits. Therefore, different characteristics should be
considered in SAR image segmentation, and corresponding
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segmentation methods should be adopted.

The numerical results of SYN1 and SYN2 are listed in
Tables III and IV, respectively. In Table III, the accuracy of
the water is high in most methods. HVS-ANML obtains the
highest accuracies in the urban areas and forests, while the
accuracy of the land in HVS-ANML is slightly lower than that
of SM-ANML. In Table IV, the accuracies of the water, urban
area, and forest are the highest with HVS-ANML, while the
accuracy of the land is slightly lower than that of ATML-CEM.
However, from the average accuracy, we can see that HVS-
ANML is obviously better than SM-ANML, ATML-CEM,
MREF, and GLCM-FCM. The Kappa coefficients are given in the
last columns of Table III and I'V. The highest Kappa coefficient
is obtained by HVS-ANML. From the above, it demonstrates
that a better performance in terms of the consistencies of
the regions and the preservations of the edges is obtained by
HVS-ANML.

C. Segmentation Results of the Real SAR Images

In this section, seven real SAR images are used for a further
analysis. The compared methods are the same as those used
on the synthetic SAR images. The visual results are shown in
Figs. 9-15. Since the ground truths of the real SAR images are
hard to obtain, the corresponding optical images of the same
scene from Google Earth are used for comparison.

From the visual results in Figs. 9-15, it is noted that the
segmentation results of HVS-ANML are different from that
of the compared methods. The number of the class in HVS-
ANML is larger than that of the other methods. This is because
the segmentation result of HVS-ANML consists of three parts,
which are the aggregated region, the structural and homoge-
neous regions, and the line objects. In Fig. 9(f), the aggregated
region is labeled as one class (in yellow). The structural and
homogeneous regions are segmented into three classes (in blue,
red, and light green). The line objects are labeled as one class
(in black). The final segmentation result includes five classes.
This segmentation map is closer to the optical image [shown
in Fig. 9(g)]. Therefore, it is more reasonable. The results of
the compared methods include three classes. In Fig. 10(f), the
four portions in the aggregated region are imbalanced, which
are labeled as four different classes. The structural and homoge-
neous regions are segmented into four classes. The line objects
are labeled as one class. The final segmentation map includes
nine classes. The results of the compared methods include four
classes. In Fig. 11(f), the final segmentation result of HVS-
ANML includes seven classes. The compared methods include
three classes. In Fig. 12(f), the final result of HVS-ANML
includes eight classes. The compared methods include three
classes. In Fig. 13(f), the final result of HVS-ANML includes
six classes. The compared methods include three classes. In
Fig. 14(f), the final result of HVS-ANML includes six classes.
The compared methods include three classes. In Fig. 15(f), the
final result of HVS-ANML includes seven classes. The com-
pared methods include three classes.

The results will be analyzed further on. In the results of
GLCM-FCM [shown in Figs. 9(b)-15(b)], edges and line ob-
jects are not well preserved. Obviously, the bridges are lost in
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Figs. 12(b) and 15(b). This is because the window size of GLCM
islarger than the width of the bridges. The edges and line objects
are not well preserved in ATML-CEM either. An oversmooth
spatial context model causes the edge generalization and the
loss of the line objects. Particularly in Figs. 9(d) and 12(d), al-
most no details exist in the segmentation results. The edges are
well kept in the results of Figs. 9(c)—15(c) by the MRF method.
From the results of SM-ANML [shown in Figs. 9(e)-15(e)],
we can see that the edges are also well preserved, while the
consistencies in the urban areas and forests are not satisfied.
It is because the different semantics of the sketch lines in
different regions are not analyzed. In our results [shown in
Figs. 9(f)-14(f)], the water, lands, urban areas, forests, and line
objects are segmented clearly. The consistencies of the urban
areas and forests are much better than that of the other methods.
The reason is that the aggregated regions are obtained by the hi-
erarchical visual semantic. With the adaptive neighborhood, the
consistencies of the homogeneous regions are well kept, and the
edges are accurately located simultaneously. The visual seman-
tic rules are designed by analyzing the structure of line objects,
so the line objects (in black) are located only in our method.
The optical images are found [shown in Figs. 9(g)-14(g)] from
Google Earth for comparison. By comparing the results with
the optical images, it is obvious that the results of VSH-ANML
are more correct. In Fig. 15(f), three aggregated regions are
segmented clearly. It is noteworthy that the ports and the urban
area are labeled into one aggregated region (in yellow). That is
because the aggregated degree of the urban area and the port
are similar and the urban area is close to the port. In order
to solve this problem, the shape and orientation of the sketch
lines can be used to distinguish them. For example, the port
has the linear-type structure. The structure is extended only in
one direction. The urban area has the sphere-type structure. The
structure is extended in every direction. We will explore these
characteristics in our future work.

D. Parameter Analysis and Discussion

Parameter Analysis of T1 and Ts: Parameters T7 and T5 are
used to judge whether the sketch line belongs to the sketch lines
of line objects. There are two types of sketch lines to represent
the line objects. One is two close and parallel sketch lines. T}
is the distance threshold of the two sketch line segments. The
other is the single sketch line. There are two amplitude changes
in the GSW of the single sketch line. 7% is used to measure the
amplitude change.

T3 is the distance threshold of the two sketch line segments.
Due to the different resolution and image content, 7} is esti-
mated for each image according to the experimental results.
We take Chinalake as an example to explain the effect of the
parameter 73. From Fig. 16, we can see that a small value of T
will lose some sketch line of line objects. A large value of T}
will introduce some false sketch lines of line objects. According
to the original SAR image Chinalake, the selection of T} as
5 keeps the true sketch lines of line objects and avoids the
false sketch lines of the line object. Therefore, T is selected as
5 for Chinalake. With the same strategy, 7} is chosen as 10, 11,



4298

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 7, JULY 2016

Fig. 16. Different values of 77 on Chinalake. Sketch lines of line objects (in red) and sketch lines (in green) in aggregated region. (a) 71 = 2. (b) 71 = 3.
©Tr=4@T1=5.e)Th=6.OT1=7.(T1 =8 ()T =9.31) T1 = 10.

16, 10, 8, and 6 for Noerdlinger Ries, Agriculture, Piperiver,
L1_bridge, Pyramid, and Dc_big, respectively.

T5 is used to measure the amplitude change in GSW. A large
value of T will lose some sketch lines of line objects; on the
contrary, a small value of T, will misclassify some edges as line
objects. Therefore, a too big or too small value of parameter 75
will lead to the unsatisfactory results. In order to explain how to
set parameter 75, we use different 75 to extract the sketch lines
of line objects in Chinalake (shown in Fig. 17). From the results
in Fig. 17, we find that some sketch lines indicating the true line
objects are lost by using a too large threshold. According to the
original SAR image Chinalake, the selection of T, as 34 keeps
the true sketch lines of line objects. Therefore, 75 is selected as
34. All experiments are conducted under this selected value.

According to the threshold 77, the close and parallel sketch
lines indicating the line objects are obtained. By using the
threshold 7%, the single sketch line indicating the line objects
is obtained. The two parts are integrated together to obtain the
sketch lines of line objects.

Parameter Analysis of Ts: T3 is used to measure the homo-
geneity of the window. In order to make a reasonable selection
of Ts, SYNI1 and SYN2 are used in the experiments. The
corresponding curves that represent the variation of the average
accuracy and Kappa coefficient to different 75 are given in
Fig. 18. As we have observed, T3 has a significant effect on
the segmentation results at the beginning. The peaks of these
curves are observed at T3 = 3; after that, the average accuracy

and the Kappa coefficient change slowly. Therefore, T35 is set to
be 3 in our approach.

V. CONCLUSION

In this paper, we have proposed a SAR image segmenta-
tion method based on HVS-ANML. Using the hierarchical
visual semantic, the SAR image is divided into aggregated,
structural, and homogeneous regions. Considering the different
characteristics, the multinomial latent model with the adaptive
neighborhood is proposed for segmentation. Moreover, the
visual semantic rules are designed for a better segmentation
of the line objects. The contribution of this paper lies in three
aspects. First, the hierarchical visual semantic of SAR images is
proposed by analyzing the semantic of the sketch map. Second,
the SAR image is divided into regions with different charac-
teristics, and the methods considering these characteristics are
proposed for segmentation. Third, the visual semantic rules are
derived for the line object location. Experiments on the synthetic
and real SAR images show that the proposed method obtains
better consistencies of the regions and preserves more details.

However, some parameters are set by the interactive opera-
tion in our method. More adaptive parameter selection methods
will be explored by considering the prior information, such as the
statistical and structural characteristics. In addition, the seman-
tic is important for SAR image segmentation. More semantics
based on computer vision will be explored in our future work.
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Fig. 17. Different values of 75 on Chinalake. Sketch lines of line objects (in red) and sketch lines (in green) in aggregated region. (a) 7o = 18. (b) T> = 22. (¢)
Ty = 26.(d) T2 = 30. (e) T2 = 34. (f) T2 = 38.(g) Tx = 42. (h) T> = 46. (i) T = 50.
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Fig. 18. Experimental indexes with different parameter values of 73. (a) Experimental indexes with different values of 73 on SYNI. (b) Experimental indexes

with different values of T3 on SYN2.

APPENDIX
AGGREGATED REGION EXTRACTION

The aggregation degree of the sketch line segment [, is
defined as the average distance between [, and its v-nearest
neighbors. The aggregation degree is given as

1 v
aggregation(ly) = - Z sort(Dgi), 1 =1,2,...,5 (8)
i=1

where aggregation(/; ) is the aggregated degree of [, and sort(-)
denotes a function that arranges the vector elements in a non-

decreasing order. v is a parameter. The distance between the
sketch line segments Dg; is defined in (7).

The aggregation degree is used to classify the sketch line seg-
ments by a threshold 7}, where T} is selected according to the
histogram of the aggregated degree. The sketch line segments
are classified into the aggregated sketch line segments when
its aggregated degree is less than or equal to 7. Otherwise,
the sketch line segments are classified into the nonaggregated
sketch line segments. The aggregated sketch line segments
constitute the aggregated sketch lines A, and the nonaggregated
sketch line segments constitute the nonaggregated sketch lines
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Fig. 19. Histogram of the aggregation degree.
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Fig. 20. (a) Aggregated sketch lines (in blue) and nonaggregated sketch lines
(in red). (b) Aggregated region (in gray).

NA. The morphological close operator is implemented on the
aggregated sketch lines A to obtain the corresponding aggre-
gated region.

Taking the sketch map of Agriculture as an example, the
histogram of the aggregation degree is shown when v = 7 in
Fig. 19. The horizontal axis represents the aggregated degree,
which is represented by ad. The vertical axis represents the
number of the sketch line segments, which is represented by
F(ad). The highest peak of the histogram is expressed as
F(ad*)max, and its corresponding value of horizontal axis is
ad’. In order to guarantee the aggregated sketch line segments
to be preserved, T} is larger than the aggregated degree ad* and
usually set as the aggregated degree whose frequency is near the
half of the peak F(ad*)max. Some fine adjustments may be
needed for a specified SAR image. In this example, T} is
selected as 12. According to the threshold 7, = 12, the sketch
lines are classified into aggregated sketch lines and nonaggre-
gated sketch lines. In Fig. 20(a), the blue sketch lines are the
aggregated sketch lines, and the red sketch lines are the nonag-
gregated sketch lines. Then, the morphological close operator
is implemented on the aggregated sketch lines to obtain the
corresponding aggregated region. In Fig. 20(b), the gray region
is the aggregated region.

The main steps of the aggregated region extraction are given
as follows:

1) Extracting the sketch map of the input SAR image;
2) Computing the aggregation degree of every sketch line
segment by using (8);

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 7, JULY 2016

3) Classifying the sketch lines into A and NA by T};
4) The morphological close operator is implemented on A
to generate the aggregated region.
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