[36] Deyun Wei*, Shuangxiao Yuan, Hermitian random walk graph Fourier transform for directed graphs and its applications, Digital Signal Processing, 2024, 155, 104751.【高水平2类论文】【信号处理国际重要期刊】
[35] Deyun Wei*, Zhengyang Yan, Generalized sampling of multi-dimensional graph signals based on prior information, Signal Processing, 2024, 224, 109601.【高水平1类论文】【信号处理领域国际知名期刊】
[34] Deyun Wei*, Yang Deng, An Optimized IWT–DCT Watermarking Scheme Based on Multiple Matrix Decomposition and MOWOA2, Circuits, Systems, and Signal Processing, 2024. https://doi.org/10.1007/s00034-024-02707-0.【高水平2类论文】【信号处理国际重要期刊】
[33] Deyun Wei*, Jinshun Shen, Synchrosqueezing fractional S-transform: theory, implementation and applications, Circuits, Systems, and Signal Processing, 2024, 43:1572–1596【高水平2类论文】【信号处理国际重要期刊】
[32] Deyun Wei*, Zhengyang Yan, Generalized sampling of graph signals with the prior information based on graph fractional Fourier transform, Signal Processing, 2024:109263.【高水平1类论文】【信号处理领域国际知名期刊】
[31] Deyun Wei*, Zhengyang Yan, Sampling of graph signals with successive aggregations based on graph fractional Fourier transform, Digital Signal Processing, 2023, 136, 103970.【高水平2类论文】【信号处理国际重要期刊】
[30] Deyun Wei*, Jinshun Shen, Multi-spectra synchrosqueezing transform, Signal Processing, 2023, 207, 108940.【高水平1类论文】【信号处理领域国际知名期刊】
[29] Deyun Wei*, MIngjie Jiang, Yang Deng, A secure image encryption algorithm based on hyper-chaotic and bit-level permutation, Expert Systems With Applications, 2023, 213, 119074. 【高水平1类论文】【计算机、人工智能顶级期刊】
[28] Deyun Wei*, Jun Yang, Non-uniform Sparse Fourier Transform and its Applications, IEEE Transactions on Signal Processing, 2022, 70,4468-4482. 【高水平1类论文】【信号处理领域国际顶级期刊】
[27] Deyun Wei*, Jun Yang, Two-dimensional Sparse fractional Fourier Transform and Its Applications, Signal Processing, 2022, 201, 108682.【高水平1类论文】【信号处理领域国际知名期刊】
[26] Deyun Wei*, Yijie Zhang, Yuanmin Li, Linear Canonical Stockwell Transform: Theory and Applications, IEEE Transactions on Signal Processing, 2022,70, 1333-1347. 【高水平1类论文】【信号处理领域国际顶级期刊】
[25] Deyun Wei*, Yi Shen, Fast Numerical Computation of Two-dimensional Non-separable Linear Canonical Transform Based on Matrix Decomposition, IEEE Transactions on Signal Processing, 2021, 69, 5259-5272. 【高水平1类论文】【信号处理领域国际顶级期刊】
[24] Deyun Wei*, Yuanmin Li, Convolution and multichannel Sampling for the Offset Affine Transform and Their Applications, IEEE Transactions on Signal Processing, 2019, 67(23), 6009-6024. 【高水平1类论文】【信号处理领域国际顶级期刊】
[23] Deyun Wei*, Yuan-Min Li, Generalized sampling expansion with multiple sampling rates for lowpass and bandpass signals in the fractional Fourier domian. IEEE Transactions on Signal Processing. 2016, 64(8), 4861-4974. 【高水平1类论文】【信号处理领域国际顶级期刊】
[22] Deyun Wei*, Huimin Hu, Sparse Discrete Linear Canonical Transform and Its Applications, Signal Processing, 2021, 183, 108046.【高水平1类论文】【信号处理领域国际知名期刊】
[21] et, Deyun Wei*, Double-encrypted watermarking algorithm based on cosine transform and fractional Fourier transform in invariant wavelet domain, Information Science, 2021, 551, 205-227.【高水平1类论文】【计算机与工程技术交叉权威期刊】
[20] Deyun Wei*, et, Lattices Sampling and Sampling rate Conversion of Multidimensional Bandlimited Signals in the Linear Canonical Transform Domain. Journal of the Franklin Institute. 356 (13), 7571-7607, September, 2019. 【高水平2类论文】【应用数学与工程技术交叉权威期刊】
[19] et, Deyun Wei*, Image Watermarking Based on Matrix Decomposition and Gyrator Transform in Invariant Integer Wavelet Domain, Signal Processing, 2020, 169, 107421.【高水平1类论文】【信号处理领域国际知名期刊】
[18] Deyun Wei*, et, Fractional Stockwell Transform: Theory and Applications, Digital Signal Processing, 2021, 115,103090.【高水平2类论文】【信号处理国际重要期刊】
[17] Deyun Wei*, et, Theory and Applications of Short-time Linear Canonical Transform, Digital Signal Processing, 2021.118, 103239.【高水平2类论文】【信号处理国际重要期刊】
[16] Deyun Wei*, et, Channel rearrangement multi-branch network for image super-resolution, Digital Signal Processing, 2021, 119, 103254.【高水平2类论文】【信号处理国际重要期刊】
[15] et, Deyun Wei*, Robust and reliable image copyright protection scheme using downsampling and block transform in integer wavelet domain, Digital Signal Processing, 2020, 106, 102805.【高水平2类论文】【信号处理国际重要期刊】
[14] Deyun Wei*, et, New Two-Dimensional Wigner Distribution and Ambiguity Function Associated with the Two-Dimensional Nonseparable Linear Canonical Transform, Circuits, Systems, and Signal Processing, 2021, https://doi.org/10.1007/s00034-021-01790-x.【高水平2类论文】【信号处理国际重要期刊】
[13] Deyun Wei*, Yuanmin Li, Novel tridiagonal communting matrices for Types I, IV, V, VIII DCT and DST Matrices. IEEE Signal Processing Letters, 2014, 21(4), 483-487. 【高水平2类论文】【信号处理领域国际知名期刊】
[12] Deyun Wei*, Qiwen Ran, et, A convolution and product theorem for the linear canonical transform, IEEE Signal Processing Letters, 2009, 16(10), 853-856. 【高水平2类论文】【信号处理领域国际知名期刊】
[11] Deyun Wei*, Qiwen Ran, et, Generalized sampling expansion for bandlimited signals associated with the fractional Fourier transform, IEEE Signal Processing Letters, 2010, 17(6), 595-598. 【高水平2类论文】【信号处理领域国际知名期刊】
[10] Deyun Wei*, et, Random Discrete Linear Canonical Transform. Journal of the Optical Society of Americal A-Optics Image Science and Vision. 33 (12), 2470-2476, 2016.【高水平2类论文】【光信息处理知名期刊】
[9] Deyun Wei*, Qiwen Ran, et, Reconstruction of band-limited signals from multichannel and periodic nonuniform samples in the linear canonical transform domain, Optics Communications, 2011, 284, 4307-4315. 【高水平2类论文】【光信息处理知名期刊】
[8] Deyun Wei*, Qiwen Ran, et, Multichannel sampling expansion in the linear canonical transform domain and its application to superresolution, Optics Communications, 2011, 284(23), 5424-5429. 【高水平2类论文】【光信息处理知名期刊】
[7] Deyun Wei*, Yuanmin Li, Sampling reconstruction of N-dimensional bandlimited images after multilinear filtering in fractional Fourier domain, Optics Communications. 2013, 295, 26-35.【高水平2类论文】【光信息处理知名期刊】
[6] Deyun Wei*, Yuanmin Li, Reconstruction of Multidimensional Bandlimited Signals from Multichannel Samples in the Linear Canonical Transform Domain. IET Signal Processing. 2014,8(6), 647-657.【高水平2类论文】【信号处理国际重要期刊】
Awarded: 2016 Premium Award for Best Paper in IET Signal Processing
http://digital-library.theiet.org/journals/premium-awards#2016
http://digital-library.theiet.org/content/journals/iet-spr/info/prizes
[5] Deyun Wei*, Qiwen Ran, et, Fractionalization of odd time odd frequency DFT matrix based on the eigenvectors of a novel nearly tridiagonal commuting matrix, IET Signal Processing, 2011, 5(2), 150-156. 【高水平2类论文】【信号处理国际重要期刊】
[4] Deyun Wei*, Qiwen Ran, et, Multichannel sampling and reconstruction of bandlimited signals in the linear canonical transform domain, IET Signal Processing, 2011, 8(5), 717-727. 【高水平2类论文】【信号处理国际重要期刊】
[3] Deyun Wei*, Image Super-resolution using the high-order derivative interpolation associated with fractional filter function. IET Signal Processing. 2016, 10(9), 1052-1061.【高水平2类论文】【信号处理国际重要期刊】
[2] Deyun Wei*, et, Time-frequency analysis method based on affine Fourier transform and Gabor transform. IET Signal Processing. 11(2), 213-220, April, 2017.【高水平2类论文】【信号处理国际重要期刊】
[1] Deyun Wei*, Filterbank Reconstruction of Band-limited Signals from Multichannel Samples Associated with the Linear Canonical Transform. IET Signal Processing. 11(3), 320-331, May, 2017.【高水平2类论文】【信号处理国际重要期刊】
Google Scholar主页: http://scholar.google.com/citations?user=nIakazkAAAAJ&hl=en
Researchgate 主页:https://www.researchgate.net/profile/Deyun_Wei
近些年来,发表SCI科研论文60余篇,其中第一作者/通讯作者发表SCI论文50余篇,EI 3篇,申请专利5项,授权专利2项。
2020年
授权专利:
魏德运,et. 基于猫脸变换和混沌的图像信息融合加密方法,专利号:ZL 201611183426.0
2019年
申请专利:
魏德运,et. 基于XXXXXX卷积神经网络的图像超分辨方法,专利申请号:201911408041.3 公开号:CN111161152A
2018年
授权专利:
魏德运,et. 基于三维猫脸变换与超混沌系统的分数域图像加密方法,专利号:ZL 2016 1 0217483.X
2016年
1. 魏德运,董晟,et. 基于猫脸变换和XXXX的图像信息融合加密方法, 申请国家发明专利, 专利申请号: 201611183426.0
2. 魏德运,王睿岿,et. 基于双随机相位和XXXX的线性正则域图像加密方法, 申请国家发明专利, 专利申请号: 201610393995.1,公开号:CN106067182A
3. 魏德运,邓斌,et. 基于三维猫脸变换与XXX系统的分数域图像加密方法, 申请国家发明专利, 专利申请号: 201610217483.X,公开号:CN105913369A
2015年
1. 魏德运,王睿岿,et. 基于Arnold变换和XXXX的分数域图像加密方法, 申请国家发明专利, 专利申请号: 201510934031.9,公开号:CN105447396A