
Detecting Spurious Counterexamples Efficiently in
Abstract Model Checking

Cong Tian and Zhenhua Duan
ICTT and ISN Laboratory, Xidian University, Xi’an, 710071, P.R. China

{ctian, zhhduan}@mail.xidian.edu.cn

Abstract—Abstraction is one of the most important strategies
for dealing with the state space explosion problem in model
checking. With an abstract model, the state space is largely
reduced, however, a counterexample found in such a model that
does not satisfy the desired property may not exist in the concrete
model. Therefore, how to check whether a reported counterex-
ample is spurious is a key problem in the abstraction-refinement
loop. Particularly, there are often thousands of millions of states
in systems of industrial scale, how to check spurious counterex-
amples in these systems practically is a significant problem. In
this paper, by re-analyzing spurious counterexamples, a new
formal definition of spurious path is given. Based on it, efficient
algorithms for detecting spurious counterexamples are presented.

By the new algorithms, when dealing with infinite counterex-
amples, the finite prefix to be analyzed will be polynomially
shorter than the one dealt by the existing algorithm. Moreover, in
practical terms, the new algorithms can naturally be parallelized
that makes multi-core processors contributes more in spurious
counterexample checking. In addition, by the new algorithms,
the state resulting in a spurious path (false state) that is hidden
shallower will be reported earlier. Hence, as long as a false state
is detected, lots of iterations for detecting all the false states will
be avoided. Experimental results show that the new algorithms
perform well along with the growth of system scale.

Index Terms—model checking, formal verification, abstraction,
refinement, parallel algorithm.

I. INTRODUCTION

Model checking is an important approach to improve the
reliability of hardware, software, multi-agent systems, com-
munication protocols, embedded systems and so forth. The
term model checking was coined by Clarke and Emerson
[7], as well as Sifakis and Queille [19], independently. The
earlier model checking algorithms explicitly enumerated the
reachable states of the system in order to check the correctness
of the system. This restricted the capacity of model checkers
to systems with a few million states. Since the number of
states can grow exponentially with the number of variables,
early implementations were only able to handle small designs
and did not scale to examples with industrial complexity. To
combat this, various methods, such as abstraction [9], [10],
[11], [12], [13], partial order reduction [3], [4], ROBDD
[5], [6] and bounded model checking [8], etc. techniques
are applied to model checking to reduce the state space for
efficient verification. Thanks to these efforts, model checking
has been one of the most successful verification approaches
which is widely adopted in industrial community.

Among the techniques for reducing the state space, ab-
straction is certainly one of the most important ones which

has been widely used in software model checking. In several
software model checkers, SLAM [25], [26] and BLAST [27]
for instance, Counter-Example Guided Abstraction Refine-
ment (CEGAR) [9], [10], [11], [12], [13] based abstract model
checking has been well implemented. Abstraction technique
preserves all the behaviors of a concrete system but may
introduce behaviors that are not present originally. Thus, if
a property (i.e. a temporal logic formula) is satisfied in the
abstract model, it will certainly be satisfied in the concrete
model. However, if a property is unsatisfiable in the abstract
model, it may still be satisfied in the concrete model, and none
of the behaviors that violate the property in the abstract model
can be reproduced in the concrete model. In this case, the
counterexample is said to be spurious. Thus, when a spurious
counterexample is found, the abstraction should be refined
in order to eliminate the spurious behaviors. This process is
repeated (called abstraction-refinement loop) until either a real
counterexample is found or the abstract model satisfies the
property.

In the abstraction-refinement loop, how to check whether
a reported counterexample is spurious is a key problem.
In [13], ALGORITHM SPLITPATH is presented for checking
whether a counterexample is spurious, and a SAT solver is
employed to implement it [10], [11]. In SPLITPATH, whether a
counterexample is spurious can be checked by detecting failure
states in the counterexample. If a failure state is found, the
counterexample is spurious, otherwise, the counterexample is
a real one. However, whether a state, say ŝi, is a failure state
relies on the whole prefix of the counterexample 〈ŝ0, ŝ1, ···, ŝi〉.
Therefore, to check a counterexample Π = 〈ŝ0, ŝ1, ···, ŝn〉, each
state in Π should be checked sequentially. Moreover, to check
a counterexample with infinite length, a polynomial number of
unwinding of the loop in the infinite path is required [12], [13].
For systems with a small state space, the polynomial number
of unwinding of the loop is tolerable. However, for systems
with large state space, i.e. a common software system, the
polynomial growth of the number of the states to be checked
might lead to the exhaustion of memory. Therefore, effective
algorithms for checking spurious counterexamples are signif-
icant in making abstract model checking to be practical.

In this paper, based on the definition of false states, spurious
paths are re-analyzed, and a new approach for checking
spurious counterexamples is proposed. With this approach,
whether a counterexample is spurious depends on the existence
of false states in the counterexample. There are several merits

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

202

of the new approach. First, instead of the prefix, to check
whether a state ŝi is false is only up to ŝi’s previous and
successor states in the counterexample. Based on this, for an
infinite counterexample, the polynomial number of unwinding
of the loop can be avoided. Second, the algorithm can easily
be improved by detecting the heaviest false state such that a
number of model checking iterations can be saved in the whole
abstract-refinement loop. Thirdly, the algorithm can naturally
be parallelled. This will largely improve the efficiency for
checking spurious counterexamples with thousands of millions
of states in big examples with industrial scale. Finally, the
algorithms analyze each state in the counterexample gradu-
ally by considering its previous and successor states. Thus,
some false states that are hidden shallower will be detected
easier. This will be useful in practise since in the whole
abstract-refinement loop, anytime, one false state is enough
for the refinement of the counterexample. We have developed
a counterexample checker containing both the new proposed
algorithms and the existing one. The tool is implemented on
randomly generated models in different scales. Experimental
results show that the new algorithms perform well along with
the growth of system scale.

The rest part of the paper is organized as follows. The
next section briefly presents the preliminaries in abstraction-
refinement. In Section 3, why spurious counterexamples oc-
cur is analyzed intuitively and ALGORITHM SPLITPATH is
explained briefly. In Section 4, a new formal definition of
spurious counterexample is given with respect to the definition
of false states. Further, in Section 5, algorithms for checking
whether a counterexample in the abstract model is spurious are
presented. Experimental results are given in Section 6. Finally,
conclusions are drawn in Section 7.

II. RELATED WORK

We focus on the Counter-Example Guided Abstraction
Refinement, CEGAR, framework which was first proposed by
Kurshan [18]. Based on the basic CEGAR, some variations
were given [11], [21], [10], [1], [16], [15], [14] in the past
years. Most of them use a model checker and try to get rid of
spurious counterexamples to achieve a concrete counterexam-
ple or a proof of the desired property. Recently, CEGAR was
also improved for the purpose of abstract model checking of
shared-variable concurrent programs [28], [29].

The closest works to ours are those where the abstract
models are obtained by making some of the variables invisible.
To the best of our knowledge, this abstraction method was
first proposed by Clarke, etc. [11], [10]. With their approach,
abstraction is performed by selecting a set of variables (or
latches in circuits) to be invisible. In each iteration, a standard
Ordered Binary Decision Diagram (OBDD)-based symbolic
model checker is used to check whether or not the abstract
model satisfies the desired property which is described by a
formula in temporal logic. If a counterexample is reported by
the model checker, it is simulated with the concrete system
by a SAT solver. It tells us that the model is satisfiable if the
counterexample is a real one, otherwise, the counterexample

is a spurious one and a failure state is found which is the
last state in the longest prefix of the counterexample that is
still satisfiable. Subsequently, the failure state is used to refine
the abstraction by making some invisible variables visible. In
the method given by Clarke, etc., ALGORITHM SPLITPATH
is used to check whether a counterexample is spurious, and a
SAT solver is employed to implement it [10], [11]. SPLITPATH
is carried out by detecting failure states in the counterexample.
If a failure state is found, the counterexample is spurious,
otherwise, the counterexample is a real one. With this method,
to check a counterexample with infinite length, a polynomial
number of unwinding of the loop in the infinite path is required
[12], [13].

III. ABSTRACTION AND REFINEMENT LOOP

As usual, a Kripke structure [2] is used to model a system.
Let V = {v1, · · ·, vn} ranging over a finite domain D ∪ {⊥}
be the set of variables involved in a system. For any vi ∈ V ,
1 ≤ i ≤ n, a set of the valuations of vi is defined by Σvi =

{vi = d | d ∈ D ∪ {⊥}} where vi = ⊥ means vi is undefined.
Further, the set Σ of all the possible states of the system is
defined by Σ = Σv1 × · · · × Σvn for each vi ∈ V . Let AP be
the set of propositions. A Kripke structure over AP is a tuple
K = (S , I,R, L), where S ⊆ Σ is the set of states (i.e. a state
in S is a valuation of variables in V), I ⊆ S is the set of
initial states, R ⊆ S × S is the transition relation, L : S → 2AP

is the labeling function. For convenience, s(v) is employed to
denote the value of v at state s. A path in a Kripke structure
is a sequence of states, Π = 〈s1, s2, · · ·〉, where s1 ∈ S 0 and
(si, si+1) ∈ R for any i ≥ 1. For convenience, we use R(s) to
denote the set of direct successors of a state s ∈ S , R(S ′) the
set of direct successors of all states in S ′. More generally,
Ri(s) means the set of states reachable from s after i times
of transitions, and Ri(S ′) the set of states reachable from all
states in S ′ after i times of transitions.

There are several techniques for obtaining the abstract
models [16], [18], [20]. We follow the counterexample guided
abstraction and refinement method proposed by Clarke, et al.
where abstraction is performed by selecting a set of variables
which are insensitive to the desired property to be invisible
[11]. Following the idea given in [11], we separate V into two
parts VV and VI such that V = VV∪VI . VV stands for the set of
visible variables while VI denotes the set of invisible variables.
Invisible variables are those we do not care about and will be
ignored when building the abstract model. In an original model
K = (S , S 0,R, L), all variables are visible (VV = V , VI = ∅). To
obtain an abstract model K̂ = (Ŝ , Ŝ 0, R̂, L̂), some variables, e.g.
VX ⊆ V , are selected to be invisible (VV = V \ VX , VI = VX).
Thus, the set of all possible states in the abstract model will
be: Σ̂ = Σv1 × · · · ×Σvk , where k = |VV |, and for each 1 ≤ i ≤ k,
vi ∈ VV . For a state s ∈ S and a state ŝ ∈ Ŝ , ŝ is called the
mapping of s in the abstract model by selecting VV as the set
of visible variables iff s(v) = ŝ(v) for all v ∈ VV . Formally,
ŝ = h(s,VV) is used to denote that ŝ is the mapping of s in the
abstract model by selecting VV as the set of visible variables.

203

Inversely, s is called the origin of ŝ, and the set of origins of
ŝ is denoted by h−(ŝ,VV).

Therefore, given an original model K = (S , S 0,R, L) and
a selected set of visible variables VV , an abstract model
K̂ = (Ŝ , Ŝ 0, R̂, L̂) can be obtained by Algorithm ABSTRACT
as shown below.

Algorithm 1 : ABSTRACT(K,VV)
Input: an original model K = (S , S 0,R, L) and a set of selected
visible variables VV

Output: an abstract model K̂=(Ŝ ,Ŝ 0,R̂,L̂)
1: Ŝ = {ŝ ∈ Σ̂ | there exists s ∈ S such that h(s,VV) = ŝ};
2: Ŝ 0 = {ŝ ∈ Ŝ | there exists s ∈ S 0 such that h(s,VV) = ŝ};
3: R̂ = {(ŝ1, ŝ2) | ŝ1, ŝ2 ∈ Ŝ , and there exist s1, s2 ∈

S such that h(s1,VV) = ŝ1, h(s2,VV) = ŝ2 and (s1, s2) ∈
R};

4: L̂(ŝ) =
⋃

s∈S ,h(s,VV)=ŝ
L(s);

5: return K̂ = (Ŝ , Ŝ 0, R̂, L̂);

Example 1: As illustrated in Fig. 1, the concrete model
is a Kripke structure with four states. Initially, the system

s1 s2 s3 s4

v1 = 0
v2 = 0

v1 = 1
v2 = 1

v1 = 0
v2 = 0

v1 = 1
v2 = 1

v3 = 0
v4 = 0

v3 = 0
v4 = 1

v3 = 1
v4 = 0

v3 = 1
v4 = 1

V = {v1, v2, v3, v4}
VV = {v1, v2}
VI = {v3, v4}

ŝ1 ŝ2

v1 = 1
v2 = 1

v1 = 0
v2 = 0

Original

Abstract

{q}{p} {r, q} {p}

{p, q} {p, q, r}

Fig. 1. Abstraction function

has four variables v1, v2, v3 and v4. Suppose that v3 and v4
are selected to be invisible. By ALGORITHM ABSTRACT, an
abstract model with two states is obtained. In the abstract
model, ŝ1 is the mapping of s1 and s2, while ŝ2 is the mapping
of s3 and s4. (ŝ1, ŝ2) ∈ R̂ since (s2, s3) ∈ R, and (ŝ1, ŝ1),
(ŝ2, ŝ2) ∈ R̂ because of (s1, s2) and (s3, s4) ∈ R. �

After the abstract model is obtained, a model checker is
utilized to check whether the abstract model can satisfy the
desired property. If the property is satisfied, the (original)
system can satisfy the property. Nevertheless, if the property is
unsatisfiable in the abstract model, it may still be satisfied in
the concrete model, and none of the behaviors that violate the
property in the abstract model can be reproduced in the con-
crete model. In this case, the counterexample is spurious. Thus,
when a spurious counterexample is found, the abstraction
should be refined in order to eliminate the spurious behaviors.
This process is repeated (abstraction-refinement loop) until
either a real counterexample is found or the abstract model
satisfies the property.

The abstraction-refinement loop is depicted in Fig.2.
Initially, the abstract model M′ is obtained by the abstrac-

Abstract h Model Checker

¬P

M M ′ No errors

Counterexample

Check Spurious
Real counterexampleSpurious

Refinement

M ′′

Fig. 2. Abstraction refinement loop

t algorithm. Then a model checker is employed to check
whether or not the abstract model satisfies the desired property.
If no errors are found, the model is correct. Otherwise,
a counterexample is reported and rechecked by a spurious
checker which is used to check whether a counterexample
is spurious. If the counterexample is not spurious, it will
be a real counterexample that violates the system property;
otherwise, the counterexample is spurious, and a refining tool
is used to refine the abstract model [11], [13], [15], [17],
[21]. Subsequently, the refined abstract model is checked by
the model checker again until either a real counterexample is
found or the model is checked to be correct. In this paper, we
concentrate on the how to check whether a counterexample is
spurious (the green part in Fig.2). Several methods about how
to refine an abstract model can be found in [13], [17], [23],
[24].

IV. SPURIOUS PATHS

To check a spurious counterexample efficiently, we first
show why spurious paths occur intuitively by an example.
Then we briefly present the basic idea of ALGORITHM S-
PLITPATH which is used in [12], [13] for checking whether a
counterexample is spurious.

A. Why Spurious Paths?

Abstraction technique preserves all the behaviors of the con-
crete system but may introduce behaviors that are not present
originally. Therefore, when checking the abstract model using
a model checker, some reported counterexamples might not
be real counterexamples that violate the desired property.
This problem can intuitively be illustrated by the traffic lights
controller example [13].

Example 2: For the traffic light controller system in the
l.h.s of Fig.3 involving variables color and state, by making
variable color to be invisible, an abstract model can be
obtained as shown in the r.h.s of Fig.3. We want to prove
�^(state = stop) (any time, the state of the light will be stop
sometimes in the future). By implementing a model checker
on the abstract model, a counterexample, 〈ŝ1, ŝ2, ŝ2, ŝ2, ···〉 will
be reported. However, in the concrete model, such a behavior
cannot be found. So, this is not a real counterexample. �

204

color = red
state = stop

color = yellow
state = go

color = green
state = go

state = stop

state = go

Original model Abstract model

s1

s2

s3

ŝ1

ŝ2

Fig. 3. Traffic Light Controller

B. Exposition of Algorithm SPLITPATH

In [13], ALGORITHM SPLITPATH is presented for checking
whether a finite counterexample is spurious. We present it
formally below.

Let Π = 〈ŝ0, ŝ1, · · ·, ŝn〉 be a finite counterexample in an
abstract model. The basic idea of ALGORITHM SPLITPATH is
to compute the set of reachable states Mi in each h−(ŝi,VV)
(0 ≤ i ≤ n) from I under the following two conditions:
(1) for each i (1 ≤ i ≤ n), any state s ∈ Mi is reachable from

each Mk (0 ≤ k ≤ i − 1); and
(2) for each i (1 ≤ i ≤ n), any state s ∈ Mi, and (s′, s) ∈ R, it

has either s′ ∈ Mi or s′ ∈ Mi−1.
Formally, Mk

0, k ≥ 0, can be computed by:

M0
0 = I ∩ h−(ŝ0,VV)

M1
0 = R(M0

0) ∩ h−(ŝ0,VV)
M2

0 = R(M1
0) ∩ h−(ŝ0,VV)

· · ·

Mk
0 = R(Mk−1

0) ∩ h−(ˆs0,VV)

Then, we have M0 =
∞⋃

k=0
Mk

0. Similarly, for each 1 ≤ i ≤ n, Mk
i

(k ≥ 0) can be computed by:

M0
i = R(Mi−1) ∩ h−(ŝi,VV)

M1
i = R(M0

i) ∩ h−(ŝi,VV)
M2

i = R(M1
i) ∩ h−(ŝi,VV)

· · ·

Mk
i = R(Mk−1

i) ∩ h−(ŝi,VV)

Accordingly, Mi =
∞⋃

k=0
Mk

i .

Note that there must exist a natural number m, such that
m+1⋃
k=0

Mk
i =

m⋃
k=0

Mk
i since h−(ŝi,VV) is finite. Intuitively, each state

in Mi is reachable from I, M0, · · ·, Mi−1; and cannot pass
through any state outside of M0, · · ·, Mi−1, and Mi.

For some state ŝk, k ≥ 1, if Mk = ∅, ˆsk−1 is called a
failure state. To check whether a finite counterexample is
spurious, M0, M1, M2, · · · are computed in turn until the
first state ŝk where Mk = ∅ is found, or the last state in the
counterexample is reached. The following example illustrates
how ALGORITHM SPLITPATH works.

Example 3: Fig.3 depicts a Kripke structure and a coun-
terexample, 〈ŝ0, ŝ1, ŝ2, ŝ3, ŝ4〉, in the abstract model. In this

ŝ0 ŝ1 ŝ2 ŝ3 ŝ4

0

1

2

3

4

5

7 8

6

9

13

14

15

11

10

12

16

17

18

19

22

21

20

23

24

25

26
27

32
33

30

28

29

31

10

Fig. 4. Algorithm SPLITPATH

counterexample, I = {0}.

M0
0 = I ∩ h−(ŝ0,VV) = {0}

M1
0 = R(M0

0) ∩ h−(ŝ0,VV) = {1, 2}
M2

0 = R(M1
0) ∩ h−(ŝ0,VV) = {3}

M3
0 = R(M2

0) ∩ h−(ŝ0,VV) = ∅

Thus, M0 = M0
0 ∪ M1

0 ∪ M2
0 ∪ M3

0 = {0, 1, 2, 3}.

M0
1 = R(M0) ∩ h−(ŝ1,VV) = {6}

M1
1 = R(M0

1) ∩ h−(ŝ1,VV) = {8}
M2

1 = R(M1
1) ∩ h−(ŝ1,VV) = ∅

It has M1 = M0
1 ∪ M1

1 ∪ M2
1 = {6, 8}. Further,

M0
2 = R(M1) ∩ h−(ŝ2,VV) = {11}

M1
2 = R(M0

2) ∩ h−(ŝ2,VV) = {10, 12}
M2

2 = R(M1
2) ∩ h−(ŝ2,VV) = ∅

So, M2 = M0
2 ∪ M1

2 ∪ M2
2 = {10, 11, 12}.

M0
3 = R(M2) ∩ h−(ŝ3,VV) = {20, 21}

M1
3 = R(M0

3) ∩ h−(ŝ3,VV) = {23}
M2

3 = R(M1
3) ∩ h−(ŝ3,VV) = ∅

Hence, M3 = M0
3 ∪ M1

3 ∪ M2
3 = {20, 21, 23}.

M0
4 = R(M3) ∩ h−(ŝ4,VV) = ∅

So, M4 = M0
4 = ∅. Therefore, M4 is an empty set and ŝ3 is a

failure state. In Fig.3, M0, M1, M2, M3, and M4 are the set of
blue nodes in ŝ0, ŝ1, ŝ2, ŝ3, and ŝ4, respectively. The failure
state is depicted in red circle. �

For infinite counterexamples, it is more complicated to
dealing with since the last state in the counterexample can
never be reached. Thus, a polynomial number of unwinding
of the loop in the counterexample is needed [13]. That is,
an infinite counterexample can be reduced to a finite one
by unwinding the loop for a polynomial number of times.
Accordingly, SPLITPATH can be used again to check whether
this infinite counterexample is spurious.

In a counterexample, there may exist more than one states
that make the path to be spurious. In fact, by ALGORITHM
SPLITPATH, always, the only failure state (if it exists) is
detected. However, in abstraction-refinement loop, the elim-
ination of any state that makes the counterexample to be
spurious will be enough for the refinement of the abstract
model. Therefore, it is unnecessary to detect only the failure
state in the counterexample for the refinement.

205

C. Algorithm Analysis

For a finite counterexample, ALGORITHM SPLITPATH is
linear in the size1 of the counterexample. Nevertheless, for
an infinite counterexample, ALGORITHM SPLITPATH is poly-
nomial in the size2 of the counterexample since an infinite
counterexample is reduced to a finite one by unwinding
the loop for polynomial number of times. Moreover, in the
verification of systems with industrial scale, it is possible that
a counterexample contains thousands of millions of states.
So how to make ALGORITHM SPLITPATH more practical is
significant in abstract model checking.

V. YET ANOTHER DEFINITION OF SPURIOUS
COUNTEREXAMPLES

In [11], [17], a spurious counterexample is described by: a
counterexample in the abstract model which does not exist in
the concrete model. By the analysis in the previous section,
it can be preciously defined by: a counterexample with one
failure state. In this section, we redefine spurious counterex-
amples from another aspect.

For convenience, In0
ŝi

, In1
ŝi

, · · ·, and Inn
ŝi

are defined:

In0
ŝi

= {s | s ∈ h−(ŝi,VV), s′ ∈ h−(ˆsi−1,VV) and
(s′, s) ∈ R}

In1
ŝi

= {s | s ∈ h−(ŝi,VV), s′ ∈ In0
ŝi

and (s′, s) ∈ R}
· · ·

Inn
ŝi

= {s | s ∈ h−(ŝi,VV), s′ ∈ Inn−1
ŝi

and (s′, s) ∈ R}

Then we have Inŝi =
∞⋃

i=0
Ini

ŝi
. Here In0

ŝi
denotes the set of

states in h−(ŝi,VV) with inputting edges from the states in
h−(ˆsi−1,VV), and In1

ŝi
stands for the set of states in h−(ŝi,VV)

with inputting edges from the states in In0
ŝi

, and In2
ŝi

means
the set of states in h−(ŝi,VV) with inputting edges from the
states in In1

ŝi
, and so on. Thus, Inŝi denotes the set of states in

h−(ŝi,VV) that are reachable from some state in h−(ˆsi−1,VV)
as illustrated in the lower irregular shape in Fig.5. Note that

there must exist a natural number n, such that
n+1⋃
i=0

Ini
ŝi

=
n⋃

i=0
Ini

ŝi

since h−(ŝi,VV) is finite. Particularly, for state ŝ0,

In0
ŝ0

= {s | s ∈ (h−(ŝ0,VV) ∩ I)}
In1

ŝ0
= {s | s ∈ h−(ŝ0,VV), s′ ∈ In0

ŝ0
and (s′, s) ∈ R}

· · ·

Inn
ŝ0

= {s | s ∈ h−(ŝ0,VV), s′ ∈ Inn−1
ŝ0

and (s′, s) ∈ R}

That is only In0
ŝ0

is defined differently since ŝ0 has no previous
states.

Symmetrically, Out0
ŝi

, Out1
ŝi

, · · ·, and Outn
ŝi

are also defined.

1The size of a finite counterexample can be measured by the length of the
counterexample as well as the number of states in the original model that are
involved in the counterexample.

2The size of an infinite counterexample is measured by the number of
individual states in the counterexample as well as the number of states in the
original model that are involved in the counterexample.

Fig. 5. Inŝi and Outŝi

Out0
ŝi

= {s | s ∈ h−(ŝi,VV), s′ ∈ h−(ˆsi+1,VV) and
(s, s′) ∈ R}

Out1
ŝi

= {s | s ∈ h−(ŝi,VV), s′ ∈ Out0
ŝi

and (s, s′) ∈ R}
· · ·

Outn
ŝi

= {s | s ∈ h−(ŝi,VV), s′ ∈ Outn−1
ŝi

and (s, s′) ∈ R}

Thus, Outŝi =
∞⋃

i=0
Outi

ŝi
. Here Out0

ŝi
denotes the set of states in

h−(ŝi,VV) with outputting edges to the states in h−(ˆsi+1,VV),
and Out1

ŝi
stands for the set of states in h−(ŝi,VV) with out-

putting edges to the states in Out0
ŝi

, and Out2
ŝi

means the set of
states in h−(ŝi,VV) with outputting edges to the states in Out1

ŝi
,

and so on. Thus, Outŝi denotes the set of states in h−(ŝi,VV)
from which some state in h−(ˆsi+1,VV) are reachable as depicted
in the higher iregular shape in Fig.5. Similar to Inŝi , there

must exist a natural number n, such that
n+1⋃
i=0

Outi
ŝi

=
n⋃

i=0
Outi

ŝi
.

It is also pointed out that for the last state ŝn in a finite
counterexample,

Out0
ŝn

= {s | s ∈ h−(ŝn,VV) ∩ F}
Out1

ŝn
= {s | s ∈ h−(ŝn,VV), s′ ∈ Out0

ŝn
, and (s, s′) ∈ R}

· · ·

Outn
ŝn

= {s | s ∈ h−(ŝn,VV), s′ ∈ Outn−1
ŝn
, and (s, s′) ∈ R}

where F is the set of states without any successors in the
original model.

Based on the definitions of Inŝi and Outŝi , if Inŝi∩Outŝi = ∅,
Π is spurious obviously since ˆsi−1 cannot reach to ˆsi+1 through
ŝi.

Example 4: Fig.6 shows a spurious counterexample where
In2̂ = {9}, Out2̂ = {7}, and In2̂∩Out2̂ = ∅. Obviously, 〈0̂, 1̂, 2̂, 3̂〉
is a spurious counterexample that does not exist in the original
model. �

However, for each state ŝi in a counterexample Π such
that Inŝi ∩ Outŝi , ∅, Π may still be spurious. For instance,
Fig.7 shows a counterexample without any state ŝi (i = 0,
1, or 2) such that Inŝi ∩ Outŝi = ∅ (Inŝ0 ∩ Outŝ0 = {s1, s2},
Inŝ1 ∩ Outŝ1 = {s5}, and Inŝ2 ∩ Outŝ2 = {s6}). Nevertheless,
this counterexample is obviously a spurious one because green
states are not reachable from the red ones.

206

1

2

3

4

5

6

7

8

9

10

11

12

0̂ 1̂ 2̂ 3̂

Fig. 6. A spurious path where In2̂ ∩ Out2̂ = ∅

s1 s2 s3 s4 s5 s6

ŝ0 ŝ1 ŝ2

In(ŝ0) = {s1, s2}
Out(ŝ0) = {s1, s2, s3}

In(ŝ1) = {s4, s5}
Out(ŝ1) = {s5}

In(ŝ2) = {s6}
Out(ŝ2) = {s6}

In(ŝ0) ∩Out(ŝ0) = {s1, s2} In(ŝ1) ∩Out(ŝ1) = {s5} In(ŝ2) ∩Out(ŝ2) = {s6}

Fig. 7. A spurious path

Let Ei = Inŝi ∩ Outŝi for each 0 ≤ i ≤ n. As illustrated
in Fig.8, given a counterexample Π with Inŝi ∩ Outŝi , ∅ for

ŝi

Inŝi OutŝiEi

ˆsi−1

In ˆsi−1
Out ˆsi−1Ei−1

ˆsi+1

In ˆsi+1 Out ˆsi+1Ei+1

Fig. 8. Checking spurious counterexamples

each state ŝi in Π, to check whether Π is spurious, we need to
further check 〈E0, E1, · · ·, En〉 again similar to 〈ŝ0, ŝ1, · · ·, ŝn〉 by
treating each of E0, E1, · · ·, En as a state. This process will be
repeated until In(Ei) = Out(Ei) (i.e. Ei = In(Ei)∩Out(Ei) will
keep unchanged) for each i, or In(Ei) ∩Out(Ei) = ∅ for some
i. In case In(Ei) = Out(Ei) for each i, the counterexample
is a real one; otherwise, if there exists some i such that
In(Ei)∩Out(Ei) = ∅, the counterexample is a spurious one. For
instance, for the counterexample in Fig.7, we need to further
check 〈E0, E1, E2〉 as illustrated in Fig. 9. Note that here E0,

s1 s2 s5 s6

E0 E1 E2

In(E0) = {s1, s2}
Out(E0) = ∅

In(E0) ∩Out(E0) = ∅

In(E1) = ∅
Out(E1) = s5

In(E1) ∩Out(E1) = ∅

In(E2) = {s6}
Out(E2) = s6

In(E2) ∩Out(E2) = {s6}

Fig. 9. A spurious path

E1, and E2 equals to Inŝ0 ∩Outŝ0 = {s1, s2}, Inŝ1 ∩Outŝ1 = {s5},

and Inŝ2 ∩ Outŝ2 = {s6} in Fig. 7, respectively. By computing
In(Ei) ∩ Out(Ei), i = 0, 1, or 2, it can be obtained that the
counterexample is spurious since In(Ei) ∩ Out(Ei) = ∅ for
both i = 0 and 1.

The above procedure for checking whether a counterexam-
ple is spurious is intuitively illustrated in Fig. 10. For clarity,
we use E j

i (j ≥ 1) as a temporal variable to record the result
of In(E j−1

i) ∩ Out(E j−1
i). Here the superscript j ≥ 0 indicates

the times of the run. In the 0th run, for each 0 ≤ i ≤ n, E0
i is

assigned with h−(ŝi,VV).

E0
0 E0

1 E0
2 E0

3 · · · E0
n

E1
0 E1

1 E1
2 E1

3 · · · E1
n

E2
0 E2

1 E2
2 E2

3 · · · E2
n

· · ·

0th run

1st run

2nd run

E0
i = h−(ŝi)

E1
i = In(E0

i) ∩Out(E0
i)

E2
i = In(E2

i) ∩Out(E1
i)

Fig. 10. Checking spurious counterexamples

For convenience, a state ŝi with In(E j
i) ∩ Out(E j

i) = ∅

is called a false state. Further, given a false state ŝi in a
counterexample Π̂, the set of the origins of ŝi, h−(ŝi,VV), is
divided into three sets, D = InE j

i
(the set of dead states),

B = OutE j
i

(the set of bad states) and I = h−(ŝi,VV) \ (D∪B)
(the set of the isolated states). For instance, state 2̂ in Fig.
6 is a false state. In h−(2̂,VV), i.e. {7, 8, 9}, {9} is the set of
dead states, {7} the set of bad states, and {8} the set of isolated
states. In a counterexample 〈ŝ0, · · ·, ŝn〉, suppose ŝi and ŝ j are
two false states with En

i = ∅ and Em
j = ∅ (m > n), respectively.

We call the false state ŝi is hidden shallower than ŝi. By the
above procedure, always, the shallowest false state is detected
if it exists.

Armed with these notations, a spurious counterexample is
formally defined below.

Definition 1: (Spurious Counterexamples) A counterex-
ample Π̂ in an abstract model K̂ is spurious if, and only if,
there exists at least one false state in Π̂. �

To confirm the equivalence of the new definition of spurious
counterexamples with the original one, the following theorem
is proved.

Theorem 1: A counterexample Π is spurious if, and only if,
there exists at least one false state in Π.
Proof: ⇒: By the definitions of false states, if there exists a
false state in Π, Π does not exist in the concrete model.
⇐: If there exist no false states in Π, it has E0 , ∅, E1 , ∅,
· · ·, and En , ∅ for each 1 ≤ i ≤ n (by the definition of false
states). Thus, for each state s ∈ Ei, s is reachable from Ei−1,
and can access to Ei+1 since s is in both In ˆEi−1

and Out ˆEi+1
.

207

So, for each state in En, it is reachable from E0, through E0,
E1, · · ·, and En−1. Accordingly, 〈ŝ0, ŝ1, · · ·, ŝn〉 exists in the
concrete model. �

VI. ALGORITHMS FOR CHECKING SPURIOUS
COUNTEREXAMPLES

Based on the new definition of spurious counterexamples,
algorithms for checking whether a counterexample is spurious
are presented in this section. Generally speaking, to check
whether a counterexample is spurious can be determined by
detecting the existence of false states in the path. If a false
state is found, the counterexample is spurious; otherwise, the
counterexample is a real one.

A. Detecting False States on 〈E0, · · ·, En〉

By the definition of spurious counterexamples based on
false states, to check whether a counterexample is spurious, we
need to detect the false states on 〈E0, · · ·, En〉, recursively. We
first present ALGORITHM CHECKFALSE-I for checking false
states on 〈E0, · · ·, En〉 in one run. ALGORITHM CHECKFALSE-
I takes 〈E0, · · ·, En〉 as input and outputs the first detected false
state if it exists.

Algorithm 2 : CHECKFALSE-I(〈E0, · · ·, En〉)
Input: 〈E0, · · ·, En〉

Output: the first detected false state s f in the

counterexample

1: Initialization: int i = 0;
2: while i ≤ n do
3: if InÊi

∩ OutÊi
, ∅, i = i + 1;

4: else return s f = ŝi; break;

5: end while

In ALGORITHM CHECKFALSE-I, to check whether a state
ŝi is a false state only relies on Êi’s previous and successor
states, ˆEi−1 and ˆEi+1; while in ALGORITHM SPLITPATH, to
check state ŝi is up to checking the whole prefix, 〈ŝ0, · · ·, ˆsi−1〉,
of ŝi. Therefore, compared with ALGORITHM SPLITPATH,
CHECKFALSE-I can be parallelized naturally as presented in
ALGORITHM CHECKFALSE-II.

In CHECKFALSE-II, anytime, if a false state is detected
by a processor, all the processors will stop and the false
state is returned. That is the algorithm always reports the first
detected false state obtained by the processors. Note that a
boolean array c[n] is used to indicate whether a state in the
counterexample is a false one. Initially, for all 0 ≤ i ≤ n, c[i]
is ⊥ (c[i] is undefined). c[i] == f alse means state ŝi is a false
state.

B. Checking Spurious Counterexamples

Based on the algorithms for detecting false states,
ALGORITHM CHECKSPURIOUS-I is presented to check
whether a given (finite) counterexample is spurious. In
CHECKSPURIOUS-I, initially, E0, · · ·, En is initialized by
h−(ŝ0,VV), · · ·, h−(ŝn,VV), respectively; then CHECKFALSE-II
is called recursively until each of E0, ···, En keeps unchanged or

a false state is detected. To perform it, a Boolean array c with
length n + 1 is utilized to memorize the situation of each Ei.
If c[k] == ⊥, it means that currently neither InEk = OutEk nor
InEk ∩OutEk = ∅. That is Ek needs to be further updated with
InEk ∩ OutEk , and then InEk ∩ OutEk should be recalculated.
If c[k] == true, it indicates that Ek will keep unchanged
(ŝk cannot be a false state). Any time, if InEk ∩ OutEk = ∅,
the algorithm will stop and a false state is returned. In case
c[k] == true for each k, 〈ŝ0, · · ·, ŝn〉 is reported to be a real
counterexample.

Algorithm 3 : CHECKFALSE-II(Π̂)
Input: 〈E0, · · ·, En〉

n: the number of processors

k: processor id

Output: a false state s f

1: Initialization: bool c[n + 1] = {⊥, · · ·,⊥};
2: for k = 0 to n do in parallel do
3: if InÊk

∩ OutÊk
= ∅ then

4: c[k] = f alse; return s f = ŝk;
stop all processors;

5: end if
6: end for

Algorithm 4 : CHECKSPURIOUS-I(Π̂)
Input: 〈ŝ0, · · ·, ŝn〉

n: the number of processors

k: processor id

Output: a false state s f

1: Initialization: E0 = h−(ŝ0); · · ·; En = h−(ŝn);
bool c[n + 1] = {⊥, · · ·,⊥};

2: CHECKFALSE:
3: for k = 0 to n in parallel do
4: if c[k] == ⊥ then
5: if InEk ∩ OutEk = ∅, then
6: return s f = ŝk; stop all processors;
7: end if
8: if InEk ∩ OutEk = Ek, then
9: c[k] = ture;

10: end if
11: if InEk ∩ OutEk , Ek and InEk ∩ OutEk , ∅, then
12: Ek = InEk ∩ OutEk ;
13: end if
14: end if
15: end for
16: if for all 0 ≤ i ≤ n, c[i] == ture, return Π̂ has no

false states;
17: else goto CHECKFALSE;

Note that a counterexample may be a finite path 〈s0, s1, · ·
·, sn〉, n ≥ 0, or an infinite path 〈s0, s1, · · ·, (si, · · ·, s j)ω〉, 0 ≤
i ≤ j, with a loop suffix (a suffix produced by a loop). For
the finite one, it can be checked directly with ALGORITHM
CHECKSPURIOUS-I while for an infinite one, we need only
to check its Complete Finite Prefix (CFP) 〈s0, s1, · · ·, si, · · ·, s j〉

since whether or not a state si is a false state only relies on
its previous and successor states. It is pointed out that in the

208

CFP 〈s0, s1, · · ·, si, · · ·, s j〉 of an infinite counterexample,

Out0
ŝ j

= {s | s ∈ h−(ŝ j,VV), s′ ∈ h−(ŝi,VV) and (s, s′) ∈ R}
Out1

ŝ j
= {s | s ∈ h−(ŝ j,VV), s′ ∈ Out0

ŝ j
and (s, s′) ∈ R}

since the successor state of ŝ j is ŝi.

C. Algorithm for Detecting the Heaviest False State
In ALGORITHM CHECKSPURIOUS-I, always, the first de-

tected false state is returned. Then further refinement will be
done based on the analysis of this false state. Possibly, several
false states may occur in one counterexample, so which one
is chosen to be refined is not considered. Obviously, if a false
state shared by more paths is refined, a number of model
checking iterations are hopefully to be saved in the whole
abstract-refinement loop.

Under this consideration, we will check the state shared by
more paths first. To do so, for an abstract state ŝ as illustrated
in Fig.11, EIn(ŝ) and EOut(ŝ) are defined. EIn(ŝ) equals to

ŝ

EIn EOut

Fig. 11. In and out edges

the number of edges connecting to the states in h−(ŝ,VV) from
the states outside of h−(ŝ,VV); and EOut(ŝ) is the number of
edges connecting to the states out of h−(ŝ,VV) from the states
in h−(ŝ,VV). Accordingly, EIn(ŝ) × EOut(ŝ) is the number of
the paths where ŝ occurs. For convenience, we call EIn(ŝ) ×
EOut(ŝ) the weight of the abstract state ŝ.

In CHECKSPURIOUS-II, The counterexample is recursively
checked until each Ei keeps unchanged or is detected as a
false state. Then the heaviest false state is returned for further
refinement. That is all the false states are detected out first,
and then the heaviest one is returned.

D. Algorithm Analysis
Compared with ALGORITHM SPLITPATH for detecting

failure states, to check whether a state is a false state by
ALGORITHM CHECKSPURIOUS-I only relies on its previous
and direct successor states. Thus when dealing with infinite
counterexamples by ALGORITHM CHECKSPURIOUS-I, the
finite prefix to be checked will be polynomially shorter than
the one dealt by ALGORITHM SPLITPATH. That is given an in-
finite counterexample, by ALGORITHM CHECKSPURIOUS-I,
the number of the states to be analyzed will be polynomial less
than the one to be considered by ALGORITHM SPLITPATH.
Further, for the finite counterexamples, in each iteration, E0,
E1, ···, En, are checked in parallel. Also, the algorithms analyze
each state in the counterexample gradually by considering its
previous and successor states. Thus, some false states that are
hidden shallower will be detected earlier, and lots of iterations
can be avoided in practise.

Algorithm 5 : CHECKFALSE-IV(Π̂)
Input: a counterexample Π̂=〈ŝ0, ŝ1, · · ·, ŝn〉 in the

abstract model K̂=(Ŝ , Ŝ 0, R̂, L̂), and the original

model K = (S , S 0,R, L) in shared memory

n: the number of processors

k: processor id

Output: a false state s f

1: Initialization: E0 = h−(ŝ0); · · ·; En = h−(ŝn);
bool c[n + 1] = {⊥, · · ·,⊥};

2: CHECKFALSE:
3: for k = 0 to n in parallel do
4: if c[k] = ⊥ then
5: if InEk ∩ OutEk = ∅, then
6: c[k] = f alse;
7: end if
8: if InEk ∩ OutEk = Ek, then
9: c[k] = ture;

10: end if
11: if InEk ∩ OutEk , Ek and InEk ∩ OutEk , ∅, then
12: Ek = InEk ∩ OutEk ;
13: end if
14: end if
15: end for
16: if for each 0 ≤ i ≤ n, c[i] , ⊥, then
17: if c[i] == ture for each i then
18: return Π̂ has no false states;
19: end if
20: if c[i]== f alse and ŝi is the heaviest one among

the false states then
21: return ŝi;
22: end if
23: else
24: goto CHECKFALSE;
25: end if

VII. EVALUATION

To evaluate the proposed approach, we implemented a
Counterexample Checker (called CC for short) (http://web.
xidian.edu.cn/home/ctian/files/20120808 210955.zip) that contain-
s both Algorithm CHECKSPURIOUS-I and SPLITPATH for
checking spurious counterexamples. Note that here we do not
compare the results of Algorithm CHECKSPURIOUS-II with
CHECKSPURIOUS-I and SPLITPATH since its advantages can
only be presented in the whole abstraction-refinement loop.
To make the results more general, we (1) randomly generate
the original models by providing the numbers of states and
transitions; (2) achieve the abstract models by providing the in-
sensitive variables; and (3) select a path (i.e. counterexample)
randomly in the abstract model. Subsequently, we implement
Algorithm CHECKSPURIOUS-I and SPLITPATH on the same
selected path, respectively, and record the time consumed by
both the two algorithms. We use Graphviz 2.28 [22] to display
the original and abstract models. Fig.12 (a) and (b) shows a
randomly generated model and its abstract model, respectively.
We just present small models, since for the ones containing
several thousands of states, the graphs are unclear.

The following experiments are performed on 4-core
PC. We randomly generate five models with the size

209

(a) Original model

(b) Abstract model

Fig. 12. Original and abstract models illustrated by Graphviz

(s, t) being (10, 50), (50, 1250), (100, 5000), (500, 125000),
(1000, 500000), (5000, 13000000), (10000, 50000000), and
(50000, 150000000), respectively. Here s means the number
of states while t the number of transitions in the original
model. By selecting counterexamples at random, Algorithms
CHECKSPURIOUS-I are compared with Algorithm SPLIT-
PATH. The experimental data are recorded in Table VII and
the curves depicting the time consumed by the two algorithms
on different models are presented in Fig. 13. The vertical axis
depicts the size of the model, and the horizontal axis describes
the time (ms) used for checking whether or not the selected
path is spurious. From the table and the curves, it can be
seen that in case the scale of the model is small, because of
the expense in creating and destroying threads, the merit of
parallel algorithm is not obvious. However, as the scale of the
model grows, the advantages of the new algorithm turn out to
be evident.

TABLE I
RESULTS OF EXPERIMENT

Model Size SPLITPATH CHECKSPURIOUS-I
States Transitions 5 models Average 5 Models Average

(number) (number) (ms) (ms) (ms) (ms)
2 4
3 4

10 50 3 2.4 4 4.4
2 5
2 5
2 5
3 6

50 1250 2 2.6 4 5.2
3 5
3 5
3 4
3 4

100 5000 3 3.2 4 3.4
4 4
3 5
4 4
6 5

500 125000 4 4.6 5 5
4 5
5 6
5 5
6 17

1000 500000 6 6 8 7.6
8 4
5 4
16 10
13 43

5000 13000000 15 14.8 5 16.8
15 13
15 13
61 45
50 64

10000 50000000 50 49.4 34 37.8
45 42
41 4

192 51
151 53

50000 180000000 218 174.8 89 58.42
201 42
112 57

VIII. CONCLUSION

Based on the formal analysis of spurious paths, a new ap-
proach for detecting spurious counterexamples is presented in
this paper. With this approach, for an infinite counterexample,

210

Fig. 13. Comparation between Algorithm CheckSpurious-I and SplitPath

the polynomial number of unwinding of the loop is avoided.
That is the finite prefix to be checked will be polynomially
shorter than the one checked by the existing algorithm. Be-
sides, for a given finite counterexample (or finite prefix of
an infinite counterexample), the new algorithm still performs
well. The reasons are two: (1) The algorithm is parallelized
in each run for detecting false states; (2) The shallowest
false state is always detected such that many iterations in the
algorithm will be avoided in practise.

The presented algorithms are useful in improving efficiency
of abstract model checking, especially CEGAR based abstract
model checking. In the near future, together with our pre-
vious results for refining abstract models, the new proposed
algorithms will be implemented and integrated into several
model checkers such as SLAM and BLAST where CEGAR
is implemented. In addition, we will also investigates how
these algorithms can be applied in abstract model checking
of shared-variable concurrent programs.

ACKNOWLEDGMENT

Zhenhua Duan is the corresponding author. This research
is supported by the NSFC Grant No. 61003078, 61272117,
60910004, 61133001, 61272118, and 61202038, 973 Pro-
gram Grant No. 2010CB328102 and ISN Lab Grant No.
ISN1102001. We thank Wenqiang Fan in implementing the
counterexample checker CC.

REFERENCES

[1] P. Chauhan, E.M. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang.
Automated Abstraction Refinement for Model Checking Large State
Spaces Using SAT Based Conflict Analysis. Proc. Formal Methods in
Computer-Aided Design (FMCAD), 2002.

[2] S.A.Kripke. Semantical analysis of modal logic I: normal propositional
calculi, Z. Math. Logik Grund. Math. 9, 67-96, 1963.

[3] R. Kurshan, V. Levin, M. Minea, D. Peled and H. Yenig/in. Static partial
order reduction. In Tools for the Construction and Analysis of Systems,
LNCS 1394, pages 345C357, 1998.

[4] K.L. McMillan. A technique of state space search based on unfolding.
Formal Methods in System Design 6: 45-65, 1995.

[5] E.M. Clarke, O. Grumberg, D. Long. Verification tools for finite state
concurrent systems. In A Decade of Concurrency-Reflections and Per-
spectives, LNCS 803, pages 124-175, 1993.

[6] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

[7] E.M. Clarke and E.A.Emerson. Desigh and syntesis of of synchronization
skeletons using branching time temporal logic. In Logic of Programs:
Workshop, Yorktown Heights, NY, May 1981, LNCS 131, Springer, 1981.

[8] A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y. Zue. Bounded
Model Checking volume 58 of Advances in computers. Academic Press,
2003

[9] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, Helmut
Veith. Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM 50(5): 752-794 (2003)

[10] E.M. Clarke, A. Gupta, J.H. Kukula, and O. Strichman. SAT Based
Abstraction-Refinement Using ILP and Machine Learning Techniques.
Proc. Computer-Aided Verification (CAV), E. Brinksma and K.G. Larsen,
eds., pp. 265-279, 2002.

[11] E.M.Clarke, A. Gupta, O.Strichman. SAT Based Counterexample-Guided
Abstraction-Refinement. IEEE Trans. Computer Aided Design, vol.23, no.
7, pp. 1113-1123, July 2004.

[12] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. Technical Report CMU-CS-00-103, Com-
puter Science, Carnegie Mellon University, 2000.

[13] E.M.Clarke, O.Grumberg, S.Jha, Y.Lu, and H.Veith. Counterexample
guided abstraction refinement, in Proc. 12th Int. Conf. Computer-Aided
Verification (CAV00), vol. 1855, E. Emerson and A. Sistla, Eds. New
York, 2000.

[14] S.G. Govindaraju, D.L. Dill. Counterexample-Guided Choice of Pro-
jections in Approximate Symbolic Model Checking. Proc. Intl Conf.
Computer-Aided Design (ICCAD), pp. 115-119, 2000.

[15] M. Glusman, G. Kamhi, S. Mador-Haim, R. Fraer, M.Y. Vardi. Multiple-
Counterexample Guided Iterative Abstraction Refinement: An Industrial
Evaluation. Proc. Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), pp. 176-191, 2003.

[16] T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction.
Proc. Symp. Principles of Programming Languages, pp. 58-70, 2002.

[17] F. He, X. Song, W.N. N. Hung, M. Gu, J. Sun. Integrating Evolutionary
Computation with Abstraction Refinement for Model Checking. IEEE
Trans. Computers 59(1): 116-126 (2010)

[18] R.P.Kurshan. Computer Aided Verificaton of Coordinating Processes.
Princeton Univ. Press, 1994.

[19] J.P.Quielle and J.Sifakis. Specification and verification of concurrent
systems in CESAR. In Proceedings of the 5th international symposium on
programming, pp.337-350, 1981.

[20] J. Rushby. Integrated formal verification: Using model checking with
automated abstraction, invariant generation, and theorem proving. p-
resented at Theoretical and Practical Aspects of SPIN Model Check-
ing: Proc. 5th and 6th Int. SPIN Workshops. [Online]. Available: cite-
seer.nj.nec.com/rushby99integrated.html

[21] C. Wang, B. Li, H. Jin, G.D. Hachtel, F. Somenzi. Improving Ariadne’s
Bundle by Following Multiple Threads in Abstraction Refinement. IEEE
Trans. Computer Aided Design, vol. 25, no. 11, pp. 2297-2316, Nov.
2006.

[22] The homepage of Graphviz. http://www.graphviz.org/.
[23] C. Tian, Z. Duan, N. Zhang. An efficient approach for abstraction-

refinement in model checking. Theoretical Computer Science,
doi:10.1016/j.tcs.2011.12.014, 2012.

[24] C.Tian and Z.Duan. Making Abstraction Efficient in Model Checking.
The 17th Annual International Computing and Combinatorics Conference
(COCOON 2011) LNCS6842, 90-111, 2011.

[25] Thomas Ball and Rupak Majumdar and Todd Millstein and Sriram K.
Rajamani. Automatic predicate abstraction of C programs. IN PROC.
ACM PLDI, 2001, 203–213, ACM Press.

[26] T. Ball, E. Bounimova, R. Kumar, V. Levin. SLAM2: Static Driver
Verification with Under 4% False Alarms. FMCAD 2010: 35-42.

[27] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire
Sutre. Software Verification with Blast. Proceedings of the 10th SPIN
Workshop on Model Checking Software (SPIN), Lecture Notes in Com-
puter Science 2648, Springer-Verlag, pages 235-239, 2003.

[28] Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening, Thomas
Wahl. Symmetry-Aware Predicate Abstraction for Shared-Variable Con-
current Programs. CAV 2011: 356-371

[29] Alastair F. Donaldson, Alexander Kaiser, Daniel Kroening, Michael
Tautschnig, Thomas Wahl. Counterexample-guided abstraction refine-
ment for symmetric concurrent programs. Formal Methods in System
Design 41(1): 25-44 (2012)

211

