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6. Nonlinear Systems: Random Processes 

6.1 Introduction 

In Chapter 5 the input-output characteristics were explored for a linear system excited by a random process. It was 

seen that the mean of the input process was sufficient to determine the mean of the output process, and 

correspondingly the autocorrelation function of the input was sufficient to determine the autocorrelation function 

of the output process. However, there are many elements and systems, especially in communication theory, that 

are not linear, for example, devices like hard and soft limiters, rectifiers, modulators, and demodulators. 

For these type of nonlinearities the autocorrelation functions are, in general, no longer sufficient to 

characterize the output autocorrelation functions, so it its necessary to introduce the concepts of higher-order 

correlation functions, cumulants, and higher-order spectrums. This chapter will also identify various classes of 

nonlinear systems and analyze them with respect to establishing input-output statistical relationships. The 

presentation will be guided more by what is mathematically tractable than what would be a complete and 

thorough investigation. 

6.2 Classification of Nonlinear Systems 

Currently no general theory exists that can handle all types of nonlinear systems. Therefore our presentation will 

contain special methods for analyzing certain classes of nonlinear systems. A hierarchical classification of 

nonlinear systems has been presented in Zadeh, and although we do not specifically use his nomenclature (type 0, 

type 1 etc.), the classes we present follow his lower-order classification. Our discussion will include instantaneous 

nonlinearities(type 0), and various cascades of linear systems and instantaneous nonlinear systems(type 1), 

including bilinear and trilinear cases. The chapter will conclude with a brief introduction to Volterra functionals 

for representing general nonlinear systems. The discussion begins with memoryless or zero-memory nonlinear 

systems. 

6.2.1 Zero-memory Nonlinear Systems 

   The zero-memory nonlinear system sometimes referred to as an instantaneous nonlinear system, has an 

input-output relationship 

                                    tXgtY                                       (6.1) 

where  is a real-valued function of one variable. The system is instantaneous in that the output at time t is 

determined solely by the input at time t. Several common instantaneous nonlinearities that play important roles in 

communication theory are the half-and full-wave rectifier, half- and full-wave square law devices, and hard and 

soft limiters as shown in Figure 6.1. 

 g
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Figure 6.1    Common instantaneous nonlinearities 
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(a) quantizer,   (b) half wave rectifier,   (c) square law half wave device,   (d)hard limiter,   
(e)saturation,   (f)full wave rectifier,    (g)square law full wave device,    (h)soft limiter. 

 

6.2.2 Bilinear Systems 

   A bilinear system as described by Bendat is a special case of a general Volterra system(to be discussed later), 

and its input and output are governed by the following integral equation: 

                                   (6.2)      21212122 )()(),(  ddtxtxhtxLty   










The system is specified, with respect to input and output, by ),( 212 h , which is called the time domain kernel. 

Notice that if 1  and 2  are interchanged in the integral, the output can be rearranged as follows: 

2121212 )()(),()(  ddtxtxhty   







                        (6.3) 

Since the  is still the same, it is seen that the time domain darnel must be symmetrical to have a unique 

output, that is, 

)(ty

                   ),(),( 212212  hh                                     (6.4) 

   If the input is a sum of two inputs,    txtx 21  , the output  from Eq. (6.2) is )(ty

2122211211212 )]()()][()([),()(  ddtxtxtxtxhty   







         (6.5) 

By expanding out the product and using the symmetric property of ),( 212 h , we obtain an output that is the 
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sum of responses of the system to  and  tx1  tx2

2




)](tax

0

 each separately and another term involving the integration 

of the time domain kernel and the cross product of the two signals as  

212211212212 )]()(),()]()]([)(  ddtxtxhttxLty   


2[xL

,( 12

          (6.6) 

Therefore, unless the integral term is zero for all time, superposition does not hold for a bilinear system, 

exemplifying the fact that the system is not a linear system. 

   Similarly it is easy to show that the response of the system to an input equal to a·x (t), where  is a constant 

is  

a

                                                           (6.7) )]([[ 2
2

2 txLaL 

The two properties are given in Eqs.(6.6) and (6.7) are sometimes used as an alternative definition for a bilinear 

system. 

   A bilinear system is causal if )2 h  for all 1  and 02  . In taking the absolute values of both 

sides of (6.2), it is possible to see that the bilinear system will give a bounded output if the input is bounded. Thus 

the bilinear system will be BIBO stable provided that  

Bddh  




()2 t 



 212 21 ),( 

(t 

   where B is finite                 (6.8) 

   If the input to the bilinear system specified in Eq. (6.2) is a delta function, the output will be 

),()(),()),()( 22222212112 tthdtthddhty   











     (6.9) 

Thus the response to a delta function is not the time domain kernel but is the time domain kernel evaluated on the 

line t 21  . Knowing the kernel on just that line is not sufficient information for characterizing the system 

with respect to input and output, and thus a bilinear system cannot be identified by knowing only its impulse 

response as was true for a linear system. 
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   The frequency domain kernel )2,1(2 jH

1, jj

j  for a bilinear system is defined as the two-dimensional Fourier 

transform of the time domain kernel as follows: 

21
)(

21222
2211),()(   ddehH j 










                    (6.10) 

Characterizing a bilinear system means that we specify either the time domain or frequency domain kernels. 

Several examples of bilinear systems will be presented. They include a square law device, a square law device, a 

square law device followed by a linear system, a linear system followed by a square law device and the cascade of 

linear system, a square law device and linear system. Each of these systems will be examined and the time domain 

kernels developed for their characterizations by using (6.10). 

   If the ) -( 1tx and ) -( 2tx  are replaced in (6.10) by their inverse Fourier transforms, the output  

is seen to be  
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The term in square brackets is the frequency domain kernel  212 ,  jjH , the first double integral gives the 

two-dimensional inverse Fourier transform of the product  1jX , and  2jX  but evaluated at times t1 and 

t2 , both equaling t. Thus  can be finally written as    )(ty

 
tttt

jjHjXjXFty



21 ,21221

1 ),()()()(                    (6.12) 

In this way it is seen not to be a product of the two-dimensional transforms, so the frequency domain kernel 

cannot be thought of as the frequency response of the bilinear system. 

If we take the one-dimensional Fourier transform directly of the output given in the basic definition (6.2), we 

obtain  

2121212

2121212

)()(),(
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dddtettxh
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              (6.13) 

The term in parentheses is the one-dimensional Fourier transform of the product of the two time-translated 

versions of the input signal  and thus is a function of both )(tx 1  and 2 . Since this term in parentheses cannot 

be taken outside the integral signs, it is seen that the result is not the product of the transforms. 

Square Law System. Let  and  represent the input and output, respectively, of a square law system 

as shown in Figure 6.2 and governed by the following input-output relationship: 

)(tx )(ty

                                       (6.14) )()( 2 txty 

A logical question at this time is: Is this system a bilinear system and if so what time domain kernel characterizes 

it? To answer this question,  is written in terms of a delta function as  )(tx

                                                         (6.15) 111 )()()(  dtxtx 





Substituting this expression for  into (6.14) and rearranging allows the output to be written as  )(tx

                           (6.16) 
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It is seen that the nonlinear square law system is in the proper integral form,(6.2), and the product of the delta 

functions can be identified as the time domain kernel 

                              )()(),( 21212  h                               (6.17) 

(·)2
x(t) y(t) 

Figure 6.2      A square law device 
 

The two-dimensional frequency domain dernel can be obtained by taking the Fourier transform of the time 

domain kernel, which for the ),( 212 h  above gives 
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1),( 21  jjH        for all 1  and 2                     (6.18) 

 Care should be used in interpreting this result as the frequency response of the system for it doesn’t represent 

the same information as the frequency response for the linear system. It is wrong to assume that it means that all 

signals are passed without alteration , as is the case for an all pass linear system. This is hardly the case for, if the 

Fourier transform of  is taken, it becomes  )(ty

)(*)()]([)]([ 22  jXjXtxFtyF                         (6.19) 

Thus the output transform is seen as the convolution of the Fourier transform of the input with itself. This will 

certainly give a different output transform, and as convolution has a tendency to broaden, the square law device 

actually creates new output frequency content outside the frequency range of the input. This result is typical of 

nonlinear systems in general. 

 

Linear System Followed by a Square Law Device. Many nonlinear systems can be modeled as a nomemory 

nonlinear filter followed by a linear system, and the resulting system is no longer memoryless. A special case of 

this type of system is where the nonlinearity is a square law device as shown in Figure 6.3. 

h(t)
 

y(t) (·)2
x(t)

Figure 6.3      Linear system followed by a Square law device 
 

The output  for this case can be written in terms of the impulse response of the linear system as  )(ty

212121
2 )()()()(])()([)(  ddtxtxhhdtxhty   












          (6.20) 

Thus the linear system followed by a square law device is a bilinear system and the time domain kernel is 

recognized from Eq.(6.2) as  

                               )()(),( 2121  hhh                                    (6.21) 

The corresponding frequency domain kernel obtained by taking the two-dimensional transform of the time 

domain kernel given in Eq.(6.21), is easily seen to be the product of the frequency responses of the linear portions 

of the bilinear system in each of the variables as  

                            )()(),( 21212  jHjHjjH                             (6.22) 

This doesn’t mean that the frequency response of this particular bilinear system is a product of the frequency 

response of the bilinear system; it simply gives the frequency domain kernel. 

 

Square Law Device Followed by a Linear System. Another combination that comes up frequently is a nonlinear 

system that is a no memory device followed by a linear system. The special case where the instantaneous system 

is a square law device is shown in Figure 6.4. 
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   To obtain the time domain kernel for this type of nonlinear system the output of the system above is first 

written as  

  11
2

1)()(  dtxhty  



                                (6.23) 

This can be put in the form of a bilinear system by rewriting  tx2  in terms of a delta function as  

212211
2 )()()()(  dtxtxtx  




                      (6.24) 

Substituting (6.24) into (6.23) and rearranging gives  

2121121 )()()()()(  ddtxtxhty   







                      (6.25) 

   Thus the system specified above is a bilinear system and can be characterized by its time domain kernel as  

)()(),( 121212   hh                               (6.26) 

The time domain kernel is seen to be nonzero only on the line 12    , and thus is symmetric by force. By 

taking the two-dimensional transform of the time domain kernel, the corresponding frequency domain kernel is 

given by  

 )()(
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                 (6.27) 

Thus the frequency domain kernel for this type of nonlinear system is obtained by taking the Fourier transform of 

the linear system represented by  jH  and replacing the   by the sum 21   . 

 

Cascade Linear System-Square Law Device-Linear System. The cascade of a linear system, square law device, 

and linear system is shown in Figure 6.5. If  and  represent the impulse responses of the pre- and 

postfilter, respectively, it is possible to show with a development similar to the two preceding sections that  

)(1 th )(2 th

 dhhhh 



 )()()(),( 22111212                       (6.28) 

Thus this cascade is a bilinear system as well. 

h2 (t)
 

y(t) 

Figure 6.5   Bilinear system composed of a cascade of linear system-squarer-linear system 

x(t) (·)2h1(t)
 

 

h(t)
 

y(t) 

Figure 6.4   Square law device followed by a Linear time invariant system  

(·)2
x(t)
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   By taking the two-dimensional Fourier transform of (6.28), we can see that the frequency domain kernel of 

this cascade system is given by  

 )()()(),( 2122111212   jHjHjHjjH                       (6.29) 

6.2.3 Trilinear Systems 

The input-output relationship for a trilinear system, described clearly in Bendat[1], is defined as  

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 8 of 24 

3213213213 )()()(),,()]([)(  dddtxtxtxhtxLty    











            (6.30) 

Where ),,( 3213 h  is the third-order time domain kernel, and its specification characterizes the system with 

respect to input-output relationship. 

   It can be shown, with developments similar to those of the previous sections, that a cuber, and a cuber 

followed by a linear time-invariant system, and a linear time-invariant system followed by a cuber, and a cascade 

of linear system, cuber, and linear system, are all special cases of trilinear systems. These special cases are shown 

in Figure 6.6, and the resulting time domain kernels for these special cases are summarized below: 
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y(t) (·)3
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 (b)  Cuber-linear system  

h2 (t)
 

(·)3

(a)  Cuber  

x(t) (·)3
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x(t) y(t) 

 (d)  Cascade: linear system-squarer-linear system  

 (c)  Linear system-cuber  

h2 (t)
 

y(t) (·)3h1(t)
 

 
x(t) 

Figure 6.6    Special Trilinear systems 
 

Their corresponding frequency domain kernels, obtained by taking the three-dimensional Fourier transform of 

the time domain kernels can be determined as follows: 
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6.2.4 Volterra Representation for General Nonlinear Systems 

Volterra showed that the relationship between input  tx  and output  ty for any nonlinear, causal, 

time-invariant, finite memory, analytic system, can be written as  

...)()()(),,,(

...)()(),()()()(

21210 0 0 21

21210 0 21210 1110





  
 

  

 

nnnn dddtxtxtxk

ddtxtxkdtxkkty




         (6.33) 

The output  is an infinite sum of a constant and other terms containing one, two, and k-dimensional 

integrals. The output is thus written as  

 ty

 )()()()( 210 tytytyyty n                        (6.34) 

and can be viewed as the sum of the responses from each kernel as shown in Figure 6.7. The first term is a 

constant and can usually be subtracted off without loss of generality, the second term is a convolution integral 

representing the linear portion, and the other terms are deviations from the linear at various levels. The , 0k

)( 11 k ,…, ),,,( 21 nnk    are called the first, second, and nth-order time domain kernels of the system. 

From Eq.(6.33) it can be seen that knowing the kernels is sufficient information for the determination of the 

output for any given input. 

y0

y1(t)

0k  
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The  part of the output appears as a convolution of the input with the first-order Volterra kernel and )(1 ty
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Figure 6.7    The Volterra representation of a general linear system 
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thus this part can be thought of as the linear part. The , taken alone can be shown to be a bilinear system. 

The word bilinear is used and has a precise mathematical definition as given in Section 6.2.2. 

)(2 ty

1The Fourier transforms of the time domain kernels )( 1k ,…, ),,,( 21 nnk    are called frequency 

domain kernels, and the first three of them are sometimes called linear, bilinear, and trilinear frequency response 

functions. 

The kernels are symmetric in all the tau variables, for example, 

),,(),,,,(),,(

),(),(

12332331233213

122212
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                   (6.35) 
k

This property of symmetry is a direct result of the fact that in the integral operation given in Eq (6.33), the 

)( ktx  can be easily reordered (associativity). Thus ),,2 n,( 1nk     must be symmetrical in all its variables. 

A time domain kernel is called separable if  

 )()...),,,( 2121 nnnn ggk ()( 21 g                             (6.36) 

Symmetry does not necessarily imply separability. 

It is important to note that the impulse response of bilinear and higher-order nonlinear systems is no 

longer sufficient information to determine the response to any input as was the case for a linear system. Now, if 

)()( ttx   in (6.33), the output  is  )(ty

               ),...,,()()( 210 tttkktkkty n),( tt                          (6.37) 

Therefore each of the kernels has a contribution to the impulse response so that the total impulse response does 

not allow the determination of the kernels but only the sum of the kernels, and only then for the equal time values 

or tn   ...21 . 

   A nonlinear system represented by its kernels can be symbolized by the simple block diagram shown in Figure 

6.8 which conveys the same structure as that shown in Figure 6.7. 

k0 
k1(τ1) 

k3(τ τ2) 1,. 
. 
. 

y(t)

Volterra Kernels 
 

Figure 6.8     Symbolic representations of Volterra system by block diagram 

x(t) 

 

 

6.3 Random Outputs for Instantaneous Nonlinear System 

If the input to an instantaneous nonlinear system is a random process , the output  is most often a 

random process as well. If we know the statistical properties of  of the input, a logical question is: What 

)(tX )(tY

)(tX
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are the statistical properties of the output process ? We will partially answer this question by finding out 

what statistical information about the input process is necessary to determine the fisr-order density, mean, and 

autocorrelation function for the output process and give the output expressions that can be analytically obtained. 

)(tY

)(t

6.3.1 First-Order Density for Instantaneous Nonlinear Systems 

Let the  and  be the input and output processes, respectively, of an instantaneous nonlinear 

system governed by the equation 

)(tX )(tY

          Y ))(( tXg                                  (6.38) 

Assume that the first-order density, , of the input process  is known, and we desire the first-order 

density, , of the output process . This problem is equivalent to the single function of a single random 

variable defined at a given time t that was presented in Chapter 2. Thus the solution can be obtained by using any 

of the techniques described in that chapter. These techniques include the fundamental theorem, the distribution 

function approach, the auxiliary random variable method, and the Monte Carlo method. In the following example 

the first-order density functions for the output processes of a full-wave and half-wave square devices are 

presented. 

),( tyf

)(tY

)(tX

),( tyf

 

Example 6.1 

The full-wave and half-wave square law device are characterized by the input-output relationships  

and , respectively, and shown in Figure 6.1c and g. If the first-order density of the input 

process is a Gaussian random process with first-order density function  as 

)()( 2 tXtY 

)()()( 2 tutXtZ 

)( txf
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Find the first order density for out processes  and . )(tY )(t

Solution 

For the full-wave square law device the first-order density for the random output process  can be 

determined using the fundamental theorem for each . If  represents the random variable at time  of the 

output process and  represents the random variable of the input process evaluated at a particular time  we 

have 

)(tY

tt tY

tX t
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For the half-wave square law device the flat spot for negative x  gives a delta function at the origin, and 

the first-order density of the output process becomes 
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The result above, although specific for the nonlinearities given, indicate that if a Gaussian process is the 

input to an instantaneous nonlinearity, the output process will not be a Gaussian random process. This is in 

contrast to the result for a linear system where a Gaussian random process as an input produces a Gaussian 

random process on the output. 

 

6.3.2 Mean of the Output Process 

Let  represent the input and  the output of an instantaneous nonlinear system characterized by 

. The mean of the output process can be calculated by a number of different methods, but in 

many problems it can be found conveniently by using one of the following two methods: 

)(tX

g)

)(tY

  tXtY ( 

Method 1. 

ttXtY dxxfxgtXgEtYEt
t

)()())](([)]([)( 



                    (6.39a) 

Method 2. 

tt
Y

tY dyyfytYEt
t

)()]([)( 



                            (6.39b) 

From both methods it is seen that the determination of the mean of the output process requires knowing the 

first-order density of either the input process or the output process. This means that a higher-order characterization 

of the input process than just the mean is required. So this result is in sharp contrast to that previously determined 

for linear systems where the mean of the input process was sufficient to determine the mean of the output process. 

 

Example 6.2 

Assume that the input to a square law device described by is a random process characterized by its 

first-order density . Determine the mean of the output process  defined by 

by both methods described above in Eqs.(6.39). 

2xy 

   t
x

tX xexf t

t
 )(tY

)()( 2 tXtY 

Solution 

Let  be defined as the random variable tY )(tYYt  at time t , thus giving . In using method 1, we 

have 

2
tt XY 

      1222  






 t
x

tttXttt dxexdxxfxXEYE t

t
 

In using method 2, we must obtain the first-order density for the output process . This density can be 

found by applying the transformation theorem as follows: 

)(tY
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We can use this density to obtain the mean of the output process as 
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If the density of the output process is not needed, the second method does involve an unnecessary step of first 

finding the density, since the integral is not made any easier to evaluate. 

 

6.3.3 Second-Order Densities for Instantaneous Nonlinearities 

Let the random process be the input to an instantaneous nonlinear system with output process 

. For the two times, t1 and t2, the corresponding random variables for the output are given as 

)(tX

  tXgtY )( 
               ))(()()),(()( 2211 tXgtYtXgtY                             (6.40) 

If the random variables and are characterized by their joint probability density function, the basic 

problem of finding the second-order density of the output process can be solved by applying one of many 

available problem is actually a simplified application, since there is no coupling for the solution of 

)( 1tX )( 2tX

x in terms of 

. y

 

Example 6.3 

Let the random process , characterized by its second-order densities , be the input to a 

square law nonlinearity given by . Find the second-order densities for the output process . 

)(tX ),,,( 2121 ttxxf

2)( xxgy  tY

Solution 

For convenience, the following notation will be used: 112211 )(,)(,)( YtYXtXXtX  , and 22 )( YtY  . 

The output random variables can then be written as 

2
22

2
11 , XYXY   

If and are continuous random variables and  is a continuous function, the two-dimensional form 

of the transformation theorem can be used. For and or 

1X 2X 2xy 

1y 02 y , there are no real roots, so the joint density 

function is 0. For and , there are four possible pairs of solutions: 01 y 02 y

   
   22112211

22112211

,,,

,,,

yxyxyxyx

yxyxyxyx




 

The joint density from the transformational theorem is 
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Substituting in real roots gives the joint density as 

     
   21,21,

21,21,

21

21,
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1
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yyfyyf

yyfyyf
yy

yyf

XXXX
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The second-order density of the output process of an instantaneous nonlinear system is a function of only the 

second-order density of the input process. Thus a second0order density characterization of the input process is all 

that is required to get the second-order characterization of the output process. 

 

6.3.4 Autocorrelation Function for Instantaneous Nonlinear Systems 

The output autocorrelation function  can be calculated by using the second-order density 

of the input process as follows: 

),( 21 ttRYY

),;,( 2121 ttxxf

Method 1. 

21212121

212121

),;,()()(

))](())(([)]()([),(

dxdxttxxfxgxg

tXgtXgEtYtYEttRYY

 










                    (6.41) 

However, if the second-order density, , of the output happens to be known, the output 

autocorrelation function can be determined by  

),;,( 2121 ttyyf

   Method 2. 

212121212121 ),;,()]()([),( dydyttyyfyytYtYEttRYY  







                 (6.42) 

As we noted in determining the mean, in general, the second-order densities of the input process are required in 

order for us to get the autocorrelation function of the output process for an instantaneous nonlinearity. Thus the 

autocorrelation function of the input process is often not sufficient for determining the autocorrelation of the 

output. If the input process is a wide sense stationary Gaussian process, then the mean and autocorrelation 

function of the input determines the second-order densities of the input and thus is sufficient information for 

determining the autocorrelation function of the output random process. 

   In the next few examples autocorrelation functions will be found for a number of common communication 

theory nonlinearities. 

 

Example 6.4 

Suppose that the input to a full-wave square law device is a zero mean wide sense stationary Gaussian 

random process characterized by its autocorrelation function 

)(tX

)(XXR . Find the autocorrelation function 

)(YYR for the output process . )(tY
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Solution 

By method 1 the autocorrelation function of the output is calculated directly in terms of the input second-order 

density using 

    2121
2
2

2
1

2
2

2
121 ,),(

21
dxdxxxfxxXXEttR XXYY  








  

Since is a Gaussian random process, the random variables )(tX 11)( XtX  and are jointly 

Gaussian. Thus the formula above for the autocorrelation is the fourth-order moment determined in Example 2.28. 

Recall that it is given by 

22 )( XtX 

   2
12

2
2

2
1

2
2

2
1 1  XXE  

Where 

     

     
       

   
 
 000
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)0(0,

)0(0,
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XX

XXXX

XXXX

R

ttR
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ttRXEXEXXE

RttRXEXE

RttRXEXE





















 

Substituting the expressions above for and 2
2

2
1 , 12 into the fourth-order moment equation gives the output 

correlation function as 

)()0()0()
)0(

)(
1)(0(),( 21

2212
21

2 ttRRR
R

ttR
RttR XXXXXX

XX

XX
XXXX 


  

The second-order densities for the output of a square law device were determined in Example 6.3. The 

autocorrelation function of the output process can now be determined directly from that result using method 2 as 

follows: 

212121212121 ),;,()]()([),( dydyttyyfyytYtYEttRYY  







  

Substituting the density function gives 

     
    212121

0 0 2121
21

21

,,

,,
4

,
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dydyyyfyyf

yyfyyf
yy

ttR

XXXX

XXXXYY



  
 

 

The joint probability density function for the random variables )( 11 tXX  and , defined across 

the zero mean wide sense stationary process , is Gaussian with second-order density determined from (4.133) 

as 

)( 22 tXX 

)(tX
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Substituting this into the equation above for ),( 21 xxf  21, ttRYY  gives a very messy integral that needs to be 
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evaluated. In this example the first method takes an easier path to finding the solution for the autocorrelation 

function of the output process. 

 

Example 6.5 

It is desired to find the output autocorrelation for a hard limiter whose nonlinearity is shown in Figure 6.1d if the 

input process is zero mean wide sense stationary Gaussian random process. The process is characterized by its 

autocorrelation )(XXR . For the random variables )( 11 tXX  and )( 22 tXX  , where 21 tt  its 

second-order density function, in terms of the normalized autocorrelation function is known to be ),( 21 xxf

 














)(1

)(2
exp

)(12

1
),(

2
221

2
1

21 


 XX

XX

XX

xxxx
xxf  

Where 

)0(

)(
)(

XX

XX
XX R

R    

Solution 

The autocorrelation function for the output of a hard limiter will be found by using Eq.(6.41): 

      
   

210

0

2121

0

0 21

21

0 0

21210 0 21

212121

212121

),()1)(1(),()1)(1(

),()1)(1(),()1)(1(

),(

)]()([),(

dxdxxxfdxdxxxf

dxdxxxfdxdxxxf

dxdxxxfxgxg

tXgtXgEtYtYEttRYY

  
  

 







 

 

















 

Since is a probability density function, it is known that it integrates to one as follows: ),( 21 xxf

210

0

21

0

0 2121

21

0 0

21210 0 21

),(),(

),(),(1

dxdxxxfdxdxxxf

dxdxxxfdxdxxxf

  
  







 

 




 

After solving this equation for the sum of the integrals in the second and fourth quadrant and substituting the 

result into the equation for autocorrelation function, we have 

1),(2),(2),( 21

0 0

21210 0 2121      

 
dxdxxxfdxdxxxfttRYY  

Then, replacing by in the second integral, we find it to be equal to the first integral from the symmetry of 

the . So the autocorrelation becomes 

1x 1x

),( 21 xxf

1),(4),( 210 0 2121   
 

dxdxxxfttRYY  

with given in the problem statement. The procedure from here is a little messy involving a change of 

rectangular to polar coordinates, integration, and a change of varivales and a final integral. Details for obtaining 

this integral are given in Thomas [5], where he showed the final result to be 

),( 21 xxf
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where 21 tt  . 

There are several other basic approaches that can be used to solve for the autocorrelation function of the 

output of instantaneous nonlinear systems. These include the characteristic function method, Price’s theorem for 

Gaussian input processes, and series expansions. Thomas [5] has excellently and thoroughly developed these 

techniques as well as derived formulas for the autocorrelation functions of the outputs of instantaneous nonlinear 

systems to a Guassian random process input when the nonlinearity is a full-wave odd, full-wave even, and 

half-wave vth law device given by . The basic techniques he explored, however, can be applied to any 

type of instantaneous nonlinearity. 

vxy 

 

6.3.5  Higher-Order Moments 

Let  and  are the input and output processes for an instantaneous nonlinear system given by 

. For a square law device we see that to get the nth-order moment of the output, we must know 

the input density or know the moments of the input process of order 2n. Thus a higher-order characterization of 

the input process is necessary. In general, if we consider a polynomial approximation to , we need to know 

all order moments of the input process to be able to determine the nth order moments of the output process. 

)(tX

 (tXg

)(tY





))(tY 

 g

6.3.6  Stationarity of Output Process 

Let  and  be the input and output processes for an instantaneous nonlinear system given by 

. We are able to make a few general statements concerning the stationarity of the output process 

with respect to the stationarity of the input process. 

)(tX

 (tXg

)(tY

))(tY 

   (1) If  is stationary in the mean, the output will not necessarily be stationary in the mean. )(tX

(2) If  is stationary of any order n, the output process is stationary of order n. )(tX

(3) If  is wide sense stationary, then  is not necessarily wide sense stationary. )(tX )(tY

6.4 Characterizations for Bilinear Systems 

If the input to a bilinear system is a random process , the resulting output  is also a random 

process. We now explore the statistical relationships that exist between input and output processes. Specifically, 

we will derive the output mean and autocorrelation function, and the cross correlation between input and output 

processes. Specifically, we will derive the output mean and autocorrelation function, and the cross correlation 

between input and output, for a causal bilinear system represented in (6.2) by the input-output relationship. 

)(tX )(tY
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21210 0 212 )()(),()(  ddtXtXhtY   
 

                    (6.43) 

Assume that ),( 212 h

),( 21 tt

 is known and that  is a random process characterized by its mean and 

autocorrelation function, and  and , respectively. The output process  can be partially 

characterized by its mean  and autocorrelation function   , Also the cross-correlation 

function , between the input and output is important. These partial characterizations are determined 

for the output of a bilinear system in the following sections. 

)(tX

,( 21 ttYY )(tXE

 )(tYE

 )R )(tY

),( 21 ttRYY

RXY

6.4.1 Mean of the Output of a Bilinear System  

The mean of the output process is obtained by taking the expected value and integration to give  

21210 0 212 )]()([),()]([  ddtXtXEhtyE   
 

                  (6.44) 

The output mean can be determined only if we know the autocorrelation function of the input. Thus a higher-order 

characterization of the input, other than just the mean, is required for determining the mean of the output of a 

bilinear system. This is in contrast to the result for linear system, which requires only the mean of the input 

process to be known to determine the mean of the output process. 

  If the input process is wide sense stationary with a zero mean and autocorrelation function )(XXR  , then the 

 from (6.44) reduces to   )(tYE 

21210 0 212 )(),()]([  ddRhtyE XX   
 

                       (6.45) 

6.4.2 Cross-correlation between Input and Output of a Bilinear System 

The cross correlation between the input and output process can be written as  

 

 21210 0 212

21210 0 212

)()()(),(

)()(),()()()(),(





ddtXtXtXEh

ddtXtXhtXEtYtXEttRXY







 

 

 
 

 

   (6.46) 

The cross-correlation function for the input and output of a bilinear system is thus a function of the third-order 

moments of the input process. Thus, if only the second-order moments were given, we would not have been able 

to determine the ),( ttRXY . 

6.4.3 Autocorrelation Function for the Output of a Bilinear System  

The autocorrelation function is obtained by taking the expected value of the product of the output at time  and 

the output at time  as  

1t

2t
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 (6.47) 

 The autocorrelation function for the output of a bilinear system is thus seen to be a function of the fourth-order 

moments of the input process. Clearly, a higher-order characterization of the input process—the fourth-order 

moments—is needed to determine just the output autocorrelation function . ),( 21 ttRYY

 

6.5 Characterizations for Trilinear Systems 

We now briefly look at the characteristics of the output  of a trilinear system to a random input . 

In particular, the mean, cross-correlation function, and autocorrelation function are presented, and we learn that 

much higher-order characterizations are required to determine them. 

)(tY )(tX

6.5.1 Mean of the Output of a Trilinear System 

The mean of the output process of a trilinear system is obtained by taking the expected value of both sides of (6.30) 

and interchanging the order of expected value and integration to give 

3213213213 )]()()([),,()]([   











 dddtxtxtxEhtyE            (6.48) 

The output mean can be determined only if we know the third-order moments of the input process. Thus a 

higher-order characterization of the input, other than just the mean and autocorrelation function, is required for 

determining the mean of the output of a trilinear system. 

6.5.2 Cross-correlation between Input and Output of a Trilinear System  

The cross correlation between the input and output process can be written by multiplying (6.30) by  and 

taking the expected value operator through the integral signs: 

)(uY

3213213213 )]()()()([),,()]()([  ddduXuXuXtXEhuYtXE   











     (6.49) 

The cross-correlation function for the input and output of a bilinear system is a function of the fourth-order 

moments of the input process. 

6.5.3 Autocorrelation Function for the Output of a Trilinear System 

The autocorrelation function is obtained by taking the expected value of the product of the output at time t and the 
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output at time u as follows: 

  321321321321
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dddddduXuXuXtXtXtXE

hh

ddduXuXuXh

dddtXtXtXhEuYtYE









 

     

  

  

















































    

(6.50) 

The autocorrelation function for the output of a trilinear system is seen to be a function of the sixth-order 

moments of the input process. Thus, unless these sixth-order moments of the input are given, we would not be 

able to determine the autocorrelation function for the output process of a trilinear system to a random process 

input. 

6.6Characterizations for Volterra Nonlinear Systems 

If the input to the nonlinear system is a random process, the resulting output is a random process. We explore 

here the statistical relationships that exist between input and output processes. Specifically in the following 

example the output mean and autocorrelation function, and the cross correlation between input and output, will be 

derived for a system represented by a truncated Volterra expansion of the second order. 

 

Example 6.7 

A nonlinear system is known to be characterized by a second-order Volterra expansion as 

          
 


0 0 21212120 10 ,)(  ddtxtxkdtxkktY           (6.51) 

Assume that ,0k  1k , and  212 , k

XE

 are known and that  is a random process characterized by its mean 

and autocorrelation functions by  and . Find (a) the mean 

)(tX

))(t ,( 21 ttRXX  )(tYE  of the output process, 

(b) the cross correlation between the input and output, and (c) the autocorrelation function of the output process. 

Solution 

(a) The mean of the output process is obtained by taking the expected value of both sides of (6.51) and 

interchanging the order of expected value and integration to give 

             
 


0 0 21212120 11110 ,)(  ddtXtXEkdtXEkktYE       (6.52) 

The output mean can be determined only if we know both the mean of the input process and the autocorrelation 

function of the input. Thus we require a higher-order characterization of the input. This is in contrast to the result 

for linear systems which requires only the mean of the input process to determine the mean of the output process. 

For the special case where the input process is wide sense stationary which a zero mean and autocorrelation 

function )(XXR , the first integral of (6.52) is zero. The expected value in the second integral can be written in 

terms of the time difference only: 
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0 0 21212120 )(,)(  ddRkktYE XX                      (6.53) 

(b) The cross correlation between the input and output can be written as follows using (6.51) and the 

definition of the cross-correlation function as 

 
          



 



 
 

0 0 212121210 1101

2121

,)()()(

)()(),(

 ddtXtXktXdtXktXktXE

tYtXEttRXY

 (6.54) 

After multiplying out and taking the expected value operator through the integral sign, we reduce (6.54) to 

      

       


 







0 0 2122121212

0 121111021

)(,
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ddtXtXtXEk

dtXtXEktXEkttRXY
                 (6.55) 

The cross-correlation function for the input and output of a second-order Volterra system is a function of the first, 

second, and third-order moments of the input process. 

(c) The autocorrelation function is obtained by taking the expected value of the product of the output at time 

and the output at time as follows: 1t 2t

 

           

            





 


 





 



 

 
 

 

0 0 2122122120 112110

0 0 2121112120 111110

2121
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ddtXtXEkdtXEkk

ddtXtXEkdtXEkkE

tYtYEttRYY

 (6.56) 

Multiplying out the terms in parentheses it is seen that the contains nine terms and depends on the 

first-through the fourth-order moments of the input process. Thus just knowing the mean and autocorrelation 

function is not sufficient for determining the autocorrelation function is not sufficient for determining the 

autocorrelation function of the output process. 

),( 21 ttRYY

 

6.7 Higher-order Characterizations 

We have seen that the mean, autocorrelation function, and power spectrum are sufficient for determining the 

mean, autocorrelation, and power spectrum for the output of linear systems to random processes. For nonlinear 

systems we have already noted that higher-order properties than the second-order statistics must be defined in 

order to determine even the output statistical properties of order two. The useful definitions of moment function, 

cumulant function and higher-order spectra are now presented. 

6.7.1 Moment Function for Random Processes  

The moment function for a random process can be considered to be an extension of the autocorrelation function. 

The autocorrelation function is the expected value of the product of the random variables defined at two different 

times, whereas the moment function is the expected value of the product of the random variables defined at more 
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than two times. Let 121 ,...,,,  ktttt   be a comb of times as shown in Figure 6.9, and let 

)( 1k),...,(),( 1 XtXtX  represent random variables from a given random process . The kth order 

moment function 

)(tX

)1,...,,,( 21... XXX tttt kM   can be defined in terms of the random variables at 

these times as 

)](),...,(),([),...,,,( 11121...   kkXXX tXtXtXEttttM            (6.57) 

t t+τ1 t+τ2 t+τk-1

Time 

Comb …

Figure 6.9    Comb of times for cummulant function definition 
 

   In general, the moment function is a function of the k time variables 121 ,...,,, kt  . We say that a random 

process is kth order moment stationary if the expected value given in (6.57) does not depend on the t 

variable and is only a function of 

)(tX

121 ,...,, k . This property is stronger than stationary in mean and 

autocorrelation yet weaker than stationarity of order k, which would require the equality of all density functions 

for the random variables at the comb of times and be independent of . t

6.7.2 Cumulant Function for Random Processes 

   The kth order cumulant function ),...,,,( 121...  kXXX ttttC  , for a random process , is 

defined in terms of the cumulants of the random variables 

)(tX

)(),..., 1(),( 1 ktXtXtX   for the comb of 

times specified by 

0
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21
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 ＝               (6.58) 

Where ),...,,( 21 n

21 ,...,,,  tttt

 is the joint characterization function for the random variables defined at the comb of 

times 1 k . The first-, second-, and third-order cumulant functions can be determined using 

results from Chapter 2 to be  
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             (6.59) 
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With the random variables defined above for the comb of times and assuming moment stationarity 

of the proper order, we see that the first four cumulant functions for the process  do not depend on t and 

can be written as functions of the distances between the teeth of the comb as follows: 

kXXX ,...,, 21

)(tX
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                   (6.60) 

 

6.7.3 Polyspectrum for Random Processes 

   The power spectral density, or power spetrum, is a partial characterization of a random process and is related 

to the autocorrelation of a wide sense stationary process through the Fourier transform. In working with processes 

generated as outputs from nonlinear systems, it is necessary to include higher-order characterizations. For these 

problems it is useful to define the polyspectrum for a random process which is a higher-order characterization. 

   The kth-order polyspectrum ),...,,( 121... kXXXS   of a random process , with moment stationarity 

of the kth order is defined as the (k-1)-dimensional Fourier transform of its kth order cumulant function defined by 

Eq.(6.58) 

)(tX

   Thus for  and , the T
k ],...,,[ 121   T

k ],...,,[ 121   ),...,,( 121... kXXXS   is defined by 

 djCS T
XXXXXX )exp()(...)( ......   















＝                     (6.61) 

Notice that this definition uses the Fourier transform of the cumulant function rather than the moment function. 

The most commonly used polyspectra are the spectrum, bispectrum, and trispectrum. These are given as follows: 

Spectrum 





 11111 )exp()()(  djCS XXXX                           (6.61) 

   Bispectrum 

2122112121 ))(exp(),(),(  ddjCS XXXXXX  







             (6.62) 

   Trispectrum 

321332211321321 ))(exp(),,(),,(  dddjCS XXXXXXXX   











    (6.63) 

   Use of these polyspectra has led to new methods in system identification and detection algorithms. A thorough 

discussion of polyspectra and the use of the cumulant spectrum is presented in Nikias and Petropuou [10], Mendel 

[8], and Nikias and Mendel [6]. 
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6.8 Summary 

   It is virtually impossible for our modern-day problems to not involve nonlinear systems. Therefore the main 

purpose of this chapter was to present a framework for determining various characterizations of output processes 

of nonlinear systems with random processes as inputs. In Chapter 5 it was shown that output mean and 

autocorrelation function of a linear time-invariant system could be obtained knowing only the input mean and 

autocorrelation, respectively, and that the output spectral density could be obtained in the frequency domain by 

using the transfer function of the system. 

   It was shown in this chapter that even the simplest nonlinear system, the instantaneous nonlinear system, 

requires additional statistical information other than just the mean and autocorrelation function, namely the first- 

and second-order densities of the input process to determine the mean and autocorrelation function of the output 

process. 

   A hierarchy of nonlinear systems was presented including the instantaneous nonlinear, bilinear, trilinear, and 

the general Volterra system. These systems input and output relationships were described in terms of integral 

equations involving various time domain kernels. This was similar to the description of a linear system in terms of 

the convolution integral, but for these nonlinear systems the defining integral is represented by a higher 

-dimensional integral. Analogously, frequency domain kernels were defined that could be used to obtain 

higher-order spectra for the output. 

   The transformation theorem for random variables was the basic tool used for finding output characterizations 

of instantaneous nonlinear systems to random inputs. It was used to obtain the first- and second-order density 

functions and the mean and autocorrelation function of the output process. It was shown that a first-order density 

of the input is required to determine just the mean of the output process and that a second-order density of the 

input process is required to determine the output autocorrelation function. It was also shown that for instantaneous 

nonlinear systems that an nth order stationary input process produced an nth-order stationary output process. 

Solving for the output autocorrelation function was, in general, a very complex process even for Gausssian 

process inputs. 

   The next level of nonlinearity discussed was the bilinear system. Simple bilinear systems were given as 

examples and involved a linear system or systems in cascade with a square law device. It was again shown that 

higher-order characterizations of the input process are required to determine just the output mean and 

autocorrelation function. 

   Trilinear and general Volterra nonlinear systems were then presented where inputs and outputs were modeled 

in terms of first-, second-, and higher-order kernels. Moment and cumulant spectra were defined and their 

relationships explored.  

   Missing from our development is the presentation of Weiner functionals which are useful for nonlinear system 

identification. Basically functionals are selected such that their outputs are orthogonal for Gaussian input 

processes.  

 

----------This is the end of Chapter06---------- 
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