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5 Linear Systems: Random Processes 

5.1 Introduction 

In many scientific disciplines the description of input-output relationships for various types of systems is 

paramount to understanding the system. The inputs could be many different things. However, they are 

many times considered some form of excitation to the system, with the output representing the response of 

the system. System description can take many forms. When the input to a system can be thought of as a 

realization from a particular random process, the output signal can be determined by using the system’s 

definition. Each realization of the process in turn generates an output signal. In this way there exists a 

mapping through the system from a set of outcomes governing the input random process and thus defining 

an output random process. 

    In this chapter we will explore the relationships that exist between input process characterization and 

output process characterizations for a special class of systems called linear systems, while in the next 

chapter, we will explore the same problem for nonlinear systems. For example, the following question is 

the main theme: Knowing the mean, autocorrelation function, first-order density, and stationarity of the 

input process, what are the mean, autocorrelation function, first-order density, stationarity of the output 

process? It will be seen that a particular partial characterization of type may not be sufficient for 

determining corresponding partial characterization of one the same type for the output process. The 

presentation begins with definitions of signals and systems pertinent to this development and is followed 

by deeper exploration of the partial characterizations of the output process for linear time-varying and 

time-invariant systems of both discrete time and continuous time representations. 

5.2 Classification of Systems 

A systems can be thought of as a mapping from a closed set, , called the input signal set to a closed set, IS

OS , called the output signal set. If the input and output signals are continuous time signals, then the 

systems represented by T[·] is called a continuous time system. Similarly, if the inputs and output signals 

are discrete time signals, the system is called a discrete time system. It is conventional to indicate 

continuous time input and output signal as错误！未定义书签。错误！未定义书签。  tx 错误！未定义

书签。 and , respectively, whereas discrete time input and output signals are indicated by  and 

 respectively. The input and output functional relationships for both continuous time and discrete time 

systems will be indicated by  as shown in Figure 5.1.Also shown are two other types of mixed 

continuous time and continuous-discrete time systems. Examples are digital to analog and analog to digital 

convertors. 

 ty  nx

 ny

 T

Let us consider some special characteristics that these systems possess, for example linearity ,causality, 
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and time invariance. Letting  represent the mapping of a system and  T  tx 错误！未定义书签。 and 

 ,the input and output, respectively, a continuous time system can be represented as follows:  ty

    txTty                                      (5.1)  

Although the following presentation users continuous time system formality, the concepts and 

definitions that follow will apply to any of the four types of systems presented in Figure 5.1. 

 

  A system is called a linear if for every  tx1  and   IStx 2 , the input set, and all constants  and 1a

2a , 

          txTatxTatxatxaT 22112211                          (5.2) 

If a system is no linear, it is called a nonlinear system. 

   Let  and  represent the input and output of the system. A system is described as being  tx  ty time 

invariant if the response to a time-translated version of that input signal results in a time-translated version 

of the output signal for all choices of input signal. For all   1Stx  , 

If , then     txTty         tytxT                         (5.3) 

A system that is not time invariant will be called time varying. 

A system is called causal if its output at time ,0t  0ty ,resulting from input dose not depend on  tx

 tx  for any time , for all  and all inputs 0tt  0t  tx . This means that the output of a causal filter 

cannot precede or anticipate the input signal to produce the output. 

A system is called a random system if the output depends not only on the input but on the outcome of 

an underlying random experiment. In many cases its response can be seen to be a function of one or more 

random variables. If a system is not random, it is called a deterministic system. 

5.2.1 Linear Time-Invariant Systems 

A linear continuous time-invariant filter with input  tx  and output  ty  can be characterized by the 

following rule of correspondence (the convolution integral): 

T[·] x(t) y(t) 

(a) Continuous time systems 

T[·] x[n] y[n] 

(b) Discrete-time systems 

T[·] x(t) y[n] 

(c) Continuous-discrete time systems

T[·] x[n] y(t) 

(d) Discrete-continuous time systems 

Figure 5.1     Systems 
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          dxthtxTty 



                           (5.4) 

By making a change of variables the convolution integral can also be written as  

                                                (5.5)        dtxhty  




If the input  is an impulse function tx  t , then the output  ty , after using the sampling property for 

 t , equals  is referred to as the impulse response of filter. th 
The linear time-invariant system specified by (5.4) above will be causal if  for all   0th 0t . 

For a causal filter the input output equations are easily seen to effect the limits for the integrals above and 

can be written as  

         





0
 dtxhdxthty

t
                     (5.6) 

5.2.2 Linear Time-varying Systems 

A certain class of linear time-varying filters can be characterized by an  ,th  which represents the 

response to an impulse at time  . The response of a system to an impulse an time 0  is not a translated 

version of the response of the system to an impulse at 0. An example of an  ,th  is shown in Figure 5.2. 

It is seen that the response to an impulse at time 2  is longer and lower than the response of the system to 

an impulse at time 1 , which could represent a system that becomes sluggish as time increases. The 

 1, th  and  , 2th  are just two of the profiles that make up  ,th , The input-output relationship for 

such filters is given by 

                                    (5.7)        dxthty 



 ,

The linear time varying filter will be defined to be causal if   0, th  for t . 

 

h(t,τ) 

τ1 
τ0 

τ 

τ4

τ3

τ2

t=τ 

h(t,τ0) 

h(t,τ1) 

h(t,τ3) 

h(t,τ2) 

h(t,τ4) 

t 

Figure 5.2 An example of the impulse response function h(t,τ) for a linear time varying system 
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5.3 Continuous Linear Time-Invariant Systems (Random Inputs)  

Consider a random process  to be the input to a nonrandom linear filter with impulsive response 

. For every  an input waveform 

 etX , 
 th ie  ietX ,  is specified, and an output waveform  can be 

given by the convolution integral of the realization with the impulse response as  

 ietY , 



                            (5.8)      



  dhetXetY ii ,,

Thus  is a mapping from , the sample space of the underlying experiment for , to a set of 

time functions and is, therefore, a random process 

 etY , S  tX

 etY , . For notation purposes the expression above can 

be written as a function of the input random process   tX  in the following the way: 

       dhtXtY 



                                (5.9) 

The problem of prime importance is the statistical description of the output process  in terms of the 

given characterizations of the input process 

 tY

 tX .For example, we might ask what is the mean  ty  of 

the output process, and is the knowing of the mean  tx  of the input process sufficient to determine it? 

Similar questions may be asked about autocorrelation functions, first-order densities, and nth-order 

densities. These questions are answered in the following sections. 

5.3.1 Mean in-mean out (Linear Time-Invariant Filters) 

Taking the expected value of both sides of Eq.(5.9) give the mean of the output random process as  

         



  




 dhtXEtYEtY                       (5.10) 

If     htXE   is finitely integrable, it is possible to interchange the expected value operator, which 

itself is an integral operator, with the integral for the convolution. Interchanging the expected value and 

integration gives 

        



  dhtXEtYEtY                      (5.11) 

Assuming that the linear filter is not random we can take  h  outside the expected value to obtain 

     



  dhtXEtY                            (5.12) 

Since       ttXE x , the following very important result is obtained: 

         thtdhtt XXY  



                      (5.13) 

When the mean of the input process is a constant, the mean of the output process will be constant as 

well: 
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    YXY dht   



                               (5.14)  

If the system transfer function is defined as the Fourier transform of the impulse response, the mean of the 

output process can written as  

 0jHXY    

Where                         (5.15)     dtethjwH tj


Thus it is seen that the mean of the output process  tY  can be obtained by multiplying the input 

mean X  by the dc gain .  0jH

5.3.2 Autocorrelation in-Autocorrelation out (Linear Time-invariant 

Filters) 

If the input process has an autocorrelation function  utRXX , , a procedure paralleling the development 

given in the previous section is used to obtain the output correlation function  and thus the 

relationship between the input autocorrelation and the output autocorrelation. Using the definition of the 

autocorrelation of the output process and (5.9) representing the linear filter, we have  

 utRYY , 

                  (5.16) 

      
        



 



 







 dhuXdhtXE

uXtYEutRYY ,

Interchanging integrals and expected values, and assuming a deterministic filter, we rewrite (5.16) as  

          

      



ddhhutR

ddhhuXtXEutR

XX

YY

 
 




















,

,
                    (5.17) 

If the input process is wide sense stationary, its autocorrelation function  XXR  is a function of the 

time difference only. By letting ut  and using the fact that  tX

t

 is a wide sense stationary 

process, we can treat  as a function of the time difference  utRYY ,  u  alone. This we denote by 

 YYR : 

                   (5.18) 

       
     

        pHppHFRor

hRh

ddhhRR

XXYY

XX

XXYY















 

1






Equation (5.18) expresses the output autocorrelation function  YYR  in terms of the convolution of 

 h ,  XXR  and the time reversed impulse function  h .By taking the Fourier transform of both 

sides of (5.18), the relationship between in the input and output power spectral densities can be obtained as  
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       
   



XX

XYYY

SjH

jHSjHS
2

 

                           (5.19) 

 

Example 5.1 

Let the random process  be the input to a linear system represented by its impulse response  tX  th  

resulting in the output process .The input was applied at minus infinite. We have  given by 

, and that  is a random telegraph process with autocorrelation function 

.Find the power spectral density 

 tY

 tX

 th

   teth t 2

  ||2  eRxx  YYS  for the output process. 

Solution 

The output power spectral density depends upon the input power spectral density and the magnitude 

squared of the transfer function .The power spectral density of the input process is determined as  

    
4

4
2

||2


 



 
  deeRFS j

XXXX  

The transfer function  jwH  is obtained from the impulse response as  

      
1

1


 



 
 

j
dtetethFjH j  

 

Therefore from (5.19) the power spectral density of the output can be written as  

     

  41

4

4

4
|

1

1
|

||

222
2

2













j

SjHS XXYY

 

The power spectral density could have also been obtained in terms of the Laplace transform as 

follows: 

          jpXXXX pHPpHS  |  

 

5.3.3 Cross Correlation of the Input and Output 

If  represents the input process to a linear time-invariant filter characterized by an impulse response 

, the output  can be expressed by the convolution integral given in (5.9). The cross-correlation 

function for  and  is computed by taking the expected value of the product of  and 

, where  is expressed by the convolution integral. This results in  

 tX

 t

 u

h

Y

 tY

 t
 u

X

Y

 tY  tX
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      
     

       



duXtXEh

duXhtXE

uYtXEutRXY







 














,

                         (5.20) 

Recognizing the expected value to be the autocorrelation function for the input process , the 

cross-correlation function between the input and output becomes 

 tX

                                         (5.21)        dutRhutR xxXY  



,,

Thus the cross-correlation function between the input and output process can be determined by knowing the 

input process autocorrelation and the impulse response defining the system. 

If the input process is wide sense stationary, the autocorrelation function can be written in terms of the 

time difference only as  

                                          (5.22)        dutRhutR xxXY  



,

Thus the cross-correlation function between input and output processes for a wide sense stationary input 

process is a function of time difference ut   only, and it can be written as 

                             (5.23) 
   

    



dhR

dRhR

XX

XXXY















The  XYR  is recognized as a convolution integral of the autocorrelation function of the input process 

and a time-reversed version of the impulse response of the system: 

   
   

      pHpRor

hRR

XXXY

XXXY

 


1



                           (5.24) 

Following a similar development for the cross-correlation between  tY  and  tX , it can be shown that 

 YXR  is  

               
     
      ppHRor

RhR

XXYX

XXYX

 1







                           (5.25) 

This result can also be obtained by replacing   by   in (5.24) and using the fact that  XXR  is an 

even function of  . 

Since the cross-correlation function has been shown to be a function of time difference only, the input 

autocorrelation function is a function of time difference only , and the output autocorrelation function is a 

function of time difference only ,the input and output process  tX  and  tY  are jointly wide sense 

stationary. 

   As a nemonic notice that if the right variable is changed from X  to Y  passing through a system 

with impulsive response  h  that  XXR is convolved with a time-reversed impulsive response 
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 h  or if a left variable is changed from X  to Y  passing through a system with impulse response 

,that  th  h  is convolved with  XXR .This relationship is shown in Figure 5.3. 

Notice that (5.18) can be easily confirmed by using this nemonic as both right and left variables will 

be changed .This approach can be used for ease in calculating cross-correlation and autocorrelation 

functions for outputs of linear systems with multiple inputs and multiple outputs. 

 

Example 5.2 

A given linear time-invariant causal filter has impulse response   teth t  , and its input  tX  

is a zero mean wide sense stationary process characterized by its autocorrelation function 

  ||221   eRXX ,Suppose that the input was applied at time t ,resulting in the output process 

. Find the following:  tY

(a) The mean  tY  of the output process  tY . 

 YXR . (b) The cross-correlation function

 XYR . (c) The cross-correlation function 

 wYYS . (d) The output power spectral density 

 YYR  (e) The output autocorrelation function 

Solution 

(a) The mean of the output process can be found by using (5.13) and is determined as 

        00   te tX

 

thtX  

h(τ)* 
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(b) The cross-correlation function YXR  between output process  tY  and input process  tX  can 

be determined from (5.25) as  

RXX(τ) RYY(τ)

*h(-τ) 

Figure 5.3   Relationships between input ,output ,and cross correlation functions for a 

linear time invariant system 
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         
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
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


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




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1
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1
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1

1
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1

1

1

||211

ppp
F

ppp
F

eFteFFppHFR t
uXXYX






  

 

To obtain the inverse transform, a partial fraction expansion for the term in the brackets is performed 

followed by the inverse bilateral Laplace transform to get  

       

   













 


























22

1

6

1

2

1

3

2

2

61

2

21

1

32

etee

ppp
FRYX

 

(c) To find  XYR ,we can use the fact that      YXXY RR  to obtain  

       teeeRR YXXY   22

6

1

2

1

3

2 





   

(d) To find  YYS , the power spectral density  XXS  of the input must first be found. From the 

definition of power spectral density, we have  

    
4

2

2

1
2

||2






 


 eFRFS XXXX  

From (5.19) the power spectral density  YYS  of the output process  tY  in terms of the input power 

spectral density is  

       

  41

2

4

2
|

1

1
|||

22

2
22















j
SjHS XXYY

 

(e) The autocorrelation function  XXR  can be found from Eq. (5.18) as the convolution or as the 

inverse transform. The easiest way is to use the Bilateral inverse as follows: 

        

      
















1

1

22

2

1

11

1

pppp
F

pHppHFR XXYY



 

 

A partial fraction expansion is performed for the function in {}, and then an inverse bilateral Laplace 
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transform to give the output autocorrelation function as  

         

       

||2||

22

1

6

1

3

1
6

1

6

1

3

1
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2

31

2

31

1

31

1

31










































ee

eeee

pppp
RYY

－－

 

5.3.4 nth-Order Densities in-nth-Order Densities Out 

To arrive at the output densities, it is worthwhile to discuss the first-order density of the output. Rewriting 

the input-output relationship (5.4) as 

       dthXtY  



                              (5.26) 

it is easily seen that the output random variable   tYtY   defined at any time  not only depends on the 

input  at time t  but on  for all 

t

 tX  tX  t . Therefore, in general, the determination of the 

output first-order density requires a complete characterization of the input process. Although the 

second-order density is just as complicated, it should be noted that the mean and autocorrelation of the 

output can be determined,(5.13) and (5.18), without knowing the first-or second-order densities of the input 

process provided the mean and autocorrelation of the input process are known .This is an important result , 

and it demonstrates that for linear systems the mean and autocorrelation of the input process are sufficient 

for the same partial characterizations of the output .Later we will see for the special case where the input 

process is Gaussian that the first ,second ,and nth order densities of the output process  can be easily 

determined. 

 tY

 

5.3.5 Stationary of the Output process  

For a wide sense stationary process as input to a linear time-invariant system it has been shown, (5.14) and 

(5.18), that the mean of the output process is a constant and not a function of time and that the 

autocorrelation function depends only on the time difference, t-u or τ. These results allow the following 

statement to be made: 

If the input to a linear time-invariant filter is a wide sense stationary random process, the output is also 

a wide sense stationary random process. 

We also might ask if the input process is stationary of order one or two, what can we say about the 

output? From the argument given in the previous section, there is no reason to believe that the first –order 

density would be independent of time or that the second-order densities would be equal for each pair of 
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times  and 。Thus an output process is not necessarily stationary of order two just because the input is. it jt

5.4 Continuous Time-Varying Systems with Random Input 

If the input to a linear time-varying system, characterized by its  ,th , is a random process  with 

known partial characterizations, the characterizations of the output process are desired. The partial 

characteristics of the output process consist of mean, autocorrelation, first-and higher-order densities along 

with various stationarity properties. 

 tX

5.4.1 Mean in-Mean out (Linear Time-Varying Filter) 

Taking the expected value of both side of (5.7), the input-output equation for a linear time varying filter 

with impulse response  ,th , the mean of the output random process becomes  

         



 




 dXthEtYEtY ,                         (5.27) 

Interchanging the expected value and the integration operations give  

          dXthEtYEtY 



 ,                         (5.28) 

We assume that the linear filter is not random, so  ,th  can be taken outside the expected value to yield 

        dXEthtY ,



                             (5.29) 

Now, recognizing that      XXE  , we write the mean of the output process as  

       dtht XY ,



                             (5.30) 

When the input process is stationary in mean,  tX  is constant, the mean of the output process is  

     dtht XY 



 ,                               (5.31) 

From this result it is seen that the mean  tY  of the output process  tY  will be a function of time, 

since the integral of  ,th  with respect to τ is a function of time. Thus the output process is not 

stationary in the mean even if the input process is stationary in mean. 

5.4.2 Autocorrelation in-Autocorrelation out (Linear Time-Varying Filter) 

Assume that the input process has an autocorrelation function  utRXX , , and the output a correlation 

function ; the relationship between the input autocorrelation and the output autocorrelation is 

now determined. Using the definition of the autocorrelation of the output process and (5.7), representing 

 utRYY , 



《Random Signal Processing》          Chapter5          Linear System: Random Process 

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 13 of 36 

the linear filter, we write the output autocorrelation as  

      
        















 dXuhdXthE

uYtYEutRYY

,,

,
                  (5.32) 

After interchanging the integrals and expected values, and assuming a deterministic filter, we rewrite (5.32) 

as  

          

      



ddRuhth

ddXXEuhthutR

XX

YY

,,,

,,,

 
 



















                  (5.33) 

If the input process is wide sense stationary, its autocorrelation function  XXR  is a function of the 

time difference only. Thus the output process autocorrelation function,  u,tRYY , can be written as  

                   (5.34)          ddRuhthutR XXYY   







,,,

The equation above expresses the output autocorrelation function  utRYY ,  in terms of the 

autocorrelation function of the input process,  XXR , but since     ,uh

ut

,th  is not necessarily a 

function of , the double integral will in general not be a function of ut   . Thus the output process 

will not be stationary in autocorrelation even if the input process is stationary in autocorrelation. 

5.4.3 Cross Correlation of the Input and Output (Linear Time-Varying 

Filter) 

For an input random process  a linear time-varying filter produces an output process .These 

two processes are in some ways statistically related .The cross-correlation function provides a statistical 

measure of the correlation that exists between the processes .For a time-varying linear filter characterized 

by its 

 tX  tY

 ,th , the output  is given by (5.7). Thus the cross correlation can be written as  tY 

            

       



dXtXEuh

dXuhuXEuYtXEutRXY




















,

,,
                   (5.35) 

Recognizing the autocorrelation function for the input process  tX , the cross-correlation function 

between input and output becomes  

       dtRuhutR XXXY ,,, 



                             (5.36) 

Thus the cross-correlation function between input and output can be determined by knowing only the input 

autocorrelation function  and the system，s impulse response  utRXX ,   ,th . 

If , the input process, is wide sense stationary, the  tX  ,tRXX  can be written in terms of the 
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time difference. The cross-correlation function of (5.36) becomes 

       dtRuhutR XXXY  



,,                           (5.37) 

The cross-correlation function can be written in a slightly different form by making a change of variables 

 t  in (5.37), resulting in  

       dRtuhutR XXXY 



 ,,                          (5.38) 

The cross correlation between  and  tY  uX  can be similarly found to be  

 
      

     duRth

tXtYEutR

XX

YX

,,

,








                             (5.39) 

Clearly, even if the input process is wide sense stationary, the input and output processes are not jointly 

wide sense stationary for a linear time-varying system. 

5.4.4 nth-Order Densities in-nth-Order Densities out (Linear Time-Varying 

Filter) 

By a similar argument to that given in section 5.3.4 for a linear time-invariant system, the first- and 

higher-order densities of the output of a linear time-varying filter cannot be determined knowing only the 

same order characterizations of the input. In general, a total characterization of the input process would be 

required to even get the first-order densities. 

5.4.5 Stationarity of the Output Process (Linear Time-varying Filter) 

From (5.31), it is seen that the mean of the output process will be a function of time even if the input 

process is stationary in its mean, and from (5.34), that the auto-correlation function does not depend only 

on the time difference ut   even when the input process is stationary in autocorrelation. From these 

results the following statement can be made. 

If the input to a linear time-varying filter is a wide sense stationary random process, the output random 

process will not necessarily be stationary in any sense. 

5.5 Discrete Time-Invariant Linear Systems With Random Inputs 

In the study of linear continuous time systems with random inputs, relationships were obtained for the 

output mean and the autocorrelation function in terms of the input autocorrelation and mean. Similar 

formulas will now be developed for discrete time linear shift-invariant systems characterized by the 

following input-output relationships (discrete convolution sum). 
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                                (5.40) 

     

   














k

k

kxknh

orknxkhny

The derivations assume that the input process was applied at time  , and results are interpreted as being 

in steady state. In (5.40) the  is the unit-sample response. If  nh  nh  is zero for all , the discrete 

system is causal, and Eq.(5.40) can be written as  

0n

     





0k

knxkhny                              (5.41) 

5.5.1 Mean in-Mean Out 

The mean of the output random sequence is seen from (5.40) for a nonrandom  nh  to be  

      

   nnh

nkxEkhnYE

X

k



 





                             (5.42) 

In other words, the output mean is the convolution of the input mean with the unit-sample response  nh , 

similar to the result for continuous time systems. 

If the input process is wide sense stationary with mean    XnXE  , for all , then  can 

be written as  

n   nYE 

    

    11 HnhZ

khnYE

XZX

k
X
















                      (5.43) 

where     11  ZZHH  and  is the Z-transform of  ZH  nh .  

This result compares with that for the continuous case, the difference being  in  instead 

of  in the . 

1z  ZH

0p  pH

5.5.2 Autocorrelation in-Autocorrelation Function Out 

In a straightforward manner, the output autocorrelation function  21, kkRYY  defined by  

      2121, kYkYEkkRXX                                  (5.44) 

can be found using (5.40). Assuming that the linear filter is not random, we can take  and  nh  mh  

outside the expected value to yield  
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       mknkRmhnhkkR XX
m n

YY   







2121 ,,                     (5.45) 

For a wide sense stationary input sequence  nX , the output autocorrelation function  

can be written as a function of : 

 21, kkRYY

kkk  21

       mnkRmhnhkR XX
m n

YY   








                      (5.46) 

Equation (5.46) is the discrete form of a double convolution sum and can be written more compactly 

as  

       
      11   



zHzzHZ

khkRkhkR

XX

XXYY
                         (5.47) 

and the Z-transform of (5.47) can be expressed as 

       1 zHzzHz XXYY                            (5.48) 

where , , and  represent the Z-transforms of  zXX  zYY  zH  kRXX , , and  kRYY  kh , 

respectively. 

  The power spectral density for a random sequence  nX  is defined as 

     jezXXXX z


                               (5.49) 

Therefore from (5.48) and (5.49) it is possible to write the power spectral density of the output process in 

terms of the power spectral density of the input process as  

   
       

   







XX
j

ezXXYY

eH

zHzzH j

2

1








                         (5.50) 

The results above can be compared to those determined for a continuous random input process  tX  

and a continuous system characterized by  th  with output process  tY . The formulas are 

analogous ,with the discrete time convolution replacing the continuous time convolution, the Z-transform 

replacing the Laplace transform, and the  replacing the je j . 

5.5.3 Cross-correlation Functions 

As in the continuous time case the corresponding cross-correlation functions of input and output random 

processes for discrete time can be determined as convolutions: 

  
            
            






11

1

zHzZkRorkhkRkR

zzHZkRorkRkhkR

XXYXXXXY

XXYXXXYX

          (5.51) 

Their Z-transform equivalents are determined as  
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        
        1 



zHzkRZz

zzHnRZz

XXXYXY

XXYXYX
                            (5.52) 

5.5.4 nth-Order Densities 

By arguments similar to those for the continuous case the first-,second- , and nth  order densities can be 

examined .Since the output  at any given n is a function of the input process  random 

variables for all k form 

 nY



 kX

     to , the first-order density cannot be determined without knowing the 

nth-order joint densities for all input random variables  kX . Thus a first-order characterization of the 

input process is insufficient information to obtain the first-order densities for the output process. Similarly 

the second- and nth-order densities can not be determined unless the input process is totally characterized. 

However, if the input process is a Gaussian random process and characterized by its mean and 

autocorrelation function, it is totally characterized. Thus the corresponding first-, second-, and all 

higher-order densities can be determined, totally characterizing the output. 

5.5.5 Stationarity 

If the input process is stationary in mean, stationary in autocorrelation, or wide sense stationary the output 

process is correspondingly stationary in mean, stationary in autocorrelation, and wide sense stationary. This 

is verified by the functional relationships for the output  mean in terms of  the input  mean  given  in 

(5.43) and the output autocorrelation in terms of the input autocorrelation function  given in (5.47) .For a 

discrete time-invariant linear system specified by its impulse response  nh , the mean and autocorrelation 

of the input are sufficient to determine the mean and output autocorrelation function ,so only a partial 

characterization of the input process is required. However, input stationarity of order 1 does not imply 

output stationrity of order 1, nor does input stationarity of order n imply output stationarity of order n. 

5.5.6 MA, AR, and ARMA Random Processes 

Give a discrete time linear system with input  nx  and output  ny  characterized by a difference 

equation as 

     
 


p

k

q

k
kk knxbknyany

1 0

      for all n                    (5.53) 

The system function or transfer function can be obtained by first taking an inverse Z-transform of both 

sides of Eq. (5.53), ignoring initial conditions to obtain the following: 

     zXzbzYzazY
q

k

k
k

p

k

k
k 







 
01

                         (5.54) 
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We then rearrange (5.54) to obtain  as  zH  zY  over  zX : 

   
  k

q

k
k

k
q

k
k

za

zb

zX

zY
zH
















1

0

1

                              (5.55) 

Thus the transfer function  is a rational expression in , where q is assumed less than p. The 

impulse response of such a system is obtained by taking the inverse Z-transform of  which is 

written as 

 zH 1z

 zH

   zHZnh 1

 qp,

.If the input process is a white random sequence, then the output process is 

an ARMA  process.  

If all the  for , then the transfer function can be written in terms of an 0kb qk ,,2,1  all pole 

model as 

 




 p

k

k
k za

b
zH

1

0

1

                              (5.56) 

If the input to a system represented by the  zH  above is a white random sequence then the output 

process is an autoregressive process of order p ,  pAR . 

If all the  for , then the transfer function can be written in terms of the 0ka pk ,,2,1  all zero 

model as 

  



q

k

k
k zbzH

0

                                (5.57) 

and if the input process is a white random sequence, the output process is said to be a moving average 

process, MA(q). 

 

Example 5.3 

Find the steady state mean, autocorrelation and power spectral density for the , processes where the 

input process  has a zero mean for all n  and an autocorrelation function given by 

 1MA

 nX

     kxkmXE 2 m   for all . m

Solution 

The mean of the output process is obtained from  42.5.Eq  as the convolution of the impulse response of 

the system with the mean of the input process. Since the mean of the input process is zero for all , the 

convolution is zero for all , all thus 

n

n    0nYE  for all . n

From  the output autocorrelation function of the output process  is a convolution of 

the impulse response, the input autocorrelation function, and the time-reversed impulse response. It can 

also be determined as the inverse Z-transform of the product of their transforms. 

 47.5.Eq   nY
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              11  zHzzHZkhkRkhkR XXXXYY                (5.58) 

Where  from  is  zH  57.5    1
10

 zbbzH  and      22   mZzXX .The 

autocorrelation function from  is seen to be  58.5 

      
  

       11 01
22

1
2
0

2
10

2

1
01

2
1

2
010

12

10
21

10
1










kbbkbbkbb

zbbbbzbbZ

zbbzbbZkRYY







               (5.59) 

The values for  and  check with the results determined in Example 4.6, as do the zero values 

for  and . 

0k

k

1k

1k 1

The power spectral density  wYY  is obtained from  zYY  using  50.5  as follows: 

         
    

   2
10

2
1

2
0

10
21

10

1

cos2

|

||







wbbbb

zbbzbb

zHzzHzw

jw

jwjw

ez

ezXXezYYYY
















                    (5.60) 

Similarly the autocorrelation function and power spectral density for the  process are 

easily determined using the power transfer functions in 

 qMA

 57.5  and  50.5 . The following example 

finds the power spectral density for the  qMA  process: 

 

Example 5.4 

Find the power spectral density for  process.  qMA

Solution 

The power spectral density for the  process uses the transfer function given in  and 

is determined as follows: 

 qMA  57.5 

         
 

22

0

0 0

2

1

||

|

||









 






 






















q

k

ikw
k

ez

q

k

q

k

k
k

k
k

ezXXezYYYY

eb

zbzb

zHzzHzw

iw

jwjw 

                 (5.61) 

 

Example5.5 

Find the steady state mean, autocorrelation, and power spectral density for the , processes where 

the input process  has a zero mean for all  and an autocorrelation function given by 

 for all . 

 1AR

 nX

  2

n

   kmxkmXE ][ m

Solution 
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The mean of the output process is given from  42.5.Eq  as the convolution of the impulse response of 

the system with the mean of the input process. Since the mean of the input process is zero for all , the 

convolution is zero for all , and thus 

n

n    0nXE  for all . n

Using  where  47.5.Eq   zH  from  56.5  is    1
10 1  zabzH  and 

     2 ZzXX 2 m , the autocorrelation function  kRYY  is seen to be  

        

   

  






























11

1

1

22
0

1
1

02
1

1

01

11

1

11

azaz

z
Z

a

b

za

b

za

b
Z

zHzzHZkR XXXX







                         (5.62) 

Expanding the rational expression in terms of a partial fraction expansion gives 

     

2
1

1
1

1

1

1

11

1

22
0

1
     

1

a

a
Awhere

az

A

az

A
zZ

a

b
kRYY

























 

                   (5.63) 

After taking the inverse Z-transform and recognizing the first term as a positive time sequence and the 

second as a negative time sequence, we find the desired autocorrelation function  to be  kRYY

      



















 






 1

1

1 1
12

1

22
0 ku

a
kua

a

b
kR

k
k

YY
                   (5.64) 

Evaluating  for  gives  kRYY 0k

   kYY a
a

b
kR 12

1

22
0

1






                                (5.65) 

Which checks with the result determined in  179.4  by a time domain method. 

The power spectral density can be determined directly from this autocorrelation by taking the 

Z-transform and evaluating at , or directly from iwez   50.5  which gives  wYY  as  

         

   

  































jwjw

ez

ezXXezYYYY

eaea
b

za

b

za

b

zHzzHzw

jw

jwiw

11

22
0

1
1

02
1

1

0

1

11

1

|
11

||





 

                    (5.66) 

Multiplying the terms in the denominator and simplifying the power spectral density reduces to 
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 
 waa

b
wYY

cos21 1
2
1

22
0





                               (5.67) 

 

Example 5.6 

Find the steady state power spectral density for the  pAR  process where the input process  has 

a zero mean for all  and an autocorrelation function given by 

 nX

n     mXkmXE  2  k  for all 

. m

Solution 

The transfer function for the general  pAR  process from  56.5.Eq  is  

 






p

k

k
k za

b
zH

1

0

1

                               (5.68) 

Thus the power spectral density can be determined as 

         

2

1

22
0

1

02

1

0

1

|1|

|

11

||
















































p

k

jkw
k

ezp

k

k
k

p

k

k
k

ezXXezYYYY

ea

b

za

b

za

b

zHzzHzw

jw

jwjw





 

                (5.69) 

 

Example 5.7 

Find the steady state mean, autocorrelation, and power spectral density for the , processes 

where the input process  has a zero mean for all  and an autocorrelation function given by 

 for all . 

 1,1ARMA

 nX

  k2

n

    mXkmXE  m

Solution 

Since the mean of the input process is zero the mean of the output process will also be zero. The 

transfer function for the  process from  1,1ARMA  55.5.Eq  is  

 
1

1

1
10

1 








za

zbb
zH                                 (5.70) 

Thus the autocorrelation function in the steady state can be found from  64.5.Eq  by using the 

inverse Z-transform as follows: 
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        

 
   













































11

10
2
1

2
0

2
10

1

2

1

102
1

1

1
101

11

1

11

az�az

bbzbbzbb

a

za

zbb

za

zbb
Z

zHzzHZkR XXYY







                         (5.71) 

Expanding the term in brackets, divided by , and expanding into partial fractions gives z

 





















 

11

1

1

2

1 az

C

az

B

z

A
zZ

a
k


RYY                        (5.72) 

Where , and  are determined by partial fraction expansion method to yield  BA, C

1

1

2
1

10
2
11

2
01

2
110

2
1

10
2
11

2
01

2
110

10













a

bbbabaabb
C

a

bbbabaabb
B

bbA

                         (5.73) 

Multiplying out the z  and taking the inverse Z-transform shown in  71.5.Eq , we have the 

autocorrelation function  for  kRYY  1,1ARMA  process as 

           1
11

11
1

2


 kaCkaBkA

a
kR

kk
YY               (5.74) 

Thus the  k  term gives a contribution at 0k  only, while away from the origin the autocorrelation 

function is a power of  1a   for positive  with coefficient k 1aA as indicated by the second term 

and the third term is the autocorrelation function for time index less than zero. If we evaluate the 

autocorrelation at zero, we must add contributions of both of the first terms: 

   
1

2

0
a

BA
RYY





                                  (5.75) 

Substituting the  and A B from  and simplifying gives the  73.5   0YYR  as 

   
2
1

2
110

2
1

2
0

1

2
0

a

abbbb
RYY 





                          (5.76) 

The formula above for  verifies the result determined in 0YYR  209.4 . After evaluating for 

 using the 

 74.5

0k B of  73.5 , the  kRYY  can be simplified to give  

      
   1
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2
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2
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a
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
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                   (5.77) 



《Random Signal Processing》          Chapter5          Linear System: Random Process 

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 23 of 36 

This result verifies that determined in the steady state development given in Chapter 4,  for 

 and  for , It is also easily shown that 

 209.4.Eq

1k  211.4  1k    kRkR YYYY   by evaluating  74.5  

for negative . k

The power spectral density can be determined directly from this autocorrelation by taking the 

Z-transform and evaluating at  or determined directly from jwez   50.5 , which gives  wYY  as  
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                      (5.78) 

Multiplying out the terms in the numerator and denominator and simplifying the power spectral density 

reduces to  

   
 

22
0

1
2
1

10
2
1

2
0

cos21

cos2
 b

waa

wbbbb
wYY 


                    （5.79） 

 

Example 5.8 

Find the steady state power spectral density for the  qpARMA ,  process where the input process  nX  

has a zero mean for all  and an autocorrelation function given by n       kmXkmXE  2  for all 

. m

Solution 

The power spectral density for the  qpARMA ,


 is easily found by substituting the transfer function for the 

system  given in  into  zH  55.5.Eq  50.5.Eq  to get 

         

22
02

0

2

0

0

02

0

0

1

1

11

||







b

ea

eb
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zHzzHzw
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k
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k

q

k
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ezp

k

k
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q

k

k
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p

k

k
k

q

k

k
k

ezXXezYYYY

jw

jwjw



































































 

             (5.80) 
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5.6 Discrete Time-Varying Linear Systems with Random Inputs 

In the study of linear continuous time systems with random inputs relationships were obtained for the 

output mean and the autocorrelation function in terms of the input autocorrelation and mean .Similar 

formulas will now be developed for discrete time-varying linear systems that can be characterized by the 

following input-output relationship: 

     mxmnhny
m





 ,                                 (5.81) 

where  is the response of the unit sample impulse at time m. If  mnh ,   mnh ,  is zero for all , 

the discrete time-varying systems is causal, and Eq.(5.81) can be rewritten as 

nm 

                                (5.82)      mxmnhny
n

m



 ,

5.6.1 Mean in-Mean out (Time-Varying Discrete Time System) 

The mean of the output random sequence is seen from (5.81) for a nonrandom  nmh ,  to be  

      

   mmnh

mXEmnhnYE

X
m

m
















,

, 
                              (5.83) 

In other words, the output mean is the result of taking the input mean through the system similar to the 

result for continuous time-varying systems. 

If the input process is stationary in the mean,    XmXE  , for all m, then , from (5.83) 

can be written as  

  nYE 

   
    

    1,,

,

1 nHmnhZ

mnhnYE

XzmX

m
X
















                    (5.84) 

This result can be compared with that determined for the continuous time-varying case. 

5.6.2 Autocorrelation in-Autocorrelation Function out (Time-Varying 

Discrete Time System) 

The definition of the output autocorrelation function  21, kkRYY  is given by 

                   2121, kYkYEkkRYY                             (5.85) 

We substitute  and  from (5.81) into (5.85), and assuming that the linear filter is not random,  1kY  2kY



《Random Signal Processing》          Chapter5          Linear System: Random Process 

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 25 of 36 

we now have 

                                (5.86)        nmRnkhmkhkkR XX
m m

YY ,,,, 2121  








 

For a wide sense stationary input random sequence  nX , the output autocorrelation function  nmRYY ,  

can be written as 

       mnRmkhnkhkkR XX
m m

YY   








,,, 2121                      (5.87) 

There is no reason to believe that this double sum will be just a function of the difference between  and 

.Even though the input process is wide sense stationary the output of a linear discrete time-varying 

system will not necessarily be wide sense stationary. 

1k

2k

5.6.3 Cross-correlation Functions (Time-Varying Discrete Time System) 

Using  and  from (5.81) in the definitions of the cross-correlation functions between the 

input and output process, we can show the 

 1kY  2kY

 21,kkRYX  and  21, kkRXY  to be  

                               (5.88) 

         

          mkRmkhkYkXEkkR

kmRmkhkXkYEkkR

XX
m

XY

XX
m

YX

,,,

,,,

222121

212121














 

5.6.4 nth-Order Densities 

Since the output process at any time n is a function of the input process random variables at all times, a 

total characterization is required to determine the first-order densities of the output random process. Thus a 

first-order characterization of the input process is insufficient information to determine the first-order 

densities of the output process. Similarly the second and nth-order densities cannot be determined unless 

the input process is totally characterized If the input process is a Gaussian random process with known 

mean and autocorrelation function, the output process will be Gaussian and thus totally characterized by its 

mean and autocorrelation functions given in (5.83) and (5.86). 

5.6.5 Stationarity 

For a discrete linear time-varying system characterized by its unit-sample response, the output process is 

not necessarily correspondingly stationary in mean, stationary in autocorrelation, or stationary in wide 

sense if the input process is stationary in mean, stationary in autocorrelation, or stationary in a wide sense. 

For a discrete time-varying linear system, specified by an  mnh , , knowing the second-order information 
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of the input process is, however, sufficient information to determine the second-order output information 

with the relationships given in (5.83) and (5.86). 

5.7 Linear System Identification 

If the input  to a linear time-invariant filter, specified by its impulse response , is a white process 

with autocorrelation function 

 tX  th

                    
2

0N
RXX                                    (5.89) 

the cross-spectral density  jSYX  can be obtained from (5.25) as  

                       jHSS XXYX                                (5.90) 

Dividing through by  XXS  which is 20N  gives the transfer function  jH  as  

                    
   



 YX
XX

YX S
NS

S
jH

0

2
                           (5.91) 

That is, by measuring the cross-spectral density between output and input when white noise is the input, the 

transfer function of an unknown linear system can be determined. 

5.8 Derivatives of Random Processes 

Let  be a random process with known characterization in terms of mean and autocorrelation function. 

If realization of this process is the input to a differentiator an output signal is obtained, thus establishing a 

mapping from the sample space to the output and specifying the output as a random process. The derivative 

process is denoted as  

 tX

   
dt

tdX
tY                                   (5.92) 

The logical question is : What are the statistical characterizations of this derivative process? The derivative 

operation can be viewed as a linear system with transfer function   ppH  , so the formulas given earlier 

can be used to find the autocorrelation between input and output can be expressed as  

         

         

   






XX

XXXXYX

R
d

d

R
d

d
RhR




                      (5.93) 

The autocorrelation function of the output is determined as 

 
        

  pp

pHppHR

XX

XXYY








21

1
                       (5.94) 

A property of the inverse Laplace transform is that 
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    
td

tfd
pFp

n

n
n 1                                (5.95) 

Using (5.95) in (5.94), we obtain the autocorrelation function of the output process as 

                 


 XXYY R
d

d
R

2

2

                                (5.96) 

In a similar fashion the autocorrelation function of  tZ can be found, where  is defined as the 

nth-order derivative of a random process 

 tZ

 tX  and denoted by 

                    
td

tXd
tZ

n

n

                                  (5.97) 

The autocorrelation function for  can be shown to be  tZ

                     
 XX

n
n

ZZ R
d

d
tR

2

2

1                             (5.98) 

The derivatives of wide sense stationary random processes are statistically related and it is easily 

shown, similar to the previous derivations, that their cross-correlation function are given as 

              
     

   
 


nm
XX

nm
n

n

m

m

m

d

Rd

td

tXd

d

tXd
E 










 
1                          (5.99) 

A word of caution on using these formulas is necessary as all derivatives of random processes do not 

necessarily exist, but if they do, the formulas are meaningful. 

5.9 Multi-Input, Multi-output Linear Systems 

Multiple-input and multiple-output linear systems are becoming increasingly significant as systems are 

becoming more complicated. An example of two-input two-output system is shown in Figure 5.4. The input 

signals are  and tx1  tx 2 , and the output signals are  ty1  and  ty2 . Each output is the sum of two 

signals. For example,  ty1  is the sum of one signal resulting from passing  through a linear 

system with transfer function  and the other from passing 

 tx1

 pH11  tx2  through a linear system with 

transfer function . Similarly  p21H  ty2  is the sum of a two responses one due to passing  tx1  

through  and the other from passing p12 H  tx2  through  pH 22 . In general,  and 

 are not the same. Thus the two-input, two-output system is specified by a 2 by 2 matrix of 

transfer functions. The basic problem is knowing the means of the inputs, the autocorrelation functions of 

the inputs, and the cross-relation between inputs determine the corresponding characterizations of the 

outputs. 

pH12 
pH 21 
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H11(p) 

X2(t)

X1(t)

H12(p) 

H21(p) 

Σ

ΣH22(p) 

Y1(t) 

Y2(t) 

Figure 5.4  A general linear two-input two output system denoted by MIMO(2.2) 
 

5.9.1 Output Means for MIMO(2,2) 

If the inputs to the two-input, two-output linear system are random processes  and , the 

output processes  and  are easily seen to be the sum of two convolutions: 

 tX1  tX 2

 tY1  tY2

         

          



dhtXdhtXtY

dhtXdhtXtY

2221212

2121111






















                (5.100) 

The means are determined by taking the expected value of the equations in (5.100) and interchanging the 

expected value operator and the integral sign to get 

            

            

























dhtXEdhtXEtYE

dhtXEdhtXEtYE

2221212

2121111
         (5.101) 

Recognizing the integrals as convolutions permits us to write the means in terms of convolutions as 

            
            



2221212

2121111

htXEhtXEtYE

htXEhtXEtYE




                 (5.102) 

When the input processes are jointly wide sense stationary, the input means are constant, and the output 

means can be written in terms of the various transfer functions evaluated at zero: 

   
   00

00

2212

2111

212

211

HH

HH

XXY

XXY








                         (5.103) 
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5.9.2 Cross-correlation Functions for MIMO(2,2) Linear Systems 

There are four cross-correlation functions that need to be examined for the two-input, two-output linear 

system given by      utRutRutR XYXYXY ,,,,,
122111

 and  utR XY ,
22

. Consider the first one of these, 

which can be written as 

      

         



 





 











uXdtXhdutXhE

uXtYEutR XY

1221111

11,
11


       (5.104) 

After we multiply out and interchange the integral and expected value operations, (5.104) becomes 

           dutRhdutRhutR XXXXXY ,,,
121111 2111  








        (5.105) 

Let us assume that  tX1  and  are jointly wide sense stationary. Then this cross-correlation 

function can be written in terms of 

 tX 2

t u  as follows: 

                 
121111 2111 XXXXXY RhRhR                     (5.106) 

The other input-output cross-correlation functions for jointly wide sense stationary inputs can be similarly 

shown to be 

  

         
         
         





222122

222112

222121

2212

2212

2111

XXXXXY

XXXXXY

XXXXXY

RhRhR

RhRhR

RhRhR







                    (5.107) 

As was done in previous sections, these convolutions may be conveniently calculated by using inverse 

Laplace transforms of various products of Laplace transforms of the system impulse responses and various 

autocorrelation and cross-correlation functions of the input processes. 

5.9.3 Autocorrelation Functions for Outputs of MIMO(2,2) Linear Systems 

The autocorrelation function for the output  tY1  can be written as 

      

       

        





 


 





 


























dtXhduXh

dtXhdtXhE

uYtYEutR YY

221111

221111

11,
11

             (5.108) 

Multiply out the terms in parentheses to get four terms, taking the expected value through the integral, and 

evaluating the expected value gives the autocorrelation function  utR YY ,
11

 as 
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       

     

     

      
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1111

                   (5.109) 

  If the input processes are jointly wide sense stationary, then the equation above can be written as 

                        (5.110) 

        

      

      
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 
 
 


























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








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


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ddRhh
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XXYY
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1111

2121
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2111

1111,

As before, for the single-input, single-output linear system, the integrals above are recognized as 

convolutions, and thus the autocorrelation function becomes 

         
             

           







22221222

21111111

2212

111111

hRhhRh

hRhhRhR

XXXX

XXXXYY
          (5.111) 

In a similar development the autocorrelation function for the other output  tY2  can be shown to be 

            
           







22221222

22121212

2212

211111

hRhhRh

hRhhRhR

XXXX

XXXXYY
         (5.112) 

As before, these cross-correlation functions are more conveniently determined in the Laplace domain. 

5.9.4 Cross-correlation Functions for Outputs of MIMO(2.2) Linear 

Systems 

 The cross-correlation function for the two outputs  tY1  and  tY2  is determined in a similar fashion to 

that for the autocorrelation functions: 

          (5.113) 

      

       

        





 


 





 


























duXhduXh

dtXhdtXhE

uYtYEutR YY

222112

221111

21,
21

After we multiply out the integrals, assuming jointly wide sense stationary inputs, the cross correlation 

between outputs can be written as 
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             

           







22211221

22111211

2212

211121

hRhhRh

hRhhRhR

XXXX

XXXXYY
             (5.114) 

As the orders of the  system increase, the autocorrelation and cross-correlation functions 

become very complex, simplifying only when the input processes are all uncorrelated. 

 nnMIMO , 

5.10 Transients in Linear Systems 

 Let  be the input and  the output of a linear system that is governed by the following linear 

constant coefficient differential equation: 

 tx  ty

       tx
dt

tyd
aty

k

kn

k
k  

1

,            t > 0                 (5.115) 

If the input is a random process, then the output is also a random process described from the mapping of 

each realization of the input process to a realization of the output process. Assume that  for all t 

< 0 and that the initial conditions are 

  0ty

 
0tk

k

dt

tyd
     for  k = 0  to  n -1                    （5.116） 

This means that the system is initially at rest. 

If  is an input random process tx  tX , then the output  ty  is  tY  a random process. 

5.10.1 Mean of the Output Process 

Substituting  as the input and  as the output of Eq.(5.115), and taking the expected value, 

gives the following differential equation for the mean of output process: 

 tX  tY

       tXE
td

tYd
EatYE

n

k
k

k

k 







 

1

,       t > 0                  (5.117) 

The expected value of the derivatives of the process  tX  has been shown to be the derivatives of the 

expected value of the process as following: 

    
td

tYEd

td

tYd
E

k

k

k

k









                               (5.118) 

Substituting (5.118) into (5.117), we arrive at a differential equation in terms of the mean of the output 

process: 

       t
td

tYEd
atYE X

n

k
k

k

k 









1

,      t > 0                  (5.119) 

Now, taking the expected value of the initial conditions given in Eq.(5.116), gives zero conditions on the 
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mean: 

  
00 tk

k

dt

tYEd
   for    k = 0  to n -1                    (5.120) 

Equation (5.119) and (5.120) give a differential equation with initial conditions that must be solved to 

obtain the mean  of the output process.   tYE 

5.10.2 Autocorrelation of the Output Process 

Similar to the procedure for obtaining the autocorrelation function for the AR  process in Chapter 4, the 

procedure to find the output autocorrelation function  21, ttRXX  consists of two steps: first solving for 

the cross-correlation function and then from that result finding the autocorrelation function .Evaluation 

both sides of (5.115) at , multiplying by 2t  1tX , and taking the expected value gives the 

cross-correlation function at  and  as 1t 2t

       

      

         0,

,

2121
1

1

2121

2


























 tttXtXE

dt

tYd
atXE

tYtXEttR

tt

n

k
k

k

k

XY

      (5.121) 

Moving  into the summation, and taking the expected value, the first term of (5.121) becomes  1tX

      
2

21
1

,

2
td

ttRd

td

tyd
txE

k
XY

k

tt

k

k
























                        (5.122) 

Using (5.122) in Eq.(5.121) and rearranging yields the following differential equation for :  21, ttRXY

     2121
1 2

21 ,,
,

ttRttR
td

ttRd
XXXY

n

k
k

XY
k




,                    (5.123) 02 t

The initial conditions are obtained by multiplying Eq.(5.120) by  1tX  and taking the expected value. 

This gives 

 
0

2

21
2

,
tk

XY
k

td

ttRd
     for k = 0  to  n – 1                   (5.124) 

Thus the solution of the differential equation (5.123) with initial conditions (5.124) gives the 

cross-correlation function  for .  21, ttRXY  0, 21 tt

Having obtained  21, ttRXY , we are now in position to solve for  21, ttRYY . Multiplying (5.115) 

evaluated at  by  and taking the expected value gives 1t  2tY
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      

        12
1

1

2121

2

,

tYtXE
td

tYd
atYE

tYtYEttR

tt

n

k
k

k

k

YY




























        t      (5.125) 0, 21 t

As in the development of cross correlation, (5.132) simplifies to 

     2121
1

21 ,,
,

ttRttR
td

ttRd
XYYY

n

k
k

YY
k




 ,                  (5.126) 01 t

with zero initial condition: 

 
0

,
0

1

21
1

tk
YY

k

td

ttRd
    for  k =0 to n – 1                       (5.127) 

Eq.(5.126) and (5.127) give a differential equation and initial conditions to solve for  in terms 

of the  as a driving function. 

 21, ttRYY 
 21, ttRXY

 

Example5.9 

Given that  is the solution to the following differential equation representing a transfer function  ty

  1p1pH  

      0t          ,  txty
dt

tdy
 

Assume that  for all  and that we have the initial condition   0ty 0t   00 y .Let the input  tx  

be a random process  with mean and autocorrelation function given by   tX

       121R                 ,1 ||2
XX    etXEtX  

Find the mean Y of the output process  tY . 

Solution 

From    120.5 and 119.5.Eqs ,the mean,     ttYE Y ,of the output process satisfies the following 

differential equation and initial condition: 

   

  00             

0          ,1

Y 








tt
dt

td
Y

Y

 

Upon solving the above for  tY ,we have 

     tet t
Y   1  

 

Example 5.10 

Given that  is the solution to the following differential equation representing a transfer function  ty

  1p1pH  and the input :  tx
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      0t          ,  txty
dt

tdy
 

Assume that  for all  and that we have the initial condition .Let  be a 

random process  with mean and autocorrelation function given by  

  0ty

 tX

0t   00 y  tx

          XXR                 ,0tXEtX  

Find the autocorrelation function  of the output process  21, ttRYY   tY . 

Solution 

To obtain the , we first find the cross correlation  21, ttRYY   21, ttRXY  by solving a differential 

equation. Then from the result we find the  21, ttRYY  by solving another differential equation. We can 

use the Laplace transform to solve both differential equation. From  123.5.Eq ,the  is the 

solution of  

 21, ttRYY 

      0       ,,
,

21221
2

21  tttttR
dt

ttdR
XY

XY   

With initial conditions from  as  124.5   0|, 021 2
tXY ttR .Taking the Laplace transform with respect 

to the  variable and using the initial condition results in  2t

    2,, 11
pt

XYXY eptpptp    

Solving for  gives  ptXY ,1 

 
1

,
1

1 




p

e
pt

pt

XY  

Taking the inverse Laplace transform gives us the cross correlation  21, ttRXY  as  

     1221
12, ttettR tt

XY     

This result is the driving function for the differential equation for  21, ttRXY  given in .So 

we have the following : 

 126.5.Eq

        0       ,,
,

11221
1

21 12   tttettR
dt

ttdR tt
YY

YY   

Taking the Laplace transform of the equation above with respect to the  variable and using the zero 

initial condition gives 

1t

   
 

 
 

  


































 

1

1

1

1

,,

2
2

2
1

2

1
2

12

1

0

1

1022

pp

e
e

p

e
e

dteeetptpp

tp
t

ttp
t

pttt
YYYY

t


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Then, solving for , multiplying out and performing a partial fraction expansion of both 

terms yields 

 2, tpYY 

 
 

     

1
2

1

1
2

1

1
2

1

1
2

1

1111

1

1

1

1

1
,

2222

2

2
2

1

2









































p

e

p

e

p

e

p

e

pp

e

pp

e

ppp

e
etp

ttptpt

pt
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t

YY

 

Finally, taking the inverse bilateral Laplace transform using the  variable gives us the autocorrelation 

function  as 

1t

 21, ttRXY 

          212121
2121

2

1

2

1
, ttettettR tttt

YY     

Upon evaluating for  and and regions  and , we find, the 01 t 02 t 21 tt  12 tt   21, ttRYY  

from the equation above to be  

 
   

   
















12

21

21

         ,
2

1

2

1

         ,
2

1

2

1

,
2112

2121

ttee

ttee
ttR

tttt

tttt

YY  

To obtain the steady state results for the autocorrelation function, we let both  and  approach infinity 

but keep 

1t 2t

 21 tt . The second term goes to zero and the first term remains. Thus, for  21 tt , the 

steady state autocorrelation function  YYR  of the output  tY  is  

  ||

2

1   eRYY  

This result checks with the result obtained by using the steady state formula given in   18.5.Eq

        
||1

1

2

1

1

1
 1 

1

1 






















e
pp

F

pHppHFR XXYY 

 

5.11 Summary  

The main topic of this chapter is the interaction of random processes with linear systems. In particular, the 

characterization of the output process is in terms of the input process characterization. Formulas were 

derived for the output mean and autocorrelation function of linear time-invariant systems to a wide sense 

stationary input. The mean of the output was determined as a convolution of the input mean with the 
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impulse response of the system, and the output autocorrelation function was shown to be a convolution of 

the input autocorrelation function, the impulse response, and the time-reversed impulse of the system. 

Determination of the convolutions in many cases was best done in the Laplace domain for continuous time 

systems and the Z domain for discrete time systems The output power spectral density was shown to be 

determined by multiplying the input power spectral density by magnitude squared of the system transfer 

function  for the continuous time system and  jwH   jweH  for the discrete time system. 

Formulas for the mean and autocorrelation function of the output of a linear time varying system in 

terms of the mean and autocorrelation function of the input process for both continuous and discrete time 

systems were presented. 

The AR, MA, and ARMA processes generated by passing white noise through special discrete-time 

linear systems were analyzed using the steady state techniques described above. The results obtained for 

mean and autocorrelation by using the steady state results in the Z-domain were shown to be equal to those 

steady state results in the time domain. 

In using differential equations to model continuous time invariant systems with random processes as inputs 

it is necessary to obtain the statistical properties of the derivatives of the input processes. Ignoring some 

issues with existence the auto-and cross-correlation functions for derivatives of a random process were 

developed using the Laplace transform domain in terms of the autocorrelation of the input process. For 

mathematically more rigorous presentations on this topic the interested reader could explore Papoulis [1] or 

Van Trees [7]. 

Also considered in this chapter was the transient response of a continuous linear time invariant system 

to an input process applied at equal zero. For the special case where the differential equation does not 

contain derivatives of the input process the output mean was easily obtained as a convolution; however, the 

output autocorrelation function required the solution of two differential equations one to get the 

cross-correlation function between input and output and the second with the cross-correlation function as 

the input to obtain the output autocorrelation function. The solution was facilitated by using the Laplace 

transform. The examples illustrated that as t  becomes large, the output autocorrelation and mean 

approach those determined using the steady state methods involving transfer functions. 

  The chapter concluded with a brief discussion of multiple input, multiple output systems and their 

output means, autocorrelation functions, and cross-correlation functions to random inputs and results were 

shown for wide sense stationary input processes. 

 

 

----------This is the end of Chapter05---------- 
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