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S Linear Systems: Random Processes

5.1 Introduction

In many scientific disciplines the description of input-output relationships for various types of systems is
paramount to understanding the system. The inputs could be many different things. However, they are
many times considered some form of excitation to the system, with the output representing the response of
the system. System description can take many forms. When the input to a system can be thought of as a
realization from a particular random process, the output signal can be determined by using the system’s
definition. Each realization of the process in turn generates an output signal. In this way there exists a
mapping through the system from a set of outcomes governing the input random process and thus defining
an output random process.

In this chapter we will explore the relationships that exist between input process characterization and
output process characterizations for a special class of systems called linear systems, while in the next
chapter, we will explore the same problem for nonlinear systems. For example, the following question is
the main theme: Knowing the mean, autocorrelation function, first-order density, and stationarity of the
input process, what are the mean, autocorrelation function, first-order density, stationarity of the output
process? It will be seen that a particular partial characterization of type may not be sufficient for
determining corresponding partial characterization of one the same type for the output process. The
presentation begins with definitions of signals and systems pertinent to this development and is followed
by deeper exploration of the partial characterizations of the output process for linear time-varying and

time-invariant systems of both discrete time and continuous time representations.

5.2 Classification of Systems

A systems can be thought of as a mapping from a closed set, S, , called the input signal set to a closed set,
Sy, called the output signal set. If the input and output signals are continuous time signals, then the

systems represented by T[-] is called a continuous time system. Similarly, if the inputs and output signals

are discrete time signals, the system is called a_discrete time system. It is conventional to indicate

continuous time input and output signal asffix ! FRE XL, FHiR! Ke LK. X(t)%i%l FEX

&, and y(t), respectively, whereas discrete time input and output signals are indicated by x[n] and
y[n] respectively. The input and output functional relationships for both continuous time and discrete time

systems will be indicated by T[] as shown in Figure 5.1.Also shown are two other types of mixed

continuous time and continuous-discrete time systems. Examples are digital to analog and analog to digital
convertors.

Let us consider some special characteristics that these systems possess, for example linearity ,causality,
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and time invariance. Letting T [] represent the mapping of a system and X(t)%i%! KEXHZ. and

y(t) ,the input and output, respectively, a continuous time system can be represented as follows:

y(t)=Tx(t)] (5:1)
Although the following presentation users continuous time system formality, the concepts and

definitions that follow will apply to any of the four types of systems presented in Figure 5.1.

XHDe—p| T[] |—e ¥ X[nNJe—p T[] |——= yn]

(a) Continuous time systems (b) Discrete-time systems

X(t) e—p T[] —e y[n] x[n]e— T[] — y()
(c) Continuous-discrete time systems (d) Discrete-continuous time systems
Figure 5.1 Systems

A system is called a linear if for every X, (t) and X, (t) €S, , the input set, and all constants &, and

a,,
T [ayx (t) + 2%, ()] = /T [x, )]+ a,T [x, (t)] (5:2)
If a system is no linear, it is called a nonlinear system.

Let X(t) and y(t) represent the input and output of the system. A system is described as being time
invariant if the response to a time-translated version of that input signal results in a time-translated version
of the output signal for all choices of input signal. For all X(t) €S,

1f y(t)=T[x(t)]. then T[x(t—a)]=y(t-a) (5.3)
A system that is not time invariant will be called time varying.

A system is called causal if its output at time t,, y(tO ) ,Jresulting from input X(t)dose not depend on

X(t) for any time t>t,, for all t;, and all inputs X(t). This means that the output of a causal filter

cannot precede or anticipate the input signal to produce the output.
A system is called a_random system if the output depends not only on the input but on the outcome of
an underlying random experiment. In many cases its response can be seen to be a function of one or more

random variables. If a system is not random, it is called a deterministic system.

5.2.1 Linear Time-Invariant Systems

A linear continuous time-invariant filter with input X(t) and output y(t) can be characterized by the

following rule of correspondence (the convolution integral):
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y(t)=TIx(t)]= I h(t -7 x(r) (5.4)

By making a change of variables the convolution integral can also be written as

y(t)= Ji h(z x(t—7)dz (5.5)

If the input X(t) is an impulse function (t), then the output y(t), after using the sampling property for
o (’[), equals h(t) is referred to as the impulse response of filter.

The linear time-invariant system specified by (5.4) above will be causal if h(t) =0 forall t<O0.

For a causal filter the input output equations are easily seen to effect the limits for the integrals above and

can be written as

y(t)= J:O h(t—7)x(r)dz = J:O h(z)x(t-7)dz (5.6)

5.2.2 Linear Time-varying Systems

A certain class of linear time-varying filters can be characterized by an h(t,r) which represents the
response to an impulse at time 7 . The response of a system to an impulse an time 7, is not a translated
version of the response of the system to an impulse at 0. An example of an h(t, 2') is shown in Figure 5.2.
It is seen that the response to an impulse at time 7, is longer and lower than the response of the system to
an impulse at time 7;, which could represent a system that becomes sluggish as time increases. The

h(t, TI) and h(t, 2'2) are just two of the profiles that make up h(t, z‘), The input-output relationship for

such filters is given by

y(t)= fw h(t,z)x(z)dz (5.7)

The linear time varying filter will be defined to be causal if h(t, 2') =0 for t<7.

Ah(tat)

t=1

Figure 5.2 An example of the impulse response function h(t,t) for a linear time varying system
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5.3 Continuous Linear Time-Invariant Systems (Random Inputs)

Consider a random process X (t,e) to be the input to a nonrandom linear filter with impulsive response
h(’[). For every €; an input waveform X (t,ei) is specified, and an output waveform Y(t,ei ) can be
given by the convolution integral of the realization with the impulse response as

Y(t.e )= _EO X(t—z,e)h(r)dz (5.8)
Thus Y(t,e) is a mapping from S, the sample space of the underlying experiment for X (t), to a set of
time functions and is, therefore, a random process Y (t, e). For notation purposes the expression above can

be written as a function of the input random process X (t) in the following the way:

Y(t): fw X(t—r)’\(r)dr (5.9)

The problem of prime importance is the statistical description of the output process Y(t) in terms of the
given characterizations of the input process X ('[) For example, we might ask what is the mean 77, (t) of

the output process, and is the knowing of the mean 77, (t) of the input process sufficient to determine it?

Similar questions may be asked about autocorrelation functions, first-order densities, and nth-order

densities. These questions are answered in the following sections.

5.3.1 Mean in-mean out (Linear Time-Invariant Filters)

Taking the expected value of both sides of Eq.(5.9) give the mean of the output random process as
()= EN ()= E[ [” X(t-r)n(r) T} (5.10)

If E[X (t - r)h(z')] is finitely integrable, it is possible to interchange the expected value operator, which

itself is an integral operator, with the integral for the convolution. Interchanging the expected value and

integration gives

0= EN ] = [ EX - ()] 5.10)
Assuming that the linear filter is not random we can take h(r) outside the expected value to obtain
ny (t)= wa[X (t—r)h(r)dz'] (5.12)
Since E [X ('[ -7 )] =1, ('[ -7 ), the following very important result is obtained:
Ty (t):fwﬂx (t—T)“(T)dhﬂx (t)*h(t) (5.13)

When the mean of the input process is a constant, the mean of the output process will be constant as

well:
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() =n [ h(e)Hran, (5.14)

If the system transfer function is defined as the Fourier transform of the impulse response, the mean of the

output process can written as
ny =nxH (JO)
Where  H(jw)=[" h(tldt (5.15)
Thus it is seen that the mean of the output process Y(t) can be obtained by multiplying the input

mean 77, by the dc gain H (jO)

5.3.2 Autocorrelation in-Autocorrelation out (Linear Time-invariant

Filters)

If the input process has an autocorrelation function R,y (t,u), a procedure paralleling the development

given in the previous section is used to obtain the output correlation function Ryy (t,u) and thus the

relationship between the input autocorrelation and the output autocorrelation. Using the definition of the

autocorrelation of the output process and (5.9) representing the linear filter, we have

Ryy (t,u)= E[Y(t)X (U)]
_ E[ [ X(t-ahlada[” X(u- ,B)h(/?)d/i’} 510

Interchanging integrals and expected values, and assuming a deterministic filter, we rewrite (5.16) as
Ry (tu)=" [ E[X(t-a)X(u-p)h(@h(s)dads
= [ [ Ry (t—a,u—ph(ah(s)dedp

If the input process is wide sense stationary, its autocorrelation function Ryy (T) is a function of the

(5.17)

time difference only. By letting t—U =7 and using the fact that X(t) is a wide sense stationary

process, we can treat Ryy (t,U) as a function of the time difference t—U alone. This we denote by
Ry (7):
Ryv (7)= Jjo f; Rux (7 + B —ah(@)h(B)dads
= h(z)* Ryy (c)*h(-7) (5.18)
or Ry (7)=F;'[H(p)®xx (P)H (- p)]
Equation (5.18) expresses the output autocorrelation function Ryy (7) in terms of the convolution of

h(T), Ryx (Z’) and the time reversed impulse function h(— Z').By taking the Fourier transform of both

sides of (5.18), the relationship between in the input and output power spectral densities can be obtained as
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Syy (0)) =H (ja’)va (a))H *(Ja))

(5.19)
=[H(jo) Sy (@)

Example 5.1

Let the random process X (t) be the input to a linear system represented by its impulse response h(’[)

resulting in the output process Y(t).The input was applied at minus infinite. We have h('[) given by
h(t) = 2e‘ty(t) , and that X ('[) is a random telegraph process with autocorrelation function

Ry« (Z') = e~ Find the power spectral density S,y (a)) for the output process.

Solution
The output power spectral density depends upon the input power spectral density and the magnitude
squared of the transfer function .The power spectral density of the input process is determined as

4
o’ +4

S xx (w) = F[Rxx (T)] = fme_zme_jmdf -
The transfer function H (]W) is obtained from the impulse response as

H(jo)= FhO]= el ot =

Therefore from (5.19) the power spectral density of the output can be written as
Syy (a)) =/ H (Ja)) ° S x (a))
1 |2 4 4
jo+1 o°+4 (coz +1Xa)2 +4)

The power spectral density could have also been obtained in terms of the Laplace transform as

follows:

S xx (a)) = [H (p)CD XX (P)H (_ p)]|p=jw

5.3.3 Cross Correlation of the Input and OQutput

If X (t) represents the input process to a linear time-invariant filter characterized by an impulse response
h(t), the output Y(t) can be expressed by the convolution integral given in (5.9). The cross-correlation
function for X(t) and Y(t) is computed by taking the expected value of the product of X(t) and

Y (U), where Y (u) is expressed by the convolution integral. This results in
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Ryy (t’u): E[X (t)Y(U)]
- E[X(t)fwh(ﬂ)x(u - ﬁ)dﬂ} (5.20)

= [ h(BEX )X (- A)lp
Recognizing the expected value to be the autocorrelation function for the input process X(t), the

cross-correlation function between the input and output becomes

Ry (t.u)=[" h(BR,(t.u— BB (5.21)

Thus the cross-correlation function between the input and output process can be determined by knowing the
input process autocorrelation and the impulse response defining the system.
If the input process is wide sense stationary, the autocorrelation function can be written in terms of the

time difference only as

Ry (t,U)= [ h(BR,(t—u+B)dp (5.22)

Thus the cross-correlation function between input and output processes for a wide sense stationary input

process is a function of time difference 7 ={—U only, and it can be written as
Ry = j:) h(ﬂ)Rxx (T + ﬂ)jﬁ
= f; Ryx (T - :B)h(_ ﬂ)dﬂ

The Ryy (T) is recognized as a convolution integral of the autocorrelation function of the input process

(5.23)

and a time-reversed version of the impulse response of the system:
Ryy = Rux (7)* h(_ T)
or Ryy (T) = \P; [CD XX (p)H (_ p)]
Following a similar development for the cross-correlation between Y (t) and X ('[), it can be shown that

Ryx (T) is

(5.24)

Ryx (7) = h(z)* Ry ()
or Ry, (r)= ‘I'/}I[H (p)® xx (p)]

This result can also be obtained by replacing 7 by —7 in (5.24) and using the fact that Ryy (z‘) is an

(5.25)

even function of 7 .
Since the cross-correlation function has been shown to be a function of time difference only, the input

autocorrelation function is a function of time difference only , and the output autocorrelation function is a
function of time difference only ,the input and output process X(t) and Y(t) are jointly wide sense
stationary.

As a nemonic notice that if the right variable is changed from X to Y passing through a system

with impulsive response h(r) that Ryy (r)is convolved with a time-reversed impulsive response
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h(— 2') or if a left variable is changed from X to Y passing through a system with impulse response

h(’[) ,that h(r) is convolved with Ry (2') .This relationship is shown in Figure 5.3.

Notice that (5.18) can be easily confirmed by using this nemonic as both right and left variables will
be changed .This approach can be used for ease in calculating cross-correlation and autocorrelation

functions for outputs of linear systems with multiple inputs and multiple outputs.

Example 5.2

A given linear time-invariant causal filter has impulse response h('[) =e™ y(t), and its input X (t)

is a zero mean wide sense stationary process characterized by its autocorrelation function
Ryx (2’) = l/ 2e~ ,Suppose that the input was applied at time t = —oo resulting in the output process
Y (t) Find the following:

(a) The mean 77y (t) of the output process Y (t)

(b) The cross-correlation function Ryy (2')

(¢) The cross-correlation function Ryy (2’)

(d) The output power spectral density Syy (W)

(e) The output autocorrelation function Ryy (2')

Solution

(a) The mean of the output process can be found by using (5.13) and is determined as

7 (1) =17 (t) xh(t) =0+~ u(t) = 0

—

Rxx(1) Ryy(1)

*h(-1) J

Figure 5.3  Relationships between input ,output ,and cross correlation functions for a

h(r)*

linear time invariant system

(b) The cross-correlation function Ryy (T) between output process Y(t) and input process X (t) can

be determined from (5.25) as
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Ruc(6)= 5 [0 ()] 5 et 12|
i Fﬂ_l_ P1+1 %( p1+2+ - p1+2ﬂ

e 2 }
P l(p+1)p+2)-p+2)

To obtain the inverse transform, a partial fraction expansion for the term in the brackets is performed

followed by the inverse bilateral Laplace transform to get

. _2/3Jr -1/2 N /6
Ry (r)=F; {(erl) (p+2) (—p+2)}

) (‘ge‘f —%e_%}u(t)+le”u(—f)

3 6

(c) To find Ryy (T),we can use the fact that Ryy (2’) = Ryx (— T) to obtain

2 . 1 5 1 5,
R ()= Rec (- 7)= =367 = ke 2)+ e ut)
(d) To find S,, (a)), the power spectral density S,y (a)) of the input must first be found. From the

definition of power spectral density, we have

Sy (@)= F[Ry (7)) = F{le-zf} 2

2 W’ +4

From (5.19) the power spectral density Sy (a)) of the output process Y (t) in terms of the input power

spectral density is

. 1 2
Sy (@) =[H(jo)* S = 2.

YY(a)) | (Ja’)| xx(w) |ja)+1 (w2+4)
2

(af + IXwZ +4)

(¢) The autocorrelation function Ryy (T) can be found from Eq. (5.18) as the convolution or as the

inverse transform. The easiest way is to use the Bilateral inverse as follows:

Ryy (T) = Fﬂ_l [H (p)cI) XX (p)H (— p)]

=F;!

1 2 1
’ {(p+1)(p+2)(— p+2)(- p+1)}

A partial fraction expansion is performed for the function in {}, and then an inverse bilateral Laplace
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transform to give the output autocorrelation function as

Ryy (T) = \Pﬁ_l

{ ys o, 13 13 13 }
(p+1) (=p+1) (p+2) (-p+2)

— e ule) 4 e pl ) le) e )
1 |

=—e——¢
3 6

5.3.4 nth-Order Densities in-nth-Order Densities Out

To arrive at the output densities, it is worthwhile to discuss the first-order density of the output. Rewriting

the input-output relationship (5.4) as
Y(t)=[ X(tht-r)dr (5.26)

it is easily seen that the output random variable Y ('[) =Y, defined at any time t not only depends on the

input X (t) attime t buton X (t) for all —oo <t < oo. Therefore, in general, the determination of the

output first-order density requires a complete characterization of the input process. Although the
second-order density is just as complicated, it should be noted that the mean and autocorrelation of the
output can be determined,(5.13) and (5.18), without knowing the first-or second-order densities of the input
process provided the mean and autocorrelation of the input process are known .This is an important result ,
and it demonstrates that for linear systems the mean and autocorrelation of the input process are sufficient

for the same partial characterizations of the output .Later we will see for the special case where the input
process is Gaussian that the first ,second ,and nth order densities of the output process Y('[) can be easily

determined.

5.3.5 Stationary of the Qutput process

For a wide sense stationary process as input to a linear time-invariant system it has been shown, (5.14) and
(5.18), that the mean of the output process is a constant and not a function of time and that the
autocorrelation function depends only on the time difference, t-u or 1. These results allow the following
statement to be made:

If the input to a linear time-invariant filter is a wide sense stationary random process, the output is also
a wide sense stationary random process.

We also might ask if the input process is stationary of order one or two, what can we say about the
output? From the argument given in the previous section, there is no reason to believe that the first —order

density would be independent of time or that the second-order densities would be equal for each pair of
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times t; and t j - Thus an output process is not necessarily stationary of order two just because the input is.

5.4 Continuous Time-Varying Systems with Random Input

If the input to a linear time-varying system, characterized by its h(t, T), is a random process X ('[) with

known partial characterizations, the characterizations of the output process are desired. The partial
characteristics of the output process consist of mean, autocorrelation, first-and higher-order densities along

with various stationarity properties.

5.4.1 Mean in-Mean out (Linear Time-Varying Filter)

Taking the expected value of both side of (5.7), the input-output equation for a linear time varying filter

with impulse response h(t, r), the mean of the output random process becomes

n()=EN ()= E[ [ ht.ox (@) ] (5.27)
Interchanging the expected value and the integration operations give

n©)=EN ()= Eht.c)X (ke (5.28)

We assume that the linear filter is not random, so h(t, ‘[) can be taken outside the expected value to yield

()= hit,2)E[X (7)ld< (5.29)
Now, recognizing that E[X (z)]= 77y (r), we write the mean of the output process as
ne(t)= [ h(t, o)y (c)d e (5.30)
When the input process is stationary in mean, 7, (t) is constant, the mean of the output process is
n(®)=ny [ ht.7Mz (5.31)

From this result it is seen that the mean 7, ('[) of the output process Y(t) will be a function of time,

since the integral of h(t,r) with respect to T is a function of time. Thus the output process is not

stationary in the mean even if the input process is stationary in mean.

5.4.2 Autocorrelation in-Autocorrelation out (Linear Time-Varying Filter)

Assume that the input process has an autocorrelation function Ryy (t,u), and the output a correlation

function Ryy (t,u); the relationship between the input autocorrelation and the output autocorrelation is

now determined. Using the definition of the autocorrelation of the output process and (5.7), representing
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the linear filter, we write the output autocorrelation as

Ry (t’ u): E[Y(t)Y [U]]
—E| [ hlt.a)x(@ha]” hlu AX(8)ds | 32

After interchanging the integrals and expected values, and assuming a deterministic filter, we rewrite (5.32)

as

Rolt0)= [ | nlcch(o, PEIX (@)X (8t
= JAOO r’ h(t’ a)h(ua ﬂ)Rxx (a, ﬂ)dadﬂ

If the input process is wide sense stationary, its autocorrelation function Ryy (2') is a function of the

(5.33)

time difference only. Thus the output process autocorrelation function, Ryy (t, u), can be written as

Ry (t,u) I J. (t,ah(u, ARy (@ — B)dad (5.34)

The equation above expresses the output autocorrelation function Ryy (t,u) in terms of the

autocorrelation function of the input process, Ryy (‘r), but since h(t,a)h(u, ,B) is not necessarily a

function of t—U, the double integral will in general not be a function of t —U. Thus the output process

will not be stationary in autocorrelation even if the input process is stationary in autocorrelation.

5.4.3 Cross Correlation of the Input and Output (Linear Time-Varying

Filter)

For an input random process X(t) a linear time-varying filter produces an output process Y(t).These

two processes are in some ways statistically related .The cross-correlation function provides a statistical

measure of the correlation that exists between the processes .For a time-varying linear filter characterized

by its h(’[, z'), the output Y (t) is given by (5.7). Thus the cross correlation can be written as

R (t0)= EIX (Y (W) [ ) hlu. AX (8)35

o0

=] hlu. BE[X )X (8)ldp

Recognizing the autocorrelation function for the input process X(t), the cross-correlation function

(5.35)

between input and output becomes

Ry (t.u)=[" h(u, ARy (t. B)d (5.36)

Thus the cross-correlation function between input and output can be determined by knowing only the input

autocorrelation function Ryy ('[, u) and the system’ s impulse response h(t, T).

If X (t), the input process, is wide sense stationary, the Ryy (t, p ) can be written in terms of the
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time difference. The cross-correlation function of (5.36) becomes

Ry (t.u)= " h(u, B Ry (t— B)I (5.37)
The cross-correlation function can be written in a slightly different form by making a change of variables

t—f =a in(5.37), resulting in

Ry (t:0)= [ h(u,t— Ry (B)dex (5.38)
The cross correlation between Y (t) and X (u) can be similarly found to be
Rec(t,u) = E[Y ()X (t)]
=] nt. SR (u. )

Clearly, even if the input process is wide sense stationary, the input and output processes are not jointly

(5.39)

wide sense stationary for a linear time-varying system.

5.4.4 nth-Order Densities in-nth-Order Densities out (Linear Time-Varying

Filter)

By a similar argument to that given in section 5.3.4 for a linear time-invariant system, the first- and
higher-order densities of the output of a linear time-varying filter cannot be determined knowing only the
same order characterizations of the input. In general, a total characterization of the input process would be

required to even get the first-order densities.

5.4.5 Stationarity of the Output Process (Linear Time-varying Filter)

From (5.31), it is seen that the mean of the output process will be a function of time even if the input
process is stationary in its mean, and from (5.34), that the auto-correlation function does not depend only
on the time difference T —U even when the input process is stationary in autocorrelation. From these
results the following statement can be made.

If the input to a linear time-varying filter is a wide sense stationary random process, the output random

process will not necessarily be stationary in any sense.

5.5 Discrete Time-Invariant Linear Systems With Random Inputs

In the study of linear continuous time systems with random inputs, relationships were obtained for the
output mean and the autocorrelation function in terms of the input autocorrelation and mean. Similar
formulas will now be developed for discrete time linear shift-invariant systems characterized by the

following input-output relationships (discrete convolution sum).
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yln]= 3 hlk I —kpr

k=—c0

= 3 h[n-k]xK]

k=—o0

(5.40)

The derivations assume that the input process was applied at time — o0, and results are interpreted as being
in steady state. In (5.40) the h[n] is the unit-sample response. If h[n] is zero for all N < 0, the discrete

system is causal, and Eq.(5.40) can be written as

00

y[n]=>"hlk]x[n—k] (5.41)

k=0

5.5.1 Mean in-Mean Out

The mean of the output random sequence is seen from (5.40) for a nonrandom h[n] to be

E[v[n]l= 3 h[kJE[xk ~n]

k=—2 (5.42)
=h[n]«7y[n]
In other words, the output mean is the convolution of the input mean with the unit-sample response h[n],
similar to the result for continuous time systems.
If the input process is wide sense stationary with mean E[X (n)] =1y , forall n,then E[Y [n]] can

be written as
Efv[nll=nx > hlk]
k=-o0

=1 Z(h[n])| za =nxH (1)

where H(1)=H(Z X ,., and H(Z) is the Z-transform of h[n].

(5.43)

This result compares with that for the continuous case, the difference being Z=1 in H (Z) instead

of p=0 intheH(p).

5.5.2 Autocorrelation in-Autocorrelation Function Out

In a straightforward manner, the output autocorrelation function Ryy [kl , kz] defined by

Ryx [kl ) kz] =E [Y [kl ]Y [kz ]] (5.44)

can be found using (5.40). Assuming that the linear filter is not random, we can take h[n] and h[m]

outside the expected value to yield
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Rylkiko]= 3 S h[nh[mRy [k, .k, ~m] (5.45)

M=—00 N=—00
For a wide sense stationary input sequence X [n], the output autocorrelation function Ryy [kl,kz]

can be written as a function of k; —K, =K

Ry[kl= 3 S hinh[mRy, [k —n+m] (5.46)

=—00 N=—00
Equation (5.46) is the discrete form of a double convolution sum and can be written more compactly

as
Rev[k]=hlk]# Ry [k]h[-K]
=2 @)Y (@H ()]
and the Z-transform of (5.47) can be expressed as
W, (2)= H(2)®y (H(z ") (5.48)
where Wy (2), W,y (2z), and H(z) represent the Z-transforms of Ry [k], Ryy[k]. and h[k],

(5.47)

respectively.

The power spectral density for a random sequence X [n] is defined as

¥ xx (a))éq’xx (ZX 7—el® (5.49)

Therefore from (5.48) and (5.49) it is possible to write the power spectral density of the output process in

terms of the power spectral density of the input process as

Wy (@)= H(2)¥y (2)H (271 1 reeio
= ‘H (ejwr‘/fxx (w)

The results above can be compared to those determined for a continuous random input process X (t)

(5.50)

and a continuous system characterized by h(t) with output process Y(t) . The formulas are
analogous ,with the discrete time convolution replacing the continuous time convolution, the Z-transform

replacing the Laplace transform, and the € o replacing the j@.

5.5.3 Cross-correlation Functions

As in the continuous time case the corresponding cross-correlation functions of input and output random

processes for discrete time can be determined as convolutions:

Ryx [k]:h[k]*Rxx [k] or Ry [k]:Z_I[H (Z)\Pxx (Z)]
R [k]= Ry [k]#h[=k] o Ry [k]=2 [y (2)H (2]

Their Z-transform equivalents are determined as

(5.51)
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g
¥y
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5.5.4 nth-Order Densities

By arguments similar to those for the continuous case the first-,second- , and Nth — order densities can be
examined .Since the output Y[n] at any given n is a function of the input process X[k] random
variables for all k form —oo to oo, the first-order density cannot be determined without knowing the
nth-order joint densities for all input random variables X [k] Thus a first-order characterization of the

input process is insufficient information to obtain the first-order densities for the output process. Similarly
the second- and nth-order densities can not be determined unless the input process is totally characterized.
However, if the input process is a Gaussian random process and characterized by its mean and
autocorrelation function, it is totally characterized. Thus the corresponding first-, second-, and all

higher-order densities can be determined, totally characterizing the output.

5.5.5 Stationarity

If the input process is stationary in mean, stationary in autocorrelation, or wide sense stationary the output
process is correspondingly stationary in mean, stationary in autocorrelation, and wide sense stationary. This
is verified by the functional relationships for the output mean in terms of the input mean given in

(5.43) and the output autocorrelation in terms of the input autocorrelation function given in (5.47) .For a
discrete time-invariant linear system specified by its impulse response h[n] , the mean and autocorrelation

of the input are sufficient to determine the mean and output autocorrelation function ,so only a partial
characterization of the input process is required. However, input stationarity of order 1 does not imply

output stationrity of order 1, nor does input stationarity of order n imply output stationarity of order n.

5.5.6 MA, AR, and ARMA Random Processes

Give a discrete time linear system with input x[n] and output y[n] characterized by a difference

equation as

p q
yln]==>a.y[n—k]+ > bx[n—k] for all n (5.53)
P 0

The system function or transfer function can be obtained by first taking an inverse Z-transform of both

sides of Eq. (5.53), ignoring initial conditions to obtain the following:

p q
Y(z)=-Y az*Y(2)+> bz *X(2) (5.54)
o 0
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We then rearrange (5.54) to obtain H (Z) as Y (Z) over X (Z):

H(z)= = k=0 (5.55)

Thus the transfer function H (Z) is a rational expression in 27", where g is assumed less than p. The
impulse response of such a system is obtained by taking the inverse Z-transform of H(Z) which is
written as h[n] =z (H (Z)).If the input process is a white random sequence, then the output process is
an ARMA (p,q) process.

Ifall the b, =0 for kK=1,2,---,q, then the transfer function can be written in terms of an all pole

model as

H(z)=——2— (5.56)

If the input to a system represented by the H (Z) above is a white random sequence then the output
process is an autoregressive process of order P, AR( p).

Ifall the @, =0 for k=1,2,---, p, then the transfer function can be written in terms of the all zero

model as

bz (5.57)

M-

H(z)=

and if the input process is a white random sequence, the output process is said to be a moving average

k=0
process, MA(Q).

Example 5.3

Find the steady state mean, autocorrelation and power spectral density for the MA(I) , processes where the
input process X [n] has a zero mean for all N and an autocorrelation function given by
E{X [m + k]x[m]} = Gzﬁ[k] forall m.

Solution

The mean of the output process is obtained from Eq.(5.42) as the convolution of the impulse response of
the system with the mean of the input process. Since the mean of the input process is zero for all N, the

convolution is zero for all N, all thus E{Y [n]} =0 forall n.

From Eq.(5.47) the output autocorrelation function of the output process Y [n] is a convolution of

the impulse response, the input autocorrelation function, and the time-reversed impulse response. It can

also be determined as the inverse Z-transform of the product of their transforms.
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Ryy [K]= h[K]* Ry [k]* h[- K] = 2 [H(2)®,x ()H (27" (5.58)
Where H(z) from (5.57) is H(z)=b, +bz" and Wy [z]=2Z(0?5[m])= o> The
autocorrelation function from (5.58) is seen to be
Ry [k]=2 " {b +b,27" )} (b +b,2)}

=622 M pybyz+ (b2 +b2 )+ bibyz " | (5.59)

= o2y Sk + 1]+ o2 (b2 + b2 5[k ]+ by o5k — 1]
The values for K =0 and k =1 check with the results determined in Example 4.6, as do the zero values
for K>1 and k <-1.

The power spectral density ¢y (W) is obtained from Wy (z) using (5.50) as follows:
Wyy (W) =Wy (Z) |,_ein=H (Z)‘Pxx (Z)H (Z_l )|Z:ejw
= {(bO +b,z7 o ? (b, + blz)}yZ=e w (5.60)
= (b2 +b? + 2byb, cos(w))?
Similarly the autocorrelation function and power spectral density for the MA(Q) process are
casily determined using the power transfer functions in (5.57) and (5.50). The following example

finds the power spectral density for the MA(q) process:

Example 5.4

Find the power spectral density for MA(q) process.

Solution

The power spectral density for the MA(C]) process uses the transfer function given in (5.57) and

is determined as follows:

Vyy (W) =Wy (Z) |,_ow=H (Z)"Pxx (Z)H (Z_l )lz:ej‘”

:{ibkz_k (O-z)ibkzk} | (5.61)

Example5.5

Find the steady state mean, autocorrelation, and power spectral density for the AR (l), processes where
the input process X [n] has a zero mean for all N and an autocorrelation function given by
E{X [m + k]x[m]} = 0'25[k] forall m.

Solution
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The mean of the output process is given from Eq.(5.42) as the convolution of the impulse response of
the system with the mean of the input process. Since the mean of the input process is zero for all N, the

convolution is zero for all N, and thus E{X [I’]]} =0 forall n.
Using Eq.(5.47) where H (Z) from (5.56) is  H(z)=b, /(l + alz‘l) and

Yx [Z] =7 (0'25 [m]) = %, the autocorrelation function Ryy [k] is seen to be

Ry [k]=2" {H (2)¥yx (2)H (271)}
L) by 2 by
=4 %(Halz‘l)(7 (1+alz‘1)} G2

_bgazz_l z
a (z+a,)z+1/q,)

Expanding the rational expression in terms of a partial fraction expansion gives

R LA

a
1-a’

(5.63)

where A =

After taking the inverse Z-transform and recognizing the first term as a positive time sequence and the

second as a negative time sequence, we find the desired autocorrelation function Ryy [k] to be

b262 k -1 _k
R b]=27 1 a) u[k]+(a—j k1] 60
-4 1

Evaluating Ryy [k] for k>0 gives
Ry [k]= L‘z(— a ) (5.65)

Which checks with the result determined in (4. 179) by a time domain method.

The power spectral density can be determined directly from this autocorrelation by taking the
Z-transform and evaluating at Z = eiW, or directly from (5.50) which gives vy (W) as

Wy (W)= "Pyy (2) |, =H (2)¥xx (2)H (271 )|z=eiw

_ by 2 by _
_{(Halz‘l)a (1+alz‘1)}yzzejw (560

22 1
=byo {(Hale‘jWXHalejW)}

Multiplying the terms in the denominator and simplifying the power spectral density reduces to

Xidian University Liu Congfeng E-Mail:cfliu@mail.xidian.edu.cn Page 20 of 36




{Random Signal Processing) Chapter5 Linear System: Random Process

byo?

B 1+af +2a, cos(w)

Wyy (W) (5.67)

Example 5.6

Find the steady state power spectral density for the AR( p) process where the input process X [n] has

a zero mean for all N and an autocorrelation function given by E{X [m + k]X [m]} =o?s [k] for all

m.
Solution

The transfer function for the general AR( p) process from Eq.(5.56) is

H(z)=——2— (5.68)

Thus the power spectral density can be determined as

Wyy (W) =¥y (Z) |, _om=H (Z)‘Pxx (Z)H (Z_l )|z=ej""

- pbo o’ pbo | o (5.69)
1+Y az™  1+) az"
k=1 k=1
B byo?
- ; _
11+ ae
k=1

Example 5.7

Find the steady state mean, autocorrelation, and power spectral density for the AR MA(l,l), processes
where the input process X [n] has a zero mean for all N and an autocorrelation function given by
E{X [m + k]X [m]} = 0'25[k] forall m.

Solution

Since the mean of the input process is zero the mean of the output process will also be zero. The

transfer function for the ARI\/IA(I,I) process from Eq.(5.55) is

-1
H(z)= 20z (5.70)
l1+a,z

Thus the autocorrelation function in the steady state can be found from Eq.(5.64) by using the

inverse Z-transform as follows:
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Ry [k]=2 " H (@) (2)H (")

_ - %+qz?02%+Qz 571)
l1+a,z2" I+a;z

o7 [byb,2> + (b + b7 +byb,
" a (z+a )z +1/a,)

Expanding the term in brackets, divided by Z , and expanding into partial fractions gives

2
RYY[k]:Z—Zl{z[é+ B ,_C }} (5.72)

. z z+3 z+l/a

Where A,B,and C are determined by partial fraction expansion method to yield

A=Dbyb,
B boblaf - albg2 - a1b12 +byb, (5.73)
a; -1
Co_ bOblaf — albg - alblz + bObl
al -1

Multiplying out the Z and taking the inverse Z-transform shown in Eq.(5.71) , we have the

autocorrelation function Ryy [k] for AR |V|A(l,l) process as

2 —K—
R =2 fpolkd B, ) ] -l-ar' ) k-1 e
1
Thus the & (k) term gives a contribution at K =0 only, while away from the origin the autocorrelation

function is a power of (— al) for positive K with coefficient O'A/ a, as indicated by the second term

and the third term is the autocorrelation function for time index less than zero. If we evaluate the

autocorrelation at zero, we must add contributions of both of the first terms:

(A+B
Ry [0]= T2 (a+ ) (5.75)
1

Substituting the A and B from (5.73) and simplifying gives the Ry [0] as

2 2 2
e 0]- bz +b7 — 20,3, )

(5.76)
1-af

The formula above for Ryy [0] verifies the result determined in (4.209). After evaluating (5.74)for

k >0 usingthe B of (5.73), the Ryy [k] can be simplified to give

2

Ruv )= T B(- 2, k)

! (5.77)

_ O'z(alzbobl —ab; —ab] +bob1)(_a )k—l
- 1-a’ :
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This result verifies that determined in the steady state development given in Chapter 4, Eq.(4.209) for
k=1 and (4.21 1) for k>1, It is also easily shown that Ryy [— k] = Ryy [k] by evaluating (5.74)

for negative K.

The power spectral density can be determined directly from this autocorrelation by taking the

Z-transform and evaluating at Z =€ W or determined directly from (5.50), which gives @y (W) as
vy (W)= Py (2) |,_omw=H (2)¥yx (2)H (Z_l )|z:eiw

-1 1
_ b, +b,z 52 b, +b,z L (5.78)
z=e/

1+a,2”" 1+a,z
_bo? (b, +b1e_‘:WXb0 +be)
(1+a1e 'WX1+a1e’W)

Multiplying out the terms in the numerator and denominator and simplifying the power spectral density

reduces to

be +b +2byb, cos(w)
W)=
voe (W) 1+a; +2a, cos(w)

byo? (5.79)

Example 5.8
Find the steady state power spectral density for the ARI\/IA( p,q) process where the input process X [n]

has a zero mean for all N and an autocorrelation function given by E{X [m + k]X [m]} =05 [k] for all

m.
Solution

The power spectral density for the AR |V|A( p, q) is easily found by substituting the transfer function for the

system H(Z) given in Eq.(5.55) into Eq.(5.50) to get

Wy (W) =Wy (2) |,_om=H (2)®xx (2)H (Z_l )|z=ej""

q q
—k k
D bz D bz
==L o’ == o (5.80)
1+Y az™  1+) acz
k=0 k=0
q 2
— jkw
> be
k=0 2 _2
= X ~byo
1+ a, e v
k=0
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5.6 Discrete Time-Varying Linear Systems with Random Inputs

In the study of linear continuous time systems with random inputs relationships were obtained for the
output mean and the autocorrelation function in terms of the input autocorrelation and mean .Similar
formulas will now be developed for discrete time-varying linear systems that can be characterized by the

following input-output relationship:
y[n]= > hln,mj(m] (5.81)
m=—o

where h[n, m] is the response of the unit sample impulse at time m. If h[n, m] is zero for all m>n,

the discrete time-varying systems is causal, and Eq.(5.81) can be rewritten as

y[n]= ih[n,m]X[m] (5.82)

5.6.1 Mean in-Mean out (Time-Varying Discrete Time System)

The mean of the output random sequence is seen from (5.81) for a nonrandom h[m, n] to be

efv[nll= >l mE(X[m]
= 3l ]

In other words, the output mean is the result of taking the input mean through the system similar to the

(5.83)

result for continuous time-varying systems.
If the input process is stationary in the mean, E[X [m]] =1y , for all m, then E[Y [n]], from (5.83)

can be written as

EfY[n]=n, mih[n,m]

_— (5.84)
=T1x Zm(h[na m” 1 =nxH (I‘l,l)

This result can be compared with that determined for the continuous time-varying case.

5.6.2 Autocorrelation in-Autocorrelation Function out (Time-Varying

Discrete Time System)

The definition of the output autocorrelation function Ry [k1 R kz] is given by

Ry [kl’kz]: E[Y [kl]Y[kZ]] (5.85)

We substitute Y (k1 ) and Y (kz) from (5.81) into (5.85), and assuming that the linear filter is not random,
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we now have
Ryy [k;. K, | = Z Zh [k,,mh[k,,n]Ryy [m,n] (5.86)
Mm=—co M=

For a wide sense stationary input random sequence X [n], the output autocorrelation function R, [m, n]

can be written as

Ryl k)= > Zh[kl,nh[kz,m] w[n—m] (5.87)

m=—c0 M=

There is no reason to believe that this double sum will be just a function of the difference between kl and

K, .Even though the input process is wide sense stationary the output of a linear discrete time-varying

system will not necessarily be wide sense stationary.

5.6.3 Cross-correlation Functions (Time-Varying Discrete Time System)

Using Y(kl) and Y(kz) from (5.81) in the definitions of the cross-correlation functions between the

input and output process, we can show the Ry [kl , kz] and R,, [k1 , kz] to be

Rl ko= EIY (kX ()= Sl M m k)
m=- (5.88)
XY [k19k2] [ (k )Y( )]:me [kzsm]Rxx [kzam]

5.6.4 nth-Order Densities

Since the output process at any time N is a function of the input process random variables at all times, a
total characterization is required to determine the first-order densities of the output random process. Thus a
first-order characterization of the input process is insufficient information to determine the first-order
densities of the output process. Similarly the second and nth-order densities cannot be determined unless
the input process is totally characterized If the input process is a Gaussian random process with known
mean and autocorrelation function, the output process will be Gaussian and thus totally characterized by its

mean and autocorrelation functions given in (5.83) and (5.86).

5.6.5 Stationarity

For a discrete linear time-varying system characterized by its unit-sample response, the output process is
not necessarily correspondingly stationary in mean, stationary in autocorrelation, or stationary in wide

sense if the input process is stationary in mean, stationary in autocorrelation, or stationary in a wide sense.

For a discrete time-varying linear system, specified by an h(n, m), knowing the second-order information

Xidian University Liu Congfeng E-Mail:cfliu@mail.xidian.edu.cn Page 25 of 36




{Random Signal Processing) Chapter5 Linear System: Random Process

of the input process is, however, sufficient information to determine the second-order output information

with the relationships given in (5.83) and (5.86).

5.7 Linear System Identification

If the input X (t) to a linear time-invariant filter, specified by its impulse response h(t), is a white process

with autocorrelation function

N
Ry (7)= 7°5(r) (5.89)

the cross-spectral density Syy (j a)) can be obtained from (5.25) as
Sy (a)): Sxx (a))H(Ja)) (5.90)
Dividing through by Syy (a)) whichis N, /2 gives the transfer function H (ja)) as
. Sy (@) 2
H =X - =5 591
(Ja’) S (a)) N, YX (a)) (5.91)

That is, by measuring the cross-spectral density between output and input when white noise is the input, the

transfer function of an unknown linear system can be determined.

5.8 Derivatives of Random Processes

Let X (t) be a random process with known characterization in terms of mean and autocorrelation function.

If realization of this process is the input to a differentiator an output signal is obtained, thus establishing a
mapping from the sample space to the output and specifying the output as a random process. The derivative

process is denoted as

dX (t)
Y(t)=—2 5.92
(t) " (5.92)

The logical question is : What are the statistical characterizations of this derivative process? The derivative
operation can be viewed as a linear system with transfer function H (p) = P, so the formulas given earlier

can be used to find the autocorrelation between input and output can be expressed as

do
R (e)=(e)eRos )= 2o, )
q (5.93)
=——R
q (T) XX (T)
The autocorrelation function of the output is determined as

—_y-! _

RYY(T)_lP [H(p)CDXX(p)H( p)] (5.94)

=¥ [_ piD (p)]

A property of the inverse Laplace transform is that
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v [p"F(p)|= d 1;(t) (5.95)
d"t
Using (5.95) in (5.94), we obtain the autocorrelation function of the output process as
d 2
Re (7)== 5= R (7) (5.96)

In a similar fashion the autocorrelation function of Z(t)can be found, where Z(t) is defined as the

nth-order derivative of a random process X (t) and denoted by

d"X(t)
Z(t)=——~ 5.97
®)==4r, (5.97)
The autocorrelation function for Z (t) can be shown to be
o d2n
R, (t) = (_ 1) E Ryx (T) (5.98)

The derivatives of wide sense stationary random processes are statistically related and it is easily
shown, similar to the previous derivations, that their cross-correlation function are given as

E de(t+T)de(t) :(—l)nw (5.99)
gnm d"t d(m+n)z_

A word of caution on using these formulas is necessary as all derivatives of random processes do not

necessarily exist, but if they do, the formulas are meaningful.

5.9 Multi-Input, Multi-output Linear Systems

Multiple-input and multiple-output linear systems are becoming increasingly significant as systems are

becoming more complicated. An example of two-input two-output system is shown in Figure 5.4. The input

signals are X ('[) and x, (t), and the output signals are Y, ('[) and Y, ('[) Each output is the sum of two
signals. For example, Y, (t) is the sum of one signal resulting from passing X, (t) through a linear
system with transfer function Hn(p) and the other from passing X, (t) through a linear system with
transfer function Hzl(p)- Similarly Y, (t) is the sum of a two responses one due to passing X (t)
through le(p) and the other from passing X, ('[) through H22(p). In general, le(p) and

H21(p) are not the same. Thus the two-input, two-output system is specified by a 2 by 2 matrix of
transfer functions. The basic problem is knowing the means of the inputs, the autocorrelation functions of
the inputs, and the cross-relation between inputs determine the corresponding characterizations of the

outputs.
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Hu®) (2 ® Y1)
X, (t) @———

Hix(p)

Hai(p)
X(t) @———

Ho(p) | Ya(t)

Figure 5.4 A general linear two-input two output system denoted by MIMO(2.2)

5.9.1 Output Means for MIMO(2,2)

If the inputs to the two-input, two-output linear system are random processes Xl(t) and Xz(t), the

output processes Y; (t) and Y, (t) are easily seen to be the sum of two convolutions:
Y, (t) = I_Z Xl(t - ahl(a)da + f; Xz(t - :B)hzl(ﬁ)dﬂ
Y, (t)= f; X,(t-ah,(a)da + I: X,(t =By, (8)dp

The means are determined by taking the expected value of the equations in (5.100) and interchanging the

(5.100)

expected value operator and the integral sign to get
E[Yl (t)] = J-: E[Xl(t - a)hl(a)da + J-_Z E[Xz(t - ﬂ)hZI(ﬁ)dﬂ]
Ef, )= E[X(t-a)h,(a)a+ | E[X,(t-ph,(8)ds]

Recognizing the integrals as convolutions permits us to write the means in terms of convolutions as

EY, ()] = E[X, O] b (@)+ E[X, )], (8)
ELY, ()= E[X, )] <)+ E[X, 1)), (8)

When the input processes are jointly wide sense stationary, the input means are constant, and the output

(5.101)

(5.102)

means can be written in terms of the various transfer functions evaluated at zero:
Ty, =17, H11(0)+ x, HZI(O)

(5.103)
Ty, =1, H12(O)'H7x2 sz(o)
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5.9.2 Cross-correlation Functions for MIMQO(2,2) Linear Systems

There are four cross-correlation functions that need to be examined for the two-input, two-output linear
system given by RYIXI(t,U), RYIXz(t,u), RYZX](t,U) and Rszz(t,U). Consider the first one of these,

which can be written as
R, (L0)=E 0,0
~& ([ hilax -uka+ [ (A, )5 0)]
After we multiply out and interchange the integral and expected value operations, (5.104) becomes

Ryx (tU)= fw h, (@R (t—a,u)da+ fw h, (B)Rex (t—B,u)dp (5.105)

(5.104)

Let us assume that Xl(t) and Xz(t) are jointly wide sense stationary. Then this cross-correlation
function can be written in terms of 7 =1—U as follows:
R\(lx1 (T)z hn(T)* Rx]x, (T)+ hZI(T)* szx] (7) (5.106)

The other input-output cross-correlation functions for jointly wide sense stationary inputs can be similarly

shown to be

vaxz( ) hu(T)* Rxlxz(z')"'hzl( )* Ry xz( )
szxl( ) hlz( )*Rx1x2(7)+h22(7)*Rx2x2(7) (5.107)
R

Y, X, ( ) h12( )*Rxlxz(T)"'hzz(T)*szxz(T)

As was done in previous sections, these convolutions may be conveniently calculated by using inverse
Laplace transforms of various products of Laplace transforms of the system impulse responses and various

autocorrelation and cross-correlation functions of the input processes.

5.9.3 Autocorrelation Functions for Outputs of MIMO(2,2) Linear Systems
The autocorrelation function for the output Y, (t) can be written as
R\m(1 (t, u) =E [Yl (t )Yl (U )]

:EKI_ (@)X, ta)da+j A ﬂ)dﬂj (5.108)
U h, ()X, (u - 7/)1}/+j L, (0)X,(t— Ghﬁﬂ

Multiply out the terms in parentheses to get four terms, taking the expected value through the integral, and

evaluating the expected value gives the autocorrelation function RY1Y1 (t, u) as
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RYIYI (t’u): f; hn(a)]n(?/)Rxlxl (t -a,u —}/)dad;/
+_[_0; hn(O‘)qzl(‘g)Rx]x2 (t -a,u —(9)dad(9
+.E; hzl(ﬂ)qno/)szxl (t - p.u —}/)dﬁd}/
+.Eo th(ﬂ)ﬁ'zl(Q)szx2 (t -B.u —e)dﬂdﬁ

If the input processes are jointly wide sense stationary, then the equation above can be written as
R (GU)= [ [ by (ehy, ()R, (7 = (e = 7))dedly
[ (@, (0)R x, (r (- 0))dado
[ (BN (R, (7= (87
[ (B (ORy x, (-~ (8- 0))pe

As before, for the single-input, single-output linear system, the integrals above are recognized as

(5.109)

(5.110)

convolutions, and thus the autocorrelation function becomes
Ry, (£)=hy (@) R x (2)%hy, (= 7)+ 0y, () Ry i (7) s (= 7)
+hy, (7)% Ry (2) %0, (= 7)+ oy (0)Ry ¢, (7) Dy, (= 7)
In a similar development the autocorrelation function for the other output Y, (t) can be shown to be
R (7) =iy (@) * Ry (£) %y, (= 7)+ 0y (7) Ry . (£) %y (=)
+hy (7)% Ry x, (7) 0y, (= 7) + iy (0)R xzxz( )y (=7)

As before, these cross-correlation functions are more conveniently determined in the Laplace domain.

(5.111)

(5.112)

5.9.4 Cross-correlation Functions for Outputs of MIMO(2.2) Linear

Systems

The cross-correlation function for the two outputs Y, (t) and Y, (t) is determined in a similar fashion to

that for the autocorrelation functions:

RYIYZ (t, u) = E[Yl (t)Yz (u )]
= El:(f; (@)X, (t - e+ J._io h,, (8)X,(t _ﬂhﬂj (5.113)
([ X a= 7Ry + [ ha(O)xla-00 )|

After we multiply out the integrals, assuming jointly wide sense stationary inputs, the cross correlation

between outputs can be written as
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Ryy, (T): hll(a)*
+ hZI(T)*

X%, (T)* h, (_ 7)"' hy, (7)* Rxlx2 (T)* hy, (_ T)
X5 X, (T)* hlz(_ T)"' h,, (T)szx2 (T)* h,, (_ 2')

As the orders of the MIMO(n, n) system increase, the autocorrelation and cross-correlation functions

R
5.114
R (5.114)

become very complex, simplifying only when the input processes are all uncorrelated.

5.10 Transients in Linear Systems

Let X(’[) be the input and y(t) the output of a linear system that is governed by the following linear
constant coefficient differential equation:
y(t):—zn:akﬂk(th x(t). t>0 (5.115)
= dt

If the input is a random process, then the output is also a random process described from the mapping of
each realization of the input process to a realization of the output process. Assume that y(t) =0 forallt

< 0 and that the initial conditions are
d*y(t)

dt*

This means that the system is initially at rest.

| o for k=0 to n-1 (5.116)

If X(t) is an input random process X (’[), then the output y(t) is Y ('[) a random process.

5.10.1 Mean of the Output Process

Substituting X(’[) as the input and Y('[) as the output of Eq.(5.115), and taking the expected value,

gives the following differential equation for the mean of output process:

E[Y(t)]:—zn:akE[de(t)} E[X(t)]. t>0 (5.117)

= d“t
The expected value of the derivatives of the process X (t) has been shown to be the derivatives of the
expected value of the process as following:

E[d"Y(t)}: d“E[Y (t)] S118)

d“t d“t

Substituting (5.118) into (5.117), we arrive at a differential equation in terms of the mean of the output

process:

E[Y(t)]+zn:ak[m}=nx (t), t>0 (5.119)

= d“t

Now, taking the expected value of the initial conditions given in Eq.(5.116), gives zero conditions on the
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mean:

—d EE ()]|t 0=0 for k=0 ton-I (5.120)

Equation (5.119) and (5.120) give a differential equation with initial conditions that must be solved to

obtain the mean E [Y (t )] of the output process.

5.10.2 Autocorrelation of the Output Process

Similar to the procedure for obtaining the autocorrelation function for the AR process in Chapter 4, the
procedure to find the output autocorrelation function Ryy (tl ,tz) consists of two steps: first solving for
the cross-correlation function and then from that result finding the autocorrelation function .Evaluation

both sides of (5.115) at t,, multiplying by X(tl), and taking the expected value gives the

cross-correlation function at t; and t, as

Ry (tptz): E[X (tl)Y(tZ)]
o -Za ] exxe) o

(5.121)

Moving X (tl) into the summation, and taking the expected value, the first term of (5.121) becomes

k k
o (420) [ i
t=t,

dt d“t,

Using (5.122) in Eq.(5.121) and rearranging yields the following differential equation for Ryy (tl N ):
n

Z XY t1,t ) ny(tptz): Ry (tptz)’ t,>0 (5.123)

=1
The initial conditions are obtained by multiplying Eq.(5.120) by X (tl) and taking the expected value.
This gives

d kR)(Y (tl’tZ)
d“t,

t,=0 fork=0 to n-1 (5.124)

Thus the solution of the differential equation (5.123) with initial conditions (5.124) gives the

cross-correlation function R,y (tl,tz) for t,t,>0.
Having obtained R, (’[I,tz), we are now in position to solve for Ry, (tl,tz). Multiplying (5.115)

evaluated at t, by Y (’[2) and taking the expected value gives
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Ry (tl 4 ) = E[Y (tl )Y (tz )]
o -Ta ) |oebeme)

k=1

t,t, >0 (5.125)

As in the development of cross correlation, (5.132) simplifies to

id R\{Y tl,t ) Rw(tvtz): va(twtz)’ t, >0 (5.126)

k=1

with zero initial condition:

d“Ryy (t,,t
M‘tozo for k=0ton-—1 (5.127)
d,, It
Eq.(5.126) and (5.127) give a differential equation and initial conditions to solve for R,y ('[1 ,'[2) in terms

ofthe Ry, ('[1 ,tz) as a driving function.

Example5.9

Given that y(t) is the solution to the following differential equation representing a transfer function

H(p)=1/(p+1)

d)(;—it)=—y(t)+x(t), (>0

Assume that y(t) =0 forall t <0 and that we have the initial condition y(O) = 0.Let the input X('[)
be a random process X ('[) with mean and autocorrelation function given by
ny ()= E[X(t)]=1, Ry (r)=1/2e7% +1
Find the mean 77, of the output process Y (t)
Solution

From Eqs.(S.l 19)and (5. 120) ,the mean, E[Y ('[)] =1y ('[) ,of the output process satisfies the following

differential equation and initial condition:
dny (t
L()H;Y(t):l, t>0
dt
Ty (0) =0

Upon solving the above for 7, (t),we have

= |- Jutt)

Example 5.10

Given that y(t) is the solution to the following differential equation representing a transfer function

H (p) = 1/(p + 1) and the input X(t):
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d)(;—it)=—y(t)+x(t), (>0

Assume that y(t) =0 for all t<0 and that we have the initial condition y(O) =0.Let X(t) be a
random process X (t) with mean and autocorrelation function given by

nx (t)= E[X ()] =0, Rxx(7)=6(7)
Find the autocorrelation function Ryy ('[1 .0, ) of the output process Y (t)

Solution

To obtain the Ryy (tl,tz), we first find the cross correlation Ryy (tl,tz) by solving a differential
equation. Then from the result we find the Ryy (tl,tz) by solving another differential equation. We can

use the Laplace transform to solve both differential equation. From Eq.(5.123),the Ryy ('[1,'[2) is the

solution of

dRXY (tl ’t2 )
dt,

+Ry (tt) =6t -t,), 4,20
With initial conditions from (5. 124) as Ryy (’[1 b ) |t2=0: 0 .Taking the Laplace transform with respect
to the t, variable and using the initial condition results in
PDxy (t;, p)+ PPy (1, p) =™
Solving for @ yy (tl , p) gives

_ efptl

CDXY(tl’p)_ D+l

Taking the inverse Laplace transform gives us the cross correlation Ryy ('[1 ,'[2) as
Ryy (ti,t,)= ef(tftl)ﬂ(tz -t,)
This result is the driving function for the differential equation for Ryy (tl ,tz) given in Eq.(5.126) .So

we have the following :

Rerli) R h0) =0 Vulty 1) 120
1

Taking the Laplace transform of the equation above with respect to the t; variable and using the zero

initial condition gives

PPy (P.ty)+ @iy (puty) =67 J.O e™e Phdt,
_ei(pfl)tl :|t2
-(p-1),
el L] }
-(p-1) p-1
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Then, solving for @y (p,tz), multiplying out and performing a partial fraction expansion of both

terms yields

e~ } 1
+
p—1 p—-1|p+1

e Pt e

+
(p=1fp+1) (p-1)p~+1)
le_ptz le_ptz 1e_t2 le_tz
_2 2 2

p-1 p+1 I p+l

Dy (patz ) =e™® {_

L2
p_

Finally, taking the inverse bilateral Laplace transform using the t; variable gives us the autocorrelation
function Ryy (tl,tz) as

1 (- | .
Ryy (tl,t2)=5e(tl tZ)ﬂ(_ (t, _tz))+59 {y tZ)ﬂ(tl -t,)

Upon evaluating for t; >0 and t, > 0and regions t; >t, and t, >t;, we find, the Ryy (tl,tz)

from the equation above to be

l e_(tl ) _ l e—(t1 +,)

> > , t, >1,
R (tljtZ): I —t-t) 1 ()

_e 2 __e 17 Iy tz >t1

2 2

To obtain the steady state results for the autocorrelation function, we let both t; and t, approach infinity
but keep t; —t, = 7. The second term goes to zero and the first term remains. Thus, for t;, —t, =7, the
steady state autocorrelation function Ryy (‘r) of the output Y (t) is

L
RYY(f):Ee i

This result checks with the result obtained by using the steady state formula given in Eq.(5. 1 8)

RYY(T): F[EI[H(p)*(Dxx(p)* H(_ p)]

a1 1 | R
=Fg | —1 =—e
p+1 —p+1| 2

5.11 Summary

The main topic of this chapter is the interaction of random processes with linear systems. In particular, the
characterization of the output process is in terms of the input process characterization. Formulas were
derived for the output mean and autocorrelation function of linear time-invariant systems to a wide sense

stationary input. The mean of the output was determined as a convolution of the input mean with the
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impulse response of the system, and the output autocorrelation function was shown to be a convolution of
the input autocorrelation function, the impulse response, and the time-reversed impulse of the system.
Determination of the convolutions in many cases was best done in the Laplace domain for continuous time
systems and the Z domain for discrete time systems The output power spectral density was shown to be

determined by multiplying the input power spectral density by magnitude squared of the system transfer

function H (jW) for the continuous time system and H (e JW) for the discrete time system.

Formulas for the mean and autocorrelation function of the output of a linear time varying system in
terms of the mean and autocorrelation function of the input process for both continuous and discrete time
systems were presented.

The AR, MA, and ARMA processes generated by passing white noise through special discrete-time

linear systems were analyzed using the steady state techniques described above. The results obtained for
mean and autocorrelation by using the steady state results in the Z-domain were shown to be equal to those
steady state results in the time domain.
In using differential equations to model continuous time invariant systems with random processes as inputs
it is necessary to obtain the statistical properties of the derivatives of the input processes. Ignoring some
issues with existence the auto-and cross-correlation functions for derivatives of a random process were
developed using the Laplace transform domain in terms of the autocorrelation of the input process. For
mathematically more rigorous presentations on this topic the interested reader could explore Papoulis [1] or
Van Trees [7].

Also considered in this chapter was the transient response of a continuous linear time invariant system
to an input process applied at equal zero. For the special case where the differential equation does not
contain derivatives of the input process the output mean was easily obtained as a convolution; however, the
output autocorrelation function required the solution of two differential equations one to get the
cross-correlation function between input and output and the second with the cross-correlation function as
the input to obtain the output autocorrelation function. The solution was facilitated by using the Laplace
transform. The examples illustrated that as t becomes large, the output autocorrelation and mean
approach those determined using the steady state methods involving transfer functions.

The chapter concluded with a brief discussion of multiple input, multiple output systems and their
output means, autocorrelation functions, and cross-correlation functions to random inputs and results were

shown for wide sense stationary input processes.
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