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3 Estimation of Random Variables 

3.1 Estimation of Variables 

 In the sciences, especially engineering and physics, we are required to estimate variables that are not 

directly observable but are observed only through some other measurable variables – for example, 

estimating the amplitude, frequency, or phase of a known signal in noise. 

 

3.1.1 Basic Formulation for Estimation of Random Variables 

Say we wish to estimate a random variable X  by observing another random variable Z  that is 

statistically related to X . An estimator for X , call it X̂ , is some function,  g , of the observable Z  

and is written as 

 ZgX ˆ                                     (3.1) 

Thus X̂  is itself a random variable. The function  Zg  could be an unrestricted nonlinear form, or in 

special cases could be restricted to be of a particular form like a constant, linear, or polynomial function of 

the observed variable Z . The estimation error is defined as the difference between the true value X  and 

the estimated value as follows: 

    XXvalueestimatedvaluetrueerror ˆ


                  (3.2) 

This error is a random variable and is a measure of how well our estimator is performing. It seems 

reasonable that we would like this error to have a zero mean and a very small variance .    
 

2
X̂XE

 

3.1.2 Bayes Performance Measure 

A performance measure , or “yardstick” by which we judge the optimality of our estimate, can take J

many function form. One of most useful is described by the expected value of a cost function  that is  C

a function of error or difference between the true value and estimated value. This is called the Bayes 

performance measure, and it can be expressed as 

  CEJ


      where                        (3.3) XX ˆ

The Bayes estimate of X  in term of Z  is given by  ZgX ˆ , where  is selected such  Zg
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that the , given above, is minimized. If J  C  is selected as , then the performance measure is 

called the 

2

mean squared error and  is the  Zg minimum mean squared error estimate of X . The 

mean squared error performance measure will be shown to be mathematically tractable for many situations 

involving estimating random variables in terms of other random variables. 

Other common choices for  include the average absolute error and the average uniform error 

which are shown along with the average squared error in Figure 3.1. The mean squared error usually 

requires less statistical information and is more mathematically tractable than the others. Thus our study 

will concentrate in the beginning on using the mean squared error performance criterion. Estimates using 

the absolute error and the uniform cost functions will be presented in Section 3.5. 

g x

 

 

3.1.3 Statistical Characterizations of Data 

It will be shown that for linear estimation the second-order characterizations of the X  and the Z  

random variables, including means, correlations, and variances, are sufficient to find the minimum mean 

squared error estimates. Other cost functions could require more statistical properties of X  and Z , 

including higher-order moments and higher-order joint moments for X  and Z . For the case of the 

absolute and uniform error cost functions, a total characterization of X  and Z  involving the joint and 

conditional density functions may be required. Thus, in general, more statistical information is usually 

required for obtaining optimum nonlinear estimators than for optimal linear estimators. Our discussion 

begins with finding optimal linear estimates followed by optimal nonlinear estimates. 

 

ε ε ε δ -δ 

C(ε)= ε2 C(ε)= │ε│ C(ε)= μ(│ε│-δ) 

(a) (b) (c)

Figure 3.1   Common performance measures 

(a) squared error,     (b) absolute error,     (c) uniform error 
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3.2 Linear MMSE Estimation 

3.2.1 Estimation of a Random Variable by a Constant 

In many cases we wish to approximate a random variable by a deterministic constant. It may be desirable to 

choose this constant in such a way that a defined performance index is either maximized or minimized. One 

such performance index is the mean squares error. 

Given a random variable Y  that we desire to approximate by a constant  such that the mean 

squared error  given by 

a

mse

      dyyfayaYEe Yms 



 22

                         (3.4)  

is minimized. This selection of the optimum  corresponds to the best estimate of a Y  by a constant. A 

necessary condition for the minimization of  can be obtained by taking the derivative of  with 

respect to  and setting the result equal to zero to give 

mse mse

a

     012  



dyyfay

da

de
Y                             (3.5) 

The interchange of the derivative and expected value, which is also an integral, is subject to the same rules 

for interchanging derivatives and integrals. Solving the equation above for  results in  a

   yEdyyyfa Y  



                                 (3.6) 

Clearly, it is seen that the constant  that minimizes the mean square error in approximating a 

random variable by a constant is the mean of the random variable. The corresponding minimum mean 

squared error using this approximation can be obtained by substituting (3.6) into (3.4), and the variance of 

 as follows: 

a

Y

     22
YYmms dyyfyEye  




                         (3.7) 

 

Example 3.1 

Given a random variable  with probability density function Y  yfY  as   ybeyf by
Y    . Find the 

best constant   that approximates the random variable Y , where best is in the sense that the mean 

squared error is minimized. Determine the minimum mean squared error for the approximation. 

Solution 

From Eq.(3.6) the best estimate , in the minimum mean squared error sense, is the mean or expected 

value of  given by 

aY ˆ

Y

 
bb

y
b

e
dyyybea

by
by 11

0







 








   
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From Eq.(3.4) or (3.7) the minimum mean squared error is 

2
2

0

2

1

1

b

dybe
b

ye

Y

by
mms









  

 



 

 

3.2.2 Linear estimation of One Random Variable from Another 

In other problems we may have access to one random variable  and desire to approximate or estimate 

another random variable  that is somehow related to . Assume that the two random variables  

and  have known means, standard deviations, and correlation specified by 

X

Y X X

Y X , Y , X , Y , and 

, respectively. Let XYR Ŷ  be the approximation of  and fix it as a linear function of  as X X

baXY ˆ                                    (3.8) 

It is desired to select the  and b  such that the mean squared error  given by a mse

     22ˆ baXYEYYEems 



                           (3.9) 

is minimized. Necessary conditions for  and  to minimize  are a b mse

   02 



XbaXYE
a

ems                            (3.10) 

   012 



baXYE
b

ems                             (3.11) 

These equations can be simplified by taking expected value and rearranging to yield 

   
ba

bXaEXYE

XX

X





2

                             (3.12) 

Solving the second equation for , substituting the result into the first equation, and solving for  

gives  and  as 

b a

a b

 
 

X
X

XY
YXY

X

XY

X

YXXY

X

YX

ab

R

XE

XYE
a














2

2222












                     (3.13) 

Since the matrix of the second derivatives, the Hessian, can be shown to be positive definite, this  and 

 will give the minimum mean square error. The corresponding minimum mean squared error is easily 

determined by substituting the  and b  given in Eq. (3.13) into Eq. (3.9) and simplifying to give 

a

b

a
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2

2
2

X

XY
Ymmse


                                    (3.14) 

Result (3.14) could also have been determined by expanding out (3.9) as follow: 

        baXbaXYEYbaXYEems                  (3.15) 

From Eqs. (3.10) and (3.11) the second expected value is zero, and after replacing the  in the first term 

by 

b

XY a   and writing the second  as Y YYY   , we write the minimum mean squared error as 

    YYXYms YXaYEe                       (3.16) 

Using the  from Eq. (3.13) and taking the expected value, we easily see the equation above for  to 

be the same as Eq. (3.14). 

a mse

The minimum mean squared error is seen to be the original variance of , the random variable that is 

approximated, reduced by the ratio of the covariance between  and Y  squared and the variance of 

. If the covariance is zero, then , and the minimum mean squared error is equal to the variance of 

, which implies that we gain no information about  from  by using a linear function. 

Y

X

X

X

Y

0a

Y

Notice that the result depends only on the second-order moments of the involved random variables and 

that the joint density is not needed. This means that the results do not depend on the probability density 

functions, and thus all random variables that have the same second-order moments give the same results. If 

the second-order moments are not given but the joint probability density is the specified information, it is a 

trivial matter to compute the necessary moments, as shown in the following example. 

 

Example 3.2 

Random variables  and Y  are characterized by their joint probability density function X  yxfXY , , 

written as 

    


 


elsewhere

Rxxyyx
yxfXY ,0

10,0:,,2
, 1

 

The region  is shown in Figure 3.2. Find the best linear estimate of  in terms of , where best is 

in the minimum mean squared error sense and determine the corresponding minimum mean squared error. 

1R Y X

Solution 

To obtain the best estimator of  in terms of , it is necessary to compute the second-order moments, 

which include all means, variances, and cross-correlation. These moments are calculated as follows: First, 

the means are determined as 

Y X

        
1

0 0

1

0 0 3

2
2,

x x
XY dxxydxdyyxxfXE  

        
1

0 0

1

0 0
2

3

1
,

x x

XY dxydxdyyxyfYE  

Next, the individual second-order moments are determined as 
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        
1

0 0

1

0 0
222

3

2
2,

x x

XY dxyxdxdyyxfxXE  

        
1

0 0

1

0 0
322

12

1
3,

x x

XY dxydxdyyxfyYE  

        
1

0 0

1

0 0
2

4

1
,

x x

XY dxxydxdyyxxyfXYE  

x

y 

)

R1

1 

1 

)

0 

)

)

Figure 3.2      R1 for Example 3.2. 
 

From these moments the individual variances and the covariance are determined, by definition, as 

   
18

1

3

2

2

1
2

222 





 XEXEX  

   
18

1

3

1

6

1
2

222 





 YEYEY  

     
36

1

3

1

3

2

4

1














 YEXEXYEXY  

 Using Eq.(3.13), the  and b  for the minimum mean squared error linear estimate of  in terms 

of  are determined from the various first- and second-order moments as 

a Y

X

     
    2

1

18

1
3

1

3

2

4

1

22








 







XEXE

YEXEXYE
a  

    0
3

2

2

1

3

1
 XaEYEb  

Thus we have the best estimate of  in terms of  as Y X 2ˆ XY  . 

 The minimum mean squared error can be determined from Eq.(3.14) as 
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24

1

72

1

18

1
18

1
36

1

18

1

2

2

2
2












X

XY
Ymmse




 

The first term 181 , being the variance, is the error for best estimate of Y  in terms of the 

constant—namely the mean—while the second term is the reduction in the total mean squared error that 

results from the linear estimation thus giving the final minimum mean squared error for the linear estimate 

as the 241 . 

 

3.2.3 Linear Estimation of a Random Variable from N Random Variables 

The linear estimation problem can be easily extended to the case of estimating the random variable  in 

terms of , , … , . It is assumed that the statistical relationships between the random variables 

are characterized by specifying the means and covariance (a second-order characterization):  

0X

1X 2X nX

 
     njiXXE

niXE

ijjjii

ii

,,1,0,,

,,1,0












                 (3.17) 

The linear estimate of  in terms of , , … ,  and the mean squared error are given by  0X 1X 2X nX

bXaXaXaX nn  22110
ˆ                           (3.18) 

     2
22110

2

00
ˆ bXaXaXaXEXXEe nnms 



             (3.19) 

The problem then is one of selecting , , … , , and  such that  is minimized. Taking 

partial derivatives of  with respect to the  and b , setting them equal to zero, and rearranging 

gives the following set of  simultaneous linear equations in 

1a 2a

ia

na b mse

mse

1n 1n  unknowns:  

        
        

         
        bXEaXEaXEaXE

XbEXEaXXEaXXEaXXE

XbEXXEaXEaXXEaXXE

XbEXXEaXXEaXEaXXE

nn

nnnnnn

nn

nn


















22110

2
22110

22
2
2212120

11212
2

1110 


         (3.20) 

Solving the last equation for , substituting the results into the other  equations, rearranging, and using b n

jijiij XXE   ][  results in the following set of  linear equations in  unknowns:  n n
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nnnnnn

nn

nn

aaa

aaa

aaa



















22110

222221102

112211101

                       (3.21) 

The solution of Eq. (3.21) gives the  that minimize the mean square error and the last equation in (3.20) 

gives the corresponding  in terms of the  and the given means as  

ia

b ia

       
nXnXXX

nn

aaa

XEaXEaXEaXEb

 






210 21

22110
                (3.22) 

After substituting the optimal  from the solution of (3.21) and optimal  from (3.22) into the mean 

squared error of (3.19) and simplifying, the minimum mean squared error can be shown to be 

ia b

i

n

i
iXmms ae 




1

0
2

0
                                 (3.23) 

The proof for this result will be presented after the introduction of the orthogonality principle by Eqs. (3.30) 

through (3.34). 

The Orthogonality Principle. 

The problem of linear minimum mean squared error estimation will be viewed from a slightly different 

perspective. We have 1n  random variables , , , … ,  whose means and second order 

moments are given by: 

0X 1X 2X nX

 
     njiXXE

niXE

ijjjii

ii

,,1,0,,

,,1,0












                  (3.24) 

The random variable  is desired to be approximated by a linear combination of the so-called data 

random variables , , … ,  as follows: 

0X

2X1X nX

bXaXaXaX nn  22110
ˆ                          (3.25) 

The error  involved with this approximation is given by  e

 bXaXaXaXXX nn  2211000
ˆ                 (3.26) 

As in the preceding section we desire the coefficients , , … ,  and  such that the means 

squared error given below is minimized: 

1a 2a na b

     2
22110

2 bXaXaXaXEEe nnms              (3.27) 

By taking the partials of  with respect to the  and b , it can be easily shown that mse ia

    niXbXaXaXaXE inn ,,2,1,022110           (3.28) 

and  

        022110  bXEaXEaXEaXE nn  
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or  

 nnaaab   22110                         (3.29) 

Since the  are the data and niX i ,,2,1,   bXaXaXaX nn  22110  is the error, Eq. 

(3.28) can be interpreted as the error is orthogonal to each member of the data, and (3.29) gives the 

solution for the optimal . This statement is the first part of the orthogonality principle for minimum 

mean squared error linear estimation. The second part of the orthogonality principle deals with the 

evaluation of the minimum mean squared error for this optimal estimator. The  of Eq. (3.27), where 

the  are the solution to the simultaneous equations of (3.28), can be written in the expanded form as  

b

mmse

ia

    
   nnnn

nnmms

XaXaXabXaXaXaXE

bXbXaXaXaXEe

 






221122110

022110
   (3.30) 

The second expected value of (3.30) is zero from (3.28), since it is the expected value of the error times a 

linear combination of the data. Thus the formula for the minimum mean squared error can be reduced to 

             bXbXaXaXaXEe nnmms  022110               (3.31) 

Eq.(3.31) is the second part of the orthogonality principle, and it gives a reduced expression for 

determining the minimum mean squared error. This result can be written in another form by substituting the 

b of Eq. (3.29) into (3.31) to get 


)]()[(

)]()()()[(

221100

22211100

nn

nnnmms

aaaX

XaXaXaXEe










          (3.32) 

The equation above for  can be simplified further by multiplying out the last terms in the two parts 

shown to give 

mmse

)})](()()(){[(

)})](()()(){[(

221122211100

0022211100

nnnnn

nnnmms

aaaXaXaXaXE

XXaXaXaXEe










 

(3.33) 

The first expected value give a sum of covariance of  and , and the second expected value is zero, 

since it gives a weighted sum of central moments of the , 

0X iX

[EiX ]iiX  , which are zero by definition 

for all . Thus the expression above for the minimum mean squared error can be written in 

term of just the covariance between  and the data set  and the optimal coefficients as 

ni ,,2,1,0 

0X iX





n

i
iiXmms ae

1
0

2

0
                              （3.34） 

Special case. For the many problems where the expected value of the niX i ,,1,0,   are all zero the 

orthogonality principle can be simplified. From Eq. (3.29) it can be shown that 0b  and then from (3.28) 

that the  are the solution of the set of equations ia

    niXXaXaXaXE inn ,,2,1,022110            (3.35) 
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Setting  in (3.31) gives the resulting minimum mean squared error as the expected value of the 

product of the error and the variable  that we are estimating 

0b

0X

  022110 XXaXaXaXEe nnmms                       (3.36) 

Multiplying out the terms in (3.36) and taking expected values of the products allows the minimum mean 

squared error to be written in terms of the correlations between the data as follows: 





n

i
iiXmms Rae

1
0

2

0
                                  (3.37) 

 The first term of this error, , is the error that would occur if  were estimated by a constant 

with no data available, namely the mean of aero, whereas the terms in the sum represent the reduction in 

mean squared error due to the use of each member in the data set. 

2

0X 0X

 

Example 3.4 

Suppose that we have the random variables , , ,…,  where the  are related to  by S 1Z 2Z nZ iZ S

niNSZ ii ,...,2,1,   

Let  be a zero mean random variable with known variance  and the , be zero 

mean mutually orthogonal random variables each with variance  and each orthogonal to . These 

assumptions can be written as using the Kronecker delta function 

S 2
S

2
N

ij

niNi ,...,2,1, 

S

  as 

  njiNNE ijNji ,...,2,1,,2    

  niSNE i ,...,2,1,0   

From the  we wish to approximate or estimate  by a linear combination of the  given by iZ S iZ

bZaS
n

i
ii 

1

ˆ  

Such that the mean squared error is minimized. The problem can be related to estimating a random constant 

value from a set of  noisy observations. n

Solution 

The solution is based on a direct application of the orthogonality principle. From Eq.(3.29) the  is as 

follows:  

b

       nn ZEaZEaZEaSEb  2211  

Since       0 ii NESEZE  for ni ,...,2,1  and   0SE , it is easily seen that . After 

substituting  into the first part of the orthogonality principle, Eq.(3.28), which states that the error is 

orthogonal to the data, gives 

0b

0b

    niZZaZaZaSE inn ,...,2,1,02211   

This equation could have been obtained directly from the special case of zero means from (3.35). After 
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taking the expected values, we can rearrange the set of simultaneous equations above to give 

        niZZEaZZEaZZEaSZE inniii ,...,2,1,2211   

 To describe this set of equations, it is necessary to find the correlation of  and  for all i  and 

the correlation of  and  for all  and 

S iZ

iZ jZ i j . First the correlation of  and  is determined as S iZ

         niSNESENSSESZE Siii ,...,2,1,22    

The second term in the sum above, , is zero by the original given properties on the expected value 

of . Similarly the 

 iSNE 

iSN  jiZZE  can be found by using the given orthogonal properties of  and  

as 

iN jN

            
ijNS

jijijiji NNESNESNESENSNSEZZE

 22

2



 
 

Substituting these results into the simultaneous equations given above results in the following set of  

simultaneous equations in the  unknowns : 

n

n naaa ,...,, 21

nSSNSS aaa 2
2

2
1

222 ...)(    

nSNSSS aaa 2
2

22
1

22 ...)(    

  

nNSSSS aaa )(... 22
2

2
1

22    

 By symmetry of the equations above, the  are equal, so the solution can be obtained from any of 

the equations above by equating the  as follows: 

ia

ia

iNiSS aan 222    

Solving for  gives ia

ni
n

a
NS

S
i ,...,2,1,

22

2








 

With these coefficients the approximation of  can be written as S





n

i
i

nS

S Z
n

S
1

22

2
ˆ




 

 As might be expected, the form of the estimator is a weighted sum of the measurements. This equation 

can be further rearranged to be written in terms of the average of the measurements in the following ways: 

orZ
nn

n
S

n

i
i

nS

S 









 
1

22

2 1ˆ



 











 




n

i
i

Sn

Z
nn

S
1

212

1

1

1ˆ

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Using these  in the second part of the orthogonality principle equation (3.34), and identifying  as 

 and  as , we can write the minimum mean squared error as 

ia 0X

S iX iZ

 



n

i
iiSmms SZEae

1

2  

With the correlations of  and  determined as above,  becomes S iZ mmse

22

22

2

1
22

2
2

NS

SN

S

n

i NS

S
Smms

n

n
e













 


 

For the special case where n , , and  are such that the effective signal to noise ratio, 2
S 2

N

122 NSn  , the coefficient for the linear approximation and the corresponding minimum mean squared 

error become 

nn
e

nn
a N

S

S
Nmms

S

S
i

2

2

2
2

2

2

,
1 







  

The mean squared error is thus seen to be inversely proportional to the number of observations, and the 

coefficients make the estimate an average of the observations. 





n

i
iZ

n
S

0

1ˆ  

 If n  and  are such that , low effective signal to noise ratio, the  and mean 

squared error become 

2
S 22

NSn   ia

2
2

2

, Smms
N

S
i ea 




  

This shows that in the low effective signal to noise case that the coefficients approach the ratio of the 

variances of  and  and the minimum mean squared error approaches the variance of . Thus the 

form of the estimator is 

S N S





n

i
i

N

S ZS
0

2

2
ˆ




 

Since the variance of  is the initial mean squared error without our taking any measurements, the results 

indicate that as 

S

2
N2

S  approaches zero, the data do not significantly reduce the mean squared error. 

Therefore for this case the observations are almost not used to estimate , which for this problem is zero, 

is used as the best estimate. 

S

 

Example 3.5 

Say we are given a random variable X  that is exponentially distributed with probability density function 
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given by 

   xexf x
X 22   

Define a random variable Y  related to X  through . We wish to find the best linear estimate, 

in the minimum mean squared error sense, of 

XeY 

Y  in terms of X . Let the optimal estimate be given by 

. Determine the  and b  for this optimum estimate, and determine its minimum mean 

squared error. 

baXY ˆ a

Solution 

It is known that the optimal linear estimate can be found by using the orthogonality principle, which states 

that the error is orthogonal to the data. For our problem this relationship can be expressed as 

   0 XbaXYE  

Where the first term in the ( ) is the error and X  is the data. Expanding out and taking the expected value 

gives an equation for  and b  in terms of various first- and second-order moments of a X  and Y  as 

     XbEXaEYXE  2  

The other equation of the orthogonal principle from Eq.(3.29), recognizing that  and , is YX 0 XX 1

   XaEYEb   

To solve these two equations for  and  we require the calculation of the various moments indicated. 

These expected values will now be determined 

a b

    
  

0

3

3

2
2 dxeeEYE xX  

    
  
0

3

9

2
2 dxxeXeEYXE xX  

    
  
0

422

2

1
2 dxeeEYE xX  

  
  

0

2

2

1
2 dxxeXE x  

  
  

0

222

2

1
2 dxexXE x  

Thus with these values the simultaneous equations become 

ba
2

1

2

1

9

2
  

ab
2

1

3

1
  

Solving for  and b  yields a 94a  and 98b . Therefore the best estimate is 

9

8

9

4ˆ  XY  

 From Eq.(3.23) the minimum mean squared error can be written as 
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162

1

9

4

3

1

9

2

9

4

2

1

2













 






 

 ae YXYmms 
 

 

3.3 Nonlinear MMSE Estimation 

In many problems a further reduction in mean squared error can be obtained by using nonlinear estimation. 

This reduction is at the expense of requiring more statistical properties of the random variables. It will now 

be show that nonlinear minimum mean squared error estimation can be performed if almost a total 

characterization of the random variables is specified. This is in sharp contrast with linear estimation where 

only first- and second-order moments are needed, that is, the means, variances, and covariances of the 

random variables involved. 

 

3.3.1 Nonlinear Estimation of One Random Variable from Another 

Given two random variable X  and Y  that are statistically related with joint probability density function 

. By observing  yxf XY ,  X , we desire to estimate Y  by some nonlinear function  of  g X , not 

necessarily a linear function, as 

 XgY ˆ                                     (3.38) 

Our estimate is to be the best in the sense that it gives the minimum mean squared error  as  e

     22ˆ XgYEYYEemms 



                          (3.38) 

The first step in minimizing  is to write it in terms of mse  yxf XY ,  as 

     







 dxdyyxfxgye XYms ,2

                        (3.40) 

Using the fact that the joint density is a product of the conditional and marginal densities,  can be 

rearranged to yield 

mse

       






 



  dxxfdyxyfxgye XYms

2
                    (3.41) 

Since the product of  xyfY  and   2xgy    is positive for all x  and  xf X  is always positive,  

can be minimized by making the term in bracket as small as possible for every 

e

x . That is, select  g  in 

such a way that the term in brackets, , given by   xI

      dyxyfxgyxI Y



 2

                           (3.42) 
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is minimized. But for each x ,  is just a constant, and we have shown previously (Section 3.2.1) that 

the integral is smallest when  is selected as the mean of the random variable, which for this case is in 

terms of the conditional probability density 

 xg

 xg

 .xyfY  Therefore the optimum , in the minimum 

mean squared error sense, is given by  

 xg

     



 dyxyyfxXYExg Y                           (3.43) 

The resulting  is sometimes called the nonlinear regression curve. The minimum mean 

squared error is obtained by substituting this optimal 

 xg

 xg  into (3.39), the equation for the mean squared 

error, to give  

      

 

 


















 

dxxf

dxxfdyxyfxYEye

XxY

XYmmse

2

2


                    (3.44) 

Thus the minimum mean squared error is seen to be    2
XYEYE  , where  XYE  given by 

  XxxXYE   is random variable. 

 

Example 3.6 

The density for Y  conditioned on  and the marginal density xX   xfX  of two random variables 

X  and Y  are given by 

         21,|   xxxfyxexyf X
yx

Y   

Find the best nonlinear estimate of Y  in terms of X , and calculate the corresponding minimum mean 

squared error for your estimate. 

Solution 

The conditional density in  is seen as exponential with parameter y xa  ; thus we are trying to estimate 

this parameter from the given information and a sample of X . The  xg  that gives the best nonlinear 

estimate in the minimum mean squared error sense is the conditional mean 

     

xx

xyxe
dyyxe

dyxyyfxXYExg

xy
xy

y

1)1(

||

0

20








 








 

Therefore   XXgY 1ˆ  . 

 The minimum mean squred error for the optimal  xg  can be determined from (3.41) as 

    






 
















  dxxfdyxyf

x
ye XYmmse

2
1
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But the term in brackets is the conditional variance for the exponential density, which from Eq.2.38 is just 

21 x . Therefore the mean squared error can be found as follows: 

 
2

11
1

11
2

1

2

1 22 


 


 x
dx

x
dxxf

x
e Xmmse  

 

Example 3.7 

The random variable X  and Y  are statistically characterized by the following joint probability denstity 

function: 

      


 


elsewhere

xxyyxRyx
yxf

,0

10,0:,,,2
,  

Where R  is shown in Figure 3.3. 

 

(a) Find the best nonlinear estimate of Y  in terms of X . 

(b) Find the best linear estimate of Y  in terms of X . 

(c) Comment on your results. 

Solution 

(a) The best nonlinear estimate is the conditional expected value of Y  given xX  . To find the 

conditional density, it is necessary to determine the marginal density  xfX . It is determined by 

integrating the joint density for each value of x : 

   



 dyyxfxf XYX ,  

For any x  such that  the 10  x  xfX  becomes 

  xdyxf
x

X 22
0

   

For x  outside the interval   the probability density function is zero, so the conditional density 

function can be summarized by using the unit step function as 

1,0

Figure 3.3 Region R for Example 3.7. 

x

y 

)

R

1 

)

1 

)

0 

)

y=x 

)
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   
      xyy

xxf

xyf
xyf

X

XY
Y  1,

/  

The function for the best nonlinear estimate of  in terms of Y X  for 10  x  is the conditional 

mean as follows 

     

22

1

||

0

2

0

x

x

y
dy

x
y

dyxyyfxXYExg

x
x

Y
















 

 It is seen that for this example the best nonlinear estimate is a linear estimate. 

(b) The best linear estimate of Y  in term of X  by bax   was found in Example 3.2 to be 

2ˆ XY  , so for this example the best linear estimate is the same as the best nonlinear estimate. 

(c) It is rare that the best linear and nonlinear estimates are the same, but they will be shown in Section 

3.3.3 to be the same for the special case where X  and Y  are jointly Guassian. 

 

3.3.2 Nonlinear Estimation of One Random Variable from N Random 

The Problem of estimating a random variable  in terms of statistically related random variables 

, where the random variables are characterized by their joint probability density function 

 is a common application in the sciences. In Section 3.2 formulas were given for finding 

the best linear estimate, while in this section the problem of nonlinear estimation will be examined. 

0X

nXXX ,...,, 21

 nx xxxf ,, 10  

We desire to approximate or estimate  by a nonlinear function 0X  nXXXg ,...,, 10  as  

 nXXXgX ,...,,ˆ
210                                   (3.45) 

It is desired to find the  nXXXg ,...,, 10  that will minimize the mean squared error given by  

])),...,,([(])ˆ[( 2
210

2
00 nms XXXgXEXXEe                   (3.46) 

By extending the results given for the best nonlinear estimate of one random variable in terms of another, it 

can be easily shown that the optimal function  nxxxg ,...,, 21  in the minimum mean squared error sense, 

is the conditional given by 

   
 








02100

2211021

,,,

,,,,...,,

dxxxxxfx

xXxXxXXExxxg

n

nnn




                (3.47) 

It is worth noting that to obtain the minimum mean squared error nonlinear estimate of one 

random variable in terms of other random variables we require the knowledge of the conditional 

probability density function,  nxxxxf ,,, 210   , which in many problems involves more statistical 
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information than is available. It was shown in Section 3.2 that restricting  g  to a linear function 

reduces the required information to the knowledge of the second-order properties, that is, the means, 

variances and covariances of the random variables involved. 

 

Example 3.10 (Random Variables) 

 Let , , and  be random variables. The conditional density for , given , 

and , is known to be the following: 

0X

2x

1X 2X 0X 11 xX 

2X

     
 

   21

1

0
1

0
1

0210 1

2X

0,1,| 21

0

xx

x
kwhere

xxxkxxxf xx
X






 

 

Find the best nonlinear estimate of  in terms of  and  where best is in the 

minimum mean squared error sense. 

0X 1X

Solution 

From Eq.(3.47) we know that the optimal function is the conditional mean. For the conditional density 

function above the conditional mean can be shown from Eq.(2.50) to be 

     

21

1

1

0 0dx210021021 ,|,|,
0

xx

x

xxxfxxxXExxg X




 
 

Thus the best nonlinear estimate of  in terms of  and  is 0X 1X 2X  211X0
ˆ XXX  . 

 

3.3.3 Nonlinear Estimation of Gaussian Random Variables 

Given X  and Y  are jointly Gaussian random variables with known means, X , Y , variances, , 

, and covariance 

2
X

2
Y XY . The best nonlinear estimate of Y  in term of X  is desired where best is in 

the sense of minimizing the mean squared error. The solution for  xg  has already been shown to be the 

conditional mean  

     



 dyxyyfxXYExg Y                       (3.48) 

From Section 2.6.4, the conditional density for jointly Gaussian random variables is known to be Gaussian 

with mean and variance given by  

 

 

 XYYxY

X

XYXY
YxY

x

222 1 









                          (3.49) 
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Thus the optimal  for this Gaussian case is the conditional mean  xg

   X
X

YXY
X xxg 


                              (3.50) 

By the definition for the correlation coefficient, Eq. (2.101), where XY  is  

                                
YX

XY
XY 


                                      (3.51) 

the optimal  can be rewritten in terms of the various variances and covariances as   xg

   







 



X

XY
x

X

XY

X
X

XY
X

x

xxg

22

2

1










                              (3.52) 

Thus the best nonlinear estimate for the jointly Gaussian case is seen to be a linear estimate given by  

 













22
1,

ˆ

X

XY
x

X

XY bawhere

baXXgY





                      (3.53) 

This fact gives more power to the linear estimate for the case of Gaussian random variables and releases us 

from needing to look for a best nonlinear estimate for that case. However, it is not possible to say that if the 

best nonlinear estimate is a linear estimate, the random variables involved are jointly Gaussian. A 

counterexample has already been shown in Example 3.7. 

For the special case of zero mean Gaussian random variables, the  and  from Eq. (3.53) reduce 

to  

a b

2
X

XYa



   and  0b                               (3.54) 

The extension of the result above to 1n

0X

 jointly random variables is possible and the best nonlinear 

estimate of the Gaussian random variable  in terms of the other jointly Gaussian random variables 

, , … ,  can be shown to be a linear function of the random variables , , … , . 

This is expressed as follows: 

1X 2X nX 1X 2X nX

   

bxaxaxa

dxxxxxfx

xXxXxXXExxg

nn

n

xxxXnnn
n







  




















2211

00210

...,221101

),...,,(

,,,,...,
,2,10



             (3.55) 

where the  and b  can be determined from (3.21) and (3.22). If the random vector 

 is jointly Gaussian with given covariance matrix  and 

mean vector 

 T
naaa ,...,, 21a

 Tn XXX10 ,...,, 



 T
nn X XX 01  1nK

        Tn
T

n XEXE m0n XEm 01 , XE 1 ,...,  then the best nonlinear estimate of 
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0X  in terms of , , … ,  can be written as 1X 2X

X̂

b

nX

aa 21,

   

  b

X

X

X

a n

n

n 



















 aX


2

1

0 ,...,                              (3.56) 

To obtain the  vector and  in terms of the given information, the covariance matrix  is first 

partitioned as 

a b 1nK

 
NXXXXXX

T
X

NX

T
XX

n

where
020100

0

00

,...,,

2

1






















μ

K
K

                         (3.57) 

The desired  and  can now be obtained by using the linear estimate formulas given in (3.21) and 

(3.22) as follows   

a

  n
T

n
T
X XEb maaμ  0,K

0
                        (3.58) 

where the solution for the coefficient vector  is easily obtained from the equation above as a

                                                                      (3.59) T
Xn 0

1μKa 

3.4 Properties of Estimators of Random Variables 

There are a number of properties of estimators of random variables, whether they be linear or nonlinear 

functions of the observations, that are useful to define. Assume that X  is a random variable that is 

statistically related to another random variable Z . Let    ZgZX ˆ  be an estimator for X . Assume 

that mean  is known or can be determined. XE 
An estimator of a random variable X  is unbiased if its expected value is equal to the expected value 

of the random variable being estimated, which can be written as  

    XEZXE ˆ                                    (3.60) 

If (3.60) is not satisfied, the estimator is biased. 

Suppose that we are estimating a random variable X from a vector of observations 

 ZZ ,...,, 21Z TNZ . The Cramer-Rao bound, is the most important lower bound on the variable X  

and is given below without proof: 












































x

xp
E

x

xp
E

XX[(E

2

22

2

)(ln

1

)(ln

1
]))(ˆ

zz
Z                  (3.61) 

Any estimator satisfying this bound is called an efficient estimator. 
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3.5 Bayes Estimation 

The performance measure , or “yardstick” by which we judge the optimality for a Bayes estimate, 

is the expected value of a cost function 

BAYESJ

)(C  that is a function of the error or difference between the true 

value and the estimated value. 

X̂X

)]([










where

CEJ BAYES

                                    (3.62) 

The Bayes estimator of X  in term of Z  is given by  where  is selected such )(ˆ ZgX  )(Zg

that the , given above, is minimized. Common choices for BAYESJ )(C , shown in Figure 3.1, are the 

squared error, absolute error, and the uniform error, which are defined as 
























,1

,0
)(

)(

)( 2

UN

ABS

MS

C

C

C

                                 (3.63) 

The choice of which cost function to use is subjective. It is seen that the )(MSC  penalizes large 

errors severely and rewards errors less than 1, whereas the )(ABSC  treats errors on a linear basis. 

)(ABSC  does not penalize if the absolute value of the error is within the bound of   but penalizes all 

errors bigger than   in magnitude by the same value. Bayes estimates for each of these three cost 

functions are now presented. 

 

3.5.1 Bayes Estimates 

Squared Error Cost. Bayes estimates for random variables X  in terms of a measured random variable 

Z  for the squared error cost function have been thoroughly explored in the previous two sections. It was 

shown that the  for the optimal nonlinear estimate of )(zg X  was obtained as the conditional mean of 

X  given zZ   and could be written as 

)(ˆ

)(][)(

zgX

dxzxxpzZXEzg



 


                         (3.64) 

Thus the Bayes estimate for the squared error cost is seen to be the mean of the posteriori density )( zxp  
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given by  

 



 dxzxxpxMSˆ                                  (3.65) 

Unfortunately, what we usually have available, or can easily obtain, is )( zxp . Thus )( zxp  must be 

found by using Bayes’s rule as follows: 







dxxpxzp

xpxzp
zxp

)()(

)()(
)(                              (3.66) 

Absolute Error Cost. To obtain the optimal estimate of X  in terms of Z  for the absolute error cost, we 

must select  such that  given below is minimized: )(Zg ABSJ

      

 














dxdzzxpzgx

ZgXEXXECEJ ABSABS

),()(

)(ˆ
                      (3.67) 

Equation (3.67) can be rearranged by using the relationship for the joint and conditional densities as 

follows: 

      






 



  dzdxzxpzgxzpJ ABS                        (3.68) 

To minimize , it is sufficient to minimize the term in brackets for every value of . This is true since 

 is always positive as is the term in brackets, 

ABSJ z

 zp I , which can be written as 

         





)(

)(

zg

zg
dxzxpzgxdxzxpzgxI                   (3.69) 

For a fixed z ,  is a constant setting the partial derivative of the integral with respect to  zg  zg  

equal to zero, and using Liebnitz’s rule, we obtain a necessary condition for minimizing I  as follows: 

             

         

                    0

)(

)(

)(

)(

)(


















zg

zg

zg

zg

dxzxpzzgpzgzgdxzxpzzgpzgzg

dxzxpzgxdx�zxpzgx
zg

I

 (3.70) 

Recognizing the zero terms and rearranging the  zg  for each  satisfies the equation z

    




)(

)(

zg

zg
dxzxpdxzxp                              (3.71) 

In this expression it is seen that the optimum  zg , for each  is the median of the posteriori density z

)( zxp . Thus the optimum estimator in the minimum absolute error sense is seen to be the , 

which satisfies  

)(ˆ zxABS







)(

)(

ˆ

ˆ
)()(

zABS

ZABS

x

x
dxzxpdxzxp                           (3.72) 
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As with the MS estimate, what we usually have available or can easily obtain is )( zxp . Thus 

)( zxp  must be found by using Bayes’s rule as follows: 







dxxpxzp

xpxzp
zxp

)()(

)()(
)(                                (3.73) 

Uniform Cost. To obtain optimal estimator of X  in terms of Z  for the uniform error cost function, the 

 is selected such that  given below is minimized:  zg UNJ

   

      

 




















 



dzdxzxpxgxCzp

dzdxzxpzgxCJ

UN

UNUN

)(

,)(
                   (3.74) 

The optimal estimator is as before, where the  zg  minimizes the term in brackets given by  

       






)(
1)(

zgxUN dxzxpdxzxpzgxCzI                  (3.75) 

Minimizing  for each  is equivalent to maximizing the integral on the right side of Eq. (3.75). If )(zI z

  is very small, then that integral is maximized by selecting  zg  to be the maximum of )( zxp  

viewed as a function of x  for each . So the estimator in the uniform cost sense is written as z

)(ˆ)(max)(ˆ zxzxpzx MAP
x

UN



                             (3.76) 

and it is the maximum of the posteriori density )( zxp . 

To obtain the estimates, it is necessary to determine the a posteriori density )( zxp , but what is 

usually available is the )( zxp . The a posteriori density can be written in terms of )( zxp  as 

0
)(

)()(
)( 

zp

xpxzp
zxp                                  (3.77) 

For each  the  is nothing more than a scale factor, so maximizing z  zg )( zxp  is equivalent to 

maximizing the numerator )()( xpxzp  

A necessary condition for the maximum a posteriori estimate is that it satisfy 

    
0

)(ˆ






 zxx
x

xpxzp
                                (3.78) 

In many problems where the conditional and marginal densities are exponential in form, a more expedient 

necessary condition can be obtained by taking the ln  of the product of densites before the partial 

derivative is performed. This will not change the location of the maximum value, and thus it leads to 

alternative necessary condition for the MAP estimate of X  in terms of Z : 
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     
0

lnln

)(ˆ)(ˆ










 zxxzxx MAPMAP

x

xp

x

xzp
                    (3.79) 

3.5.2 Examples of Bayes Estimators 

Example 3.12 

A  and X  are two random variables. The conditional probability density function for X  and the 

probability density function for  are given as A

         31
2

1
|   aaafandxaeaxf A

ax
X    

(a) Find the maximum a posteriori estimator for . A

(b) Compute   XAE MAP
ˆ , and say whether the estimator is biased or unbiased. 

(c) Compute the variance for your estimator. 

 

Solution 

(a) To obtain the estimator, it is necessary to find the posteriori density  xafA | , which can be 

determined as 

     
 
      

 xf

aaxae

xf

afaxf
xaf

X

ax

X

AX

31

|
|






 
 

Since the  is just a scale factor and does not depend on , we need to select the  that 

maximizes the numerator with respect to . Figure 3.6 shows for three separate regions for 

 xfX a a

a x  the 

plot of  as a function of . The maximum is located at different values of  depending on 

whether the maximum of the , which occurs at 

 xa |f a

xa

a

ae x1 , is in the interval  3,1  or on the boundary. 

Figure 3.5      Graphical form for Bayes estimator for Example 3-10 with .12
2 

NX 

 zXUN
ˆ

2 4 6-6 -4 -2

1

-1

z

g(z)
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 From Figure 3.6 it is seen that if 11 x , the maximum occurs at the boundary, 1a ; if 

311  x , the maximum occurs at xa 1 ; and if 31 x , then the maximum occurs at the 

boundary, . Thus we can write the maximum a posteriori estimates as follows: 3a

 













31,3

311,1

110,1
ˆ

x

xx

x

xAMAP  

Since , the inequalities can be reversed and rearranging gives the  as 0x  xAMAP
ˆ

 














1,1

131,1

310,3
ˆ

x

xx

x

xAMAP  

0 
1 2 3 4

a

FX(x|a)fA(a) 

1 

5

Max

Max

Max
1/x>3

1<1/x<3

1/x<1

  )(| afaxf AX  versus  for Example 3-11. aFigure 3.6      Plot of 

 

(b) The expected value of the estimator can be written as 

      

       












1

1

31

31

0
113

ˆˆ

dxxfdxxfxdxxf

dxxfxAXAE

XXX

XMAPMAP

 

 where the    is obtained by integrating the product of the conditional density by the marginal as xfX

     

 

 xe
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e
x

e
x

e
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e
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







 











 



















2
3

2
3

3

1

3

1

1113

2

1

1

22

1

|

 

 Using this    in the expected value above, and some creative integration. xfX

 We obtain the expected value of our estimator as    .635584.1ˆ XAE MAP  
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 Since  is easily seen to be 2, this estimator is biased.  AE

(c) The variance of our estimator is easier written down than evaluated as 
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 Where   and  are as given in the problem assignment. axfX |  afA

 

3.6 Estimation of Nonrandom Parameters 

Suppose we are trying o estimate the parameter  as a function, a  zg , of some observation Z  which 

we can express as . The )()(ˆ ZgZa  Z  is random and somehow related to . The  is a 

random variable because it is a function of a random variable 

a )(ˆ Za

Z . An example of its probability density 

function is shown in Figure3.7. Intuitively it seems that for  to be a good estimate of the parameter 

, the density for  should have a small spread or variance and be centered around the variable 

being estimated. Such a property can be expressed in terms of the  and the variance 

. 

)Z(â

a

â

)(ˆ Za

2)]](ˆ[ Za

)](ˆ[ ZaE

2 )(ˆ[ ZaE  E

 

An estimator of a nonrandom variable  is said to be an a unbiased estimator of  if a

aZaE )](ˆ[ . Therefore we usually seek estimates that are unbiased and have the smallest possible 

variance. Say that we are estimating a nonrandom parameter  from a vector of random observations a Z  

Figure 3.7      Probability density function for a . )(ˆ Z

 af ˆ  
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and that the variance of our estimator is defined by . For even simple problems this ]))(ˆ[( 2ZaaE 

variance may be complicated to obtain, and so bounds on estimates are important. The Cramer-Rao bound 

is the most important lower bound on the variance. It is given by 

]);(ln[

1
]))(ˆ[(

2
2

aazpE
ZaaE


                          (3.80) 

Any estimator whose variance satisfies the lower bound given in (3.80) is called an efficient 

estimator of . a

 

3.6.1 Maximum Likelihood Estimation 

A random variable Z  is observed that is a function of some unknown but nonrandom parameter . For 

Example, a constant unknown variable  is observed in additive fashion as , where the 

random variable 

a

a XaZ 

X  has a known statistical characterization and an estimate of  is desired as a function 

of 

a

Z . The maximum likelihood estimation procedure suggests one way to solve for an estimate but not in 

the sense of an optimality. 

The maximum likelihood estimator  of a nonrandom parameter  in terms of an )(ˆ Zaml a

observed random variable Z  is defined to be the  that maximizes the a likelihood function , );( azf

which is defined as the probability density function for the observation Z  in terms of a nonrandom 

parameter  that could be a vector. Mathematically the function form for the estimator is expressed in 

terms of , which is viewed as a function of  and can be written as 

a

(zf );a a

);(maxˆ azfa
a

ml                                  (3.81) 

Extending this concept to multiple observations, the maximum likelihood estimate of a nonrandom 

parameter in terms of observation , ,…,  is defined as the  that maximizes the likelihood 

function  and given by 

1Z 2Z nZ a

);,...,,( 21 azzzf n

);,...,,(max),...,,(ˆ 2121 azzzfzzza n
a

nml                       (3.82) 

Furthermore, if we have multiple observations and are estimating a parameter vector, , 

rather than a single variable or parameter, the maximum likelihood estimate of  is given by 

],...,,[ 21 Maaaa

a

   azzzfzzz n
a

nml ;,...,,max,...,,ˆ 2121 a                     (3.83) 

 

3.6.2 Maximum Likelihood Estimation Examples 

Example 3.13 
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The probability density function for an observation  in terms of a nonrandom parameter  is given by iZ a

   iaz
i zaeazf i;  

Say there are  independent observations , ,…, . n 1Z 2Z nZ

(a) Find the maximum likelihood estimate mlâ  of a . 

(b) Determine the  mlaE ˆ . 

Solution 

(a) The likelihood function is a product of the likelihood for each measurement because of the 

independence of observations. It is determined as follows: 
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A necessary condition for the maximum of the likelihood function is that its partial derivative with 

respective to  be set equal to zero, which is a
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Thus we have relative extremum at 0a  due to the  term and at 1na  


n

i iZna
1

 because of 

the term in square brackets. But 0a  is a minimum rather than a maximum, and a maximum 

occurs for the bracketed term. Therefore the maximum likelihood estimator becomes 

  
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
n

i
inML ZnZZZa

1
21 ,...,,ˆ  

(b) The expected value of  is given by:  nML ZZZa ,...,,ˆ 21 
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The expected value of the term in brackets is not the ratio of expected values. Its calculation is 

facilitated by defining a new random variable Z  as 

Z 


n

i
iZ

1

1  

The general approach to determining the required expected value is first to find  by using the 

Laplace transform (since the density will be a convolution), then to use the transformation theorem to 

 zfZ
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obtain , where  wfW ZW 1 , and finally to compute the expected value of . It is left to the 

reader to show that 

W

   aZZZaE nML ,...,,ˆ 21  

The estimator is unbiased because its expected value is the unknown parameter or variable being 

estimated. 

 

Example 3.14 

Let  and  be unknown nonrandom parameters observed in terms of 1a 2a

2212

1211

NaaZ

NaaZ




 

Where  and  are independent Gaussian random variables with zero mean and equal variances of 

. Find the maximum likelihood estimates of  and  in terms of  and , and determine the 

expected value of your estimates. 

1N 2N

2 1a 2a 1Z 2Z

Solution 

The likelihood function  is given as  2121 ,;, aazzf 
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Since the  is exponential, it is convenient to first take the ln before performing the 

maximization. The location of the maximum will not be changed if any monotonic function is used. This 

leads to two necessary conditions for the extremum: 
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Simplifying the equations above gives simultaneous equations as 
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These equations are easily solved to get 
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Since , the expected values of our estimates can be determined as     021  NENE
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 Thus we have shown that the estimates are unbiased for this problem, since there expected values 

equal the parameters to be estimated. The variances of our estimates for this problem are easily found as 
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3.7 Summary 

In this chapter basic procedures were presented for optimally estimating random variables from other 

random variables where optimality was with respect to a given performance measure. Emphasis was placed 

on the minimum mean squared error performance measure, not only because of its tractability but because 

many practical problems do not have a full characterization of the involved random variables. 

It was shown that for minimum mean squared error estimation of a random variable by a linear 

combination of other random variables, the only characterizations of the random variables required are the 

means, auto-correlations, and cross-correlations. The orthogonality principle provided another 

interpretation and the equations necessary to obtain optimum estimate in the MMSE sense. 

For nonlinear MMSE estimation, it was shown that the mean of the conditional density was the needed 

function, which involved almost a total characterization of the random variables. For the special case of 

Gaussian random variables, it was shown that the optimal linear estimate is the same as the optimum 

nonlinear estimate when finding MMSE estimates. 

Examples were presented using the Bayes performance measure for special cases of squared error, 

absolute error, and uniform error cost functions. It was shown that these estimates are correspondingly the 
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mean, median, and mode of the involved a posteriori probability density, which involves almost a total 

characterization. 

The topic of estimating nonrandom variables was introduced as there are many problems in which the 

estimate parameters or variables to be estimated are not random. The one method presented was the 

maximum likelihood procedure, and several examples were given. The concept of variance and bias in 

describing the performance of estimators of nonrandom parameters or variables was explored, with the 

result being that we would like our estimates to have a small variance and be unbiased. 

 

----------This is the end of Chapter03---------- 
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