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3 Estimation of Random Variables

3.1 Estimation of Variables

In the sciences, especially engineering and physics, we are required to estimate variables that are not
directly observable but are observed only through some other measurable variables — for example,

estimating the amplitude, frequency, or phase of a known signal in noise.

3.1.1 Basic Formulation for Estimation of Random Variables

Say we wish to estimate a random variable X by observing another random variable Z that is

statistically related to X . An estimator for X , call it X , is some function, g(-), of the observable Z

and is written as
X =g(2) 3.1
Thus X is itself a random variable. The function g(Z) could be an unrestricted nonlinear form, or in

special cases could be restricted to be of a particular form like a constant, linear, or polynomial function of

the observed variable Z . The estimation error is defined as the difference between the true value X and

the estimated value as follows:

A A
error=¢ = (true value)—(estimated value)= X — X (3.2)

This error is a random variable and is a measure of how well our estimator is performing. It seems

~\2
reasonable that we would like this error to have a zero mean and a very small variance E[(X - X ) :| .

3.1.2 Bayes Performance Measure

A performance measure J , or “yardstick” by which we judge the optimality of our estimate, can take
many function form. One of most useful is described by the expected value of a cost function C() that is

a function of error or difference between the true value and estimated value. This is called the Bayes

performance measure, and it can be expressed as

J iE[C(E:)] where &= X —X (3.3)

A

The Bayes estimate of X in term of Z is given by X = g(Z), where g(Z) is selected such
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that the J, given above, is minimized. If C(g) is selected as 52, then the performance measure is

called the mean squared error and g(Z) is the minimum mean squared error estimate of X . The

mean squared error performance measure will be shown to be mathematically tractable for many situations

involving estimating random variables in terms of other random variables.

Other common choices for g(x) include the average absolute error and the average uniform error
which are shown along with the average squared error in Figure 3.1. The mean squared error usually
requires less statistical information and is more mathematically tractable than the others. Thus our study

will concentrate in the beginning on using the mean squared error performance criterion. Estimates using

the absolute error and the uniform cost functions will be presented in Section 3.5.

C(e)=¢" Ce)= | ¢ Ce)=w(| e]-8)
\/ . W ; .
€ ! € S S €

(a) (b) (©)

Figure 3.1  Common performance measures

(a) squared error, (b) absolute error, (c) uniform error

3.1.3 Statistical Characterizations of Data

It will be shown that for linear estimation the second-order characterizations of the X and the Z
random variables, including means, correlations, and variances, are sufficient to find the minimum mean
squared error estimates. Other cost functions could require more statistical properties of X and Z,
including higher-order moments and higher-order joint moments for X and Z . For the case of the
absolute and uniform error cost functions, a total characterization of X and Z involving the joint and
conditional density functions may be required. Thus, in general, more statistical information is usually
required for obtaining optimum nonlinear estimators than for optimal linear estimators. Our discussion

begins with finding optimal linear estimates followed by optimal nonlinear estimates.
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3.2 Linear MMSE Estimation

3.2.1 Estimation of a Random Variable by a Constant

In many cases we wish to approximate a random variable by a deterministic constant. It may be desirable to
choose this constant in such a way that a defined performance index is either maximized or minimized. One
such performance index is the mean squares error.

Given a random variable Y that we desire to approximate by a constant @ such that the mean
given by

squared error €

2 0 2
e =E[Y —al|=[" (y-a)f, (y)y (3.4)
is minimized. This selection of the optimum @ corresponds to the best estimate of Y by a constant. A

necessary condition for the minimization of €, can be obtained by taking the derivative of €, with

respect to & and setting the result equal to zero to give

de -
o = 2y=a)-Df (yhy =0 (3.5)

The interchange of the derivative and expected value, which is also an integral, is subject to the same rules

for interchanging derivatives and integrals. Solving the equation above for a results in

a=[" yf,(y)dy=E[y] (3.6)

Clearly, it is seen that the constant @ that minimizes the mean square error in approximating a
random variable by a constant is the mean of the random variable. The corresponding minimum mean
squared error using this approximation can be obtained by substituting (3.6) into (3.4), and the variance of

Y as follows:

enns = | (y-EYD* £, (y)dy = ,° (3.7)

Example 3.1
Given a random variable Y with probability density function f, (y) as T, (y): befby,u(y). Find the

best constant « that approximates the random variable Y , where best is in the sense that the mean
squared error is minimized. Determine the minimum mean squared error for the approximation.

Solution

A

From Eq.(3.6) the best estimate Y =@, in the minimum mean squared error sense, is the mean or expected

value of Y given by

00

o by 1
a=|" ybe™u(y)dy =e—(y + —j 5

-b b

0

Xidian University Liu Congfeng E-Mail:cfliu@mail.xidian.edu.cn Page 4 of 32




{Random Signal Processing) Chapter3 Estimation of Random Variables

From Eq.(3.4) or (3.7) the minimum mean squared error is

1 2
I e B ~by
ms _J‘O (y bj be dy

3.2.2 Linear estimation of One Random Variable from Another

In other problems we may have access to one random variable X and desire to approximate or estimate
another random variable Y that is somehow related to X . Assume that the two random variables X

and Y have known means, standard deviations, and correlation specified by 77, , 77y, Oy, Oy, and

A

R,y , respectively. Let Y be the approximation of X and fix it as a linear function of X as

Y =aX +b (3.8)

It is desired to select the @ and D such that the mean squared error €_. given by

ms

e =E| [ =V J |=E[lY ~(ax +b))] (3.9)

is minimized. Necessary conditions for & and D to minimize e, are

oe

= E[2(Y —(aX +b))- X)]=0 (3.10)
P e[y —(ax +b)-1)]- 0 @.1)

These equations can be simplified by taking expected value and rearranging to yield
E[XY]=aE|X?|+bry o

Ny =any +b '
Solving the second equation for b, substituting the result into the first equation, and solving for a

gives @ and b as
_ E[XY]_UXUY _Ruv =mxiy _ My

Xl el o G.13)
b=n, —an, =n, _lusz 7x
Oy

Since the matrix of the second derivatives, the Hessian, can be shown to be positive definite, this a and
b will give the minimum mean square error. The corresponding minimum mean squared error is easily

determined by substituting the @ and D given in Eq. (3.13) into Eq. (3.9) and simplifying to give
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€ =0y — (3.14)

mms

Result (3.14) could also have been determined by expanding out (3.9) as follow:
e,. = E[(Y —(aX +b))Y ]-E[(Y —(aX +b))aX +b)] (3.15)
From Egs. (3.10) and (3.11) the second expected value is zero, and after replacing the D in the first term
by 7, —an, and writing the second Y as Y —17, + 7, , we write the minimum mean squared error as
ens = E((Y =1y —a(X =i )XY =1y +71,)) (3.16)
Using the @ from Eq. (3.13) and taking the expected value, we easily see the equation above for € to

be the same as Eq. (3.14).

The minimum mean squared error is seen to be the original variance of Y , the random variable that is
approximated, reduced by the ratio of the covariance between X and Y squared and the variance of
X . If the covariance is zero, then @ =0, and the minimum mean squared error is equal to the variance of

Y, which implies that we gain no information about Y from X by using a linear function.

Notice that the result depends only on the second-order moments of the involved random variables and
that the joint density is not needed. This means that the results do not depend on the probability density
functions, and thus all random variables that have the same second-order moments give the same results. If
the second-order moments are not given but the joint probability density is the specified information, it is a

trivial matter to compute the necessary moments, as shown in the following example.

Example 3.2

Random variables X and Y are characterized by their joint probability density function fxv (X, y),
written as

2, {(xy):0<y<x0<x<1}=R

0, elsewhere

fu(X,y)= {

The region R, is shown in Figure 3.2. Find the best linear estimate of Y in terms of X, where best is

in the minimum mean squared error sense and determine the corresponding minimum mean squared error.

Solution

To obtain the best estimator of Y in terms of X , it is necessary to compute the second-order moments,
which include all means, variances, and cross-correlation. These moments are calculated as follows: First,

the means are determined as

X X 2
E[X]= ,EL xf.o (X, y)dxdy = j;(zxy]o dx = 3

elv]- ] o eyt [ (T -

Next, the individual second-order moments are determined as
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e[t e st
el = [y b yhoy= [y shx=
E[XY]= j;joxxnyY (x, y)dxdy = I;(xyz Jax= %

Figure 3.2 R, for Example 3.2.

From these moments the individual variances and the covariance are determined, by definition, as

o = E[xz]—Ez[x]:l_(Zj2 _1

2 3 18
ol =Ely?]- EZ[Y]%—@Z :%
= E[XY]- E[X]E[Y]%—@@ :3_16

Using Eq.(3.13), the @ and b for the minimum mean squared error linear estimate of Y in terms

of X are determined from the various first- and second-order moments as

o _ EXY]-E[X]E[Y] _ i_[ixij 1

~ E[X?|-E’[X] 1 2
18
1 1.2
b=E[Y]-aE[X]==-=xZ=0
[r]-aelx]=1 12

Thus we have the best estimate of Y in terms of X as Y = X / 2.

The minimum mean squared error can be determined from Eq.(3.14) as
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ol 18 1
18
111
18 72 24

The first term 1/ 18, being the variance, is the error for best estimate of Y in terms of the

constant—namely the mean—while the second term is the reduction in the total mean squared error that

results from the linear estimation thus giving the final minimum mean squared error for the linear estimate

asthe 1/24.

3.2.3 Linear Estimation of a Random Variable from N Random Variables

The linear estimation problem can be easily extended to the case of estimating the random variable X in

terms of X,, X,,..., X, .Itis assumed that the statistical relationships between the random variables

are characterized by specifying the means and covariance (a second-order characterization):
E[X,]=n, i=0,...,n
Y EPR R

The linear estimate of X, intermsof X,, X,,..., X

(3.17)

, and the mean squared error are given by

A

Xo=a, X, +a,X, +---+a,X,+b (3.18)
5 2
. E[(x0 - xoﬂz E[(X, - (a X, +a,X, +-+a,X, +b)Y] (3.19)
The problem then is one of selecting @,, a,,..., @&,,and D such that € . is minimized. Taking

partial derivatives of €, with respect to the @; and D, setting them equal to zero, and rearranging
gives the following set of N+1 simultaneous linear equations in N+1 unknowns:
E[X, X, ]=a,E[X.’ |+ a,E[X,X, ]+-+a,E[X,X, ]+ bE[X,]
E[Xoxz]: alE[X2X1]"'azE[Xzz]+"'+anE[szn]+bE[X2]
: (3.20)
E[X,X,]=aE[X,X,]+a,E[X,X,]++a,E[X2]+bE[X, ]
E[X,] =aE[X ]+aE[X,]++a,E[X,]+b
Solving the last equation for b, substituting the results into the other N equations, rearranging, and using

;= E[X;X]—=mn; results in the following set of N linear equations in N unknowns:
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Moy =a by a0, +--+a, ly,

—Qlly, + 8, iy, + A
Ho .1/121 2H nkan (3.21)

/UOn = a‘lluln + a2/u2n teeet amunn
The solution of Eq. (3.21) gives the a; that minimize the mean square error and the last equation in (3.20)
gives the corresponding D in terms of the @; and the given means as
b= E[Xo]_alE[Xl]_azE[Xz]_"'_anE[Xn]
(3.22)
=My, — 7%, — &0, =~ Ay

After substituting the optimal a; from the solution of (3.21) and optimal b from (3.22) into the mean

squared error of (3.19) and simplifying, the minimum mean squared error can be shown to be
n
2
Cms = O-X0 - Zzuoiai (3.23)
i-1

The proof for this result will be presented after the introduction of the orthogonality principle by Egs. (3.30)
through (3.34).
The Orthogonality Principle.

The problem of linear minimum mean squared error estimation will be viewed from a slightly different

perspective. We have N+1 random variables X,, X,, X,, ..., X, whose means and second order

moments are given by:
E[X,]=n, i=0,,...,n
E[(Xi—n)i(Xj—nj)=,uij, i,j=0,1,...,n

The random variable X, is desired to be approximated by a linear combination of the so-called data

(3.24)

random variables X,, X,,..., X, as follows:

A

Xo=a,X,+a,X,+---+a, X, +b (3.25)

The error € involved with this approximation is given by
E=X,-X,=X,—(aX, +a,X, +--+a X, +b) (3.26)
As in the preceding section we desire the coefficients @,, @,, ... , @, and D such that the means

squared error given below is minimized:
e, = E[&]= E[(X, - (a X, +a,X, +-+a,X, +b)} (3.27)
By taking the partials of €, with respecttothe & and D, it can be easily shown that
E[(X,-(a X, +a,X, +---+a,X, +b))X,]=0, i=12,...,n (3.28)

and

E[Xo]_alE[Xl]_azE[Xz]_"'_anE[Xn]_b:0
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or

b=, ~(am +ay, ++amn,) (3.29)
Since the X;,i=12,...,n are the data and X, —(a,X, +a,X, +---+a,X, +b) is the error, Eq.
(3.28) can be interpreted as the error is orthogonal to each member of the data, and (3.29) gives the
solution for the optimal b . This statement is the first part of the orthogonality principle for minimum
mean squared error linear estimation. The second part of the orthogonality principle deals with the

evaluation of the minimum mean squared error for this optimal estimator. The € of Eq. (3.27), where

mms

the a;

i are the solution to the simultaneous equations of (3.28), can be written in the expanded form as

€mms = E[(Xo _(alxl +a2X2 +"'+anxn +b))(xo _b)] (3.30)
—E[(X, -(a X, +a,X, +---+a,X, +b)fa,X, +a,X, +---+a X, )] '

The second expected value of (3.30) is zero from (3.28), since it is the expected value of the error times a

linear combination of the data. Thus the formula for the minimum mean squared error can be reduced to
€ = E[(X, —(a, X, +a,X, ++--+a,X, +b))(X, —b)] (3.31)
Eq.(3.31) is the second part of the orthogonality principle, and it gives a reduced expression for

determining the minimum mean squared error. This result can be written in another form by substituting the

b of Eq. (3.29) into (3.31) to get

€oms = E{ [(Xo _770)_3-1()(1 _771)_3-2()(2 _Uz)_"'_an(xn _77n)] (3.32)
1Ko =m0) —(@m, +aym, +--+2a,7,)] } .

The equation above for € . can be simplified further by multiplying out the last terms in the two parts

S

shown to give
Cms = E{[(Xo _no)_al(x1 _nl)_az(xz _Uz)_"'_an(xn _Un)](xo _770)}
_E{[(Xo _770)_&1(X1 _771)_3-2()(2 _nz)_"'_an(xn —Tln)](alm +a,77, +"'+an77n)}
(3.33)

The first expected value give a sum of covariance of X, and X,, and the second expected value is zero,
since it gives a weighted sum of central moments of the X,, E[X; —,], which are zero by definition
for all 1=0,1,2,...,n. Thus the expression above for the minimum mean squared error can be written in

term of just the covariance between X, and the data set X; and the optimal coefficients as

n
2
Coms = Ox, — D Hoid (3.34)
i=l

Special case. For the many problems where the expected value of the X,, i1=0,1,...,n are all zero the

orthogonality principle can be simplified. From Eq. (3.29) it can be shown that b =0 and then from (3.28)

that the @, are the solution of the set of equations

E[(X, -(a, X, +a,X, +---+a,X,))X,]=0, i=12,...,n (3.35)
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Setting b =0 in (3.31) gives the resulting minimum mean squared error as the expected value of the
product of the error and the variable X that we are estimating
€ = E[(X, — (&, X, +a,X, +++-+2a,X, ))X,] (3.36)

Multiplying out the terms in (3.36) and taking expected values of the products allows the minimum mean

squared error to be written in terms of the correlations between the data as follows:
n
2
€ms = Ox, — D &R, (3.37)
i=1

The first term of this error, (7)2(0 , is the error that would occur if X, were estimated by a constant

with no data available, namely the mean of aero, whereas the terms in the sum represent the reduction in

mean squared error due to the use of each member in the data set.

Example 3.4

Suppose that we have the random variables S, Z,, Z,,..., Z, wherethe Z, arerelatedto S by

n I

Z,=S+N, i=12,..,n
Let S be a zero mean random variable with known variance (752 and the Ni,i =1,2,...,n, be zero

mean mutually orthogonal random variables each with variance U,i and each orthogonal to S . These

assumptions can be written as using the Kronecker delta function 5ij as
2 - -
E[NN, |=025,, i,j=12,..n
E[SN,]=0, i=1,2,..n

From the Z, we wish to approximate or estimate S by a linear combination of the Z; given by

n

S=>az +b

i=1
Such that the mean squared error is minimized. The problem can be related to estimating a random constant
value from a set of N noisy observations.
Solution
The solution is based on a direct application of the orthogonality principle. From Eq.(3.29) the b is as
follows:

b= E[S]_ alE[Zl]_ azE[Zz]_ T a-nE[Zn]

Since E[Zi]= E[S]+ E[Ni]= 0 for i=12,..,n and E[S]z 0, it is easily seen that b=0. After

substituting D=0 into the first part of the orthogonality principle, Eq.(3.28), which states that the error is

orthogonal to the data, gives
E[(s-(az,+a,2, +--+a,Z,))Z]=0, i=1,2,...,n

This equation could have been obtained directly from the special case of zero means from (3.35). After
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taking the expected values, we can rearrange the set of simultaneous equations above to give

E[sz,]=aE[z,Z,]+a,E[2,2,]+ - +a,E[Z,Z,] i=1,2,..n

To describe this set of equations, it is necessary to find the correlation of S and Z; forall i and
the correlation of Z; and Z j forall I and ] .First the correlation of S and Z; is determined as
E[sz,]=E[S(S +N,)]= E[s*]+ E[sN,]= 62, i=1,2,..,n

The second term in the sum above, E[SNi ] , 1s zero by the original given properties on the expected value
of SN, . Similarly the E|_ZiZ J-J can be found by using the given orthogonal properties of N; and N;
as

E[zz,]=E[(s+N,)s + N, )]= E[s*]+ E[N,S]+ E[sN, ]+ E[N,N ]

= 0'52 + O-l%l 5ij

Substituting these results into the simultaneous equations given above results in the following set of N
simultaneous equations in the N unknowns @,,d,,...,a,:

=(0s +0,)a +0ea, +...+ 0.,

2 2 2 2 2
o5 =054, + (05 +oy)a, +...+ 034,

Os =0.a, +0ia, +...+(0s +05)a,
By symmetry of the equations above, the @, are equal, so the solution can be obtained from any of
the equations above by equating the &; as follows:

o: =Noqa, + 0oy,

Solving for @; gives

O
q=—"F""7 i=12,...,n
nos + oy

As might be expected, the form of the estimator is a weighted sum of the measurements. This equation

can be further rearranged to be written in terms of the average of the measurements in the following ways:

S= nas (ZZJ or

No. +o,.

2 1 1<
§=— -~ 2Nz
1+0§n"10§2(n§ 'j
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Using these @, in the second part of the orthogonality principle equation (3.34), and identifying X, as

S and X, as Z;, we can write the minimum mean squared error as

Coms = 632 - Zn:alE[SZI]
i=1

With the correlations of S and Z; determined as above, €, becomes

ms

) J
S
~no:+o,
GNGS
noe +o,

For the special case where N, (752, and G,%, are such that the effective signal to noise ratio,

nO'S2 / 0',%‘ >> 1, the coefficient for the linear approximation and the corresponding minimum mean squared

error become

o 1 o. o,
ai~ > T emmszo-N 2 -
No; n Noyg n

The mean squared error is thus seen to be inversely proportional to the number of observations, and the

coefficients make the estimate an average of the observations.

If N and O'S2 are such that n()'s2 << O',i, low effective signal to noise ratio, the @, and mean

squared error become

This shows that in the low effective signal to noise case that the coefficients approach the ratio of the
variances of S and N and the minimum mean squared error approaches the variance of S . Thus the

form of the estimator is

Since the variance of S is the initial mean squared error without our taking any measurements, the results
indicate that as O'é / G,i approaches zero, the data do not significantly reduce the mean squared error.

Therefore for this case the observations are almost not used to estimate S, which for this problem is zero,

is used as the best estimate.

Example 3.5

Say we are given a random variable X that is exponentially distributed with probability density function
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given by

o (x)=2¢7"uu(x)
Define a random variable Y related to X through Y = e* . We wish to find the best linear estimate,
in the minimum mean squared error sense, of Y in terms of X . Let the optimal estimate be given by

Y =aX +b. Determine the a and b for this optimum estimate, and determine its minimum mean
squared error.

Solution

It is known that the optimal linear estimate can be found by using the orthogonality principle, which states

that the error is orthogonal to the data. For our problem this relationship can be expressed as
E[(Y —aX —b)X]=0
Where the first term in the () is the error and X is the data. Expanding out and taking the expected value

gives an equation for @ and D in terms of various first- and second-order moments of X and Y as
E[vX]=aE[X*]+bE[X]
The other equation of the orthogonal principle from Eq.(3.29), recognizing that X, =Y and X, =X ,is
b=E[Y]-aE[X]
To solve these two equations for @ and b we require the calculation of the various moments indicated.

These expected values will now be determined

E[v]=Ele )= ["2e *ax :%
E[vX]= Ele* X ]= ["2xe ¥ dx =§
S S
E[X]= [ 2xe ¥dx =%

© ax 1
E[Xz]:j0 2x%e™ dx=5

Thus with these values the simultaneous equations become

2 1 1
Z——a+—b
9 2 2
p=l_lg

32

Solving for @ and b yields a=4/9 and b=8/9. Therefore the best estimate is

\f=—iX +§
9 9

From Eq.(3.23) the minimum mean squared error can be written as
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2
€nms = Oy — Hyx @

L

3.3 Nonlinear MMSE Estimation

In many problems a further reduction in mean squared error can be obtained by using nonlinear estimation.
This reduction is at the expense of requiring more statistical properties of the random variables. It will now
be show that nonlinear minimum mean squared error estimation can be performed if almost a total
characterization of the random variables is specified. This is in sharp contrast with linear estimation where
only first- and second-order moments are needed, that is, the means, variances, and covariances of the

random variables involved.

3.3.1 Nonlinear Estimation of One Random Variable from Another

Given two random variable X and Y that are statistically related with joint probability density function
fyy (X, y). By observing X , we desire to estimate Y by some nonlinear function ( () of X, not

necessarily a linear function, as

A

Y =g(X) (3.38)

Our estimate is to be the best in the sense that it gives the minimum mean squared error € as
~\2
e = E[(Y V) }: ElY - g(x))] (3.38)

The first step in minimizing €, is to write it in terms of fy, (X, y) as

€ = I: I: (y—g(x)) f,, (x,y)dxdy (3.40)

Using the fact that the joint density is a product of the conditional and marginal densities, €.. can be

ms

rearranged to yield

s = Eo Ui(y ~g()) fy (y|x)dy} f, (x)dx (3.41)
Since the product of f, (y|x) and (y - g(X))2 is positive forall X and f, (X) is always positive, €

can be minimized by making the term in bracket as small as possible for every X. That is, select g() in

such a way that the term in brackets, | (X) , given by

1(x)= " (y-g(x))* f, (y]x)ay (3.42)
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is minimized. But for each X, (X) is just a constant, and we have shown previously (Section 3.2.1) that
the integral is smallest when ¢ (X) is selected as the mean of the random variable, which for this case is in
terms of the conditional probability density f, (y|x) Therefore the optimum ( (X), in the minimum

mean squared error sense, is given by
g(x)=E[Y|X =x]= LO vf, (y[x)dy (3.43)
The resulting g(x) is sometimes called the nonlinear regression curve. The minimum mean

squared error is obtained by substituting this optimal g(x) into (3.39), the equation for the mean squared

error, to give

00

:.f:amz f. (x)dx

€rmse = f;[ f (y-ENX]F £, (y|x)dy} f, (x)dx

(3.44)

Thus the minimum mean squared error is seen to be E[(Y - E[Y|X])2] , where E[Y|X] given by

E[Y | X = X] «x 1s random variable.

Example 3.6

The density for Y conditioned on X =X and the marginal density f, (X) of two random variables
X and Y are given by

f, (%)= xe™"u(y), Fu (¥)= ulx = 1)~ pul(x - 2)
Find the best nonlinear estimate of Y in terms of X , and calculate the corresponding minimum mean
squared error for your estimate.
Solution

The conditional density in Y is seen as exponential with parameter @ = X ; thus we are trying to estimate

this parameter from the given information and a sample of X . The g(x) that gives the best nonlinear

estimate in the minimum mean squared error sense is the conditional mean
g(x)=E[Y [ X =x]=]" yf,(y|x)dy

Py XeTY(xy—1) w_l
_jo yxe dy_—x2 =

0
Therefore Y = g(X): 1/X.

The minimum mean squred error for the optimal ¢ (X) can be determined from (3.41) as

= [ -1 by, 0
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But the term in brackets is the conditional variance for the exponential density, which from Eq.2.38 is just

1/ X’ . Therefore the mean squared error can be found as follows:

o ] 2 1 -1 2 1
e = [z F (= [ 10x =71 )

Example 3.7

The random variable X and Y are statistically characterized by the following joint probability denstity
function:

2,  (xy)eR={(xy):0<y<x,0<x<l1}

0, elsewhere

f(x,y)={

Where R is shown in Figure 3.3.

Figure 3.3 Region R for Example 3.7.

(a) Find the best nonlinear estimate of Y in terms of X .
(b) Find the best linear estimate of Y interms of X .

(¢) Comment on your results.

Solution

(a) The best nonlinear estimate is the conditional expected value of Y given X =X. To find the
conditional density, it is necessary to determine the marginal density f, (X) It is determined by

integrating the joint density for each value of X:

fx (X) = _E:O Fxr (X, y)dy
Forany X suchthat 0<x<1 the f,(X) becomes
f (x)= LXZdy =2X

For X outside the interval (0,1) the probability density function is zero, so the conditional density

function can be summarized by using the unit step function as
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)= ) )y )

The function for the best nonlinear estimate of Y in terms of X for 0 < X <1 is the conditional

mean as follows

g()=E[Y [ X =x]=[" yf, (y|x)dy
X
x 1 y? X
= —_ d = — = —
IO y X y 2x} . 2
It is seen that for this example the best nonlinear estimate is a linear estimate.

(b) The best linear estimate of Y in term of X by ax+Db was found in Example 3.2 to be

Y=X / 2, so for this example the best linear estimate is the same as the best nonlinear estimate.

(c) It is rare that the best linear and nonlinear estimates are the same, but they will be shown in Section

3.3.3 to be the same for the special case where X and Y are jointly Guassian.

3.3.2 Nonlinear Estimation of One Random Variable from N Random

The Problem of estimating a random variable X, in terms of statistically related random variables
X,, X,,..., X, where the random variables are characterized by their joint probability density function
f, (XO, X, Xn) is a common application in the sciences. In Section 3.2 formulas were given for finding

the best linear estimate, while in this section the problem of nonlinear estimation will be examined.

We desire to approximate or estimate X, by a nonlinear function g(X 05 Xiseees X, ) as
Xy =09(X,, X5, X,) (3.45)
It is desired to find the ¢ (X 05 Xpseens X, ) that will minimize the mean squared error given by
7 \2 2
€ns = E[(Xo - Xo) 1= E[(Xo - g(xla X27"-7 Xn)) ] (3.46)
By extending the results given for the best nonlinear estimate of one random variable in terms of another, it

can be easily shown that the optimal function ¢ (X1 s Xy peees X, ) in the minimum mean squared error sense,

is the conditional given by
g(X1’X2r-~aXn): E[X0|X1 =X, Xy =Xy, X, = Xn]
=I:X0f(X0|X1,X2,---,Xn)dX0

It is worth noting that to obtain the minimum mean squared error nonlinear estimate of one

(3.47)

random variable in terms of other random variables we require the knowledge of the conditional

probability density function, f (XO|X1, Xy X, ), which in many problems involves more statistical
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information than is available. It was shown in Section 3.2 that restricting g() to a linear function

reduces the required information to the knowledge of the second-order properties, that is, the means,

variances and covariances of the random variables involved.

Example 3.10 (Random Variables)

Let X,, X,,and X, be random variables. The conditional density for X, given X, =X,

and X, = X,, is known to be the following:

fxo(xo‘xl,xz):k~x(()"1*1)(1—x0)x2_1, 0<x, <1
where k= &
(%, )r(x,)

Find the best nonlinear estimate of X, in terms of X, and X, where best is in the

minimum mean squared error sense.
Solution
From Eq.(3.47) we know that the optimal function is the conditional mean. For the conditional density

function above the conditional mean can be shown from Eq.(2.50) to be

1
g(Xl9X2): E[Xo | lexz]:J-OXO fxo(xo | lexz)dxo
_ Xl
X+ X

Thus the best nonlinear estimate of X, intermsof X, and X, is )20 = Xl/(X1 + Xz).

3.3.3 Nonlinear Estimation of Gaussian Random Variables

Given X and Y are jointly Gaussian random variables with known means, 77y, 7, variances, O,

Oy, and covariance Oy . The best nonlinear estimate of Y interm of X is desired where best is in

the sense of minimizing the mean squared error. The solution for g(x) has already been shown to be the

conditional mean

g(x)=E[Y[X =x]=[" v, (y[x)dy (3.48)
From Section 2.6.4, the conditional density for jointly Gaussian random variables is known to be Gaussian

with mean and variance given by

Pxy Oy (X_Ux)

77Y\x =1y +
O (3.49)

olvix = O'Yz(l—pzxv)
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Thus the optimal g(x) for this Gaussian case is the conditional mean

P (x—p,) (3.50)
Oy

Q(X)=77x +

By the definition for the correlation coefficient, Eq. (2.101), where p,, is

(o2
Py = —2— (3.51)
OxOy

the optimal g(x) can be rewritten in terms of the various variances and covariances as

(3.52)

Thus the best nonlinear estimate for the jointly Gaussian case is seen to be a linear estimate given by

Y =g(X)=aX +b

(3.53)
where a=2x b= ﬂx[l ~Ixt j

2 2
O Oy

This fact gives more power to the linear estimate for the case of Gaussian random variables and releases us
from needing to look for a best nonlinear estimate for that case. However, it is not possible to say that if the
best nonlinear estimate is a linear estimate, the random variables involved are jointly Gaussian. A
counterexample has already been shown in Example 3.7.

For the special case of zero mean Gaussian random variables, the @ and b from Eq. (3.53) reduce

to

o
a=—2"
Ox

and b=0 (3.54)

The extension of the result above to N+1 jointly random variables is possible and the best nonlinear

estimate of the Gaussian random variable X in terms of the other jointly Gaussian random variables

X, X,,..., X, can be shown to be a linear function of the random variables X,, X,, ..., X

n n-

This is expressed as follows:
A
g(xlﬂ""xn): E[X0|Xl = Xl’ X2 = X2="'9 Xn = Xn :|:77X0‘XLXZ<WXn
= JZJ:I_Z Xo B (X), Xy see0s Xy X )X, (3.55)
=aX +a,X, +---+a,X, +b
where the a= [al,az,...,an ]T and b can be determined from (3.21) and (3.22). If the random vector
X Z[XO,XI,...,XH]T Z[XOEXn]T is jointly Gaussian with given covariance matrix K, and

mean vector m,,, =[E[XO],E[Xl],...,E[Xn]]T =[E[X0]Smn]T then the best nonlinear estimate of
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X, interms of X, X,,..., X, can be written as

X, =[a,a,,..a,]-| . |=aX, +b (3.56)

To obtain the a vector and b in terms of the given information, the covariance matrix K, is first

partitioned as
2 T
Ox, Hx,

n+l T

ty, Ky (3.57)

K

T
where p, = [/Uxox1 s Hix x50 Hx o, ]
The desired a and D can now be obtained by using the linear estimate formulas given in (3.21) and

(3.22) as follows
ny =Ka, b=E[X,]-a"m, (3.58)
where the solution for the coefficient vector a is easily obtained from the equation above as
a=K 'nl (3.59)

n

3.4 Properties of Estimators of Random Variables

There are a number of properties of estimators of random variables, whether they be linear or nonlinear

functions of the observations, that are useful to define. Assume that X is a random variable that is
statistically related to another random variable Z . Let X (Z)z g(Z) be an estimator for X . Assume
that mean E[X ] is known or can be determined.

An estimator of a random variable X is unbiased if its expected value is equal to the expected value

of the random variable being estimated, which can be written as
E[X(2)|=E[X] (3.60)
If (3.60) is not satisfied, the estimator is biased.

Suppose that we are estimating a random variable X from a vector of observations

7= [ZI,ZZ,...,ZN ]T . The Cramer-Rao bound, is the most important lower bound on the variable X

and is given below without proof:

1 1

oln p(zlx)\’ ) _g| @ Inp(x)
. Ox 0°x

Any estimator satisfying this bound is called an efficient estimator.

E[(X — X(Z))*]= (3.61)
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3.5 Bayes Estimation

The performance measure J g, , or “yardstick” by which we judge the optimality for a Bayes estimate,

is the expected value of a cost function C(-) that is a function of the error or difference between the true

value and the estimated value.

Jaaves i E[C(&)]

where e=X-X

(3.62)

The Baves estimator of X in term of Z is given by X = 0(Z) where g(Z) is selected such

that the Jgayes, given above, is minimized. Common choices for C(¢&), shown in Figure 3.1, are the

squared error, absolute error, and the uniform error, which are defined as

Cus (6) = &’
C s () =] (3.63)
Cop () = 0, |£| <o

1, |€| >0

The choice of which cost function to use is subjective. It is seen that the C,q(&) penalizes large
errors severely and rewards errors less than 1, whereas the C,gs(&) treats errors on a linear basis.

C s (&) does not penalize if the absolute value of the error is within the bound of O but penalizes all

errors bigger than O in magnitude by the same value. Bayes estimates for each of these three cost

functions are now presented.

3.5.1 Bayes Estimates

Squared Error Cost. Bayes estimates for random variables X in terms of a measured random variable

Z for the squared error cost function have been thoroughly explored in the previous two sections. It was

shown that the ¢(Z) for the optimal nonlinear estimate of X was obtained as the conditional mean of

X given Z =17 and could be written as
9(2) = E[X|Z = 2]= [ xp(x|2)dx
X =9(2)

Thus the Bayes estimate for the squared error cost is seen to be the mean of the posteriori density p(X|Z)

(3.64)
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given by
Rys = jw xp(x|z )dx (3.65)
Unfortunately, what we usually have available, or can easily obtain, is p(X|Z) . Thus p(X|Z) must be

found by using Bayes’s rule as follows:

() p(x)
p(xj2) = —
[ (2P0 p(dx

Absolute Error Cost. To obtain the optimal estimate of X interms of Z for the absolute error cost, we

(3.66)

must select §(Z) suchthat J,zq given below is minimized:

J ass iE[CABS (5)]: EHX - )2‘]: EHX - g(Z)|]

- IZIUX —g(2)|p(x, z)dxdz

Equation (3.67) can be rearranged by using the relationship for the joint and conditional densities as

(3.67)

follows:
J s = J':) p(z)“_i|x— 9(z) p(x|z)dx}dz (3.68)

To minimize J ,gq, it is sufficient to minimize the term in brackets for every value of Z . This is true since

p(Z) is always positive as is the term in brackets, | , which can be written as

| = f:)(— x+9(2))p(x|z)dx+ j;z)(x —g(2))p(xz)dx (3.69)

For a fixed Z, g(z) is a constant setting the partial derivative of the integral with respect to g(z)

equal to zero, and using Liebnitz’s rule, we obtain a necessary condition for minimizing | as follows:

O xr ooz [ e afapbib

og(z) - (3.70)

- (~0()+ a2)plo(e)e)+ [ plrfekix—(a(2)- a(2)pla(e)e)- ] plizkix =0

Recognizing the zero terms and rearranging the ¢ (Z) for each Z satisfies the equation

ﬁj) p(x]z)dx =f;) p(xjz )dx (3.71)

In this expression it is seen that the optimum g(z), for each Z 1is the median of the posteriori density
p(X|Z). Thus the optimum estimator in the minimum absolute error sense is seen to be the X,gs(Z),

which satisfies

.[Xw() p(x[2)dx = ,E " p(2)dx (3.72)

ABS ()
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As with the MS estimate, what we usually have available or can easily obtain is p(X|Z). Thus

p(X|Z) must be found by using Bayes’s rule as follows:

p(z|x)p(x)
j p(z|x) p(x)dx

p(X|2) = (3.73)

Uniform Cost. To obtain optimal estimator of X in terms of Z for the uniform error cost function, the

g (Z) is selected such that J, given below is minimized:

Jun =J.:£;CUN (x—g(z))p(x,z)dxdz

o (3.74)
(z )Uw Cy (X— g(x))p(x|z)dx}dz
The optimal estimator is as before, where the ( (Z) minimizes the term in brackets given by
1(z)= I Cuy (x=0(z x|z)dx_1 Ix soes P | 2 )dx (3.75)

Minimizing 1(z) for each Z is equivalent to maximizing the integral on the right side of Eq. (3.75). If
O is very small, then that integral is maximized by selecting g(z) to be the maximum of p(X|Z)
viewed as a function of X foreach Z . So the estimator in the uniform cost sense is written as
A A A
fun (2) = max P(X[2)=Ryup (2) (3.76)
and it is the maximum of the posteriori density p(X|Z) .
To obtain the estimates, it is necessary to determine the a posteriori density p(X|Z) , but what is

usually available is the p(X|Z) . The a posteriori density can be written in terms of p(X|Z) as

PX)P(X) _
p(z)

For each Z the g(z) is nothing more than a scale factor, so maximizing p(X|Z) is equivalent to

p(X|2) = (3.77)

maximizing the numerator p(Z|X) p(Xx)

A necessary condition for the maximum a posteriori estimate is that it satisfy

o(p@pd)  _,

3.78
o (3.78)

x=X(2)
In many problems where the conditional and marginal densities are exponential in form, a more expedient

necessary condition can be obtained by taking the In of the product of densites before the partial

derivative is performed. This will not change the location of the maximum value, and thus it leads to

alternative necessary condition for the MAP estimate of X in terms of Z :
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a(1n p(z|x))

OX

. olin p(x)
OX

X=Xuap (2) X=Xmap (2)

=0 (3.79)

3.5.2 Examples of Bayes Estimators

Example 3.12
A and X are two random variables. The conditional probability density function for X and the

probability density function for A are given as
_ax 1
fuxla)=ae™u(x) —and  f,(a)=[ula—1)-ua-3)

(a) Find the maximum a posteriori estimator for A.

(b) Compute E [AM AP (X )J, and say whether the estimator is biased or unbiased.

(c) Compute the variance for your estimator.

X2
_____________ 1
] &)
| | | | | —
-6 -4 -2 2 4 6
Bt
Figure 3.5 Graphical form for Bayes estimator for Example 3-10 with O'>2< =0, = 1.

Solution
(a) To obtain the estimator, it is necessary to find the posteriori density fA(a| X), which can be

determined as

Since the fy (X) is just a scale factor and does not depend on @, we need to select the a that
maximizes the numerator with respect to a. Figure 3.6 shows for three separate regions for X the

plot of f (a | X) as a function of a. The maximum is located at different values of a depending on

whether the maximum of the ae ™, which occurs at 1/ X, is in the interval [1,3] or on the boundary.
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From Figure 3.6 it is seen that if 1/ X <1, the maximum occurs at the boundary, a=1; if
1< l/ X <3, the maximum occurs at a = 1/ X; and if 1/ X >3, then the maximum occurs at the

boundary, & =3 . Thus we can write the maximum a posteriori estimates as follows:

1, 0<1/x<1
Ae(X)=11/x,  1<1/x<3
3, 1/x>3

Since X > 0, the inequalities can be reversed and rearranging gives the A ,p (X) as

3, 0<x<1/3
Ae(X)=11/x,  1/3<x<1
1, x>1
F f,
X(X|i‘3 A(a) ——1x>3
1 —
Max
/
TS IS1xS3
N X
\\
Hg I/x<l ™
0 ! ! “a
4 5
Figure 3.6 Plotof f, (X | a) f,(a) versus a for Example 3-11.

(b) The expected value of the estimator can be written as
E{Aue ()] [ A (0)1 ()i
1/3 1 o
= L 3f, (x)dx + L/3(1/x)fx (x)dx + L 1, (x)dx
where the (X) is obtained by integrating the product of the conditional density by the marginal as

f(x)=] fi(xla)f,(aka
= f ae‘axﬂ(X)%da il (a + lﬂ

3

2X X) |,

(3 5 1 5 1 ., 1 -
=—|-—e ¥ -—e*+—e"-—e X
2( X X’ X X’ j’u()

Using this f, (X) in the expected value above, and some creative integration.

We obtain the expected value of our estimator as E IAM AP (X )J =1.635584.
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Since E[A] is easily seen to be 2, this estimator is biased.

(c) The variance of our estimator is easier written down than evaluated as
O (%) = E[(A— Aune (X )ﬂ
= f HS (a—3)" fy(x|a)f,(a)ixda
+fj;3(a ~1/x)" f; (x| a)f,(a)ixda
+['[ (a-17 . (x] a)f,(akxda

Where f, (X | a) and f A(a) are as given in the problem assignment.

3.6 Estimation of Nonrandom Parameters

Suppose we are trying o estimate the parameter @ as a function, g(z), of some observation Z which
we can express as a(Z)=(Q(Z). The Z is random and somehow related to @. The A(Z) is a

random variable because it is a function of a random variable Z . An example of its probability density

function is shown in Figure3.7. Intuitively it seems that for @(Z) to be a good estimate of the parameter
a, the density for 4(Z) should have a small spread or variance and be centered around the variable

being estimated. Such a property can be expressed in terms of the E[A(Z)] and the variance

o’ =E[A(Z)-E[A2)]T.

Variance

2

Oy

Ela(z)]

—
2
(¢}
N
A
il 4

Figure 3.7 Probability density function for a(Z).

An estimator of a nonrandom variable a 1is said to be an unbiased estimator of a if

E[4(Z)] = a. Therefore we usually seek estimates that are unbiased and have the smallest possible

variance. Say that we are estimating a nonrandom parameter @ from a vector of random observations Z
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and that the variance of our estimator is defined by E[(@a—@&(Z))’]. For even simple problems this

variance may be complicated to obtain, and so bounds on estimates are important. The Cramer-Rao bound

is the most important lower bound on the variance. It is given by

1
E’[0ln p(z;a)/0a]

E[(a-4a(2))’]2 (3.80)

Any estimator whose variance satisfies the lower bound given in (3.80) is called an efficient

estimator of a.

3.6.1 Maximum Likelihood Estimation

A random variable Z is observed that is a function of some unknown but nonrandom parameter a. For
Example, a constant unknown variable a is observed in additive fashion as Z =a+ X, where the
random variable X has a known statistical characterization and an estimate of @ is desired as a function

of Z . The maximum likelihood estimation procedure suggests one way to solve for an estimate but not in

the sense of an optimality.

The maximum likelihood estimator & ,(Z) of a nonrandom parameter & in terms of an

observed random variable Z is defined to be the @ that maximizes the likelihood function f(z;a),

which is defined as the probability density function for the observation Z in terms of a nonrandom

parameter @ that could be a vector. Mathematically the function form for the estimator is expressed in

terms of f(z;a), which is viewed as a function of @ and can be written as
4, =max f(z;a) (3.81)
a

Extending this concept to multiple observations, the maximum likelihood estimate of a nonrandom

parameter in terms of observation Z I Z2 ,..., Z_ is defined as the @ that maximizes the likelihood

n

function f(z,,2,,...,Z,;8) and given by

n?

a,(z,,2,,...,2,)=max f(z,,2,,...,2,;8) (3.82)
a

Furthermore, if we have multiple observations and are estimating a parameter vector, a =[a,,a,,...,3y, |,
rather than a single variable or parameter, the maximum likelihood estimate of a is given by

a (z,2,,..,2,)=max f(z,,2,,...,2,;a) (3.83)
a

3.6.2 Maximum Likelihood Estimation Examples

Example 3.13
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The probability density function for an observation Z, in terms of a nonrandom parameter a is given by
f(z:a)=ae * u(z)

Say there are N independent observations Z,, Z,,..., Z,.

(a) Find the maximum likelihood estimate 8, of a.

(b) Determine the E[ﬁml].

Solution
(a) The likelihood function is a product of the likelihood for each measurement because of the

independence of observations. It is determined as follows:

f(z,2,,...,2,;8)= 1:[ f(z;a)
=a’ eXp(— aZl: Z jﬂ(zl )z, )+ wlz,)

A necessary condition for the maximum of the likelihood function is that its partial derivative with

respective to @ be set equal to zero, which is

Metontif) 0 ouf a3-2 Jta o))

oa

Thus we have relative extremum at @ =0 duetothe @""' termand at a = n/ zin:l Z, because of

the term in square brackets. But @ =0 is a minimum rather than a maximum, and a maximum

occurs for the bracketed term. Therefore the maximum likelihood estimator becomes
n
an(2,.2,...2,)=n/>2,
i=1
(b) The expected value of 8y, (Z VA Zn) is given by:

E[a,, (Z,.2,....2,)]= E[n gzi}zng[l Z‘Z}

The expected value of the term in brackets is not the ratio of expected values. Its calculation is

facilitated by defining a new random variable Z as

The general approach to determining the required expected value is first to find f, (Z) by using the

Laplace transform (since the density will be a convolution), then to use the transformation theorem to
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obtain f, (W) , where W =1/Z, and finally to compute the expected value of W . It is left to the
reader to show that
E[éML(Zla Zysrl, )] =a

The estimator is unbiased because its expected value is the unknown parameter or variable being

estimated.

Example 3.14
Let &, and a, be unknown nonrandom parameters observed in terms of
Z =a +a,+N,
Z,=a,—-a,+N,
Where N, and N, are independent Gaussian random variables with zero mean and equal variances of

o . Find the maximum likelihood estimates of a, and a, interms of Z, and Z,, and determine the
expected value of your estimates.
Solution

The likelihood function f (Zl » 258, az) is given as

1 1 !
1 _5[21_(al+a2)] 5[22_(31_32)]

f (Zl 2558y, az) = Py exXp o2 - o2

Since the f(zl,zz;al,az) is exponential, it is convenient to first take the In before performing the

maximization. The location of the maximum will not be changed if any monotonic function is used. This

leads to two necessary conditions for the extremum:

1 1 §
_5[21_(al+a2)] 5[22—(3-1—32)]

O f(z,,2,;8,,a,)=

oa, oa, o’ o’

:[Zl _(al +a2)]+[22 _(al _az)]:O

1 1 i
_E[Zl_(a1+a2)] 5[22—(a1—a2)]

0
—Infl(z,,2,;a,,a,)= -
éa, (1 2> 2) éa, = o2

= [21 _(al +a2)]—[22 _(al _az)]: 0
Simplifying the equations above gives simultaneous equations as
z,+2,-2a, =0
z,-2,-2a,=0

These equations are easily solved to get
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. 1 . 1
a1(21a22)25(21+22)a a2(21,22)=5(21—22)

Since E[Nl] = E[Nz] =0, the expected values of our estimates can be determined as

E[4(2,.2,)]= EB(Z1 + zz)}

= E[(al + N, + Nz)]: 8

E[éz(Zl,Zz)]: E|:%(Zl -7, ):l
= E[(az +N, - Nz)]: 8,

Thus we have shown that the estimates are unbiased for this problem, since there expected values

equal the parameters to be estimated. The variances of our estimates for this problem are easily found as

ol =E|a(z,.2,)-a ¢]-E€ G(zl +zz)—alj2

3.7 Summary

In this chapter basic procedures were presented for optimally estimating random variables from other
random variables where optimality was with respect to a given performance measure. Emphasis was placed
on the minimum mean squared error performance measure, not only because of its tractability but because
many practical problems do not have a full characterization of the involved random variables.

It was shown that for minimum mean squared error estimation of a random variable by a linear
combination of other random variables, the only characterizations of the random variables required are the
means, auto-correlations, and cross-correlations. The orthogonality principle provided another
interpretation and the equations necessary to obtain optimum estimate in the MMSE sense.

For nonlinear MMSE estimation, it was shown that the mean of the conditional density was the needed
function, which involved almost a total characterization of the random variables. For the special case of
Gaussian random variables, it was shown that the optimal linear estimate is the same as the optimum
nonlinear estimate when finding MMSE estimates.

Examples were presented using the Bayes performance measure for special cases of squared error,

absolute error, and uniform error cost functions. It was shown that these estimates are correspondingly the
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mean, median, and mode of the involved a posteriori probability density, which involves almost a total
characterization.

The topic of estimating nonrandom variables was introduced as there are many problems in which the
estimate parameters or variables to be estimated are not random. The one method presented was the
maximum likelihood procedure, and several examples were given. The concept of variance and bias in
describing the performance of estimators of nonrandom parameters or variables was explored, with the

result being that we would like our estimates to have a small variance and be unbiased.
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