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2 Random Variables

2.1 Definition of a Random Variable

An experiment E is specified by the three tuple (S, F, P()) where S is a finite, countable,

or noncountable set called the sample space, F is a Borel field specifying a set of events, and P()
is a probability measure allowing calculation of probabilities of all events.

Using an underlying experiment a random variable X (e) is defined as a real-valued function on

S that satisfies the following: (a) {e : X(e) < X} is a member of F for all X, which guarantees
the existence of the cumulative distribution function, and (b) the probabilities of the events
{e X (e) = +oo} and {e X (e) = —oo} are both zero. This means that the function is not allowed to be

+ or — infinite with a zero probability.

Example 2.1
E is specified by (S,F,P(-)) whereS =1{a,b,c,d}, F is the power set of S, and P() is

defined by P{a}=04 , P{b}=03, P{c}=02, and P{d}=0.1. Define the following
mapping X (a) =1, X(b) =0, X(c) =1, X(d)=4.Isthe function X(.)arandom variable?

Solution
To show that the function is a random variable, it must be shown that conditions (a) and (b), specified

above, are satisfied. The sets {e: X(e)< X} as X varies from —oo to oo are as follows:

x<0 le:X(@) <xj=¢
0<x<1 {e: X(e)<x}={b}
1<x<4 {e: X (e) < x}=1{a,b,c}

x>4  {e:X(e)<x}={ab,cd}=S
Since the sets described are subsets of S, they are members of the power of S, and thus condition (a) is
satisfied. If S has a finite number of elements and F is the power set of S, condition (a) will always
be satisfied.

If the power set is not used for F , it is possible to construct a function that is not a random variable.
It is easily seen that

For

0
0
Thus conditions (b) is satisfied and since (a) is also satisfied, X (.) is a random variable.

Most common functions defined on a given experiment are random variables, however, condition ()
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can be easily violated if F is not the power set of S or condition (b) cannot be satisfied if X is
defined to be oo for a set with finite probability.

Random variables are said to be totally characterized or described with relation to calculating
probabilities of acceptable events (i.e., events that are a member of F ) by their cumulative distribution
function or probability density function. Weaker characterizations, called “partial characterizations”
would include specifying higher-order moments, variance, mean, and the like. Knowing just the mean of a
random variable is certainly less information about the random variable than knowing the probability

density function, yet it still provides some idea about values of the random variable.

2.1.1 Cumulative Distribution Function (CDF)

The cumulative distribution function F, (X) for a random variable X(e), or when convenient

represented by just X , is defined forall X as

A
F,(x)=P{e: X(e) <x}=P{X <x} (2.2)
It is sufficient information to calculate the probabilities of all allowable events, and as a result is called a
total characterization. Because of the properties of the probability measure P() described in the overall

experiment, the cumulative distribution function (CDF) can be shown to have a number of important

properties:
(1) F,(X) isbounded from above and below,
0<F, (x)<1 for all X (2.2)
(2) F,(X) isanondecreasing function of X,
Fy (%) >F, (x) forall x,>x andall X (2.3)
(3) Fy(X) is continuous from the right,

Iir(r)l F (x+a) =F, (X) (2.4)

(4) F,(X) can be used to calculate probabilities of events
P{x, < X <x,}=F, (X,) —F, (X,)
P{x, < X £x,}=F, (X,)—F,(X,)
P{x, < X <x,}=F, (%, )= Fy (x.")
P{x, < X <x,}=F, (x,7)—Fy (X,)

(2.5)

Where X~ = lim F, (x—¢&) (left-hand limit)
e—0"

(5) Relation to the probability density function f, (X) (to be defined later) is written as
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Fy(x) = Ifx(x)dx (2.6)

Example 2.3
For the random variable defined in Example 2.1 determine (a) the cumulative distribution function

F, (X) and calculate the probabilities of the following events. Using this distribution function,
determine (b)) P{l<X<2} , (o) Pi<X<4} , (@ P{o<x<1 (e
P{O<x<1},(HP{O<x<1},@P{X >1},(n) P{X <1},() P{X =1},and () P{X =3}.

Solution
(@) The CDF F, (x) for the random variable X is obtained by determining the probabilities of the

events {e: X (e)<x} for all xe(~o,00). The results from Example 2.1 help us determine

F, (X) as follows for the following regions.

x<0 : X (@) <xj=P(g)=0

0<x<1 le:X(e)<x}=P(b)=0

1<x<4  {e:X(e)<x}=P(a,b,c)=P(a)+ () P(c)=0.9
X4 {e:X(e)<x}=P(a,b,c,d)=P(S)=1

These results can be plotted as shown.
The CDF along with the probabilities of the intervals given in Eq.(2.5) will be used to determine

the probabilities of the events listed.
@P{l<X<2}=F,(2)-F,(1)=0.9-09=0
() P{l< X <4}=F, (4)-F,(1)=1-09=0.1
©P{0<X<l=F, (1)-F,(0)=0.9-0=0.9
@P{o<X <1}=F,(1)-F,(07)=0.3-0=0.3
@P{0<X<1}=F,(1)-F,(0)=0.3-0.3=0
) P{X>1}=F,(0)-F,(1)=1-09=0.1

(9 P{X<0}=F,(0)=0.3

(h P{X=1}=F,(1))-F,(17)=0.9-0.3=0.6
(i) P{X=3}=F,(3)-F,(3)=0.9-0.9=0

2.1.2 Probability Density Function (PDF)

The probability density function f, (X) for a random X is a total characterization and is defined
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as the derivative of the cumulative distribution function

f (9= (¥

Q2.7

If F, (X) has jump discontinuities, it is convenient to use delta functions so that a probability density

function (PDF) will always be defined. Therefore a probability density function will contain delta functions

at the points of discontinuities of F, (x) with weights equal to the size of the jump at those points.

Important properties of the probability density function for a random variable X are as follows:

(1) positivity
f,(x)>0  forall X

(2) Integral over all X (unit area)
j f, (x)dx =1

(3) fy(X) used to calculate probability of events,

X, +e€

px, < X <x}= [ f,(x)dx= jf (X)dx

X +e

Xy —€ AX2
p{x < X < X,}= j i (dx =] f, (x)dx

Xp+e

plx, < X <x}= [ f,(x)dx= jf (X)dx

X —€
p{x < X < X,}= j f. (X)dx= j f, (x)dx
X +€
(4) Relationship to cumulative distribution function

f ()_dF « (X)

(2.8)

(2.9)

(2.10)

(2.11)

A random variable is called a discrete random variable if its probability density function f, (X) is a

sum of delta function only, or correspondingly if its cumulative distribution function F, (X) is a

staircase function. A random variable is called a continuous random variable if its cumulative

distribution function has no finite discontinuities or equivalently its probability density function

fy (X) has no delta functions. If a random is neither a continuous or discrete random variable we

call it a mixed random variable.
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Random variable -<

Examples of these three types follow.

Discrete random variable,
f, (x)=0.26(x+3)+

Continuous random variable,

Mixed random variable,

f, (X) = 0.5e 7 u(x) +

A fx(X)

A FX(X)
1 *—
[ S
0.6
[ S——
[ —

~~ Discrete random variable

Continuous random variable

\— Mixed random variable

0.26(x +2)+0.45(x 1)+ 0.25(x — 3)
1

f _ ol

x(X)=2e

0.25(x +2)+0.15(x 1)+ 0.25(x - 2)
fx(x) fx(X)

0.5 0.5

v

(a) Discrete RV

Figure 2.2 Examples of (a)

Example 2.5

-2 0 1 2 X
(b) Continuous RV (c) Mixed RV

discrete (b) continuous and (c) mixed random variables.
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Given a mixed random variable with probability density function
1 1 1 1
f (x)= ¢ u(x)+ §§(x +1)+Z5(x)+§5(x ~1)

Determine the cumulative distribution function F, (X)

Solution
The cumulative distribution function F, (x) can be determined by the relationship given in (2.6).

F, (x)= .[_Xm f (x)dx

[ Se o [ 2otce1)+ 000+ Solx-1) o

:E—%e‘x}y(xﬁ%y(x+l)+%y(x)+%y(x—1)

The integrals of the delta function as X goes through the values gives unit steps,causing discontinuities or

1
jumps, at the points X =—1,0,1 of sizes %,%,and grespectively.

2.1.3 partial characterizations

Important partial characterizations of random variables are the mean, variance, higher-order moments
and central moments, and conditional distribution and density functions. Definitions for these partial

characterizations follow.
The mean 77, of a random variable X or equivalently the expected value E[X] of a random

variable X is defined by
2 A
17y = j xf, (X)dx=E[X] (2.12)

The mean of a random variable is also referred to as the average of the random variable as seen from the
integral above. Knowing the mean of a random variable is not sufficient information to calculate
probabilities of given events. It is just barely enough information to bound probabilities of some special
events as seen in the following inequality for the special case when the random variable takes on positive

values:

P{X >a}<

ELX] for a>0 (2.13)
a

The variance o of arandom variable X is defined by

oF = [(X= ) fy (O ELX —17,)7] @10

The standard deviation is defined as the square root of the variance and denoted as o, .The variance
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gives a sense of spread of the random variable as larger values would indicate a wider density function and
as with the mean it is not sufficient information for calculation of probabilities of events. However, like the
mean, bounds can be placed on the calculation of some special events.

Two of the most important bounds are described in the Tchebycheff inequalities for the events

ﬂX - 77x| >koy, } and ﬂX — 1)y | < ko, }. Notice that these events represent the regions corresponding

to the mean # Kk standard deviations about the mean and the complement of that region.

The Tchebycheff inequalities corresponding to bounds on the probabilities of the tails and core of the

density function, respectively, for any density functionand k >1 are

1
k?
P{X -1y |<koy}=1-

P{X 74| > koy}<

. (2.15)

K2
For a given positive & we can also bound the P{n, —¢& < X <7, +&} which is the probability that

X isintheregion *¢& around the mean by

2
P{n, —e <X <ny +8}21—Z—>2( (2.16)

Eg. (2.15) can be obtained from (2.14) by letting ko, =¢ .

Proof :  P{X —ny|2e}= J'fx(x)dx

[X-nx |2
X~ [ 177 ) o2
< 2 (x)dx < —ZJ.(X - S (X)dx = =%
|X -y |2¢ € &
2 2
Tchebycheff inequalities : P{X —n4|> e} < (Z—é or  P{X -ny|<e}r< 1—Z—§

The_higher-order moments M, and higher-order central moments ., of a random variable X
are partial characterizations and provide additional information about the statistics properties of random

variables. They are defined as follow for k > 2:

m, = j x“f,, (A= E[X ] (2.17)

= [(X= ) B QOB ELX = 7,)1] @19

A generalization of the Tchebycheff inequality called the inequality of Bienayme gives a bound on the

event {]X - a| > &} in higher-order moments about an arbitrary value a, not necessarily the mean, as
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E[]X —a[']

P{X —a|>&}<
{] a|>g}< .

(2.19)

If ¢=ke, a=mn,,and n=2, the inequality above reduces to Tchebycheff inequality.

2.1.4 Conditional Cumulative Distribution Function

Another partial characterization of a random variable X is the conditional distribution function

defined for conditional event C by
A
Fy ({C)=P{X < XC} (2.20)

The determination of F, (X|C) for a given event C and a given F, (x) for a random variable X

uses the definition of conditional probability as follow:
P{X <x,C}

F(XC) = PC)

(2.21)

Similarly the conditional probability density function for a random variable conditioned on the event C

is defined in the terms of the derivative of the conditional distribution function as

A dF (X|C)
f, (x|C)=—2""""% 2.22
() =—" (2:22)
If C isgiven in terms of elements of the sample space S ,thenthe P{X < x,C} can be

determined by working with the original sample space. In many problems the conditioning event is given in

terms of the values of the random variable.

Example 2.6

A random variable X is characterized by its cumulative distribution function F, (X) :(1—e‘x),u(x)
and an event C is defined by C={0.5< X <1}. Determine the conditional cumulative distribution

function F, (X|C) and conditional probability density function f, (X|C) for the random variable X

conditioned onC .
Solution
By Eq.(2.21) the conditional distribution can be written as

P{X <x,05< X <1}
P(0.5< X <1)

Fy (XC) =

The numerator will be different depending on where X is in the infinite interval as
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for  x<05 P{X<x05<X<1}=P(¢)=0

for  0<x<l P{X<x05<X<}=P(0.5<X<x)=F,(x)-F,(0.5)
_ (1_ o )_ (1_ e—o.s): e 05 _ax

for  x>1 P{X <x05<X <}=P(0.5< X <1)=F, (1) - F, (0.5)
—(1-e')-(l-e®%)=e " —e" =0.2386512

But we know that the P(C)is determined as
P(C)=P{0.5< X <I}=P(0.5< X <x)=F, (1)~ F, (0.5)
=(1-e")-(1-¢°°)=0.2386512

Dividing the probabilities by P(C) gives the final answer for the conditional distribution as

for x<0.5 F, (xC)=0
for 05<x<l F,(xC)=(e®°-e™)0.2386512
for x>1 F, (x[C)=1

Plots of the F, (x)and F, (X|C) are shown for this example in Figure 2.6.

The conditional probability density function can be obtained by taking the derivative of the conditional
distribution throughout the region of the conditioning event, and the result is

; (X|C)— 4.1902157¢7* 0.5<x<1
X elsewhere

Figure 2.6 Fx(x) and Fx(x|C) for Example 2.6

2.1.5 Characteristic function

The characterization of a random variable can also be given by specifying its characteristic function

@ () , which is the modified Fourier transform of f, (X) and defined as
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B (@)= [ £, (067 dx = E[e ™ 1= F(f, ()], 229

N NAOSRE

Specification of characteristic function is equivalent to a total characterization, since its inverse transform

yields the probability density function.

Example 2.7
Determine the characteristic function for a Gaussian random variable with known mean n, and variance
52,

Solution
By the definition above, the characteristic function becomes

* 1 (X_77x )2 joX
) =| ———expy{——-FL e dx
x(@) L” N2roy p{ 20+

After expanding out the term in the brackets and combining it with the other exponent over a common

denominator, the characteristic function becomes

2 2 o 2
q’x(w)zf 1 exp _(x ’7><X+77x2 2](0XO‘X) dx
270, 20y

Next complete the square in the brackets and multiply by the proper correction so that the characteristic

function becomes

00

Dy (w):J._

. 2 .

1 (= x+ jwof)f | [=n5 + (0} + jwoin,)’
——exps— 5 exp 5 dx

® 4§/ 271'0'>< ZO'X ZO'X

The exponential term on the right can be taken through the integral sign, since it is not a function of X and

since the integral is of a Gaussian density it gives a value of 1.

We can finally write, after simplifying the second exponent, the characteristic function for a Gaussian

random variable as

2 __2
O, (w) = exp{ja)nx _@ ZGX } (2.24)

The higher-order moments can also be determined from the characteristic function as

E[X k]= (- j)k 0" ¢y (@)

2.25
I (225)

=0
The above equation can be used to determine the moments of any random variable by obtaining the
characteristic function or modified Fourier transform and performing the differentiation and evaluation at

Zero.
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Example 2.8
A random variable X has a probability density function f, (X) given by f, (x) = ae™* u(X) . Determine

the moments by using the characteristic function.
Solution

The characteristic function can be obtained by taking the modified Fourier transform of the f, (X) as

O, (@)= 1, (x)e " dx = F(ae ™ u(x))

a | a

==

ja)+a|w:_w jo+a

By Eq.(2.25) the moments are determined as follows:

ehol- 2o

=(-j)yal- i)/ ja)+a)2‘ _1

=0 a

~(j) ola/ (—ajw o+a]

=0

el T2e) ol

32(0 =0 aza) ‘a}:O
. . . 1
=(-i\al-if/cio+af| ==

On continuing this process, it is easy to see that

L p 0] ol joral
ey ) o jratbCleral
~( b/ jora) | o

Another function that can be used to determine the moments for a random variable X is the

moment-generating function defined as follows:

M, ()= T £, (e"dx = E[e"] (2.26)

As the same implies, the moment-generating function can be used to calculate the moments for any random

variable for which the derivatives exist and relationship can be shown to be

0"My (1)

E[X*]= t

(2.27)

t=0

The moment-generating function does not always exist, but when it does, it provides an

alternative to using the characteristic function.
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2.1.6 Higher-Order Moments for Gaussian Random Variable

Let X be a Gaussian random variable with known mean 7, and variance o . The higher-order

moments, m, = E[X k] , can be written in terms of the probability density function as

MY _ [ym (x 77x)
E[X ]__jw x™ £, (X )dx = j J_a exp{———1X/ 2y (2.28)
If X—mn, isreplaced by Y, the integral can be written as
E[X™] = j (¥ +77)" D exp{— }dy (2.29)

V2o,

After expending the (y + 77, )™, the higher-order moments are written as

E[X" ]—JZ( ™ 'n'w—

=0 Oy (2.30)
- > (e 1,

But Y, defined by X — 1)y , is a Gaussian random variable with zero mean and variance equal to the

variance of X . By symmetry of the zero mean Gaussian density, all higher-order odd moments of Y are
zero and (2.30) can be written as

my
2

ZQ]) V™51 50 m(even)

E[X"]=1 4 (2.31)
T
Z ) [Y "2 +ny - m(odd)
j=1
The higher-order moments up to order six are easily determined from (2.31) as follows:
E[X] =17
E[X?]=05 +7%
E[X*]1=3n,0% +713
[X*1=3n,0% +ny (2:32)

E[X*]=30y + 605775 +71x
E[X®]=15057 +1005175 +715
E[X°]=150% + 450515 +150%n; +n2

If 77, =0, then it is seen from the above that E[X ®*]=0 for k =12,..., as expected.

2.2 Common Continuous Random Variable

Gaussian Random Variable. A random variable X is called a Gaussian or normal random if it has a
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probability density function f, (X) given by
£, () :#exp{—w} = g(xny,03) 239)
«/ﬁax 20y
It can be seen that 7, and o are the mean and variance of the Gaussian random variable. The
standard deviation is defined as o, .
Rather than write the expression (2.33), it is common practice to use the notation X ~ N (77, ,af() ,
Which means that X is a Gaussian random variable with mean 7, and variance o .

The higher-order central moments can be determined for the Gaussian density in terms of the o as
follows:

1-3---(n-1)o; forneven

(2.34)
0 forn odd

E[(X —74)"] ={

Uniform Random Variable. A random is uniform if its probability density on an interval is given by

L as<x<h
b-a

F (%) = (2.35)

0 otherwise
The mean and variance of a uniformly distributed random variable can be shown to be

_ 2
:a+b' Uzz(b a)

2.36
7% 5 X 12 (2.36)

Exponential Random Variable. An exponential random variable has the following probability density

function for a >0

ae ™ x>0
0 otherwise
The mean and variance for an exponential distributed random variable are
1 , 1
=—, Oy =— (2.38)
% a P

Rayleigh Random Variable. A Rayleigh distributed random variable has for b >0 the following

probability density function:

X NG
—zexp(—?), x>0
f.(x)=1% @ (2.39)

0, otherwise
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The mean and variance for a Rayleigh distributed random variable are

Ny =ml2a, ok = (2—%)0:2 (2.40)

Gamma Random Variable. A Gamma distributed random has for & >0 and £ >0 the following

probability density function:

1 A
e x>0

=17 T ’

(2.41)

otherwise
0,

Where T'(a) = j y* e Vdy
0

If a isa positive integer, then it is well known that I'(a) = (a —1)!.

The mean and variance for a Gamma distributed random variable are

= fa, o: = fa (2.42)

Cauchy Random Variable. A random is Cauchy distributed random if its probability density takes the

following form for a >0

1
fy (X) = (2.43)
T a +x?
The mean and variance for a Cauchy distributed random variable are
1y = does not exist, 0% = does not exist (2.44)

Chi—square Random Variable. A random variable is chi-squared distributed with degree of freedom N
if

(N/2)-1 X
fy (x) = meXp(—E)ﬂ(x) (2.45)
The mean and variance for a Chi-square random variable are
ny =N, oy =2N (2.46)

Log Normal Random Variable. A random variable is log normally distributed if its probability density

function is of the form

1
exp{ = —(log, x— m)} x>0
f, (X) = F“ (2.47)

0, otherwise
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The mean and variance in terms of the positive parameters n and o are

7y =exp[m+ao?/2], or =exp[2m +26°] - exp[2m + ¢°] (2.48)

Beta Random Variable. A Beta-distributed random variable has for & >0 and ﬂ >0 the probability

density function

(2.49)

f ()= kx*t(1—x)"*, 0<x<1
X 0, otherwise

_ F(a+ﬁ) _00 a-1,-y
k_—F(a)F(ﬂ) and F(a)—'([y e ’dy

If o, f, and a+f are positive integers then T'(a)=(a-1)!, T'(B)=(F-1!, and
IN'a+p)=(a+ -1
The mean and variance for a beta-distributed random variable can be shown to be

a ) af

“a+p T s piat f+D)

Ny (2.50)

2.3 Common Discrete Random Variables

Bernoulli Random Variable. A discrete random variable is Bernoulli if its probability density is given by

fy (X)=ps(x)+(1-p)o(x-1) (2.51)
The mean and variance for a Bernoulli distributed random variable can be shown to be
ny=1-p, ox=p-p° (2.52)

Discrete Uniform Random Variable. A discrete random variable is uniform if its probability density on a

range is given by

FL(X) = anila(x—(aﬂ (b- a)D (2.53)

i-o N+ n
The mean and variance for a uniformly distributed random variable can be shown to be

:a_+b, 02:(n+2)(b—a)2

2.54
7% 5 X 12 (2.54)

Poisson Distribution. A random variable X is Poisson distributed if its probability density function is

given by

© -1
f ()= 2 ek—la(x k) (2.55)
k=0 d
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The mean and variance for a Poisson distributed random variable can be shown to be

Binomial Random Variable. A random variable X is binomially distributed if its probability density

function is given by
nn
fy (X) = Z(k) p“(L-p)"S(x—k) (2.57)
k=1

The mean and variance for a binomially distributed random variable can be shown to be

nx =np,  ox =np(l-p) (2.58)

X could be interpreted as the number of successes in N repeated trials of the Bernoulli type.

Geometric Random Variable. A random variable X is geometrically distributed if its probability

density function is given by

fy ()= p“ (- p)"5(x—k) (2.59)
k=1
The mean and variance for a geometric random variable can be shown to be
1 1-P
E[X]:E, ok = = (2.60)

X could be interpreted as the number of the trial for which the first success occurs for repeated trials of

the Bernoulli type.

Negative Binomial Random Variable. A random variable X is Negative binomially distributed if its

probability density function is given by

© J _ . .
L =3( PP tax- ) @81
=k R~
The mean and variance for a negative binomially distributed random variable can be shown to be
k , k. 1
=—, o =—(=-1 2.62
% P Xx~p ( 0 ) (2.62)

X could be interpreted as the number of the trial on which the kth success occurs for repeated trials of

the Bernoulli type.

2.4 Transformations of One Random Variable

Let X(e) be a random variable defined on a sample space S . Define a real-valued function g(X) on

the real numbers. If X(e) for all € a member of S is the domain of the g(X), then the range
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becomes the set of all Y (e) suchthat Y (e) = g(X(e)). This can be described by

A
e, = X(&)=09(X())=Y(e) forall e, memberof S (2.63)
As we usually drop the e from the random variable X (e) and use just X, it is expedient to drop the
index from Y (e) and use just Y . Therefore Eq.(2.63) is usually represented as

Y =g(X) (2.64)

Sample space Reals Reals
ges X9 Y=X(¢)
4 X(&) Y=g(X(&)
G| xe) | vedxg)
T R R

Figure 2.7 Transformation of random variables as a mapping and a tabular

2.4.1 Transformation of One Random Variable

In general, unless g(x) is a linear function of X described by g(x)=ax+b, with a and b
constants, or other special information regarding the type probability and type of function are specified, the

expected value of Y cannot be determined. In general, for Y = g(x), the mean of Y is not the function

g() of the mean, that is,

E[Y]= g(E[x]) (2.65)

Probability Density Function (Discrete Random Variable).

If X is a real discrete random variable it takes on a finite or countable set S, of possible values X;.
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Therefore X is totally characterized by its probability density function f, (X) consisting of a sum of

weighted impulse function at the X, as follows:

fx (x) = z p(xi )o(x— Xi) (2.66)

X €Sy
In the expression above P(X;) is the probability that X =X; or more precisely is denoted by
P{e: X(e) =x}. If X takes on only the values X, it is reasonable that Y takes only on the values

Y, =0g(X). Thus Y is a discrete random variable whose probability density function f,(y) can be

written as

fY (y) = z p(xi )5()/ - g(xi)) (2.67)

X €Sy
In some cases the nonlinear function g(X) is such that g(x,) of several different X, give the same

value Y;, thus allowing us to write the density as

f, (¥)= D p(y;)s(y-y;) (2.68)

yjeSy

Where S, isthe set of all unique g(X) and p(Yy;) isthe sum of the probabilities.

Example 2.9

Let X be a discrete random variable characterized by its probability density function f, (X) as follows:
fy () =0.15(x+3) + 0.20(x +1) + 0.256(x) + 0.155(x —1) + 0.055(x — 2) + 0.36(x — 3)

Define the function y = g(x) as shown in Figure 2.8.

A Y=9(X)

<V

Figure 2.8 Function y=g(x) for Example 2.9

Solution
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Each point is taken through the transformation, and like values are collected to give
fy (y)=0.16(y-9)+0.20(y-1)+0.256(y) + 0.156(y -1) + 0.056(y —4) +0.36(y — 4)
=0.16(y-9)+0.3506(y-1)+0.256(y) + 0.356(y — 4)

Probability Density Function (Continuous Random Variable).

Theorem. If X is a continuous random variable characterized by its probability density function f, (X)
and g(X) is a continuous function with no flat spots (finite lengths of constant value), then the probability

density function f, (), which characterized the random variable Y = g(x), is given for each value of

y as follows

£ (%)
f(y)=S — XV .
A XZS |dg (x) / dXHX:x e

Where S, is the set of all real solutions of y = g(x)
f,(y)=0 ifno real solution of y = g(x) exists
The theorem above can be used to find the probability density function f, (y) for Y = g(x), and it

requires solving Y =g(x) for each value of y from —oo to +o0.

Example 2.10
Given a random variable X with probability density function f, (x), find the probability density

function f, (y) for a random variable Y defined by
Y=X?
as shown in Figure 2.9. Work the problem for the following cases:
(@) f, (x)= 0.5exp{—|x|}.
(b) f5 () =exp{= x}u(x).

2
A Y=X

~Jy Jy

————————————————————— y<0

X

Figure 2.9 Transformation y=x? for Example 2.10
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Solution
(a) Conditions are satisfied to use the fundamental theorem directly as g(X) is a continuous function and

X is a continuous random variable. For anyy <0, y = x”has no real solution (the dotted line for an
arbitrary Yy <0 doesn’t intersect the curve y = x?). Therefore f, (y) = Ofor those values of y .
If y>O0,then, y= x*has two real roots, X, =+4/ Y and X, =—4/y . Using the fundamental theorem

givesfor y>0.

f, (9
[24

£, (0
[24

fY (Y) =

Using the two-sided-exponential density for f, (X), f, (y) can be simplified to

1A et
£, (y) = O‘Z’eﬁ‘yﬂ’fe ‘ u(y) = %(y)

(b) Using f, (x) = exp{— X},u(x) ,itisseenthatfor y<O0, f,(y)=0,andthatfor y>0,

e~ u(x)

_eu(x)
f ( )_ |2X|

[2X

)
5 2y g

If X is a continuous random variable and g(x) is a continuous function except for a finite or
countable number of flat spots, then the probability density for Y = g(X) can be found by a slight

modification of the fundamental theorem. The probability density function f, (y) is composed of two

parts. For all values of y such that there are no flat spots, find the density as given by the fundamental

theorem, and then add to this sum of delta functions, one for each flat spot, at Y with weight equal to the
probability that the random variable X produces y; after passing through g(x). In Figure 2.10 a
typical continuous g(x) is shown that contains flat spots at y; for values of x on the intervals

Xj1 S X <X, , respectively. In this notation the probability density function f,(y) can be written as

_BO) L ek <x<xS(v— v,
£,(y)= Xén dg(X)/dX”X, + P(Xj SX<X,)0(y - Yj) (2.70)

0, ifno real solution of y=g(x) exist
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4 y=9(x)

Flat

A\ 4
X

Flat

Figure 2.10 Function y = g(x) that contains flat spots

Example 2.11

Let X be a Gaussian random variable with zero mean and unity variance. The function Yy =g(Xx)is
defined in Figure 2.11, and the random variableY is specified by the transformationY = g(X). Find the

probability density function f,(y) for Y .

Solution
In this example the function y = g(X) has two flat spots, ones at y = 9 and the other aty = 4. From the

graph of g(X) it is seen that probability that {Y :9} is the probability that {X £—3}, while the
probability that {Y =4}equals the probability that {X 20.2}. Using the Gaussian density and the

parameters given, these probabilities become

P(Y =9)=P j \/_exp[ ]dx ®(-3) =0.0013

P(Y =4)=P j \/_exp{ jdx 1-®(3) =0.0228

. 2
whered)(x):j %exp( ; jdx.
PNLT

Treating the continuous part of the transformation separately it is seen that there are four different

situations as y goes from —ootooo.

For y<0, y=g(x) has no real roots, therefore f,(y)=0.

For y >9,againnoreal rootsso f,(y)=0.

For 0<y<4,there are two real roots at +./y and —./y . Therefore f(y)is given by
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£ (y) = 1 exp(-x2/2) L1 exp(-x?/2)
RN R 2

_exp(-y/2)

J2my

Ford<y<9, y=g(x)has omly one real root atX = ﬁ and by the fundamental theorem

£ (y) becomes

© (Y _ eXp(_ Y/Z)
2 (y) = R

Using unit step functions, the continuous and discrete parts can be combined to give the final answer

as

()= 22Xy sty )} 22y )y 9]

+0.02285(y —4) +0.00135(y - 9)

Probability Density Function (Mixed Random Variable).

If X isamixed continuous variable, its probability density function f, (X) can be written as

f () = 7 () + 2 PIX =% 16(x = ) (271)

where f?(x) represents the density without delta functions. If g(X) is a continuous function, then

f,(y) can be obtained by adding the results from using the fundamental theorem on f.%(x) to the
results obtained by handling the impulses as previously described for transformation of discrete random

variable. If g(x) has flat spots, then the modification of the fundamental theorem can be used on

f{(x) with the results added to the discrete part.

2.4.2 Cumulative Distribution Function

Assume that a random variable X is characterized by its probability density function f, (x) and thata
random variable Y is defined byY = g(X ), where g(x) is a real-valued function. It is desired to find

the cumulative distribution function F, (y) directly, and then use it to obtain the f, (). Using the basic

definition of a cumulative distribution function gives

R (Y)=PEY <y} = P{g(X) < y} = P{x: () < y} = [ £ (x)ax (2.72)
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where |, ={x: g(x) < y}. This region is illustrated in Figure 2.12.

4 y=g(x)

Figure 2.12 Region of integration I to obtain the cumulative distribution function.

Example 2.12

Assume that X is a random variable with probability density function f, (X) given by

f (x)_ﬁexp( 2/2)

Define the radom variable Y byY =g(X), where g(x)is shown in Figure 2.15. Find the cumulative

distribution function F, (y) for the random variable Y .

Solution

To find F, (y) using Eq.(2.72) it is necessary to identify the regions I for all values of y. for this

problem it turns out that there are four distinct regions for different ranges of y as shown in Figure 2.13.
Regionl. Fory <0, {X g(x) < y} is the null set ¢ which results in F, (y) =0.

Region2. ForO<y<4, | = {X: g(x) < y}= {X : —ﬁ <x< ﬁ} Therefore F, () becomes

F()j exp( de O(/y) - D(-y)

Region3. Ford <y <9, Iy:{x:XZ—\N}and F, (y)is
R (y) = ju—exp( jdx 1-0(~y)

Regiond .Fory>9, | = {all X}; therefore F, (y) = J-_w F, (x)dx=1.

Summarizing the results for the four regions above the cumulative distribution function F, () becomes
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0, y<0

E () = | PN -0y, 0<y <4
T 1-@(-y), 4<y<9

1, y>9

which is illustrated in Figure 2.14.

4
Figure 2.13 Region for Example 2-12.
£v)
1
1- d(-3) |
|
1-®(-2) jo |
|
D(2) - D(-2 | |
: : Not to scale
| |
| |
OG/y)-D(—y) | ,
N T A N I O I R
0 4 9
Figure 2.14 Cumulative distribution function for Example 2.12
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When taking the derivation of an integral with respect to a variable that appears in the limits of the

integral, it is actually expedient to use the Liebnitz rule, which in its most general form is

B(x) ﬂ(x)
jx{j f(x y)dy}—f(x 0L 1 (x,a) @904 [ Lty @)

() dx

a(x)

2.5 Computation of Expected Values

For a random variable X with probability density function f, (X) and a real-valued function g(x), a
random variable Y can be defined by Y = g(x). There are three common ways to compute the expected
value of Y = g(x).

Method 1. By using f, (), which yields

ENVI= [T, (y)dy @)

Method 2. By using f, (X), which yields

£V 1= E[g 001 = [9(X) f ()X @75

Method 3. By using the Monte Carlo technique, which essentially synthetic sampling.
Method 3 represents an alternative to methodl and method 2 and it is not an analytical method. Monte
Carlo Sampling is useful in problems where the integrals are of such a nature that analytical solutions are

not easily obtained or do not exist. Roughly speaking, it is an experimental method using synthetic

sampling from the density on X to generate samples X, computing samples y = g(X), and then

computing the average of those results to get the approximation for E[Y ]

Example 2.13

In Example 2.10 a random variableY was definedas Y = g(X ) = X *and f, (x) was given by

f (X) = %exp(— |x|)

For this problem compute the E[Y] using methods 1 and 2.
Solution

Method1. The density f, () determined in Example 2.9 is used to compute the integral
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eV =" vf, (y)dy - fyze—ﬁydy

1
By making a change of variables X = (y)E : E[Y ] becomes

e;(x2+2x+2)m=2

0

E[Y]zfxze‘xdx=

Method2. the original density for X and g(x) is used:

I
el ]=Elg(x)]=" 900 f, (gax= [ x* = —dx= ["xedx=2

As this example shows, the relationship between the two methods is a change of variables within the
intergration. Clearly, if the probability density function forY is not needed, its calculation is an
unnecessary step in the process of computing the expected value and the second method would be
preferred.

2.6 Two Random Variables

An experiment E is specified by the three-tuple (S,F,P(-)) where S is a finite, countable, or

noncountable set called the sample space, F is a Borel field specifying a set of events, and P() is a
probability measure allowing calculation of probabilities of all events. Based on this underlying experiment,
two random variables X (e) and Y(e) are defined as real-valued functions on the same S that
satisfies the following conditions:

(@ {e:X(e)<x and Y(e)<y} is a member of F for all X and Y. This guarantees the
existence of the cumulative distribution function.

(b) The probabilities of the events {e: X(e) = -}, {e:Y(e)=+x}, {e:X(e) =4}, and
{e:Y(e) =—} are all zero. This means that the function is not allowed to be + or - infinity with a

nonzero probability.

2.6.1 Joint Cumulative Distribution Function

The joint cumulative distribution function F,,(X,y) for a random variable X (e) and Y(e),

represented by X and Y isdefined forall x and y as
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F. (% y) = P{e: X(€) < XY (e) < y}oPEX < x.Y < y} (2.76)
It is sufficient information to calculate the probabilities of all allowable events, and thus is called a total
characterization. Because of the properties of the probability measure P() described in the overall
experiment, the joint cumulative distribution function can be shown to have a number of properties.

(1) Fyy (X, y) isbounded from above and below,
0<F,(X,y)<1l forall x and Yy (2.77)
(2) F, (X, y) isanondecreasing functionof X and Yy,
Foo (X, ¥) 2 F (x,y) forall x,>x,all x,andall y
Foo (X, Y,) 2 F (X, y,) forall y,>y,,all y,,andall X (2.78)

(3) Fyy (X,y) iscontinuous from the right in both X and Yy

limFx (x+&,y+8)=Fy (X, Y) 2.79)

e—0"
50"

(4) F,y (X,y) canbe used to calculate probabilities of rectangular events as
PG < X <3,¥,<Y <Y, }=Fy (%, V) = Fyy (X%, V1) (2.80)
(5) Fyy (X,y) isrelated to the joint probability density function by

Xy
Fu 06 Y) = [ [ 0 (6 y)dxdy (2.81)

—00—00

Example 2.14
Random variables X and Y are defined in Figure 2.16. In this example X and Y are both discrete

random variables. Find the joint cumulative distribution function F,(x) , F,(y) , and

Fy (X,y)for X and Y.

Solution
From the table it observed that X takes on values 0 and 1 with finite probabilities of 0.6 and 0.4,
respectively, while Y takes on values 0, 1, and 2 with probabilities of 0.3, 0.4, and 0.3, respectively.

Therefore F, (x) and F, (y)are

Fy (X)=0.61(x)+0.4u(x-1),F, (y)=0.3u(x)+0.4u(x-1)+0.3u(x—2)
To obtain the joint distribution it is necessary to compute probability of the event {X <Y< y}as
Xand Yy are both varied from —ootooo. This will be done by fixing X in different regions and

determining the probability of {X <X Y < y}as y varies
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¢ IX(g) Y(&) PE)
¢, 0 0 0.2
S, 0 1 0.3
g4l 0 0 0.1
<, 1 2 0.2
Cel 1 2 0.1
Col 1 1 0.1

Figure 2.16 Random Variables X and Y for Example 2-14

For Xx<Oandally the set {X SX,YSy}:qﬁso F. (X,y)=0.

ForO< x<1, there will be three different regions on the y=axis for which different values of the
distribution are obtained as
y<0 Foy (X, y)=P{X <x,Y <y}=P(g)=0
0<y<1 Foy (X, y)=P{X <xY <y}=P(£,,£;)=0.2+0.1=0.3
1<y Fo(xY)=P{X<xY<y}=P(¢,£.4,)=02+0.1+0.1=0.4
For X > 1, the results are similar to above but there are four different regions that give the joint cumulative

distribution function as

y<0 FXY(X’Y):P{XSX'ng}:P@j):O
0<y<1 Fo, (%, Y)=P{X <x,Y <y}=P(¢,,¢;)=02+0.1=0.3
1<y<2  Fp (X y)=P{X<xY<y}=P(£,,{50¢,.8)=02+0.1+0.3+0.1=0.7
2<y Fe (X, Y) = P{X XY < Y}Z P(§1’§3:§21CG1C4:§5): P(S):l

The joint cumulative distribution function is shown in Figure 2.17

2.6.2 Joint Probability Density Function

The joint probability density function f,, (X,y) for the random variable X and Y is a total

characterization and is defined as the derivative of the joint cumulative distribution function.

2
fyv (X,Y) iai_ay Fyv (%, Y) (2.82)
If Fy (X, y) has jump discontinuities, it is convenient to use delta functions so that a joint
probability density function will always be defined. Therefore a probability density function will contain
delta functions at the points of discontinuities of F,, (X,y) with weights equal to the size of the jumps at

those points.
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A CDF Function F(x,y)

0.8 -------------oooo--

0.2]-----3

pd

Y/ X

Figure 2.17 Cumulative distribution function Fxy(x,y) for Example 2-14

v

Important properties of the probability density function are as follow:
(1) Positivity,
fuy (X,¥y)>0 forall x and y (2.83)

(2) Integral over all X and Y,

T T fxv (x,y)=1 (2.84)

() fy (X, y) can be used to calculate probability of rectangular events as

X5 Y3
P{x <X <X,,y,<Y <y,}= I J fyy (X, y)dxdy (2.85)

+ o, +
X1 Y1

Where X, X, ,Yy; and Y, are limits from the positive sides, or any event A as

PAX.Y}e A) =[] fy (x y)dxdy (2.86)
A
(4)Relationship to joint cumulative distribution function,
xty*
[ ] fx O y)dxdy = F (x,y) (2.87)

Random variables are called jointly discrete random variables if their probability density function

fyy (X,¥) is a sum of two dimensional delta functions only, and correspondingly if its cumulative

distribution function F,, (X,y) is a box staircase type function. Random variables are called joitly

continuous random variables if their cumulative distribution function has no finite discontinuities or

equivalently its probability density function f,, (X,y) has no delta functions. If random variables are
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neither jointly continuous or jointly discrete random variables, they are jointly mixed random variables.

Example 2.15
The random variables described in Example 2.14 are jointly discrete random variables. Give the joint

probability density function f,, (X, y) for these random variables X and Y .

Solution
The joint density is seen to be

foy (X, ¥)=0.36(%,y)+0.36(x,y—1)+0.36(x-1,y-1) +0.35(x -1,y — 2)

2.6.3 Partial Characterizations

Important partial characterizations for two random variables are the marginal densities, means, variances,
covariances, higher-order joint moments, and joint central moments.

For two random variables X and Y, the marginal densities for X and Y are defined as the

densities of X and Y by themselves and will be denoted by f, (x) and f,(y) as before. These

marginal densities can be obtained from the joint probability density function for the two random variances

as

f (0 = [ £y (%, y)dy
‘°° (2.88)

() = [ Fao (6, YK

The conditional probability density functions for X and Y are defined as

fe(xly) =)

fr (X Y)
fx (X)

The means 7, and 7, for two random variablesare X and Y, using the conditional densities define

) (2.89)
fy (y[x)=

the conditional means as

i A
E[X | yl= [xf, (x| )dx=E[X |Y = y]
- (2.90)

ELY [ X]= [ ¥, (y1x)dy=ELY | X =x]
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Joint Density (Conditional Density)
fxv(X,y) 7 ByIxo)=fxy (%o, y)/A
(Profile)
T fxv(%oy)
Xo > X

L

--- Azj.fxv (XO’y)jy

(Area)
Figure 2.18

Conditional probability dendity functions

By rearranging Eq.(2.89), we can rewrite the joint probability density function in terms of the conditional
and marginal densities as

frr (X Y) = f, (Y [X) fx (X)
for () = Fx (X Y) f, ()
Y can be found as follows:

(2.91)
By substituting (2.91) into (2.88), alternative formulas for determining the marginal densities for X and

00 = [ 1, (X9, (el

. (2.92)
f(y)= [ £ (v %) f ()dx

Examining (2.91), we see that it is also possible to write the relationships between the two conditional

densities as

f (x1y) = £, (y [ ) £ )/ 1, (y)
fy (y1x) = T (x| ) £y (V)] 15 (X)

functions and not probabilities.

(2.93)
These formulas are comparable to Bayes’s rule, which expresses the relationship between conditional
probabilities, except that they represent the relationships between the conditional probability density

Should either X or Y be discrete random variables, these results would need to be re-written. For

example, let X be a discrete random variable and Y a continuous random variable with known
f(y|{X :Xi}) forall X, and known f, (X):
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f, (X) :iP{X =XJO(X—X) (2.94)
Then it is easily shown, forall j=1 to N, that
f X =xHP{X =x,
PO =x Jy) = VX =XDPEX =x,)
2 HYHX =x DP{X =x}

(2.95)

Example 2.16
Given the joint probability density function f,, (X, y)

8xy, O0<y<1l0<x<y
0, elsewhere

fxv (X1 Y) :{

Determine (a) f, (X), (b) f, (y),and (c) f, (y|x) :

Sulution
(@ The f,(X) is obtained by integtating over all y at each value of x . for X<0 and

x>1, f, (X) =0 because f,, (X,Y) being zero leads to a zero integral. For 0<Xx <1, f, (X) is

determined as
f 00 =] fy (x,y)dy = [ 8xydy = 4x°
In summary f, (X) can be written as

f (0) = 45 [aa(x) — u(x - 1)
(b) f,(y) is obtained by integtating over all X at each value of y . For y<O0 and y>1,

the f, (y) = Obecause f,, (X, y) is zero leads to a zero integral. ForO < y <1, f, (y) s determined as

() =] fe (% y)dx = [ Bxydx = 4y’
Thus f, (y)can be written as

fy (y) = 4y°*[u(y)- u(y-1)]

(c) The conditional density f, (y|x) from (2.106) for O < x<yand 0< x<1lis

fo (X y) 8Bxy 2y
£yl = XY) _SXY 2y
() f.(x) 4 x?

For y > X the joint density is zero, and thus f, (y|x) can be summarized as
2y

fy (y|x)= X2’
0, elsewhere

O<y<Xx
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Several plots of f, (y|X) for various values of x are shown in Figure 2.19. Notice the different domains for

nonzero values.

Example 2.17
Find E[Y|X]for the random variables X and Y that have the joint probability density function given in

Example 2.16.

Solution
Using the conditional density determined in Example 2.16 and (2.90), the conditional expected value is

determined for 0 < X <1las

-1 g 2y 2
efvixl= [ vt oy = [y 2 oy =2 XZL -2,

For X outside the interval [0,1], the density is zero as is the expected value.

Two random variables X and Y are defined to be statistically independent if the joint probability

density function can be written as a product of the two marginal densities for all X and Yy as shown:

fyr (% ¥) = T (X) £, (y) (2.96)
The correlation between two random variables X and Y is defined as the expected value of their
product;
R,y = E[XY] (2.97)
Two random variables are defined as uncorrelated if Ry, = E[X]E[Y ] ,which is the same as writing
E[XY]=E[X]E[Y] (2.98)
Using Eq.(2.96), it is simple to show that if two random variables are statistically independent, then they

are uncorrelated. The steps in the proof follow.

ETXYT= [ [ %y Goy)drcy = [ 3, 00 f, (v)dxely = [ xb, 00K [ ¥, ()dy ETXTEIY] 2.99)

Two random variables X and Y are called orthogonal if E[XY]=0.

If the random variables X and Y are independent and both of the means are zero, or one of the

means is zero and the other is finite, then they are orthogonal since by independence the
E[XY]=E[X]-E[Y] and thus E[X]-E[Y]=0 . These relationships between independence,

orthogonality and uncorrelated random variables are show in Figure2.20. In the figure the single solid
arrow indicates always true, whereas a dotted arrow indicates always true if the conditions written along
side are true. The arrow back from uncorrelated to independence will be shown later to be true for jointly

Gaussian random variables.
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Jointly Gaussian

v Always A
Independent »  Uncrrelated
1 |
\ !
One mean zero \\ ,’ One mean zero
& other mean finite \\\ /// & other mean finite
~N '

~—»  Orthogonal [~

Figure 2.20  Relationship between the definitions of independent, uncorrelated, and orthogonal.

With two random variables the individual variances are as before for each random variable, but more
information considering the relationship between X and Y is available through the covariance o,
defined as

A o0 00
Ty =ELX =) =12,)1= [ [(x=m)(y =12, ) Ty (x, y)dIxdly (2.100)

The correlation coefficient p,, between the two random variables X and Y is defined as the

normalized covariance by
A
o
Pyy =— 20— (2.101)
OxOy
It provides a measure of linear relationship between the two random variables X and Y . the correlation
coefficient for two random variables X and Y can be easily shown to be bounded by +1 and -1 as

—1<|py| <1 (2.102)
The closer p,, is to —1 or +1 the more the random variables X and Y are said to be

linearly related. It is noticed that the closer p,, isto —1 or +1, the more ridgelike the probability

density becomes, which indicates that one random variable can be written as almost a scaler multiple of the

other.

The higher-order moments M, and the central moments 4 for two random variables X and

Y are defined by

o 0

mjkiE[Xij]: j Ixjyk f. (X, y)dxdy (2.103)
sy =EI(X =) (Y =, )T = [ [ (x=10) (y =1y )" iy (%, y)xcly (2.104)

—00—00
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2.6.4 Jointly Normal Random Variables

The random variables X and Y are defined as jointly Gaussian or jointly normal if their probability

density function f,, (X,y) has the following form:

1 2 9 _ _ )2
fxy(xly):mexp{ 2r[(x 1:)° 200 (=)0 =), (Y=11,) }} 2109
XY

O'x OxOy Oy

Where n,, 1y, 0')2( ,O'Yz, and p,, are, respectively, the mean of X, mean of Y, variance of X,

variance of Y , and correlation coefficient of X and Y, and r=1- p% . The marginal densities or

densities of the random variables X and Y can be obtained by integrating out the proper variable to

give

fo(x) = J%U exp{—(xgg;) Y f(y)= J_a exp{- ;7”}

By dividing the joint density by the marginal density and simplifying the conditional probability

(2.106)

density function for Y conditional on {X =X} and X conditional on {Y = y}, the conditional

probability density function can be determined as

PxyOy
1 (X—1y)° My =1y + 2 (x=17y)
f )= exp{-————}, RS "
POV Yix oy =0y (1= pyy)
(2.107)
PxyOx
= 4+ —— —
£ (x]y) = (X—=175,)° X 77y)"y Mxiy = Mx o (y—ny)

———exp{-
V2 7Oy 2GXIy

When the means are zero, the conditional means and variance are easily obtained from the above by

6)2(|y = 6)2( (1_p)2(Y)

setting 7, =7, =0 togive

(X=77y)° My = X
fY (y | X) = \/— ——€&X p{_ YI }' ! O
TTOVy|x Y|x 0.2X — 521 p2
Y| v (L= pyy (2.108)
Pxy O x
(X=175,)* Mxyy = y
fx (X| y) _ \/_ —_~ ex p{_ 2 xly }’ Xy O_Y
P9 Xy O-le O-)Z(|y =0y (1-piy)

Note that although X and Y have zero means, the conditional means are not equal to zeros.

A number of useful formulas for various moments of jointly normal zero mean random variable in

terms of their given parameters o, , oy , and p,, follow:
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E[XY]= pxyoxoy

E[X?Y?]=0cio +2py 0k

E[X*] =0y, ElV*]=0y,
E[X*]=E[Y*]=0, k odd (2.109)
E[X*]=30%, E[Y*]=307,

E[X|-[¥[] :M(cowz +asina)
T

. Vs 73
Where SINa = pyy,— —<a <

2 2

2.7 Two Function of Two Random Variables

The basic problem is to obtain the statistical characterization of two random variables Z and W that are

functions of two other random variables X andY . The expressions for Z and W are specified by

W=g(X,Y)  and Z=h(X,Y) (2.110)

2.7.1 Probability Density Function ( Discrete Random Variables)

If X and Y are discrete random variables, their joint probability density function f,, (X,y)is

composed of two-dimensional impulses:

fxv (x,y)= Zp(xiiyi)5(x_xi'y_yi) (2.111)

(% ¥i)
Then the joint probability density function for W = g(X ,Y) and Z = h(X ,Y) will also contain only
impulses with locations obtained by taking (x;,y;) through the function w = g(x, y) and z = h(x, y),

and with weights equal to the probabilities of each (X.,V;). The f,,, (W, z)is therefore seen to be

fuz (W, 2) = Z P(X;, Yi)o(W—g(x;,y;),.z—h(XY;)) (2.112)

(wai)

Example 2.18
Given the following probability density function for the discrete random variables X andY :

1 1 1 1
fo, (X, y)==0(x-Ly-D)+=0(X,y)+=0(X-1,y)+—0o(X,y+1
v (6Y) =7 0 =Ly =D+ 25 y)+ L 5(x=Ly) + 2% y+1)
Consider two new random variablesW and Z that are defined by the following transformations:
W=X?+Y?2Z=X?

Find the joint probability density function f,, (W, z) .
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Solution
Taking each delta function through the transformation gives the joint density f,,, (W, ) as

1 1 1 1
f..(wz2)==0(w-2,z-1)+=o6(w,2)+=o(w-12)+—o(w-1z2
Wz()4( )2()6( )12( )

1 1 1
=—o(w-2,z-D)+=6(w,2)+=-o(w-1,z
Pl )+ 8w, 2)+ 5 8(w-1,2)

2.7.2 Probability Density Function ( Continuous Random Variables and

Continuous Functions)

If X and Y are continuous random variables, and g(x, y) and h(x, y) are continuous functions of

X and Yy with no flat spots, the counterpart to the one function of one random variable result can be

written as follows for random variables W = g(X,Y) and Z =h(X,Y)

frv (X, Y)
f., (W, 2) = e (2.113)
v (%:2) (x.z,y:.) [3(x.y)|

(%, ¥)=(x;.yi)
Where (X;,Y;) areall real solutions of W= g(x, y) and z = h(x, y). The J(X,y) is the Jacobian of

the transformation, which is expressed as the following determinant:

[ag(x,y)  ag(x,y)

_| ox oy
J(X,Y)= oh(xy) oh(x.y) (2.114)

OX oy

If no real solution of W=g(x, y) and Z=h(X, y) exists for a given W and Z, then the joint

probability density f,, (w,z) =0 for those valuesof W and z.

Example 2.19
Let W and Z be two random variables defined by the following functions of two other random variables X
and:

W =X?+Y%andZ = X?
Let X and Y be independent Gaussian random variable described by X ~ N(0,1) andY ~ N(0,1).

(a) Find the joint probability density function for the random variables X and Y .
(b) Are X and Y statistically independent?

Solution
(a) The solution is obtained by using Egs.(2.113) and (2.114). The Jacobian for the transformation defined

IS
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60 +y?)  a(x* +y?)|

B X oy B 2X 2y B
Y= ) o) |Tlx o ‘_ 4]
OX oy

We must find all real solutions (x,y) of the equationsw = X* + y?and z = x* forall wandz.

For w>0and z >0 the second equation can be solved for X in terms of z as X= J_r\/E :
Substituting this result into the first equation allows us to solve fory asy = iw/iw— z } Since Y will not
be real if(W—Z)<O, there is no real solution forz >w, so by the transformation theorem the joint
density f,,, (w,z)=0.

For there are no real solutions for anyw < Qorz <0, sincew = X%+ yzand Z = x%can never be
negative, thus fWZ (w, z) =0 for those regions of Wand z . In summary, there are only real roots forw >0,
z>0and z<w, and for that case there are four of them as combinations of the following:

x=4z,y=+(w=2).

By Eq.(2.113), the joint density for w and Z becomes

fr (X, Y)

L (X y)
4y

x=AZ 41X
y:\/f@ | y|

fWz (W1 Z) =

x=+z
y=—(w-2)

L (X y)

L (X y)
4

x=—z 4(x
y=y(w-2) | y|

Substituting these roots into the following density function

1 1
fo (X, Y) = gexp(—g(xz + yz)j

and collecting like terms (they are all the same because of the squaring operation in the numerator and the

x=—vz
y=—y/(w-2)

Gaussian density), the f,,, (W, z) is easily seen to be

e
fuz (W, 2) = - mu(w Z) (W) p(2)

(b) The random variablesW and Z are not statistically independent because the joint density is not a
product of the marginal densities. This can be easily seen by finding the marginal densities and multiplying
them. However, it is easier to see that the product cannot be the same as the product would be nonzero for

allw > Qand z > 0 whereas the joint density is zero for z >wandw>0.

Example 2.20
Let Z and W be random variables defined by the following functions of two other random

variables X andY :

Xidian University Liu Congfeng E-Mail:cfliu@mail.xidian.edu.cn Page 39 of 58




{Random Signal Processing) Chapter2 Random Variables

W=X+Y
Z=2(X+Y)

Assume that fy, (X, y) is known and that it is required to find the joint density funciton f,, (W, z) .

Solution
The transformation theorem cannot be used since the Jacobian is given by
11
J X’ = =
y)=|,

regardless of the roots of W= X+ Yyandz = 2(X+ y). CertainlyW and Z are random variables, so they

must have a probability density function. Notice thatZ = 2W , that is, Z can be written as a linear function
of W . Thus, asW takes on valuesw, Z takes on only the valuesZ = 2W. In the W — Z two-dimensional
space, the joint density must be zero for(z, W), not on the line, and have meaning along the line Z = 2w as

shown in Figure 2.22. This is what is meant by a line mass. Using the distribution function method, the

derivative yields the joint density function as
oz (W,2) = £y (W)5(z - 2w)

where f,, (W) is obtained by using the one function of two random variables approach.

2.7.3 Distribution Function ( Continuous, Discrete, or Mixed)

The problem of finding the joint cumulative distribution function for the random variables W and Z
defined by

W=g(X,Y) Z=h(X,Y) (2.117)

Fuz (W,Z) can be written as
Foz (W, 2) =P{W <w,Z <z}=P{g(X,Y)<w,h(X,Y) <z} (2.118)
The P{g(X,y) <w,h(x,y) <z} can be obtained by integrating the probability density function over

the region 1, definedinthe X -Yy spaceas

v ={(%y):g(x,y)<w and  h(x,y)<z} (2.119)

Using this 1,, and F,,(W,z) cannow be written as

Fuz (W,2) = [ [ T (%, y)dlxdy (2.120)

IWZ

This approach can be used regardless whether the probability density function is from a discrete
continuous or mixed random variable. If f,, (W,z) is desired, it can be obtained by taking partial

derivatives as follows:
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0 0
f.,(w,2)=——F,,(w,z 2.121
e (W,2) =~ Fy (w,2) (2.121)

Special care is required if F,, (W, z) is discontinuous, since various types of impulse functions will

be generated.

Example 2.23
Define two random variablesW and Z by the following transformations of two random variables X and

Y :W =X?+Y?andZ = X 2. Assume that X and Y are independent random variables characterized by
their joint probability density function f,, (X, y), which is given by f,, =e Y y(x)u(y) . Find the
joint cumulative distribution function F,, (w,z) forW and Z, and then take partial derivitives to obtain

the joint probability density function f, (W, z).
Solution
Using Eq.(2.120) to obtain the cumulative distribution function depends on first obtaining the region I, ,
which for our problem is defined by
Lz = {06 y): X2 + y? < wandx? < w}

and is shown in Figure 2.26.

Ya

iR

Figure 2.26 The region of integration Iy for Example 2.23

Forw<0andz<0,l,, =¢, the null set. Clearly, the integral over that region gives zero, and
soF,, (w,z)=0.
Forw>0and z > 0, the region is shown as the shaded area in Figure 2.26. Thus the Fuz (w, z) can be

written in terms of the integral of the joint probability density function for the random variables X and
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Y as follows:

2| ew-x2
Fuz (W,2) = jﬁ[ [ ozexp—(x+ y)ﬂ(X)ﬂ(Y)dy}dX

- J'Oﬁe‘x[jome‘ydy}dx

This expression can be simplified to give

Vi )
Fuz (W, 2) == IO e Xﬁ—e " )mt(W)#(X)
The joint probability density function f,,, (W, z)is then obtained by taking the partial derivatives

of K, (W, z) with respect tow and Z as follows:

fuo (W2) =0 Fip (W) = %[27 [Ferfoer )jxjﬂ(w)ﬂ(x)

:%[eﬁ e )%z‘ZJﬂ(w) 1(X)

In the equation above the partial with respect to z was obtained by Liebnitz’s rule. Continuing and taking
the partial with respect to w and simplifying gives
—~Jw-z 42

fuz (W, 2) = mﬂ(w)ﬂ(x)

This result can be easily checked by using the transformation theorem for two functions of two random

variables.

2.8 One Function of Two Random Variables

Define a random variable Z by Z :g(X,Y), where X and Y are random variables. The basic

problem is that of characterizing Z , knowing either partial or tital characterizations of X and Y .

2.8.1 Probability Density Function (Discrete Random Variables)

If X and Y are discrete random variables, their joint probability density function f,,(X,y) is

composed of two-dimensional delta functions as

fre (X Y) = Do PG, Y S(X =X, Y —Y,) (2.122)

(Xi, Vi)

Where P(X;,y;)=P{x=X,y=Y,} and S is the set of all pairs (X;,Y;) considered. If g(X,Y)
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represents a function defined on real X and Y, then the random variable Z =g(X,Y) is a discrete

random variable with probability density function f,(z) given by

fz (Z): ZP(Xilyi)5(z_g(Xi’yi)) (2,123)

(X, Y;)eS
Some of the g(X;,Y;) will be the same, so adding those probabilities the f,(z) can be written in terms
of a reduced number of terms. If z, is an element from the set of unique values of g(X;,Y;), where

(X;,y;) €S, then f,(z) canbe rewritten as

f,(z)= Y P(z)8(z-1,) (2.124)

7, €K

Where P(z,)=P{(x,,y;):9(X;,y;) =27} and K isthe set of all unique value of g(X;,Y,;).

2.8.2 Probability Density Function (Continuous Random Variables)

Let X and Y be continuous random variables with known joint probability density function

foy (X,¥) and g(X,y) be aknown continuous real-valued function of X and Y. The basic problem
is that of determining the probability density function f,(z) for the random variable defined by

Z =g(X,Y). Four important basic methods for finding the density are (1) the cumulative distribution

approach, (2) the auxiliary random variable approach, (3) the incremental probability approach and (4) the
synthetic sampling or Monte Carlo approach. Of these only the synthetic sampling approach would be

considered a direct approach.

Cumulative Distribution approach. In this approach the cumulative distribution function F,(z) is

found and then differentiated to obtain f, (z) . The distribution function F, (z) is determined as follow:

F,(2)=P(Z <2)=P{g(X,Y) < z}=[ [ f,, (x,y)dxdy (2.125)

Where I, ={(X,y):09(x,y) <z}. To obtain F,(z) for z from —oo to o, f,, (X,y) must be
integrated over changing regions of integration. The regions are composed of all (X,Yy) such that
g(x,y) <z with boundaries equal to the intersection of a plane at Z and the function as shown in

Figure 2.27. The probability density function f, (z) is then obtained by differentiating F, (z) to give
d
f,(z)=—F(2) (2.126)
dz

For certain problems, whose regions can be expressed easily in the limits if the two-dimensional
integral, Liebnitz’s rule can be applied so that the integral may never need to be evaluated. However, for

other problems the method is a tour de force using two-dimensional integration.
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Figure 2.27 Obtaining the region of integration for the distribution method.

Example 2.24

Let X and Y be a pair of random variables characterized by their joint probability density function

fy (X,y). Define a new random variable Z by Z = X +Y . Find the probability density function
f,(z) for Z by using the distribution method and determine the answer for the special case where X

and Y are independent random variables.

Solution

To find the distribution function F, (z) theregions |, must be identified for all z and are given by

1, ={(x,y):x+y<z|
Thus the region is seen to be all points (X,Yy) below and including the boundary line X+Yy =2, orin

standard form y =2z —X asseen in Figure 2.28.

Thus we can write F, (z) for an arbitrary z as the following integral:

F,(z) = J: J:X f (X, y)dxdy
The probability density function is then given by
d o pz-X
@) = | [ o ()i |

Interchanging the first integral and the derivative and applying Liebnitz’s rule to the second integral gives

the answer as

f (2) = j“; fo (X, 2= X)dx (2.127)
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z

y=z-X
YZ

v
x

Iz

{x+y=z}

Figure 2.28 Region 1 for Example 2.24

If X and Y are independent random variables, then f(X,y) = f, (x) f, (y). For this important

case the f,(z), for the random variable Z = X +Y , is determined from Eq.(2.127) to be the

convolution integral as follows:

f,(2) = Ji fo o (X)f, (z—x)dx = f, (z) * f, (2) (2.128)

Auxiliary Random Variable Approach. The auxiliary random variable approach is a method for obtaining

the probability density function f,(z) for the random variable Z = h(x, y). The approach consists
three basic steps: defining an auxiliary random variable, using the thansformational theorem to obtain a

joint probability density function, and an integration to obtain the marginal density for Z and thus the

desired density.
In the first step a random variable W is defined by W = g(X,Y) this is a fictitious random
variable and selected as a vehicle for using the two-dimensional transformation theorem. Usually g(X ,Y)

is selected as just X , just Y, orasimple function of X and Y that might be suggested by the form of
the function h(X,Y) which defines Z .

The second step is the application of the two-dimensional transformation theorem to the following:

W =g(X,Y
9(X.Y) (2.129)
Z=h(X,Y)
To find the joint probability density f,, (w,z) which is given by
£ (W, 2) = z T (X ) (2.130)

(%i,i) |J (X’ y)|

(6 ¥)=(x,i)

Where (X;,Y;) areall real solution of W= g(x, y) and z= h(x, y).

The final step in the process of obtaining the probability density function f,(z) is to integrate the
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joint density function f,,, (w,z) as follows:

f,(z) = j f,,, (W, Z)dw (2.131)

Example 2.25

Let X and Y be a pair of random variables characterized by their joint probability density function
fyy =(X,y). Define a new random variable Z by Z =X +Y (same as in Example 2.24).Find the
probability density function f,(z) for z by using the auxialary random variable method.

Solution

Define the auxiliary random W = X , which now gives us two functions of two random variables
W =X and Z = X +Y . Using the two functions of two random variables theorem the joint probability
density f,,, (W,z) is given by Eq.(2.130). There is only one solution to the set of equations, W= X and
Z=X+Y, which are easily seen to be X=Ww and Yy=Zz-—W. The Jacobian of the transformations is

determined as

ag(x.y) 2g(x.y) 23 23
| ox oy |_| ox oy |_ft 9_
WN=lah(ey) (x|~ jox+y) a(x+y)‘t 1“1
ox oy | ox oy

Therefore the joint density can be written as
fuz (W,2) = 1 (X, Y)|>;Z‘£V7W = fry (W, 2-w)
The desired probability density function, f,, (W), is obtained by integrating the joint density

fuz (W, Z) to give the result

f(z)= [’; f,,, (W, 2)dw = j_“; fop (W, 2 — W)dw

Incremental Approach. The incremental approach can be used for certain problems of finding the

probability density function f,(z) for random variable Z defined by Z = h(X ,Y). The method uses
the fact that f, (z)Az can be approximated by

f,(2)Az=P{z<Z <z7+Az} (2.132)
Where P{z<Z <z+Az} is equivalent to the probability that (X, y) is a member of

I, ={(x,¥):z<h(X,y) £z+ Az}. Thus the approximation above can be written as

f,(z)Az ~ j j f. (X, y)dxdy (2.133)

IAZ
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The approach relies on the assumption that as Az — 0 the integral over |,, becomes a linear function

of Az. When this happens, the Az is canceled from both sides of the approximation thus leaving

f,(z) inthe limitas Az — 0.

Examples 2.26

Suppose we are given random variables X and Y that are characterized by their joint probability

density function f,, =(X,y) and that f,(y)=0 for y<O0. A new random variable Z is defined
by Z = XY, the product of the two random variables. Find the probability density function f,(z) for

Z by the incremental method.
Solution

Using the incremental method we must first determine the probability that Z is in the interval

(Z, Z+ AZ), which is given by

P{z<Z <z+Az}=P{z<XY £z+Az}:P{Y£<X < ”AZ}

zly

o e(z+Az)]y 0 z Az
[ [ 1 oyaxdy = [ £, (5, y) =y
N ” y y
Using (2.132) gives
i z Az
L@az~[" f, NS
Cancelling the Az, the equation above in the limit reduces to the result
o 1 z
f,(2)= J“”V fyv (;7 y)dy

This proof can be modified to include the case where f, (y)#0for y <0 to give the following result

for the probability density f,(z) for the product of any two random variables Z = XY :

N
f,(2) :LM far (? y)dy (2.134)

2.9 Computation of E[h(X,Y)]

As for the case of one random variable there are several basic methods for obtaining E[Z], where

Z = h(X ,Y). The first three methods described are comparable to those described for one function of one

random variable. The forth technique is very useful for functions of more than one random variable and

does not have a counterpart in the function of one random variable case.

Method 1. Using f,, (X,Y),
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E[Z]=E[h(X,Y)]= T Th(x, y) f (X, y)dxdy (2.135)

—00—00

Method 2. Using T, (z),
E[h(X,Y)] = E[Z]= j 7, (2)dz (2.136)

Method 3. Using a Monte Carlo technique or synthetic sampling.
Method 4. Using iterated expected value,

E[Z]=E[h(X,Y)]=E[E[h(x,Y)],_ 1=E[E[N(X, )], ] (2.137)

Method 4 has no parallel for the case of one function of one random variable but can be a powerful
method for computing expected values of functions of two random variables. The meaning of iterated
expected value operation described above is easily understood and represents conditional expected values
as follows:

E[h(X,Y)]= TT e (X, Y)D(X, y)dxdy (2.138)

—00—00

Breaking the joint probability density function into the product of its conditional and marginal densities

gives.
EICX1= [ [ £, (1) (h(x, y)cxy (2.139)

Rearranging the integral on the right side of the equation above, and taking the f, (Xx) through the

integral with respectto Yy (itis not a function of V) gives
E[h(X,Y)]= T fy (X)[Th(x, y) f, (y|x)dy]dx (2.140)
The term in brackets is recognized as the conditional expected value of g(X,Y) or
E[h(x,Y)]= Th(x, y)f, (y [x)dy (2141)
Therefore E[h(X,Y)] becomes
E[h(X,Y)]= T fy (X)E[h(x,Y)]dx (2.142)

In a similar fashion E[h(X,Y )] can be written in terms of the conditional expected value with respect to

y as follows

E[Z]= E[h(X,Y)]=E[E[N(X,)],_,] (2.143)
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Example 2.27

Given Z =cos(X +Y) with X a uniform random variable on (~7,7) and Y a Gaussian random
variable with zero mean and variance equal to 1. Assume that X and Y are independent, and compute
E[Z] the expected value of Z using method 4.

Solution

Using (2.137), we have the expected value of Z as
E[Z] = E[cos(X +Y)]= E[E[cos(X + y)]|y:Y]
where
Efcos(X + y)]= | cos(x+y) f, (x]y)dx
For this problem X and Y are independent, therefore the conditional density is the same as the
marginal density, and the equation above can be written as

:o|

y=Y

Efcos(X + y)]|,_, =] cos(x+ y)%dx

y=Y
The expected value of Z can be found

E[Z]=E[0], 1= 0f,(y)dy=0

The following example calculates some higher-order moments for jointly Gaussian random variable also

using the concept of iterated expected values.

Example 2.28

Let X and Y be jointly normal random variables with parameters 7, =7, =0 witho, ,0,, and

Dy known. Find E[XY] and E[X ?Y ?].
Solution

Using the iterated expected value formula just presented, the E[XY] can be written as

ELxY]=[" £, 00] [, (ybody fox

where

1 (y_vao-vo-;(lx)z
f, (y|x) = exp{—
! | V27— pi,)o, 20y (1~ piy)

The term inside the square brackets can be simplified by taking X through the integral and using the

result for the conditional mean Eq. (2.108) to give

[~ 8, (ypdy = x| v, (ypX)dy = x(pyy 0,0'%)

Substituting this result for the bracketed term and using second moment for the random variable X gives
the E[XY] as
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EIXY]=[" f, ()IX* oy 0 0 T
= Pxv Oy O-;l_'i fy ()x*dx = py 00y

Similarly E[X?Y?] can be found in the following fashion:
EX YA 1=[" £ 00 [y, (yboyey Jox

[, (x)(xz [y, (y|x))dy)dx

The integral in the parentheses above represents the conditional second moment, and it can be written in

terms of the conditional variance and the conditional mean form Eq. (2.107) as

ELX?Y21=[ 1, (0K°[o3  + 775, Jox

x
” p2 o2 o
=0y (=P, i 0Oxacr 2 (0
X

The first integral is the variance of X, since X has a zero mean, and the second is the fourth-order
moment for the one-dimensional Gaussian random variable, which is known from Eq. (2.23). Substituting
these second-, and fourth-order moments gives
2 2
2y 2 2 2 27, Pxy©
E[X?Y2]= 02~ p3 ok 1+ 22 364
Ox
2 __2 2 2 2
=00y +2p4, 050y

=050y (1+2p5)

2.10 Multiple Random Variables

2.10.1 Total Characterizations

The real-valued functions for random variables X, X,---, X and Y are defined on a sample space

n
and are said to be totally characterized or described with relation to calculating probabilities of acceptable
events (i.e., events a member of F) by their cumulative distribution function or probability density

function.

The joint cumulative distribution function F,, . (X,X,,---,X,) for random variables

Xy, X, -+, X, is defined by

n

A
P, x, (ks Xgymoey X ) = PLX <%, Xy <%, X <%0} (2.144)

It satisfies the extensions of the bounded, nondecreasing, and continuity properties given in 2.6.1 and can
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be used to determine probabilities of given events. The joint probability density function

fxlxzmxn (X, X,,-++, X, ) is related to the joint cumulative distribution function through partial derivatives,
and vice versa in terms of integrals, as

0" Fxlxz-»-xn (Xll Xyytes Xn)

fxlxz,,,xn(xl,xz,...,x )=

0%, 0X, -+ OX,
o x (2.145)
I:xlxz-»-xn (X1'X21""Xn) = I J. J. 1:xlxz»--xn (Xllle"'1xn)dxldxz ---an

For a given vector X of random variables X, X,---, X the characteristic function

n !
o (0, @,,---,0,) is defined as the “modified” Fourier transform of the joint probability density
function

¢X (a)l’ 0)2 PR a)n) = E[e j(wlxl“'wzxz-*-'“a)n)(n)]

(2.146)

n

= [ oo [ 0 X x, YR AX e Xy iy, -l

—00—0  —00

= F (e (X0 X0 0 X,))

Where o =[w,,®,,, a)n]T . This integral does not necessarily exist for all probability density functions

0—->—0

and has a given region of convergence.
The moment-generating function is defined as follows:
1 X+t X o+t Xy
MX(tl’IZ’“"tn) = E[e* e ]

Qe @ (2.147)
= [ oo [ A0, 5,0, %, e Xer Xy i, - dx

—00

n

2.10.2 Partial Characterizations

Partial characterizations include the various marginal and conditional densities and the higher-order
moments. The higher-order moments can be determined from the definition of the moments. However, in

many problems the characteristic function or moment-generating function is useful for that purpose.

The_rth-order higher-order moments for k; +Kk, +---+k =r are defined by

A
M,k = E[X/ X2 "'X:"]
= J. I J.Xlklxlz‘Z -"X:" f ()(l)(2 ...)(n)d)(ldx2 ...an

Where Kk, +k, +---+Kk, =r
A well-known theorem gives the higher rth-order moments in terms of the characteristic function

oy (0, @,,-+,@,) as follows:
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(2.149)

A L0 (0,0, @)
Mk, k, =) .
@,=0,0,=0,--,0,=0

k K, K,
0w 0w, 0",

Where kK +K,+---+Kk,=r and r<n

Similarly the moments can be generated by using the moment-generating function through a
corresponding theorem, from Davenport, that gives the higher-order moments in terns of the
moment-generating function as follows:

oM, (t, t,,--,t)
My, = 8klt):3kzlt 2 akntn (2.150)
1 2" N _t,=0,t,=0,-t,=0

Where Kk, +K, +---+Kk,=r and r<n

The moment-generating function is simpler to obtain in that it is determined as a real integra. However,
the use of the existing Fourier transform table to obtain the characteristic function, and the fact the
characteristic function exists for cases where the moment-generating function does not exist, makes the

characteristic function more usable.

Example 2.29

The random variables X, , X,, and X, are characterized by their joint probability density function

fu x,x, (X0 X0, X3) Which is

fX1><2><3 (Xl, X5, X3) = 697(X1+2X2+3X3),U(X1)/J(X2)/J(Xs)
Determine, by using Eq. (2.149), the following third-order moments: (a) Myy,, (0) My, (€) My, ,(d)
m210'

Solution
To obtain the moments from (2.149), we first need to calculate the characteristic function, which from
(2.146) is as follows:

(I)(a)l , a)Z , a)S) = _[0 IO J;) 6e—(X1+2X2+3X3)e j(a’lX1+{02Xz+w3X3)ddexzdx3

1 1 1
(—jo+1]) (-jw, +2) (-jo, +3)

(@) The first-order moment m,,, is determined from (2.149) as

i oP | 6(-))=D(=)) 1
Moo, = (=1) = ; - P
0w, |25 (~ja+D(-jo, +2)(-Jjw, +3) 25 3
w3=0 w3=0
(b) The third-order moment m,,, is determined from (2.149) as

mo= ()2 | (06D (i)’ 1
H 00,00,00; |- (~jo, +1)*(—jw, + 2)*(—jw, +3)° a9 6

w3=0 w3=0
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(c) The third-order moment My, is determined from (2.149) as

w80 (ED)’E(ED(E2)(3)(=)) _1
oo, 5 (ot )(-jo, +2) (- je +3) j20 8

(c) The third-order moment m,,, is determined from (2.149) as

iy acb} _ ()62 )) } 4
000, |29 (-jo,+1)°(-jo, +2)’ (-jo, +3) 2=

0)3 0 w3=0

210

Since the random variables for this problem are independent, it is easy to check these results by
computing the moments shown as the product of various moments of the random variables taken by
themselves. When the random variables are not independent, then the higher-order moments cannot be
calculated as products of the individual moments, so the formula above becomes more useful for their

evaluation.

Another useful characterization for random variables is the cumulants that will play a role in the
analysis of nonlinear systems with random process excitations. The cumulants are defined in terms of the
joint characteristic function as follows:
afln¢(w1,wz, -, @,)

“w,0%0, 0" o

(2.151)

Chky-- &, =(-J)

N Jda=0,0,=0,--,0,=0
Where Kk, +K, +---+Kk,=r and r<n

The only difference in the preceding formulas for moments and cumulants is that the natural log(In)

of the characteristic function is the object of the partial derivatives for the cumulants, whereas the

characteristic function is used for determining the moments.

Example 2.30

The random variables X, and X, are characterized by their joint probability density function
fy x, (X, X;), which is

fx1X2 (X1, X;) = ze_(xl+2XZ)ﬂ(X1)#(X2)
Determine, by using Eq. (2.151), the following cumulants: (a)C,,, (b)C,,, (c) C,;and (d) the rth order
cumulant ¢ for j>Lk>1and j+k=r.

Solution
To obtain the cumulants from (2.151), we first need to calculate the characteristic function, which from
(2.146) is as follows
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®(a)laa)2) — jo J‘O 2e_(Xl+2X2)ej(ml)(1+w2)(Z)XmdX2

5 1 1
(—jo+1) (mjo, +2)

(@) The first-order cumulant C,, is determined from (2.151) as

Cp =(=j) o(=In(-jo, +) —In(-jo, +2) +In 2)}

Oow, =0

220

_—CEhen]
(o +1) Juco

2

(b) The first-order cumulant C,; is determined from (2.151) as

Cp = -1

10(-In(=jo, +1) = In(— jow, + 2) +In2)
ow, o=

0 2

_—EDEM) 1
(_ja)l +2) f,jl

(c) The first-order cumulant C,, is determined from (2.151) as

¢~ Cj) (=In(=jeo, +1) = In(=jw, + 2) +1In 2)L )

Ow, 0w,

o (—Chein)] 1
0w, \ (—jo, +1) =0 2

(d) The rth order cumulant ¢, for j>1k >1,and j+k=r isseen from the equation above to be 0.

A theorem presented by Nikias and Petropulu originally presented by Brillinger gives the nth-order

cumulant in terms of all the nth-order moments as follows:

Theorem. If X, X,---, X are jointly Gaussian random variables specified by their various order

n

moments m; = E[X;X;], then the nth cumulant ¢;, ; =cum[X X,---X,] can be written in terms of

the E[X; X, -+, X; ] asfollows:

Cua= 2 (D" (p-1)EMT, X,]-E[IT, X,]-+E[lT, X;] (2.152)

all partitions
Where the summation is taken over all partitions {81,82,~--,Sn}, p=212,...,n of the set of integers

{,2,...,n}.
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Example (2.31)
Use the theorem above to determine the first, second, and third cumulants in terms of various third-order
moments (from Nikias and Petropulu).

Solution

The ¢,(X,) and c,(X,, X,)are easily shown to be
¢, =¢, (X)) =E[X,] (2.153)
Cy = Ciu (X, Xy) = E[X; X, ] - E[X,]E[X,]

In order to determine the cumulant ¢, = C(X,X,X};), it is necessary to determine all partitions of
{1,2,3}. For p =1, justonesetweget s, ={1,2,3}.For p =2, we have the following ways to partition:
s ={} and s,={2,3}, or s, ={2}and s, ={13} or s, ={3} and s, ={1,2}. And finally for
p =3, thereisonly oneway: s, ={1}, s, ={2} and s, ={3}.

From (2.152) we can now write C(X;X,X;) as

Cus =0(X, X5, Xy)
= (D" O-DE[X XX,
+ (D" (2 -DUELX,IE[X, X1+ E[X,IE[X, X, ]+ E[XG]E[X, X, ]) (2.154)
+(=1)* " (3-D)NE[X.IE[X,]E[X,]
:E[Xlxzxs]_ (ELXIELX, X ]+ ELXLIELX X1+ ELXGIELX, X, ])
+ 2E[X,JE[X,]E[X,]

Similarly it can be shown that C,,,, is as follows:

C1111ic(x1’ X2 X5 Xy)
=E[X, X, X, X, ] E[X,X,JE[X,X, |- E[X,X,]E[X, X, |- E[X,X . JE[X,X,]
- E[Xl]E[X2X3X4] - E[Xz]E[X1X3X4] - E[Xs]E[X1X2X4] - E[X4]E[X1X2X3]
+ 2(E[X, X, JEDXGIEDX ]+ E[X XGIEDX,]ELX, ]+ E[X X, JE[X,]E[X,]
+ E[X X JELXJEDX 1+ EDX, X, JEDXJELX 1+ E[X X JELX,JE[X,])
_GE[Xl]E[Xz]E[Xs]E[X4]
(2.155)

For zero mean random variables the first, second, third, and fourth-order cumulants reduce to the

following:
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Cl(X1)= E[X1]=O

Cll(xl’XZ): E[Xlxz]

C111(X1’X2’X3): E[X1X2X3] (2.156)

C1111(X1' PTRACY X4) = E[X1X2X3X4]_ E[Xlxz]E[X3X4]
_E[X1X3]E[X2X4]_E[X1X4]E[X2x3]

2.10.3 Gaussian Random Vectors

When more than two jointly normal random variables are considered, it becomes convenient to use a vector

formulation. Random variables X, X, -+, X, are jointly Gaussian if their joint probability function can

n

be written in the form

B 1 —(x-m)"'K'(x—m)
- (272_)n/2|K|1/2 eXp( 2 )

fX(Xl’XZ'”"Xn)

Where
X=X, X, X, T
m =E[X]=[m,,m,,---,m ]’
K=E[(X-m)(X-m)"]

X =0, %, X, ]

(2.157)

For the random vector X, m and K are the mean vector and covariance matrix, respectively. The
E[] is the expected value operator. The vector m , called the mean vector of the random vector X, has
the means of each random variable as its components. The argument of the exponential is a
vector-matrix-vector product that yields a scalar result. The matrix K is called the covariance matrix. It

can be easily shown that K is a square matrix with variances of the individual random variables down

the main diagonal and covariances of the respective random variables off the main diagonal. It can also be

shown that K is symmetric, positive definite, and has all its eigen values greater than 0. instead of

writing the long form given above, it is convenient to use a short-hand notation and write that
X ~ N[m,K], which will mean that X is a Gaussian random vector with mean vector m,
covariance matrix K, and have the joint density given in (2.157).

Moments and cumulants for Gaussian random variables. Let X, X, ---, X be jointly Gaussian

random variables characterized by their mean vector m, and covariance matrix K. The cumulants and

moments for the jointly Gaussian random variables will now be presented.

The joint characteristic function for a Gaussian random vector can be shown

K0, 0) =expljo m, ~~0"K o]
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Where o' =[w,,®,,,®,] and (2.158)
m; =[E[X,],E[X,], - E[X,]]
Theorem. If X, X,,X;, and X, are zero mean jointly Gaussian random variables specified by
their second-order moments m; = E[X;X,], then the fourth-moment E[X,X,X,X,] can be written
in terms of the E[X;X;] as follows:

E[IX, X, XX, 1= EDX, X, ]- E[X X, ]+ EDX, X, ]- EQX, X, 1+ E[X X, ]- E[X,X;]  (2.159)

2.11 M Functions of N Random Variables

In general, we would wish to find the joint probability density function f(y,,Y,,:-,y,) for random
variables Y,,Y,,---,Y, defined by

Yi:gi(xl'xz""'xN) iI=12,--\M
When M and N are equal, it is possible to find the joint density of the transformed variables by
extending the transformation theorem given in Eq.(2.113). When M and N are not equal auxiliary
random variables can be defined to make the orders equal then use the transformation theorem followed by
integrating out with respect to the auxiliary variables.

The extension of the distribution function approach is possible, but usually the high-dimensional space
makes it difficult to describe the regions over which we integrate, and the following partial derivatives of
the distribution are certainly not a picnic either.

We are then led to obtaining the joint density by use of statistical sampling, where again the higher
dimensions make the number of the samples necessary to get a reasonable estimate of the probability
density by a histogram becomes exceedingly large. This problem can be alleviated if the densities involved

are of a certain parametric form.

2.12 Summary

In this chapter the basic definitions for a single random variable and several joint random variables were
presented along with the various forms of their characterizations, which included the mean, variance,
covariance, and higher-order moments as partial characterization. Total characterizations for random
variables were given in terms of the probability density function and the corresponding probability
distribution functions and joint probability distribution functions.

Common probability density functions for both continuous and discrete random variables were then
discussed including the Gaussian, uniform, exponential Raleigh, chi-squared, beta, and Cauchy densities
for the continuous case and uniform, Bernoulli, Poisson, binomial, geometric, and negative binomial

densities for discrete case. The mean, moments, and variance of these common random values were given
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to form a small catalog of densities and partial characterizations of the associated random variables.

For a single function of a single random variable, the main techniques discussed for obtaining the
density of the transformed random variable in terms of the given random variable were the transformation
theorem and the distributional approach. The distributional approach involved first obtaining the
distribution function and then obtaining the density by taking its derivative. These same basic techniques
were used for a single function of multiple random variables by using an auxiliary random variable
approach. In this way the n-dimensional transformation could be used first to obtain a joint probability
density function followed by an integrating out of those auxiliary random variables from the joint density to

give the required density.
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