
《Random Signal Processing》            Chapter2            Random Variables 

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 1 of 58 

Chapter 2   Random Variables 

 

Contents 

2 Random Variables ........................................................................................................................................ 2 

2.1 Definition of a Random Variable....................................................................................................... 2 

2.1.1 Cumulative Distribution Function (CDF)............................................................................... 3 

2.1.2 Probability Density Function (PDF)....................................................................................... 4 

2.1.3 partial characterizations.......................................................................................................... 7 

2.1.4 Conditional Cumulative Distribution Function ...................................................................... 9 

2.1.5 Characteristic function ......................................................................................................... 10 

2.1.6 Higher-Order Moments for Gaussian Random Variable ...................................................... 13 

2.2 Common Continuous Random Variable .......................................................................................... 13 

2.3 Common Discrete Random Variables ............................................................................................. 16 

2.4 Transformations of One Random Variable ...................................................................................... 17 

2.4.1 Transformation of One Random Variable............................................................................. 18 

2.4.2 Cumulative Distribution Function........................................................................................ 23 

2.5 Computation of Expected Values .................................................................................................... 24 

2.6 Two Random Variables.................................................................................................................... 24 

2.6.1 Joint Cumulative Distribution Function ............................................................................... 24 

2.6.2 Joint Probability Density Function....................................................................................... 24 

2.6.3 Partial Characterizations....................................................................................................... 24 

2.6.4 Jointly Normal Random Variables........................................................................................ 24 

2.7 Two Function of Two Random Variables ........................................................................................ 24 

2.7.1 Probability Density Function ( Discrete Random Variables)................................................ 24 

2.7.2 Probability Density Function ( Continuous Random Variables and Continuous Functions) 24 

2.7.3 Distribution Function ( Continuous, Discrete, or Mixed)..................................................... 24 

2.8 One Function of Two Random Variables......................................................................................... 24 

2.8.1 Probability Density Function (Discrete Random Variables)................................................. 24 

2.8.2 Probability Density Function (Continuous Random Variables) ........................................... 24 

2.9 Computation of E[h(X,Y)] .............................................................................................................. 24 

2.10 Multiple Random Variables........................................................................................................... 24 

2.10.1 Total Characterizations ....................................................................................................... 24 

2.10.2 Partial Characterizations..................................................................................................... 24 

2.10.3 Gaussian Random Vectors .................................................................................................. 24 

2.11 M Functions of N Random Variables ............................................................................................ 24 

2.12 Summary ....................................................................................................................................... 24 
 



《Random Signal Processing》            Chapter2            Random Variables 

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 2 of 58 

2 Random Variables 

2.1 Definition of a Random Variable 

An experiment E  is specified by the three tuple   PFS ,,  where S  is a finite, countable, 

or noncountable set called the sample space, F  is a Borel field specifying a set of events, and  P  

is a probability measure allowing calculation of probabilities of all events.  

Using an underlying experiment a random variable  eX  is defined as a real-valued function on 

S  that satisfies the following: (a)   xeXe :  is a member of F  for all x , which guarantees 

the existence of the cumulative distribution function, and (b) the probabilities of the events 

  eXe :  and   eXe :  are both zero. This means that the function is not allowed to be 

+ or – infinite with a zero probability. 

 

Example 2.1 

E  is specified by   PFS ,,  where  dcbaS ,,, , F  is the power set of S , and  P  is 

defined by   4.0aP ,   3.0bP ,   2.0cP , and   1.0dP . Define the following 

mapping 1)( aX , 0)( bX , 1)( cX ， 4)( dX . Is the function (.)X a random variable? 

Solution 

To show that the function is a random variable, it must be shown that conditions (a) and (b), specified 

above, are satisfied. The sets  xeXe )(:  as x  varies from   to   are as follows: 

For 

 
   

   
    SdcbaxeXe

cbaxeXe

bxeXe

xeXe

x

x

x

x












,,,)(:

,,)(:

)(:

)(:

4

41

10

0 

 

Since the sets described are subsets of S , they are members of the power of S , and thus condition (a) is 

satisfied. If S  has a finite number of elements and F  is the power set of S , condition (a) will always 

be satisfied. 

If the power set is not used for F , it is possible to construct a function that is not a random variable. 

It is easily seen that  

    
     0:

0:







PeXeP

PeXeP
 

Thus conditions (b) is satisfied and since (a) is also satisfied, (.)X is a random variable. 

Most common functions defined on a given experiment are random variables, however, condition (a) 
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can be easily violated if F  is not the power set of S  or condition (b) cannot be satisfied if X  is 

defined to be   for a set with finite probability. 

Random variables are said to be totally characterized or described with relation to calculating 

probabilities of acceptable events (i.e., events that are a member of F ) by their cumulative distribution 

function or probability density function. Weaker characterizations, called “partial characterizations” 

would include specifying higher-order moments, variance, mean, and the like. Knowing just the mean of a 

random variable is certainly less information about the random variable than knowing the probability 

density function, yet it still provides some idea about values of the random variable.   

                    

2.1.1 Cumulative Distribution Function (CDF) 

The cumulative distribution function )(xFX  for a random variable  eX , or when convenient 

represented by just X , is defined for all x  as 

}{})(:{)( xXPxeXePxFx 


                             (2.1) 

It is sufficient information to calculate the probabilities of all allowable events, and as a result is called a 

total characterization. Because of the properties of the probability measure  P  described in the overall 

experiment, the cumulative distribution function (CDF) can be shown to have a number of important 

properties: 

(1) )(xFX  is bounded from above and below,  

1)(0  xFX   for  all  x                           (2.2) 

(2) )(xFX   is a nondecreasing function of x , 

 )()( 12 xFxF XX   for all 12 xx   and all 1x                    (2.3) 

(3) )(xFX  is continuous from the right, 

                       )()(lim
0

xFaxF XX
a




                           (2.4) 

(4) )(xFX  can be used to calculate probabilities of events 

)()(}{

)()(}{

)()(}{

)()(}{

1221

1221

1221

1221

xFxFxXxP

xFxFxXxP

xFxFxXxP

xFxFxXxP

XX

XX

XX

XX















                       (2.5) 

Where )(lim
0







 xFx X     (left-hand limit) 

(5) Relation to the probability density function )(xf X  (to be defined later) is written as  
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                            dxxfxF
x

XX 


 )()(                             (2.6) 

 

Example 2.3 
For the random variable defined in Example 2.1 determine (a) the cumulative distribution function 

)(xFX  and calculate the probabilities of the following events. Using this distribution function, 

determine (b)  21  XP , (c)  41  XP , (d)  10  xP ,(e) 

 10  xP ,(f)  10  xP ,(g)  1XP ,(h)  1XP ,(i)  1XP , and (j)  3XP . 

Solution 

(a) The CDF )(xFX  for the random variable X  is obtained by determining the probabilities of the 

events  xeXe )(:  for all   ,x . The results from Example 2.1 help us determine 

)(xFX  as follows for the following regions. 

   
   

         
    1)(,,,)(:

9.0,,)(:

3.0)(:

0)(:

4

41

10

0













SPdcbaPxeXe

cPbPaPcbaPxeXe

bPxeXe

PxeXe

x

x

x

x 

 

These results can be plotted as shown. 

The CDF along with the probabilities of the intervals given in Eq.(2.5) will be used to determine 

the probabilities of the events listed. 

(a)   09.09.0)1()2(21  XX FFXP  

(b)   1.09.01)1()4(41  XX FFXP  

(c)   9.009.0)0()1(10  
XX FFXP  

(d)   3.003.0)0()1(10  
XX FFXP  

(e)   03.03.0)0()1(10  
XX FFXP  

(f)   1.09.01)1()(1  XX FFXP  

(g)   3.0)0(0  XFXP  

(h)   6.03.09.0)1()1(1  
XX FFXP  

(i)   09.09.0)3()3(3  
XX FFXP  

 

2.1.2 Probability Density Function (PDF) 

The probability density function )(xfX  for a random X  is a total characterization and is defined 
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as the derivative of the cumulative distribution function  

)()( xF
dx

d
xf XX



                                  (2.7) 

If )(xFX  has jump discontinuities, it is convenient to use delta functions so that a probability density 

function (PDF) will always be defined. Therefore a probability density function will contain delta functions 

at the points of discontinuities of )(xFX  with weights equal to the size of the jump at those points. 

Important properties of the probability density function for a random variable X  are as follows: 

(1) positivity                   

0)( xfX    for all x                                (2.8) 

(2) Integral over all x  (unit area)  

                       1)( 




dxxfX                                    (2.9) 

(3) )(xfX  used to calculate probability of events, 

dxxfdxxfxXxp

dxxfdxxfxXxp

dxxfdxxfxXxp

dxxfdxxfxXxp
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x
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x

x

X

x

x

X

x

x

X

x

x

X

x

x
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x
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x

x

X

























































2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

)()(}{

)()(}{

)()(}{

)()(}{

21

21

21

21

                      (2.10)      

(4) Relationship to cumulative distribution function  

dx

xdF
xf X

X

)(
)(                               (2.11) 

A random variable is called a discrete random variable if its probability density function )(xfX  is a 

sum of delta function only, or correspondingly if its cumulative distribution function )(xFX  is a 

staircase function. A random variable is called a continuous random variable if its cumulative 

distribution function has no finite discontinuities or equivalently its probability density function 

)(xfX  has no delta functions. If a random is neither a continuous or discrete random variable we 

call it a mixed random variable. 
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Examples of these three types follow. 

Discrete random variable, 

       32.014.022.032.0)(  xxxxxfX   

Continuous random variable, 

x
X exf 

2

1
)(  

Mixed random variable, 

       22.011.022.05.0)(   xxxxexf x
X   

 

Example 2.5 

fx(x)

0.1 

0 

Figure 2.2  Examples of (a) discrete (b) continuous and (c) mixed random variables. 
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0.6 

1 

(a) Discrete RV (b) Continuous RV (c) Mixed RV 

2

Fx(x)

0 x-2

0.5
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Fx(x) 

0 x1 2 -2
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1
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Random variable 

Discrete random variable 

Continuous random variable

Mixed random variable 
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Given a mixed random variable with probability density function 

         1
8

1

4

1
1

8

1

2

1
  xxxxexf x

X   

Determine the cumulative distribution function  xFX . 

Solution 

The cumulative distribution function  xFX  can be determined by the relationship given in (2.6). 

   

       

       1
8

1

4

1
1

8

1

2

1

2

1

1
8

1

4

1
1

8

1

2

1





 





 















xxxxe

dxxxxdxxe

dxxfxF

x

xx x

x

xX



  

The integrals of the delta function as x  goes through the values gives unit steps,causing discontinuities or 

jumps, at the points 1,0,1x  of sizes 
4

1
,

8

1
, and 

8

1
respectively.  

2.1.3 partial characterizations  

Important partial characterizations of random variables are the mean, variance, higher-order moments 

and central moments, and conditional distribution and density functions. Definitions for these partial 

characterizations follow. 

  The mean X  of a random variable X  or equivalently the expected value  XE  of a random 

variable X  is defined by 

][)( XEdxxxfXX 






                               (2.12) 

The mean of a random variable is also referred to as the average of the random variable as seen from the 

integral above. Knowing the mean of a random variable is not sufficient information to calculate 

probabilities of given events. It is just barely enough information to bound probabilities of some special 

events as seen in the following inequality for the special case when the random variable takes on positive 

values: 

a

XE
aXP

][
}{     for  0a                        (2.13) 

The variance 2
X  of a random variable X  is defined by  

])[()()( 222
XXXX XEdxxfx  




                    (2.14) 

The standard deviation is defined as the square root of the variance and denoted as X .The variance 
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gives a sense of spread of the random variable as larger values would indicate a wider density function and 

as with the mean it is not sufficient information for calculation of probabilities of events. However, like the 

mean, bounds can be placed on the calculation of some special events. 

   Two of the most important bounds are described in the Tchebycheff inequalities for the events 

}{ XX kX    and }{ XX kX   . Notice that these events represent the regions corresponding 

to the mean k  standard deviations about the mean and the complement of that region. 

   The Tchebycheff inequalities corresponding to bounds on the probabilities of the tails and core of the 

density function, respectively, for any density function and 1k  are 

2

2

1
1}{

1
}{

k
kXP

k
kXP

XX

XX








                                 (2.15) 

For a given positive   we can also bound the }{   XX XP  which is the probability that 

X  is in the region   around the mean by  

2

2

1}{

 X

XX XP                               (2.16) 

Eq. (2.15) can be obtained from (2.14) by letting  Xk .  

 

     
2

2
2

22

2
1

}{:Proof













X
XX

X

X
X

X

XX

dxxfXdxxf
X

dxxfXP

X

X

















 

 

2

2

2

2

1}{}{:esinequaliti fTchebychef




 X

X
X

X XPorXP   

 

The higher-order moments km  and higher-order central moments k  of a random variable X  

are partial characterizations and provide additional information about the statistics properties of random 

variables. They are defined as follow for 2k : 

][)( k
X

k
k XEdxxfxm





                                 (2.17) 

])[()()( k
XX

k
Xk XEdxxfx  




                    (2.18) 

A generalization of the Tchebycheff inequality called the inequality of Bienayme gives a bound on the 

event }{  aX  in higher-order moments about an arbitrary value a , not necessarily the mean, as 
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n

n
aXE

aXP



][

}{


                           (2.19) 

If  k , Xa  , and 2n , the inequality above reduces to Tchebycheff inequality. 

2.1.4 Conditional Cumulative Distribution Function 

Another partial characterization of a random variable X  is the conditional distribution function 

defined for conditional event C  by 

}{)( CxXPCxFX 


                            (2.20) 

The determination of )( CxFX  for a given event C  and a given )(xFX  for a random variable X  

uses the definition of conditional probability as follow: 

)(

},{
)(

CP

CxXP
CxFX


                             (2.21) 

Similarly the conditional probability density function for a random variable conditioned on the event C  

is defined in the terms of the derivative of the conditional distribution function as 

dx

CxdF
Cxf X

X

)(
)(


                              (2.22) 

 If C  is given in terms of elements of the sample space S , then the },{ CxXP   can be 

determined by working with the original sample space. In many problems the conditioning event is given in 

terms of the values of the random variable. 

 

Example 2.6 

A random variable X is characterized by its cumulative distribution function   )(1)( xexF x
X   

and an event C  is defined by  15.0  XC . Determine the conditional cumulative distribution 

function )( CxFX  and conditional probability density function )( Cxf X  for the random variable X  

conditioned onC . 

Solution 

By Eq.(2.21) the conditional distribution can be written as 

)15.0(

}15.0,{
)(





XP

XxXP
CxFX  

The numerator will be different depending on where x is in the infinite interval as 
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 
 

   
 

    2386512.011

)5.0()1(15.0}15.0,{1

11

)5.0()(5.0}15.0,{10

0}15.0,{5.0

15.05.01

5.05.0













eeee

FFXPXxXPxfor

eeee

FxFxXPXxXPxfor

PXxXPxfor

XX

xx

XX



 

But we know that the  CP is determined as 

   
    2386512.011

)5.0()1(5.0}15.0{
5.01 


 ee

FFxXPXPCP XX
 

Dividing the probabilities by P(C) gives the final answer for the conditional distribution as  

 
   

  11

2386512.015.0

05.0
5.0







CxFx

eeCxFx

CxFx

for

for

for

X

x
X

X

 

Plots of the  xFX and  CxFX  are shown for this example in Figure 2.6. 

The conditional probability density function can be obtained by taking the derivative of the conditional 

distribution throughout the region of the conditioning event, and the result is 

 


 




elsewhere

xe
Cxf

x

X
0

15.01902157.4
 

 

2.1.5 Characteristic function  

The characterization of a random variable can also be given by specifying its characteristic function 

)(X , which is the modified Fourier transform of )(xfX  and defined as 

Figure 2.6 FX(x) and FX(x|C) for Example 2.6 

X 
3 2.51.5 2 1 0.5

0 

0 

0.25 

0.5 

0.75 

1 

FX(x|C) 

FX(x) 
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











  ))((][)()( xfFeEdxexf X
Xjxj

XX                    (2.23) 

   




 


 dexf xj
XX 2

1
  

Specification of characteristic function is equivalent to a total characterization, since its inverse transform 

yields the probability density function. 

 

Example 2.7 

Determine the characteristic function for a Gaussian random variable with known mean Xn  and variance 

2
X . 

Solution 
By the definition above, the characteristic function becomes  

 



 





 
 dxe

x Xj

X

X

X

X








2

2

2
exp

2

1
)(  

After expanding out the term in the brackets and combining it with the other exponent over a common 

denominator, the characteristic function becomes 

 



 





 
 dx

xjxx

X

XXX

X

X 2

222

2

2
exp

2

1
)(





  

Next complete the square in the brackets and multiply by the proper correction so that the characteristic 

function becomes 

 



 





 











 
 dx

jnjxx

X

XXXX

X

XX

X

X 2

2222

2

222

2

)(
exp

2

)(
exp

2

1
)(








  

The exponential term on the right can be taken through the integral sign, since it is not a function of x and 

since the integral is of a Gaussian density it gives a value of 1. 

We can finally write, after simplifying the second exponent, the characteristic function for a Gaussian 

random variable as 










2

exp)(
22
X

XX j
                            (2.24) 

 The higher-order moments can also be determined from the characteristic function as 

     
0










k
X

k
kk jXE                           (2.25) 

The above equation can be used to determine the moments of any random variable by obtaining the 

characteristic function or modified Fourier transform and performing the differentiation and evaluation at 

zero. 
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Example 2.8 

A random variable X has a probability density function )(xf X  given by )()( xaexf ax
X  . Determine 

the moments by using the characteristic function. 

Solution 

The characteristic function can be obtained by taking the modified Fourier transform of the )(xf X  as 

 

aj

a

aj

a

xaeFdxexf axxj
XX













 











 )()()(

 

By Eq.(2.25) the moments are determined as follows: 

          

     
a

ajjaj

aja
jjXE

1
0

211

0

1

0

11




























 

          

     
20

322

0

2

2
2

0

2

2
22

1

a
ajjaj

aja
jjXE




























 

On continuing this process, it is easy to see that 

          

     
k

kkk

k

k
k

k

k
kk

a
ajjaj

aj
ajjXE

1

1

0

1

00






























 

 

Another function that can be used to determine the moments for a random variable X  is the 

moment-generating function defined as follows: 

][)()( txtx
XX eEdxexftM  







                        (2.26) 

As the same implies, the moment-generating function can be used to calculate the moments for any random 

variable for which the derivatives exist and relationship can be shown to be  

0

)(
][







t

k
X

k
k

t

tM
XE                            (2.27) 

The moment-generating function does not always exist, but when it does, it provides an 

alternative to using the characteristic function. 
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2.1.6 Higher-Order Moments for Gaussian Random Variable 

Let X  be a Gaussian random variable with known mean X  and variance 2
X . The higher-order 

moments, ][ k
k XEm  , can be written in terms of the probability density function as 

  dx
xx

dxxfxXE
X

X

X

m

X
mm }

2

)(
exp{

2
][

2

2







 








              (2.28) 

If Xx   is replaced by y , the integral can be written as  

dy
yy

XE
XX

m
Xm }

2
exp{

2

)(
][

2

2







 




                      (2.29) 

After expending the m
Xy )(  , the higher-order moments are written as  

i
X

im
m

i

XX

i
X

im
m

i

m

YE
i

m

dy
y

y
i

m
XE






][)(

}
2

exp{
2

1
)(][

0

2

2

0















 




                 (2.30) 

But Y , defined by XX  , is a Gaussian random variable with zero mean and variance equal to the 

variance of X . By symmetry of the zero mean Gaussian density, all higher-order odd moments of Y  are 

zero and (2.30) can be written as  




































)(][)
12

(

)(][)
2

(

][

1212
2

1

1

22

1
2

0

oddmYE
j

m

evenmYE
j

m

XE

m
X

j
X

jm

m

j

m
X

j
X

jm

m

jm




                (2.31) 

The higher-order moments up to order six are easily determined from (2.31) as follows: 

6422466

53245

42244

323

222

154515][

1015][

63][

3][

][

][

XXXXXX

XXXXX

XXXX

XXX

XX

X

XE

XE

XE

XE

XE

XE

























                     (2.32) 

If 0X , then it is seen from the above that 0][ )12( kXE  for ,2,1k , as expected. 

2.2 Common Continuous Random Variable 

Gaussian Random Variable. A random variable X  is called a Gaussian or normal random if it has a 
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probability density function )(xfX  given by 

),;(
2

)(
exp

2

1
)( 2

2

2

XX
X

X

X

X xg
x

xf 














 
               (2.33) 

It can be seen that X  and 2
X  are the mean and variance of the Gaussian random variable. The 

standard deviation is defined as X . 

Rather than write the expression (2.33), it is common practice to use the notation ),(~ 2
XXNX  , 

Which means that X  is a Gaussian random variable with mean X  and variance 2
X . 

The higher-order central moments can be determined for the Gaussian density in terms of the 2
X  as 

follows: 

odd

even

n

n

for

forn
XE Xn

X



 


0

)1(31
])[(

2
                     (2.34) 

 

Uniform Random Variable. A random is uniform if its probability density on an interval is given by 








 


otherwise

bxa
abxfX

0

1

)(                          (2.35) 

The mean and variance of a uniformly distributed random variable can be shown to be  

12

)(
,

2

2
2 abba
XX





                           (2.36) 

 

Exponential Random Variable. An exponential random variable has the following probability density 

function for 0a : 

otherwise

xae
xf

ax

X

0

0
)(










                           (2.37) 

The mean and variance for an exponential distributed random variable are 

2
2 1

,
1

aa XX                                 (2.38) 

 

Rayleigh Random Variable. A Rayleigh distributed random variable has for 0b  the following 

probability density function: 













otherwise

x
xx

xfX

,0

0),
2

exp(
)(

2

2

2                           (2.39) 
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The mean and variance for a Rayleigh distributed random variable are 

22 )
2

2(,2/   XX                        (2.40) 

 

Gamma Random Variable. A Gamma distributed random has for 0  and 0  the following 

probability density function: 








 




otherwise

xex
xf

xa

X

,0

0,
)(

1

)(

/1 
 

                    (2.41) 

Where dyey y



0

1)(   

If   is a positive integer, then it is well known that )!1()(   . 

The mean and variance for a Gamma distributed random variable are 

 22,  XX                           (2.42) 

 

Cauchy Random Variable. A random is Cauchy distributed random if its probability density takes the 

following form for 0a : 

22

1
)(

xa

a
xfX 



                             (2.43) 

The mean and variance for a Cauchy distributed random variable are 

X  does not exist,    2
X  does not exist                  (2.44) 

 

Chi–square Random Variable. A random variable is chi-squared distributed with degree of freedom N  

if 

)()
2

exp(
)2/(2

)( 2/

1)2/(

x
x

N

x
xf N

N

X 





                       (2.45) 

The mean and variance for a Chi-square random variable are 

NN XX 2, 2                                  (2.46) 

 

Log Normal Random Variable. A random variable is log normally distributed if its probability density 

function is of the form  

















 



otherwise

xmx

xf
e

X

,0

0,)(log
2

1
exp

2

1

)(
22 

                (2.47) 
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The mean and variance in terms of the positive parameters n  and   are 

]2exp[]22exp[],2/exp[ 2222   mmm XX                (2.48) 

 

Beta Random Variable. A Beta-distributed random variable has for 0  and 0  the probability 

density function  



 




otherwise

xxkx
xf X

,0

10,)1(
)(

11 

                        (2.49) 

)()(

)(







k   and dyey y



0

1)(    

If  ,  , and    are positive integers then )!1()(   , )!1()(   , and 

)!1()(   . 

The mean and variance for a beta-distributed random variable can be shown to be  

)1()(
, 2

2











 XX                  (2.50) 

 

2.3 Common Discrete Random Variables  

Bernoulli Random Variable. A discrete random variable is Bernoulli if its probability density is given by 

)1()1()()(  xpxpxfX                             (2.51) 

The mean and variance for a Bernoulli distributed random variable can be shown to be  

22,1 ppp XX                                (2.52) 

 

Discrete Uniform Random Variable. A discrete random variable is uniform if its probability density on a 

range is given by  















 





 n

ab
iax

n
xf

n

i
X

)(

1

1
)(

0

                         (2.53) 

The mean and variance for a uniformly distributed random variable can be shown to be  

n

abnba
XX 12

))(2(
,

2

2
2 



                         (2.54) 

 

Poisson Distribution. A random variable X  is Poisson distributed if its probability density function is 

given by 

)(
!

)(
0

kx
k

e
xf

k

k
X 










                             (2.55) 
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The mean and variance for a Poisson distributed random variable can be shown to be 

  2, XX                                (2.56) 

 

Binomial Random Variable. A random variable X  is binomially distributed if its probability density 

function is given by 

)()1()()(
1

kxpp
k

n
xf

n

k

knk
X 



                          (2.57) 

The mean and variance for a binomially distributed random variable can be shown to be 

)1(, 2 pnpnp XX                                (2.58) 

X  could be interpreted as the number of successes in n  repeated trials of the Bernoulli type.  

 

Geometric Random Variable. A random variable X  is geometrically distributed if its probability 

density function is given by 

)()1()(
1

1 kxppxf
k

kk
X 





                             (2.59) 

The mean and variance for a geometric random variable can be shown to be 

2
2 1

,
1

][
P

P

P
XE X


                                (2.60)  

X  could be interpreted as the number of the trial for which the first success occurs for repeated trials of 

the Bernoulli type. 

 

Negative Binomial Random Variable. A random variable X  is Negative binomially distributed if its 

probability density function is given by 

)()1()
1

1
()( jxpp
k

j
xf

kj

kjk
X 




 




                      (2.61) 

The mean and variance for a negative binomially distributed random variable can be shown to be 

)1
1

(, 2 
pP

k

P

k
XX                           (2.62) 

X  could be interpreted as the number of the trial on which the kth  success occurs for repeated trials of 

the Bernoulli type. 

 

2.4 Transformations of One Random Variable 

Let )(eX  be a random variable defined on a sample space S . Define a real-valued function  xg  on 

the real numbers. If )(eX  for all e  a member of S  is the domain of the  xg , then the range 
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becomes the set of all )(eY  such that ))(()( eXgeY  . This can be described by  

)())(()( iiii eYeXgeXe


   for all ie  member of S                  (2.63) 

As we usually drop the e  from the random variable )(eX  and use just X , it is expedient to drop the 

index from )(eY  and use just Y . Therefore Eq.(2.63) is usually represented as 

 XgY                                   (2.64) 

 

2.4.1 Transformation of One Random Variable 

In general, unless  xg  is a linear function of x  described by   baxxg  , with a  and b  

constants, or other special information regarding the type probability and type of function are specified, the 

expected value of Y  cannot be determined. In general, for  xgY  , the mean of Y  is not the function 

 .g  of the mean, that is,  

    xEgYE                                   (2.65) 

 

Probability Density Function (Discrete Random Variable).  

If X  is a real discrete random variable it takes on a finite or countable set XS  of possible values ix . 

 xgy
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Figure 2.7 Transformation of random variables as a mapping and a tabular 
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Therefore X  is totally characterized by its probability density function )(xfX  consisting of a sum of 

weighted impulse function at the ix  as follows: 

)()()( i
Sx

iX xxxpxf
Xi

 


                             (2.66) 

In the expression above )( ixp  is the probability that ixX   or more precisely is denoted by 

})(:{ ixeXeP  . If X  takes on only the values ix  it is reasonable that Y  takes only on the values 

)( ii xgy  . Thus Y  is a discrete random variable whose probability density function )(yfY  can be 

written as 

 



Xi Sx

iiY xgyxpyf )()()(                          (2.67) 

In some cases the nonlinear function )(xg  is such that )( ixg  of several different ix  give the same 

value jy , thus allowing us to write the density as 

)()()( j
Sy

jY yyypyf
Yj

 


                           (2.68) 

Where YS  is the set of all unique )( ixg  and )( jyp  is the sum of the probabilities. 

 

Example 2.9 

Let X be a discrete random variable characterized by its probability density function )(xfX  as follows: 

)3(3.0)2(05.0)1(15.0)(25.0)1(2.0)3(1.0)(  xxxxxxxf X   

Define the function )(xgy  as shown in Figure 2.8. 

 

Solution 

Figure 2.8 Function y=g(x) for Example 2.9 

y=g(x)

-3      -2     -1      0      1      2      3     x 
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y=x2 
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Each point is taken through the transformation, and like values are collected to give 

)4(35.0)(25.0)1(35.0)9(1.0

)4(3.0)4(05.0)1(15.0)(25.0)1(2.0)9(1.0)(





yyyy

yyyyyyyf y




 

 

Probability Density Function (Continuous Random Variable). 

Theorem. If X  is a continuous random variable characterized by its probability density function )(xfX  

and  xg  is a continuous function with no flat spots (finite lengths of constant value), then the probability 

density function )(yfY , which characterized the random variable  xgY  , is given for each value of 

y  as follows  


 


Xi

i
Sx xx

iX
Y dxxdg

xf
yf

/)(

)(
)(                               (2.69) 

Where XS  is the set of all real solutions of  xgy   

0)( yfY   if no real solution of  xgy   exists 

 The theorem above can be used to find the probability density function )(yfY  for  xgY  , and it 

requires solving  xgY   for each value of y  from   to  . 

 

Example 2.10 

Given a random variable X with probability density function )(xf X , find the probability density 

function )(yfY  for a random variable Y defined by 

2XY   

as shown in Figure 2.9. Work the problem for the following cases: 

 
  ).(exp)()(

.exp5.0)()(

xuxxfb

xxfa

X

X




 

 

y=x2 

y>0 

y<0 
yy

x 

Figure 2.9 Transformation y=x2 for Example 2.10 
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Solution 

(a) Conditions are satisfied to use the fundamental theorem directly as )(xg is a continuous function and 

X is a continuous random variable. For any 0y , 2xy  has no real solution (the dotted line for an 

arbitrary 0y  doesn’t intersect the curve 2xy  ). Therefore 0)( yfY for those values of y . 

If 0y ,then, 2xy  has two real roots, yx 1 and yx 2 . Using the fundamental theorem 

gives for 0y . 

yxx

X

yxx

X
Y x

xf

x

xf
yf




11

2

)(

2

)(
)(  

Using the two-sided-exponential density for )(xfX , )(yfY can be simplified to  

)(
2

1
)(

2

5.0

2

5.0
)( ye

y
y

y

e

y

e
yf y

yy

Y  


















  

(b) Using   )(exp)( xxxf X  , it is seen that for 0y , 0)( yfY , and that for 0y , 

)(
22

)(

2

)(
)( y

y

e

x

xe

x

xe
yf

y

yx

x

yx

x

Y  









  

If X  is a continuous random variable and  xg  is a continuous function except for a finite or 

countable number of flat spots, then the probability density for  XgY   can be found by a slight 

modification of the fundamental theorem. The probability density function )(yfY  is composed of two 

parts. For all values of y  such that there are no flat spots, find the density as given by the fundamental 

theorem, and then add to this sum of delta functions, one for each flat spot, at jy  with weight equal to the 

probability that the random variable X  produces jy  after passing through  xg . In Figure 2.10 a 

typical continuous  xg  is shown that contains flat spots at jy  for values of x on the intervals 

21 jj xxx  , respectively. In this notation the probability density function )(yfY  can be written as 











 



existxgyofsolutionrealnoif

yyxxxp
dxxdg

xf

yf
j

mx
jj

x

iX

Y j
i

)(,0

)()(
/)(

)(

)(
21 

               (2.70) 
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Example 2.11 

Let X be a Gaussian random variable with zero mean and unity variance. The function )(xgy  is 

defined in Figure 2.11, and the random variableY  is specified by the transformation )(XgY  . Find the 

probability density function )(yfY  for Y . 

Solution 

In this example the function )(xgy  has two flat spots, ones at 9y and the other at 4y . From the 

graph of )(xg it is seen that probability that  9Y  is the probability that  3X , while the 

probability that  4Y equals the probability that  2.0X . Using the Gaussian density and the 

parameters given, these probabilities become 

   

    0228.0)3(1
2

exp
2

1
24

0013.0)3(
2

exp
2

1
39

2

2

3 2








 









 











dx
x

XPYP

dx
x

XPYP




 

where   






 


x
dx

x
x

2
exp

2

1
)(

2


. 

Treating the continuous part of the transformation separately it is seen that there are four different 

situations as y goes from  to . 

For 0y , )(xgy  has no real roots, therefore 0)( yfY . 

For 9y , again no real roots so 0)( yfY . 

For 40  y , there are two real roots at y and y . Therefore )()( yf c
Y is given by 

x 

y = g(x) 

y1 

y2 

y3

x32 x31x22 x21 

x11 

Flat 

x12 

Figure 2.10  Function y = g(x) that contains flat spots 

Flat

Flat
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   

 
y

y

x

x

x

x
yf

yxyx

c
Y





2

2exp

2

2exp

2

1

2

2exp

2

1
)(

22
)(










  

For 94  y , )(xgy  has omly one real root at yx  , and by the fundamental theorem 

)()( yf c
Y becomes 

 
y

y
yf c

Y 22

2exp
)()( 
  

Using unit step functions, the continuous and discrete parts can be combined to give the final answer 

as 

             

)9(0013.0)4(0228.0

94
22

2exp
4

22

2exp
)(











yy

yy
y

y
yy

y

y
yfY







  

 

Probability Density Function (Mixed Random Variable). 

If X  is a mixed continuous variable, its probability density function )(xf X  can be written as 

)(][)()( )(
i

i
i

c
XX xxxXpxfxf                           (2.71) 

where )()( xf c
X  represents the density without delta functions. If  xg  is a continuous function, then 

)(yfY  can be obtained by adding the results from using the fundamental theorem on )()( xf c
X  to the 

results obtained by handling the impulses as previously described for transformation of discrete random 

variable. If  xg  has flat spots, then the modification of the fundamental theorem can be used on 

)()( xf c
X  with the results added to the discrete part. 

 

2.4.2 Cumulative Distribution Function  

Assume that a random variable X  is characterized by its probability density function )(xfX  and that a 

random variable Y  is defined by  XgY  , where  xg  is a real-valued function. It is desired to find 

the cumulative distribution function )(yFY  directly, and then use it to obtain the )(yfY . Using the basic 

definition of a cumulative distribution function gives 

dxxfyxgxPyXgPyYPyF
yI

XY 


)(})(:{})({}{)(               (2.72) 
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where })(:{ yxgxI y  . This region is illustrated in Figure 2.12. 

 

 

Example 2.12 

Assume that X  is a random variable with probability density function )(xf X given by  

 2exp
2

1
)( 2xxf X 


 

Define the radom variable Y  by )(XgY  , where  xg is shown in Figure 2.15. Find the cumulative 

distribution function )(yFY for the random variable Y . 

Solution 

To find )(yFY using Eq.(2.72) it is necessary to identify the regions yI for all values of y . for this 

problem it turns out that there are four distinct regions for different ranges of y as shown in Figure 2.13. 

Region1. For 0y ,  yxgx )(: is the null set which results in 0)( yFY .  

Region2. For 40  y ,    yxyxyxgxI y  :)(: .  Therefore )(yFY becomes 

)()(
2

exp
2

1
)(

2

yydx
x

yF
y

yY 






 
  

 

Region3. For 94  y ,  yxxI y  : and )(yFY is 

)(1
2

exp
2

1
)(

2

ydx
x

yF
yY 







 
 



 
 

Region4 .For 9y ,  xallI y  ; therefore 1)()(  



dxxFyF xY . 

Summarizing the results for the four regions above the cumulative distribution function )(yFY becomes 

Iy

x 

y

y=g(x) 

Figure 2.12  Region of integration Iy to obtain the cumulative distribution function. 
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which is illustrated in Figure 2.14.  
 

 

 

Figure 2.14     Cumulative distribution function for Example 2.12 
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Figure 2.13 Region for Example 2-12. 
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When taking the derivation of an integral with respect to a variable that appears in the limits of the 

integral, it is actually expedient to use the Liebnitz rule, which in its most general form is  

    








dxf
dx

d

dx

xd
xxf

dx

xd
xxfdxf

dx

d
x

x

x

x
 











 )(

)(

)(

)(

),(
)(

)(,
)(

)(,),(        (2.73) 

 

2.5 Computation of Expected Values 

For a random variable X  with probability density function )(xf X  and a real-valued function  xg , a 

random variable Y  can be defined by  xgY  . There are three common ways to compute the expected 

value of  xgY  . 

Method 1. By using )(yfY , which yields 

dyyyfYE Y




 )(][                                (2.74) 

Method 2. By using )(xfX , which yields 

dxxfxgXgEYE X




 )()()]([][                          (2.75) 

Method 3. By using the Monte Carlo technique, which essentially synthetic sampling. 

Method 3 represents an alternative to method1 and method 2 and it is not an analytical method. Monte 

Carlo Sampling is useful in problems where the integrals are of such a nature that analytical solutions are 

not easily obtained or do not exist. Roughly speaking, it is an experimental method using synthetic 

sampling from the density on X  to generate samples x , computing samples  xgy  , and then 

computing the average of those results to get the approximation for  YE . 

 

Example 2.13 

In Example 2.10 a random variableY was defined as   2XXgY  and )(xfX  was given by 

 xxf X  exp
2

1
)(  

For this problem compute the  YE  using methods 1 and 2. 

Solution 

Method1. The density )(yfY determined in Example 2.9 is used to compute the integral 
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  
 




0 2
)( dy

y

ye
dyyyfYE

y

Y  

 By making a change of variables  2

1

yx  ,  YE becomes 

    222
1

0

2

0

2 








  xx
e

dxexYE
x

x  

Method2. the original density for X  and )(xg  is used: 

     2
2

)()(
0

22  
 







dxexdx

e
xdxxfxgXgEYE x

x

X  

As this example shows, the relationship between the two methods is a change of variables within the 

intergration. Clearly, if the probability density function for Y  is not needed, its calculation is an 

unnecessary step in the process of computing the expected value and the second method would be 

preferred. 

 

2.6 Two Random Variables 

An experiment E  is specified by the three-tuple   PFS ,,  where S  is a finite, countable, or 

noncountable set called the sample space, F  is a Borel field specifying a set of events, and  P  is a 

probability measure allowing calculation of probabilities of all events. Based on this underlying experiment, 

two random variables )(eX  and )(eY  are defined as real-valued functions on the same S  that 

satisfies the following conditions: 

(a) })()(:{ yeYandxeXe   is a member of F  for all x  and y . This guarantees the 

existence of the cumulative distribution function. 

(b) The probabilities of the events })(:{ eXe , })(:{ eYe , })(:{ eXe , and 

})(:{ eYe  are all zero. This means that the function is not allowed to be ＋ or – infinity with a 

nonzero probability. 

 

2.6.1 Joint Cumulative Distribution Function  

The joint cumulative distribution function ),( yxFXY  for a random variable )(eX  and )(eY ,  

represented by X  and Y  is defined for all x  and y  as 
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},{})()(:{),( yYxXPyeYxeXePyxFXY 


                (2.76) 

It is sufficient information to calculate the probabilities of all allowable events, and thus is called a total 

characterization. Because of the properties of the probability measure  P  described in the overall 

experiment, the joint cumulative distribution function can be shown to have a number of properties. 

(1) ),( yxFXY  is bounded from above and below, 

1),(0  yxFXY   for all x  and y                          (2.77) 

(2) ),( yxFXY  is a nondecreasing function of x  and y , 

),(),( 12 yxFyxF XYXY    for all 12 xx  , all 1x , and all y  

),(),( 12 yxFyxF XYXY    for all 12 yy  , all 1y , and all x             (2.78) 

(3) ),( yxFXY  is continuous from the right in both x  and y  

),(),(lim
0

0

yxFyxF XYXY 













                           (2.79) 

(4) ),( yxFXY  can be used to calculate probabilities of rectangular events as 

),(),(},{ 11222121 yxFyxFyYyxXxP XYXY                  (2.80) 

(5) ),( yxFXY  is related to the joint probability density function by 

dxdyyxfyxF
x y

XYXY  
 

 ),(),(                           (2.81) 

 

Example 2.14 

Random variables X and Y  are defined in Figure 2.16. In this example X and Y  are both discrete 

random variables. Find the joint cumulative distribution function )(xFX , )(yFY , and 

),( yxFXY for X and Y . 

Solution 

From the table it observed that X  takes on values 0 and 1 with finite probabilities of 0.6 and 0.4, 

respectively, while Y takes on values 0, 1, and 2 with probabilities of 0.3, 0.4, and 0.3, respectively. 

Therefore )(xFX  and )(yFY are 

)1(4.0)(6.0)(  xxxFX  , )2(3.0)1(4.0)(3.0)(  xxxyFY   

To obtain the joint distribution it is necessary to compute probability of the event  yYxX  , as 

x and y  are both varied from  to . This will be done by fixing x  in different regions and 

determining the probability of yYxX  , as y varies 
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For 0x and all y  the set    yYxX , so 0),( yxFXY . 

For 10  x , there will be three different regions on the y=axis for which different values of the 

distribution are obtained as 
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For 1x , the results are similar to above but there are four different regions that give the joint cumulative 

distribution function as 
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10

0

546231

6231
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








SPPyYxXPyxF

PyYxXPyxF

PyYxXPyxF

PyYxXPyxF

y

y

y

y

XY

XY

XY

XY







 

The joint cumulative distribution function is shown in Figure 2.17 

 

 

2.6.2 Joint Probability Density Function  

The joint probability density function ),( yxfXY  for the random variable X  and Y  is a total 

characterization and is defined as the derivative of the joint cumulative distribution function. 

),(),(
2

yxF
yx

yxf XYXY 





                              (2.82) 

 If ),( yxFXY  has jump discontinuities, it is convenient to use delta functions so that a joint 

probability density function will always be defined. Therefore a probability density function will contain 

delta functions at the points of discontinuities of ),( yxFXY  with weights equal to the size of the jumps at 

those points. 

Figure 2.16    Random Variables X and Y for Example 2-14 

  X   Y  P

1  

2
3  

4  

5  

6  

0       0     0.2 

0       1     0.3 

0       0     0.1 

1       2     0.2 

1       2     0.1 

1       1     0.1 
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Important properties of the probability density function are as follow: 

(1) Positivity, 

0),( yxfXY   for all x  and y                           (2.83) 

(2) Integral over all x  and y , 

1),(  








yxfXY                                (2.84) 

(3) ),( yxfXY  can be used to calculate probability of rectangular events as 

 









2

1

2

1

),(},{ 2121

x

x

y

y

XY dxdyyxfyYyxXxP                    (2.85) 

Where 
1x , 

2x  , 
1y  and 

2y  are limits from the positive sides, or any event A  as 

 
A

XY dxdyyxfAYXP ),()},({                          (2.86) 

(4)Relationship to joint cumulative distribution function, 

),(),( yxFdxdyyxf XY

x y

XY  
 

 

                            (2.87) 

Random variables are called jointly discrete random variables if their probability density function 

),( yxfXY  is a sum of two dimensional delta functions only, and correspondingly if its cumulative 

distribution function ),( yxFXY  is a box staircase type function. Random variables are called joitly 

continuous random variables if their cumulative distribution function has no finite discontinuities or 

equivalently its probability density function ),( yxfXY  has no delta functions. If random variables are 

1

0.8 

0.2 

0.4 

1

0.7

y x 

CDF Function F(x,y) 

Figure 2.17    Cumulative distribution function FXY(x,y) for Example 2-14 
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neither jointly continuous or jointly discrete random variables, they are jointly mixed random variables. 

 

Example 2.15 

The random variables described in Example 2.14 are jointly discrete random variables. Give the joint 

probability density function ),( yxf XY for these random variables X and Y . 

Solution 

The joint density is seen to be  

)2,1(3.0)1,1(3.0)1,(3.0),(3.0),(  yxyxyxyxyxf XY   

 

2.6.3 Partial Characterizations  

Important partial characterizations for two random variables are the marginal densities, means, variances, 

covariances, higher-order joint moments, and joint central moments.  

For two random variables X  and Y , the marginal densities for X  and Y  are defined as the 

densities of X  and Y  by themselves and will be denoted by )(xfX  and )(yfY  as before. These 

marginal densities can be obtained from the joint probability density function for the two random variances 

as 
















dxyxfyf

dyyxfxf

XYY

XYX

),()(

),()(

                             (2.88) 

The conditional probability density functions for X  and Y  are defined as  

)(

),(
)|(

)(

),(
)|(

xf

yxf
xyf

yf

yxf
yxf

X

XY
Y

Y

XY
X









                              (2.89) 

The means X  and Y  for two random variables are X  and Y , using the conditional densities define 

the conditional means as 

]|[)|(]|[

]|[)|(]|[

xXYEdyxyyfxYE

yYXEdxyxxfyXE

X

X
















                    (2.90) 
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By rearranging Eq.(2.89), we can rewrite the joint probability density function in terms of the conditional 

and marginal densities as 

)()|(),(

)()|(),(

yfyxfyxf

xfxyfyxf

YXXY

XYXY




                          (2.91) 

By substituting (2.91) into (2.88), alternative formulas for determining the marginal densities for X  and 

Y  can be found as follows: 

dxxfxyfyf

dyyfyxfxf

XYY

YXX
















)()|()(

)()|()(

                             (2.92) 

Examining (2.91), we see that it is also possible to write the relationships between the two conditional 

densities as 

)(/)()|()|(

)(/)()|()|(

xfyfyxfxyf

yfxfxyfyxf

XYXY

YXYX




                         (2.93) 

These formulas are comparable to Bayes’s rule, which expresses the relationship between conditional 

probabilities, except that they represent the relationships between the conditional probability density 

functions and not probabilities. 

Should either X  or Y  be discrete random variables, these results would need to be re-written. For 

example, let X  be a discrete random variable and Y  a continuous random variable with known 

 }{| ixXyf   for all ix  and known )(xfX : 

Joint Density 

   fXY(x,y) 

(Conditional Density) 

fY(y|x0)=fXY(x0,y)/A 

(Profile) 

fXY(x0,y) 

 dyyxfA XY ,0  

(Area) 

y 

x x0 

Figure 2.18     Conditional probability dendity functions 
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)(}{)(
1

i

N

i
iX xxxXPxf 



                          (2.94) 

Then it is easily shown, for all 1j  to N , that  









N

i
jj

jj
j

xXPxXyf

xXPxXyf
yxXP

1

}{}){|(

}{}){|(
)|}({                    (2.95) 

 

Example 2.16 

Given the joint probability density function ),( yxf XY  



 


elsewhere

yxyxy
yxf XY ,0

0,10,8
),(  

Determine (a) )(xf X , (b) )(yfY , and (c) )( xyfY . 

Sulution 

(a) The )(xfX is obtained by integtating over all y  at each value of x . for 0x and 

1x , 0)( xf X because ),( yxf XY being zero leads to a zero integral. For 10  x , )(xfX is 

determined as 

3

0
48),()( xxydydyyxfxf

x

XYX  



 

In summary )(xfX can be written as 

    14)( 3  xxxxf X   

(b) )(yfY is obtained by integtating over all x at each value of y . For 0y and 1y , 

the 0)( yfY because ),( yxf XY is zero leads to a zero integral. For 10  y , )(yfY is determined as 

3

0
48),()( yxydxdxyxfyf

y

XYY  



 

Thus )(yfY can be written as 

    14)( 3  yyyyfY   

(c) The conditional density )( xyfY from (2.106) for yx 0 and 10  x is 

23

2

4

8

)(

),(
)(

x

y

x

xy

xf

yxf
xyf

X

XY
Y   

For xy  the joint density is zero, and thus )( xyfY can be summarized as 





 

elsewhere

xy
x

y
xyfY

,0

0,
2

)( 2   
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Several plots of )( xyfY for various values of x are shown in Figure 2.19. Notice the different domains for 

nonzero values. 

 

Example 2.17 

Find  xYE for the random variables X  and Y  that have the joint probability density function given in 

Example 2.16. 

Solution 
Using the conditional density determined in Example 2.16 and (2.90), the conditional expected value is 

determined for 10  x as 

  x
x

y
dy

x

y
ydyxyyfxYE

x
x

Y 3

2

3

22
)(

0

2

3

0 2





 




 

For x outside the interval [0,1], the density is zero as is the expected value. 

 

Two random variables X  and Y  are defined to be statistically independent if the joint probability 

density function can be written as a product of the two marginal densities for all x  and y  as shown: 

)()(),( yfXfyxf YXXY                               (2.96) 

The correlation between two random variables X  and Y  is defined as the expected value of their 

product; 

][XYERXY                                     (2.97) 

Two random variables are defined as uncorrelated if ][][ YEXERXY  ,which is the same as writing 

][][][ YEXEXYE                                   (2.98) 

Using Eq.(2.96), it is simple to show that if two random variables are statistically independent, then they 

are uncorrelated. The steps in the proof follow. 

][][)()()()()(][ YEXEdyyyfdxxxfdxdyyfxxyfdxdyxyxyfXYE YXYXXY     
























 (2.99) 

Two random variables X  and Y  are called orthogonal if 0][ XYE .  

If the random variables X  and Y  are independent and both of the means are zero, or one of the 

means is zero and the other is finite, then they are orthogonal since by independence the 

][][][ YEXEXYE   and thus 0][][  YEXE . These relationships between independence, 

orthogonality and uncorrelated random variables are show in Figure2.20. In the figure the single solid 

arrow indicates always true, whereas a dotted arrow indicates always true if the conditions written along 

side are true. The arrow back from uncorrelated to independence will be shown later to be true for jointly 

Gaussian random variables. 
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With two random variables the individual variances are as before for each random variable, but more 

information considering the relationship between X  and Y  is available through the covariance XY  

defined as 

dxdyyxfyxYXE XYYXYXXY ),()()()])([(    










             (2.100) 

The correlation coefficient XY  between the two random variables X  and Y  is defined as the 

normalized covariance by 

YX

XY
XY 




                                   (2.101) 

It provides a measure of linear relationship between the two random variables X  and Y . the correlation 

coefficient for two random variables X  and Y  can be easily shown to be bounded by 1  and 1  as 

11  XY                                  (2.102) 

The closer XY  is to 1  or 1  the more the random variables X  and Y  are said to be 

linearly related. It is noticed that the closer XY  is to 1  or 1 , the more ridgelike the probability 

density becomes, which indicates that one random variable can be written as almost a scaler multiple of the 

other. 

The higher-order moments jkm  and the central moments jk  for two random variables X  and 

Y  are defined by 

dxdyyxfyxYXEm XY
kjkj

jk ),(][  










                      (2.103) 

dxdyyxfyxYXE XY
k

Y
j

X
k

Y
j

Xjk ),()()(])()[(  










                (2.104) 

One mean zero  

& other mean finite

Jointly Gaussian 

Independent Uncrrelated 

Orthogonal 

One mean zero  

& other mean finite 

Figure 2.20   Relationship between the definitions of independent, uncorrelated, and orthogonal.

Always 



《Random Signal Processing》            Chapter2            Random Variables 

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 36 of 58 

 

2.6.4 Jointly Normal Random Variables  

The random variables X  and Y are defined as jointly Gaussian or jointly normal if their probability 

density function ),( yxfXY  has the following form: 




















 








2

2

2

2 )())((2)(

2

1
exp

2

1
),(

Y

Y

YX

YXXY

X

X

YX
XY

yyxx

rr
yxf











    (2.105) 

Where X , Y , 2
X  , 2

Y , and XY  are, respectively, the mean of X , mean of Y , variance of X , 

variance of Y , and correlation coefficient of X  and Y , and 21 XYr  . The marginal densities or 

densities of the random variables X  and Y  can be obtained by integrating out the proper variable to 

give 

}
2

)(
exp{

2

1
)(},

2

)(
exp{

2

1
)(

2

2

2

2

Y

Y

Y

Y
X

X

X

X

y
yf

x
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

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





        (2.106) 

By dividing the joint density by the marginal density and simplifying the conditional probability 

density function for Y  conditional on  xX   and X  conditional on  yY  , the conditional 

probability density function can be determined as 

)1(

)(
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2

)(
exp{

2

1
)|(
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2
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2
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)|(

222
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Y
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yxf
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
















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
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


     (2.107) 

When the means are zero, the conditional means and variance are easily obtained from the above by 

setting 0 YX   to give  
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




         (2.108) 

Note that although X  and Y  have zero means, the conditional means are not equal to zeros. 

A number of useful formulas for various moments of jointly normal zero mean random variable in 

terms of their given parameters X , Y , and XY  follow: 
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4444
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22222
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

















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
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YX
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YX

XXYYX

YXXY

YXE

YEXE

oddkYEXE

YEXE

YXE

XYE

                    (2.109) 

Where 
22

,sin
  XY  

 

2.7 Two Function of Two Random Variables 

The basic problem is to obtain the statistical characterization of two random variables Z  and W  that are 

functions of two other random variables X  andY . The expressions for Z  and W  are specified by 

 YXgW ,      and       YXhZ ,                   (2.110) 

2.7.1 Probability Density Function ( Discrete Random Variables) 

If X  and Y  are discrete random variables, their joint probability density function ),( yxfXY is 

composed of two-dimensional impulses: 

),(),(),(
),(

ii
yx

iiXY yyxxyxpyxf
ii

                      (2.111) 

Then the joint probability density function for  YXgW ,  and  YXhZ ,  will also contain only 

impulses with locations obtained by taking ),( ii yx  through the function  yxgw ,  and  yxhz , , 

and with weights equal to the probabilities of each ),( ii yx . The ),( zwfWZ is therefore seen to be 

))(),,((),(),(
),(

iiii
yx

iiWZ yxhzyxgwyxpzwf
ii

                  (2.112) 

 

Example 2.18 

Given the following probability density function for the discrete random variables X  andY : 

)1,(
12

1
),1(

6

1
),(

2

1
)1,1(

4

1
),(  yxyxyxyxyxf XY   

Consider two new random variablesW  and Z that are defined by the following transformations: 

222 , XZYXW   

Find the joint probability density function ),( zwfWZ . 
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Solution 

Taking each delta function through the transformation gives the joint density ),( zwfWZ as 

),1(
4

1
),(

2

1
)1,2(

4

1

),1(
12

1
),1(

6

1
),(

2

1
)1,2(

4

1
),(

zwzwzw

zwzwzwzwzwfWZ








 

 

2.7.2 Probability Density Function ( Continuous Random Variables and 

Continuous Functions) 

If X  and Y  are continuous random variables, and  yxg ,  and  yxh ,  are continuous functions of 

x  and y  with no flat spots, the counterpart to the one function of one random variable result can be 

written as follows for random variables  YXgW ,  and  YXhZ ,  





),( ),(),(

),(

),(
),(

ii
ii

yx yxyx

XY
WZ yxJ

yxf
zwf                         (2.113) 

Where ),( ii yx  are all real solutions of  yxgw ,  and  yxhz , . The ),( yxJ  is the Jacobian of 

the transformation, which is expressed as the following determinant: 

y

yxh

x

yxh
y

yxg

x

yxg

YXJ














),(),(

),(),(

),(                             (2.114) 

If no real solution of  yxgw ,  and  yxhz ,  exists for a given w  and z , then the joint 

probability density 0),( zwfWZ  for those values of w  and z . 

 

Example 2.19 

Let W and Z be two random variables defined by the following functions of two other random variables X 

and Y: 

222 XandZYXW   

Let X and Y be independent Gaussian random variable described by )1,0(~ NX and )1,0(~ NY . 

(a) Find the joint probability density function for the random variables X and Y . 

(b) Are X and Y statistically independent? 

Solution 
(a) The solution is obtained by using Eqs.(2.113) and (2.114). The Jacobian for the transformation defined 

is 
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xy
x

yx

y

x

x

x
y

yx

x

yx

yxJ 4
02

22

)()(

)()(

),( 22

2222















  

We must find all real solutions (x,y) of the equations 22 yxw  and 2xz   for all w and z . 

For 0w and 0z the second equation can be solved for x in terms of z as zx  . 

Substituting this result into the first equation allows us to solve for y as  zwy  . Since y will not 

be real if   0 zw , there is no real solution for wz  , so by the transformation theorem the joint 

density 0),( zwfWZ . 

For there are no real solutions for any 0w or 0z , since 22 yxw  and 2xz  can never be 

negative, thus 0),( zwfWZ for those regions of w and z . In summary, there are only real roots for 0w , 

0z and wz  , and for that case there are four of them as combinations of the following: 

zx  ,  zwy  . 

By Eq.(2.113), the joint density for w and z becomes 

   

   zwy
zx

XY

zwy
zx

XY

zwy
zx

XY

zwy
zx

XY
WZ

xy

yxf

xy

yxf

xy

yxf

xy

yxf
zwf

















4

),(

4

),(

4

),(

4

),(
),(

 

Substituting these roots into the following density function 

 





  22

2

1
exp

2

1
),( yxyxf XY 

 

and collecting like terms (they are all the same because of the squaring operation in the numerator and the 

Gaussian density), the ),( zwfWZ is easily seen to be 

 
)()()(

2
),(

2

zwZw
zwz

e
zwf

w

WZ 








 

(b) The random variablesW and Z are not statistically independent because the joint density is not a 

product of the marginal densities. This can be easily seen by finding the marginal densities and multiplying 

them. However, it is easier to see that the product cannot be the same as the product would be nonzero for 

all 0w and 0z whereas the joint density is zero for wz  and 0w . 

 

Example 2.20 

Let Z and W be random variables defined by the following functions of two other random 

variables X andY : 
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 YXZ

YXW




2
 

Assume that ),( yxf XY is known and that it is required to find the joint density funciton ),( zwfWZ . 

Solution 
The transformation theorem cannot be used since the Jacobian is given by 

  0
22

11
, yxJ  

regardless of the roots of yxw  and  yxz  2 . CertainlyW and Z are random variables, so they 

must have a probability density function. Notice that WZ 2 , that is, Z can be written as a linear function 

ofW . Thus, asW takes on values w , Z takes on only the values wz 2 . In the zw  two-dimensional 

space, the joint density must be zero for  wz, , not on the line, and have meaning along the line wz 2 as 

shown in Figure 2.22. This is what is meant by a line mass. Using the distribution function method, the 

derivative yields the joint density function as 

 wzwfzwf WWZ 2)(),(    

where )(wfW is obtained by using the one function of two random variables approach. 

  

 

2.7.3 Distribution Function ( Continuous, Discrete, or Mixed) 

The problem of finding the joint cumulative distribution function for the random variables W  and Z  

defined by 

 YXgW ,    YXhZ ,                             (2.117) 

),( zwFWZ  can be written as 

}),(,),({},{),( zYXhwYXgPzZwWPzwFWZ               (2.118) 

The }),(,),({ zyxhwyxgP   can be obtained by integrating the probability density function over 

the region WZI  defined in the y-x  space as 

}),(),(:),{( zyxhandwyxgyxIWZ                 (2.119) 

Using this WZI  and ),( zwFWZ  can now be written as  

dxdyyxfzwF
WZI

XYWZ   ),(),(                        (2.120) 

This approach can be used regardless whether the probability density function is from a discrete 

continuous or mixed random variable. If ),( zwfWZ  is desired, it can be obtained by taking partial 

derivatives as follows: 
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),(),( zwF
zw

zwf WZWZ 





                          (2.121) 

 Special care is required if ),( zwFWZ  is discontinuous, since various types of impulse functions will 

be generated. 

 

Example 2.23 

Define two random variablesW  and Z by the following transformations of two random variables X and 

Y : 22 YXW  and 2XZ  . Assume that X and Y are independent random variables characterized by 

their joint probability density function ),( yxf XY , which is given by   )()( yxef yx
XY  . Find the 

joint cumulative distribution function ),( zwFWZ forW  and Z , and then take partial derivitives to obtain 

the joint probability density function ),( zwfWZ . 

Solution 

Using Eq.(2.120) to obtain the cumulative distribution function depends on first obtaining the region WZI , 

which for our problem is defined by 

  wwandxyxyxIWZ  222:,  

and is shown in Figure 2.26. 

 

For 0w and 0z , WZI , the null set. Clearly, the integral over that region gives zero, and 

so 0),( zwFWZ . 

For 0w and 0z , the region is shown as the shaded area in Figure 2.26. Thus the ),( zwFWZ can be 

written in terms of the integral of the joint probability density function for the random variables X and 

Figure 2.26     The region of integration IWZ for Example 2.23 

y 

x 

IWZ 

zz
2W2W  

w=x2+y2

x2z 

x2+ y2z 
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Y as follows: 

 

 

 





















 







z xw yx

z

z

xw

xwWZ

dxdyee

dxdyyxyxzwF

0 0

2

2

2
)()(exp),( 

 

This expression can be simplified to give 

  )()(1),(
0

2

xwdxeezwF
z xwx

WZ     

The joint probability density function ),( zwfWZ is then obtained by taking the partial derivatives 

of ),( zwFWZ with respect to w and z as follows: 

 
  )()(

2

1
1

)()(1),(),(

2

1

0

2
2

xwzee
w

xwdxee
zw

zwF
zw

zwf

zwz

z xwx
WZWZ













































 

In the equation above the partial with respect to z was obtained by Liebnitz’s rule. Continuing and taking 

the partial with respect to w and simplifying gives 

)()(
4

),( xw
zzw

ee
zwf

zzw

WZ 





 

This result can be easily checked by using the transformation theorem for two functions of two random 

variables. 

 

2.8 One Function of Two Random Variables 

Define a random variable Z  by  YXgZ , , where X  and Y  are random variables. The basic 

problem is that of characterizing Z , knowing either partial or tital characterizations of X  and Y . 

2.8.1 Probability Density Function (Discrete Random Variables) 

If X  and Y  are discrete random variables, their joint probability density function ),( yxf XY  is 

composed of two-dimensional delta functions as 

),(),(),(
),(

ii
yx

iiXY yyxxyxPyxf
ii

                          (2.122) 

Where },{),( iiii yyxxPyxP   and S  is the set of all pairs ),( ii yx  considered. If ),( yxg  
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represents a function defined on real x  and y , then the random variable ),( YXgZ   is a discrete 

random variable with probability density function )(zfZ  given by  

)),((),()(
),(

ii
Syx

iiZ yxgzyxPzf
ii

 


                         (2,123) 

Some of the ),( ii yxg  will be the same, so adding those probabilities the )(zfZ  can be written in terms 

of a reduced number of terms. If kz  is an element from the set of unique values of ),( ii yxg , where 

Syx ii ),( , then )(zfZ  can be rewritten as  

)()()( k
Kz

kZ zzzPzf
k

 


                               (2.124) 

Where }),(:),{()( kiiiik zyxgyxPzP   and K  is the set of all unique value of ),( ii yxg . 

 

2.8.2 Probability Density Function (Continuous Random Variables) 

Let X  and Y  be continuous random variables with known joint probability density function 

),( yxf XY  and ),( yxg  be a known continuous real-valued function of x  and y . The basic problem 

is that of determining the probability density function )(zfZ  for the random variable defined by 

),( YXgZ  . Four important basic methods for finding the density are (1) the cumulative distribution 

approach, (2) the auxiliary random variable approach, (3) the incremental probability approach and (4) the 

synthetic sampling or Monte Carlo approach. Of these only the synthetic sampling approach would be 

considered a direct approach. 

Cumulative Distribution approach. In this approach the cumulative distribution function )(zFZ  is 

found and then differentiated to obtain )(zfZ . The distribution function )(zFZ  is determined as follow: 

   
zI

XYZ dxdyyxfzYXgPzZPzF ),(),()()(                   (2.125) 

Where }),(:),{( zyxgyxI z  . To obtain )(zFZ  for z  from   to  , ),( yxf XY  must be 

integrated over changing regions of integration. The regions are composed of all ),( yx  such that 

zyxg ),(  with boundaries equal to the intersection of a plane at z  and the function as shown in 

Figure 2.27. The probability density function )(zfZ  is then obtained by differentiating )(zFZ  to give  

)()( zF
dz

d
zf z                                   (2.126) 

 For certain problems, whose regions can be expressed easily in the limits if the two-dimensional 

integral, Liebnitz’s rule can be applied so that the integral may never need to be evaluated. However, for 

other problems the method is a tour de force using two-dimensional integration. 
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Example 2.24 

Let X  and Y  be a pair of random variables characterized by their joint probability density function 

),( yxf XY . Define a new random variable Z  by YXZ  . Find the probability density function 

)(zf Z  for Z  by using the distribution method and determine the answer for the special case where X  

and Y  are independent random variables. 

Solution  

To find the distribution function )(zFZ  the regions zI  must be identified for all z  and are given by  

 zyxyxIZ  :),(  

Thus the region is seen to be all points ),( yx  below and including the boundary line zyx  , or in 

standard form xzy   as seen in Figure 2.28. 

Thus we can write )(zFZ  for an arbitrary z  as the following integral: 

dxdyyxfzF
xz

XYZ ),()(  







  

The probability density function is then given by 





  








dxdyyxf

dz

d
zf

xz

XYz ),()(  

Interchanging the first integral and the derivative and applying Liebnitz’s rule to the second integral gives 

the answer as  

dxxzxfzf XYz ),()(  



                            (2.127) 

Figure 2.27 Obtaining the region of integration for the distribution method. 

g(x,y)=z 

x 

y 

z 

Iz 
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If X  and Y  are independent random variables, then )()(),( yfxfyxf YX . For this important 

case the )(zf Z , for the random variable YXZ  , is determined from Eq.(2.127) to be the 

convolution integral as follows: 

)()()()()( zfzfdxxzfxfzf YXYXz  



                   (2.128) 

 

Auxiliary Random Variable Approach. The auxiliary random variable approach is a method for obtaining 

the probability density function )(zfZ  for the random variable  yxhZ , . The approach consists 

three basic steps: defining an auxiliary random variable, using the thansformational theorem to obtain a 

joint probability density function, and an integration to obtain the marginal density for Z  and thus the 

desired density. 

In the first step a random variable W  is defined by  YXgW ,  this is a fictitious random 

variable and selected as a vehicle for using the two-dimensional transformation theorem. Usually  YXg ,  

is selected as just X , just Y , or a simple function of X  and Y  that might be suggested by the form of 

the function  YXh ,  which defines Z . 

The second step is the application of the two-dimensional transformation theorem to the following: 

 
 YXhZ

YXgW

,

,




                                (2.129) 

To find the joint probability density ),( zwfWZ  which is given by 





),( ),(),(

),(

),(
),(

ii
ii

yx yxyx

XY
WZ yxJ

yxf
zwf                     (2.130) 

Where ),( ii yx  are all real solution of  yxgw ,  and  yxhz , . 

The final step in the process of obtaining the probability density function )(zfZ  is to integrate the 

y 

x

z

z

y=z-x 

Figure 2.28 Region IZ for Example 2.24 

IZ 

{x+yz}
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joint density function ),( zwfWZ  as follows: 






 dwzwfzf WZZ ),()(                             (2.131) 

 

Example 2.25 

Let X  and Y  be a pair of random variables characterized by their joint probability density function 

),( yxfXY  . Define a new random variable Z  by YXZ   (same as in Example 2.24).Find the 

probability density function )(zf Z  for z  by using the auxialary random variable method. 

Solution 

Define the auxiliary random XW  , which now gives us two functions of two random variables 

XW   and YXZ  . Using the two functions of two random variables theorem the joint probability 

density ),( zwfWZ  is given by Eq.(2.130). There is only one solution to the set of equations, xw   and 

yxz  , which are easily seen to be wx   and wzy  . The Jacobian of the transformations is 

determined as 

1
11

01
)()(),(),(

),(),(

),( 





























y

yx

x

yx
y

x

x

x

y

yxh

x

yxh
y

yxg

x

yxg

yxJ  

Therefore the joint density can be written as  

),(),(),( wzwfyxfzwf XY
wzy

wxXYWZ 


  

The desired probability density function, )(wfW , is obtained by integrating the joint density 

),( zwfWZ  to give the result  

dwwzwfdwzwfzf XYWZ 







 ),(),()(  

 

 

Incremental Approach. The incremental approach can be used for certain problems of finding the 

probability density function )(zfZ  for random variable Z  defined by  YXhZ , . The method uses 

the fact that zzfZ )(  can be approximated by  

}{)( zzZzPzzfZ                            (2.132) 

Where }{ zzZzP   is equivalent to the probability that  yx,  is a member of 

}),(:),{( zzyxhzyxI z  . Thus the approximation above can be written as  

dxdyyxfzzf
zI

XYZ ),()(  


                            (2.133) 
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The approach relies on the assumption that as 0z  the integral over zI  becomes a linear function 

of z . When this happens, the z  is canceled from both sides of the approximation thus leaving 

)(zfZ  in the limit as 0z . 

 

Examples 2.26 

Suppose we are given random variables X  and Y  that are characterized by their joint probability 

density function ),( yxfXY   and that 0)( yfY  for 0y . A new random variable Z  is defined 

by XYZ  , the product of the two random variables. Find the probability density function )(zf Z  for 

Z  by the incremental method. 

Solution 

Using the incremental method we must first determine the probability that Z  is in the interval 

 zzz , , which is given by  

   

 








 








 



dy
y

z
y

y

z
fdxdyyxf

Y

zz
X

Y

z
PzzXYzPzzZzP

XY

yzz

yz XY ),(),(
/)(

/

 

Using (2.132) gives  







 dy

y

z
y

y

z
fzzf XYZ ),()(  

Cancelling the z , the equation above in the limit reduces to the result  





 dyy

y

z
f

y
zf XYZ ),(

1
)(  

This proof can be modified to include the case where 0)( yfY for 0y  to give the following result 

for the probability density )(zfZ  for the product of any two random variables XYZ  : 





 dyy

y

z
f

y
zf XYZ ),(

1
)(                         (2.134) 

 

2.9 Computation of E[h(X,Y)]  

As for the case of one random variable there are several basic methods for obtaining  ZE , where 

 YXhZ , . The first three methods described are comparable to those described for one function of one 

random variable. The forth technique is very useful for functions of more than one random variable and 

does not have a counterpart in the function of one random variable case. 

Method 1. Using ),( yxf XY , 
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 








 dxdyyxfyxhYXhEZE XY ),(),()],([][                      (2.135) 

Method 2. Using )(zfZ , 






 dzzzfZEYXhE Z )(][)],([                             (2.136) 

Method 3. Using a Monte Carlo technique or synthetic sampling. 

Method 4. Using iterated expected value, 

])],([[])],([[)],([][
YyXx

yXhEEYxhEEYXhEZE


                (2.137) 

 

Method 4 has no parallel for the case of one function of one random variable but can be a powerful 

method for computing expected values of functions of two random variables. The meaning of iterated 

expected value operation described above is easily understood and represents conditional expected values 

as follows: 

 








 dxdyyxhyxfYXhE XY ),(),()],([                        (2.138) 

Breaking the joint probability density function into the product of its conditional and marginal densities 

gives. 

 








 dxdyyxhxfxyfYXhE XY ),()()|()],([                     (2.139) 

Rearranging the integral on the right side of the equation above, and taking the )(xf X  through the 

integral with respect to y  (it is not a function of y ) gives 

dxdyxyfyxhxfYXhE YX ])|(),()[()],([  








                      (2.140) 

The term in brackets is recognized as the conditional expected value of  Yxg ,  or  

dyxyfyxhYxhE Y )|(),()],([ 




                             (2.141) 

Therefore   YXhE ,  becomes 






 dxYxhExfYXhE X )],([)()],([                            (2.142) 

In a similar fashion   YXhE , can be written in terms of the conditional expected value with respect to 

y  as follows 

])],([[)],([][
Yy

yXhEEYXhEZE


                         (2.143) 
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Example 2.27 

Given  YXZ  cos  with X  a uniform random variable on   ,  and Y  a Gaussian random 

variable with zero mean and variance equal to 1. Assume that X  and Y  are independent, and compute 

 ZE  the expected value of Z  using method 4. 

Solution 

Using (2.137), we have the expected value of Z  as  

])][cos([)][cos(][
Yy

yXEEYXEZE


  

where  

dxyxfyxyXE X 



)()cos()][cos(  

For this problem X  and Y  are independent, therefore the conditional density is the same as the 

marginal density, and the equation above can be written as 

Yy
Yy

Yy
dxyxyXE





  0

2

1
)cos()][cos(



 
 

The expected value of Z  can be found  





 0)(0]0[][ dyyfEZE YYy

 

The following example calculates some higher-order moments for jointly Gaussian random variable also 

using the concept of iterated expected values. 

 

Example 2.28 

Let X  and Y  be jointly normal random variables with parameters 0 YX   with X , Y , and 

XY  known. Find ]E[XY  and ]E[ 22YX . 

Solution  

Using the iterated expected value formula just presented, the ]E[XY  can be written as  

dxdyxyxyfxfXY YX 






 



 )()(]E[  

where 


















)1(2

)(
exp

)1(2

1
)(

22

21

2
XYY

XYXY

YXY

Y

xy
xyf





 

The term inside the square brackets can be simplified by taking x  through the integral and using the 

result for the conditional mean Eq. (2.108) to give 

)()()( 1xxdyxyyfxdyxyxyf XYXYYY







    

Substituting this result for the bracketed term and using second moment for the random variable X  gives 

the ]E[XY  as 
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YXXYXXYXY

XYXYX

dxxxf

dxxxfXY
























21

12

)(

])[(]E[
 

Similarly ]E[ 22YX  can be found in the following fashion: 

dxdyxyfyxxf

dxdyxyfyxxfYX

YX

YX


































))()(

))()(]E[

22

2222

 

The integral in the parentheses above represents the conditional second moment, and it can be written in 

terms of the conditional variance and the conditional mean form Eq. (2.107) as 

dxxxfdxxxf

dxxxfYX

X
X

YXY
XXYY

xYxYX

4
2

22
222

22222

)()()1(

][)(]E[
























 

The first integral is the variance of X , since X  has a zero mean, and the second is the fourth-order 

moment for the one-dimensional Gaussian random variable, which is known from Eq. (2.23). Substituting 

these second-, and fourth-order moments gives 

 

)21(

2

]3[])[1(E

222

22222

4
2

22
22222

XYYX

YXXYYX

X
X

YXY
XXYYYX















 

 

 

2.10 Multiple Random Variables 

2.10.1 Total Characterizations 

The real-valued functions for random variables nXXX ,, 21   and Y  are defined on a sample space 

and are said to be totally characterized or described with relation to calculating probabilities of acceptable 

events (i.e., events a member of F ) by their cumulative distribution function or probability density 

function. 

The joint cumulative distribution function ),,,( 2121 nXXX xxxF
n

  for random variables 

nXXX ,, 21   is defined by  

},,,{),,,( 22112121 nnnXXX xXxXxXPxxxF
n




                (2.144) 

It satisfies the extensions of the bounded, nondecreasing, and continuity properties given in 2.6.1 and can 
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be used to determine probabilities of given events. The joint probability density function 

),,,( 2121 nXXX xxxf
n

  is related to the joint cumulative distribution function through partial derivatives, 

and vice versa in terms of integrals, as 

n

x x x

nXXXnXXX

n

nXXX
n

nXXX

dxdxdxxxxfxxxF

xxx

xxxF
xxxf

n

nn

n

n
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










212121

21

21
21

1 2
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21
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),,,(),,,(

),,,(
),,,(

  
  








          (2.145) 

For a given vector X  of random variables nXXX ,, 21  , the characteristic function 

),,,( 21 n X  is defined as the “modified” Fourier transform of the joint probability density 

function  

ωωX

X









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
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





      (2.146) 

Where T
n ],,,[ 21  ω . This integral does not necessarily exist for all probability density functions 

and has a given region of convergence. 

The moment-generating function is defined as follows: 

n
XtXtXt

n

XtXtXt
n

dxdxdxexxxf

eEtttM

nn

nn
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

  



X

X

         (2.147) 

2.10.2 Partial Characterizations 

Partial characterizations include the various marginal and conditional densities and the higher-order 

moments. The higher-order moments can be determined from the definition of the moments. However, in 

many problems the characteristic function or moment-generating function is useful for that purpose. 

The rth-order higher-order moments for rkkk n  21  are defined by 

nn
k
n

kk

k
n

kk
kkk

dxdxdxxxxfxxx

XXXEm

n

n
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


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  

















               (2.148) 

Where rkkk n  21   

A well-known theorem gives the higher rth-order moments in terms of the characteristic function 

),,,( 21 n X  as follows: 
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0,,0,021
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








n

nn

n
kkk

n
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kkk jm
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

X                  (2.149) 

Where rkkk n  21  and nr   

Similarly the moments can be generated by using the moment-generating function through a 

corresponding theorem, from Davenport, that gives the higher-order moments in terns of the 

moment-generating function as follows: 

0,,0,021
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21

2121

),,,(







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
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tttn
kkk

n
r

kkk ttt

tttM
m






X                       (2.150) 

Where rkkk n  21  and nr   

The moment-generating function is simpler to obtain in that it is determined as a real integra. However, 

the use of the existing Fourier transform table to obtain the characteristic function, and the fact the 

characteristic function exists for cases where the moment-generating function does not exist, makes the 

characteristic function more usable. 

 

Example 2.29 

The random variables 1X , 2X , and 3X  are characterized by their joint probability density function 

),,( 321321
xxxf XXX ,which is  

)()()(6),,( 321
)32(

321
321

321
xxxexxxf xxx

XXX   

Determine, by using Eq. (2.149), the following third-order moments: (a) 001m , (b) 111m , (c) 030m ,(d) 

210m . 

Solution 

To obtain the moments from (2.149), we first need to calculate the characteristic function, which from 

(2.146) is as follows: 
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(a) The first-order moment 001m  is determined from (2.149) as 
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(b) The third-order moment 111m  is determined from (2.149) as 
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(c) The third-order moment 030m  is determined from (2.149) as  
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(c) The third-order moment 210m  is determined from (2.149) as  
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Since the random variables for this problem are independent, it is easy to check these results by 

computing the moments shown as the product of various moments of the random variables taken by 

themselves. When the random variables are not independent, then the higher-order moments cannot be 

calculated as products of the individual moments, so the formula above becomes more useful for their 

evaluation. 

 

Another useful characterization for random variables is the cumulants that will play a role in the 

analysis of nonlinear systems with random process excitations. The cumulants are defined in terms of the 

joint characteristic function as follows: 
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
                   (2.151) 

Where rkkk n  21  and nr   

The only difference in the preceding formulas for moments and cumulants is that the natural log(ln)  

of the characteristic function is the object of the partial derivatives for the cumulants, whereas the 

characteristic function is used for determining the moments.  

 

Example 2.30 

The random variables 1X  and 2X  are characterized by their joint probability density function 

),( 2121
xxf XX , which is  

)()(2),( 21
)2(

21
21

21
xxexxf xx

XX   

Determine, by using Eq. (2.151), the following cumulants: (a) 01c , (b) 10c , (c) 11c and (d) the rth order 

cumulant jkc  for 1,1  kj , and rkj  . 

Solution  

To obtain the cumulants from (2.151), we first need to calculate the characteristic function, which from 

(2.146) is as follows 
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(a) The first-order cumulant 10c  is determined from (2.151) as 
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(b) The first-order cumulant 01c  is determined from (2.151) as 

2

1

)2(

1))((

)2ln)2ln()1ln((
)(

0
01

0
02

211
10

2

1

2

1




































j

jj

jj
jc

 

(c) The first-order cumulant 11c  is determined from (2.151) as 
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(d) The rth order cumulant jkc  for 1,1  kj , and rkj   is seen from the equation above to be 0. 

 

 

A theorem presented by Nikias and Petropulu originally presented by Brillinger gives the nth-order 

cumulant in terms of all the nth-order moments as follows: 

Theorem. If nXXX ,, 21   are jointly Gaussian random variables specified by their various order 

moments ][ jiij XXEm  , then the nth cumulant ][ 21111 nXXXcumc    can be written in terms of 

the ],[
21 niii XXXE   as follows: 

][][][)!1()1(
21

1

111 isiisiisi

p

partitionsall

XEXEXEpc
p


                (2.152) 

Where the summation is taken over all partitions npsss n ,,2,1},,,,{ 21    of the set of integers 

 n,,2,1  . 
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Example (2.31)  

Use the theorem above to determine the first, second, and third cumulants in terms of various third-order 

moments (from Nikias and Petropulu). 

Solution 

The )( 11 Xc  and ),( 1111 XXc are easily shown to be 

][][][),(

][)(

2121111111

1111

XEXEXXEXXcc

XEXcc




                (2.153) 

In order to determine the cumulant )( 321111 XXXcc  , it is necessary to determine all partitions of 

 3,2,1 . For 1p , just one set we get }3,2,1{1 s . For 2p , we have the following ways to partition: 

}1{1 s  and }3,2{2 s , or }2{1 s and }3,1{2 s  or }3{1 s  and }2,1{2 s . And finally for 

3p , there is only one way: }1{1 s , }2{2 s  and }3{3 s . 

From (2.152) we can now write )( 321 XXXc  as 
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     (2.154) 

Similarly it can be shown that 1111c is as follows: 
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(2.155) 

 

For zero mean random variables the first, second, third, and fourth-order cumulants reduce to the 

following: 
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2.10.3 Gaussian Random Vectors 

When more than two jointly normal random variables are considered, it becomes convenient to use a vector 

formulation. Random variables nXXX ,, 21   are jointly Gaussian if their joint probability function can 

be written in the form 
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                            (2.157) 

For the random vector X , m  and K  are the mean vector and covariance matrix, respectively. The 

 .E  is the expected value operator. The vector m , called the mean vector of the random vector X , has 

the means of each random variable as its components. The argument of the exponential is a 

vector-matrix-vector product that yields a scalar result. The matrix K  is called the covariance matrix. It 

can be easily shown that K  is a square matrix with variances of the individual random variables down 

the main diagonal and covariances of the respective random variables off the main diagonal. It can also be 

shown that K  is symmetric, positive definite, and has all its eigen values greater than 0. instead of 

writing the long form given above, it is convenient to use a short-hand notation and write that 

],[~ KmX N , which will mean that X  is a Gaussian random vector with mean vector m , 

covariance matrix K , and have the joint density given in (2.157). 

Moments and cumulants for Gaussian random variables. Let nXXX ,, 21   be jointly Gaussian 

random variables characterized by their mean vector Xm  and covariance matrix K . The cumulants and 

moments for the jointly Gaussian random variables will now be presented. 

The joint characteristic function for a Gaussian random vector can be shown  
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Where ],,,[ 21 n
T  ω  and                        (2.158) 

]][,],[],[[ 21 n
T
X XEXEXE m  

Theorem. If 321 ,, XXX , and 4X  are zero mean jointly Gaussian random variables specified by 

their second-order moments ]X[X jiEmij  , then the fourth-moment ][ 4321 XXXXE  can be written 

in terms of the ]X[X jiE  as follows: 

]X[X]X[X]X[X]X[X]X[X]X[X][ 3241423143214321 EEEEEEXXXXE     (2.159) 

2.11 M Functions of N Random Variables 

In general, we would wish to find the joint probability density function ),,,( 21 Nyyyf   for random 

variables NYYY ,,, 21   defined by  

),,,( 21 Nii XXXgY   Mi ,,2,1    

When M  and N  are equal, it is possible to find the joint density of the transformed variables by 

extending the transformation theorem given in Eq.(2.113). When M  and N  are not equal auxiliary 

random variables can be defined to make the orders equal then use the transformation theorem followed by 

integrating out with respect to the auxiliary variables. 

The extension of the distribution function approach is possible, but usually the high-dimensional space 

makes it difficult to describe the regions over which we integrate, and the following partial derivatives of 

the distribution are certainly not a picnic either. 

We are then led to obtaining the joint density by use of statistical sampling, where again the higher 

dimensions make the number of the samples necessary to get a reasonable estimate of the probability 

density by a histogram becomes exceedingly large. This problem can be alleviated if the densities involved 

are of a certain parametric form. 

2.12 Summary 

In this chapter the basic definitions for a single random variable and several joint random variables were 

presented along with the various forms of their characterizations, which included the mean, variance, 

covariance, and higher-order moments as partial characterization. Total characterizations for random 

variables were given in terms of the probability density function and the corresponding probability 

distribution functions and joint probability distribution functions. 

Common probability density functions for both continuous and discrete random variables were then 

discussed including the Gaussian, uniform, exponential Raleigh, chi-squared, beta, and Cauchy densities 

for the continuous case and uniform, Bernoulli, Poisson, binomial, geometric, and negative binomial 

densities for discrete case. The mean, moments, and variance of these common random values were given 
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to form a small catalog of densities and partial characterizations of the associated random variables. 

For a single function of a single random variable, the main techniques discussed for obtaining the 

density of the transformed random variable in terms of the given random variable were the transformation 

theorem and the distributional approach. The distributional approach involved first obtaining the 

distribution function and then obtaining the density by taking its derivative. These same basic techniques 

were used for a single function of multiple random variables by using an auxiliary random variable 

approach. In this way the n-dimensional transformation could be used first to obtain a joint probability 

density function followed by an integrating out of those auxiliary random variables from the joint density to 

give the required density. 

 

 

----------This is the end of Chapter02---------- 


