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1 Experiments and Probability 

1.1 Definition of an Experiment 

To fully appreciate the meaning of probability and acquire a strong mathematical foundation for analytical 

work, it is necessary to define precisely the concept of an experiment and sample space mathematically. 

These definitions provide consistent methods for the assignment of elementary probabilities in paradoxical 

situations, and thus allow for meaningful calculation of probabilities of events other than the elementary 

events. Although at the beginning this approach may seem stilted, it will lead to a concrete concept of 

probability and an interpretation of derived probabilities. 

An experiment E  is specified by the three tuple   .,, PFS , where S  is a finite, countable, or 

noncountable set called the sample space, F  is a Borel field specifying a set of events, and  P  is 

a probability measure allowing calculation of probabilities of all events.  

1.1.1 The Sample Space 

The sample space S  is a set of elements called outcomes of the experiment E  and the number of 

elements could be finite, countable, or noncountable infinite. For example, S  could be the set 

containing the six faces of a die,  654321 ,,,,, ffffffS  , or the positive integers,  ,...2,1:  iiS , 

or the real values between zero and one,  10:  xxS , respectively. 

An event is defined as any subset of S . On a single trial of the experiment an outcome is obtained. 

If that outcome is a member of an event, it is said that the event has occurred. In this way many different 

events occur at each trial of the experiment. For example, if 1f  is the outcome of a single trial of the 

experiment then the events  1f ,  21, ff ,  31, ff , ... ,  61, ff , ... ,  531 ,, fff , … , all occur. Events 

consisting of single elements, like 1f  , are called elementary events. The impossible event corresponds 

to the empty set   and never occurs, while the certain event, S , contains all outcomes and thus always 

occurs no matter what the outcome of the trial is. Events A  and B  are called mutually exclusive or 

disjoint if BA , where   is the null set. 

Two events A  and B  are called independent if      BPAPBAP  . The events 

nAAA ,,, 21   are defined to be independent if the probabilities of all intersections two, three, ... , and n  

events can be written as products. This implies for all ,,,, kji  that the following conditions must be 

satisfied for independence 
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1.1.2 The Borel Field 

A field can be defined as a nonempty class of sets such that (1) if Fa , then the complement of Fa  

and (2) if Fa and Fb  then Fba  . Thus a field contains all finite unions, and by virtue of 

compliments and DeMorgan's theorem, all intersections of the collection. If we further require that all 

infinite unions and intersections are present in the collection, a Borel field is defined. 

The set of all events of our experiment that will have probabilities assigned to them (measurable 

events) must be a Borel field to have mathematical consistency. If A , a collection of events, has a finite 

number of elements, a Borel field can be formed as the set of those events plus all possible subsets obtained 

by unions and intersections of those events including the null set   and entire set S . 

If a set is noncountable, it is little harder to describe a Borel field. The most common Borel field, 

containing the real numbers, is the smallest Borel field containing the following intervals:  1: xxx  for 

all 1x  real numbers. This will contain all finite and infinite closed and open intervals of the form 

],(),,[],,[ bababa , and  ba, , where a  and b  are real numbers and the intersections and unions of 

those intervals thereof. 

 

1.1.3 The Probability Measure 

The probability measure,  P , must be a consistent assignment of probabilities such that the following 

conditions are satisfied 

(1) For any event FA , the probability of the event A ,  AP , is such that   0AP . 

(2) For the certain event, S ,   1SP . 

(3) If A  and B  are any two events such that BA  then      BPAPBAP  . 

(3a) If FAi   for ,2,1i , and ji AA   for all ji   , then 

          ii APAPAPAAAP 2121  . 

With these conditions satisfied, the probability of any event FA  can be calculated. How does one go 

about assigning probabilities such that we satisfy the conditions above?  

For the case where S  is a set with a finite number of elements the conditions above can be satisfied 
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by assigning probabilities to all the events with only single outcomes,  ie , where Sei   , such that 

conditions (1) and (2) above are satisfied. This mapping from the sample space S  to the positive reals is 

called the distribution function for the probability measure and equivalently specifies the probability 

measure. 

 When S  is a set with a noncountably infinite number of elements the assignment above is not 

useful as the probabilities of most elementary events will be zero. In this case the assignment of 

probabilities is consistent if the probabilities of the events  1: xxx   for all 1x  real numbers are 

assigned such that 

(1)   1:0 1  xxxP  (bounded). 

(2)    12 :: xxxPxxxP  for all 12 xx   (nondecreasing function of x )  

and 

(3) lim as 0  of   1: xxxP  equals  1: xxxP   (continuous from the right side). 

This mapping:  1: xxxPx  , defined for all x , is called the cumulative distribution 

function and equivalently describes the probability measure for the noncountable case. From this 

distribution function we are able to calculate all probabilities of events that are members of the Borel field 

F . The cumulative distribution function could have also been used to specify the probability measure for 

the case where S  has a countable or finite number of elements.  

A number of examples of experiments will now be presented. They will include a couple of 

coin-tossing experiments and a die-rolling experiment. The experiments will be described by specifying 

their sample space, Borel field, and probability measures. 

 

Example 1.1 

This experiment consists of a single flipping of a coin that results in either a head or a tail showing. Give its 

description by specifying as   PFS ,, . 

Solution 

The possible outcomes of the experiment are either a head or a tail. Thus the sample space can be described 

as the set  tailheadS , . 

 The Borel field F  consists of the elementary events  head  and  tail , the null set  , and S . 

 To complete the description of the experiment, a probability measure must be assigned. This particular 

assignment could be based on previous experience, careful experimentation, use of favorable to total 

alternatives, or any other interpretation of the concept of probability. There is no right or wrong assignment, 

but certain assignments (models) may be more appropriate in explaining the results of corresponding 

physical experiments. For the purpose of this example, we assume that this coin has been tampered with for 

more often a head comes up than a tail, which we specify by   pheadP   and   ptailP 1 . These 

two assignments comprise the distribution function and thus the probability measure  P  for the 
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experiment. 

 

Example 1.2 

A more realistic assignment for the experiment of flipping a coin could be the experiment   PFS ,,  

defined as follows:  edgetailheadS ,,  with  P  described by   49.0hP ,   49.0tP , 

  02.0eP . The Borel field F  is defined as the power set of S . 

 (a) Identify all the events (elements) of the Borel field. (b) Calculate the probabilities of those events. 

Solution 

(a) The Borel field F  specifying the measurable events is the power set of S  (all possible subsets of S ) 

given by 

              ethetehthethF ,,,,,,,,,,,,  

Where   is the impossible event, and  eth ,,  is the certain event. The other events consist of all 

possible proper subsets of S , single elements, and combinations of two elements. 

(b) By definition   0P  and the probabilities of the elementary events are given in the specification 

of the probability measure of the experiment as   49.0hP ,   49.0tP , and   02.0eP . The 

probabilities of the other events can be determined by repeated application of property (3) for the 

probability measure. For example the events  h  and  e  are mutually exclusive therefore  ehP ,  

can be found as follows: 

          
51.002.049.0

,


 ePhPehPehP 

 

  Similarly   98.0, thP ,   51.0, etP , and   1,, ethP . 

 

1.2 Combined Experiments 

Combined experiments play an important role in probability theory applications. There are many ways we 

can combine experiments, including cartesian products in which independent trials of the same or different 

experiments can be described. In some cases the probabilities of events will depend on the results of 

previous trials of experiments or random selection of different experiments. A number examples of 

combined experiments are now explored beginning with the classical case of sampling with replacement. 

 

1.2.1 Cartesian Product of Two Experiments  

Consider the case of having two separate experiments specified by the following:   ..,: 1111 PFSE  and 
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  ..,: 2222 PFSE . The sample spaces 1S  and 2S  are usually different sets, for example, results of a 

coin toss and results of a die roll, but they could be the same sets representing separate trials of the same 

experiment as in repeated coin-tossing experiments. We can define a new combined experiment by using 

the cartesian product concept as 21 EEE  , where the new sample space 21 SSS   is the 

cartesian product of the two sample spaces expressible by the ordered pair of elements where the first 

element is from 1S  and the second is from 2S . 

 

Example 1.4 

Let experiment   1111 ,,: PFSE  and   2222 ,,: PFSE  be defined as follows: 1E  is the experiment 

of flipping a coin with outcomes head  h  and tail  t  with equal probability of occurrence. 2E  is the 

experiment of random selection of a colored ball from a box with outcomes red  r , white  w , and blue 

 b  with replacement. Define the new experiment E  as 21 EEE   with experiment 1E  and 2E  

being performed independently of each other; that is, the outcome of experiment 1E  in no way effects the 

outcome of 2E , and vice versa. Set up a reasonable model for this new experiment. 

Solution 

To specify the model it suffices to give S , F ,  P  of the new experiment E . 

 The new sample space S  is the Cartesian product of the two experiments and given by 21 SSS  . 

Elements of S  are ordered pairs with the first element coming from  thS ,1   and the second from 

 bwrS ,,2  ; therefore 

            btwtrtbhwhrhS ,,,,,,,,,,,  

 The new Borel field F  is selected as the power set of S , that is all possible unions and 

intersections of S . This includes the null set, the entire set, and all possible pairs, triples, and so on, as 

shown below: 

                 
                   
                    

             



























btwtrtbhwhrh

wtwhrhrtwhrhbhwhrh

wtrhrtrhbhrhwhrh

btwtrtbhwhrh

F

,,,,,,,,,,,

,...,,,,,,,,,,,,,,,,,

,...,,,,,,,,,,,,,,,

,,,,,,,,,,,,



 

The probability measure  P  can be described by specifying the probability of the elementary 

events. Once these are known, the probability of any event can be found by writing the event as a union of 

those events and using property (3). Since the experiments are independent, it is reasonable to assign 

probabilities of the elementary events as a product of the probabilities from each experiment. For example, 

      rPhPrhP , . If head and tail are equally probable in 1E  then it is reasonable for  1P  to be 
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described by     21 tPhP , and if we have reason to believe that red, white, and blue are not equally 

probable in 2E , then  2P  could be given by   5.0rP ,   3.0wP ,   2.0bP . Thus, for this 

example, the probability measure  P  can be described by specifying the probabilities of the elementary 

events (the distribution funciton): 

                 
                 
                  1.0,1.0,

15.0,15.0,

25.0,25.0,






bPtPbtPbPhPbhP

wPtPwtPwPhPwhP

rPtPrtPrPhPrhP

 

The event of a head in the new experiment is       bhwhrhH ,,,,, , and its probability of 

occurrence can be determined using property (3) as 

                  
5.01.015.025.0

,,,,,,,,


 bhwhrhPbhwhrhPHP 

 

 

1.2.2 Cartesian Product of n Experiments  

Consider the case of having n  separate experiments specified by   .,,: kkkk PFSE  for nk ,,2,1  . 

Define a new combined experiment   .,,: PFSE  as a cartesian product: nEEEE  21  

where the new sample space nSSSS  21  is the cartesian product of the n  spaces and 

expressible by the ordered n-tuples of elements whose first element is from 1S  and the second is from 

2S , the nth from nS . The kE  are, in general, different, but in many cases the experiment could be 

formed from independent trials of the same experiment. Also there is an important class of problems where 

the experiments are the same, yet they cannot be thought of as independent. A good example of this is the 

random selection of outcomes without replacement. Examples of each type are now presented. 

 

Binomial Distribution. Consider the experiment   .,,: 1111 PFSE  where the outcomes of the experiment 

are either failure indicated by a 0 or a success indicated by a 1; therefore  1,01 S . Assume that the 

probability measure  .1P  for the experiment is given by     pPsuccessP 


1  and 

    pPfailureP 


10  and that the 1F  is the set       1,0,1,0, . Define a new experiment by 

111 EEEE    where   .,,: PFSE  describes the new experiment. Assume that this 

represents independent trials of the same experiment 1E  where the probability of success or failure is the 

same for each trial.  

The  .,, PFS  are now described for this new experiment. The new S  is the cartesian product 
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111 SSSS    and consists of all possible n-tuples where the elements are either 0 or 1 as shown 

below:  

 
 
 
 

  































1,1,1,1

1,1,0,0

0,1,0,0

1,0,0,0

0,0,0,0













S                                (1.2) 

The new probability measure is specified once the distribution function or probabilities of the 

elements of S  are determined. By virtue of the independent experiment assumption, the probability of 

each elementary event of the new experiment is the product of the probabilities for the elementary events in 

the single trial. For example, the   1,1,0,,0,1,1,0 P  is given by  

                   44 111001101,1,0,,0,1,1,0  nppPPPPPPPP         (1.3) 

As a matter of fact every sequence that has only four ones (successes) will have this same probability. The 

total number of these sequences is the combination of n  things taken four at a time, since we have n  

locations and we want only four of them with ones. The probability distribution function for the new 

experiment can then be determined as follows, where the first entry is the elementary sequence and after 

the arrow is the corresponding probability: 

             Outcome     Probablity   

           
           
           
           

            0

22

11

11

0

)1(11111,1,,1,11,1,,1,1

)1(11001,1,,0,01,1,,0,0

)1(01000,1,,0,00,1,,0,0

)1(10001,0,,0,01,0,,0,0

)1(00000,0,,0,00,0,,0,0

ppPPPPP

ppPPPPP

ppPPPPP

ppPPPPP

ppPPPPP

n

n

n

n

n





























        (1.4) 

The Borel field will be the power set associated with S  and specifies all events for which probabilities 

are assigned. 

Probabilities of different type of events for the above example can be determined by using the 

distribution function described. There are a wide number of applications as a success can mean all kinds of 

things. For example, a success could be obtaining an ace in drawing a card from a standard deck of cards 

with replacement, or obtaining successful reception of a binary symbol from a random communication 

channel. 

The event of exactly k successes out of n independent trials appears frequently in physical situations 

and its probability will now be derived using the results above. Define the event 1A  as the event of 

exactly one success out of n  trials. From the results above we see that the probability of exactly one 

success out of n  trials is 
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   
         
        

  11

1

1
1

0,0,,0,10,1,,0,01,0,,0,0

0,0,,0,10,1,,0,01,0,,0,0















npp
n

PPP

P

trialsnofoutsuccessoneexactlyPAP





                  (1.5) 

Similarly the probability of exactly k  successes out of n  trials can be found to be 

      knk
k pp

k

n
trialsnofoutsuccesskexactlyPAP 








 1         (1.6) 

In some problems we may wish to know the probability that the number of successes out of n trials 

is within a range of values. The probability that the number of successes k  is in the range nkm   

can be obtained by adding the probabilities of exactly k  successes for that range, since the events kA  

and jA  are mutually exclusive events for all k  and j  such that jk  . Therefore 

 

 

















































 











K

Jk

knk
K

Jk
k pp

k

n
AP

successes

Kexactly

successes

Jexactly

successes

Jexactly
PKsuccessesofnumberJP

1

1





(1.7) 

 

Example 1.5 

Consider the experiment of tossing a fair coin with the sample space  thS ,  and probability 

distribution   6.0hP  and   4.0tP . Suppose the experiment is performed 10 times independently 

to define a new cartesian product experiment. 

(a) Determine the probability that we get exactly 5 heads in the 10 trials. 

(b) Determine the probability that we get greater than 7 heads in the 10 trials. 

(c) Determine the probability that we get less than or equal 9 heads in the 10 trials. 

(d) Determine the probability that the number of tails is greater than or equal to 4 and less than or 

equal 5. 

 

Solution 

The desired probabilities are determined for Eqs. (1.6) and (1.7) as follows: 

(a)    trialsofoutheadsexactlyPAP 1051   

    20066.04.06.0
5

10 5105 







 

 

(b) 










































heads

exactly

heads

exactly

heads

exactly
P

headsof

number
P

1098
108  
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           

1269790.0

4.06.0
10

10
4.06.0

9

10
4.06.0

8

10 0101928































 

(c)  trialsofoutheadsequalorthanlessP 109  

 

    99395.04.06.0
10

10
1

10101

010 









 trialsofoutheadsexactlyP

 

(d) 


































heads

exactly

heads

exactly
P

headsof

number
P

54
54  

        1315425.04.06.0
5

10
4.06.0

4

10 5564 
















  

 

Approximations for Binomial Probabilities. The probabilities of k  successes in n  trials of a 

Bernoulli experiment was found to be as in Eq. (1.6) and evaluating probabilities of ranges of successes is 

given in Eq. (1.7). In Figure 1.1 the  trialsnofoutsuccesskP  is plotted for values of n  

equal to 5, 10, and 50 for all values of k , and a   6.0successP . The graphs show a tendency toward 

a hill-shaped curve similar to a Gaussian function. These plots would be symmetrical around the point 0.5 

n  if 5.0p . However, when p  does not equal 0.5, as for the cases given, the plot is not quite 

symmetrical. If the number of trials is large, the calculation load due to the factorials is considerable, and 

certain approximations to these probabilities become useful. Many of these approximations are good 

provided that the number of trials n , number of successes k , and probability of success p  satisfy a 

given set of conditions. Of these approximations we will present the DeMoivre and Poisson approximations 

and the regions where the approximations are reliable. 

 

DeMoivre-Laplace Approximation. For   11  pnp  and npk   of the order of  pnp 1 , 

   
 





















 

pnp

npk

pnp
pp

k

n knk

12
exp

)1(2

1
1

2


                 (1.8) 

 

Poisson Approximation. For 1n  , 1p  , and np  of order 1, 

   
!

1 )(

k

np
epp

k

n k
npknk  








                            (1.9) 

 

Approximation of Regions of Successes in Bernoulli Trials. Say that we are interested in approximating 

the probability that the number of successes k  in n  repeated trials of a Bernoulli experiment is in the 
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range 21 kkk  . If this range of successes contains values that satisfy the DeMoivre-Laplace 

approximation, then the summation can be approximated by using the error function or the )(x  function 

as follows: 

  







































)1()1(
1 12

2

2
pnp

npk

pnp

npk
pp

k

nk

kk

knk                      (1.10) 

      where   dyex yx 2/2

2

1
)( 

 
  

The )(x  can only be determined by numerical integration as there is no antiderivative and it is 

convenient to use the table given in some book appendix contents. 

 

0 

0 

0.1 

0.2 

0.3 

0.4 

1 2 3 4 5 0

0

0.1

0.2

0.3

2 4 6 8 10 

0 

0 

10 20 30 40 50

N=5,  p=0.6,   Binom (k,5) N=10,  p=0.6,  Binom (k,10) 

N=50,  p=0.6,  Binom (k,50) 

Figure 1.1  Plot of P(k successes out of n trails) for p=0.6 and n=5,10, 50. 

0.04 

0.08 

0.12 

P(k successes) P(k successes) 

P(k successes) 

k k

k
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Multinomial Distribution. A combined experiment that is an extension of the Bernoulli trial experiment 

just described, which resulted in the binomial distribution, is the case of multiple occurrences of several 

different events on multiple trials of the same experiment. Consider an experiment   .,,: 1111 PFSE . 

Define a set of events 1A , ktoi 1 , consisting of elements of 1S  such that their union is the certain 

event, they are pairwise disjoint, and their probabilities are given by   ipAP 1  for ktoi 1 . 

Define a new experiment E  by 111 EEEE    described by   .,,: PFSE . Assume 

that this represents n  independent trials of the same experiment 1E . Let in , ktoi 1 , be the 

number of times event iA  occurs in the new experiment, which is composed of n  repeated trials. Also 

assume that 0in  and nnnn k  21 . 

It can be shown that the probability that iA  occurs exactly in  times in the n  trials is 

kn
k

nn

k

kk

ppp
nnn

n

timesnexactlyoccursA

timesnexactlyoccursA

timesnexactlyoccursA

P 


21
21

21

22

11

!!!

!

,

,

,





















              (1.15) 

 

Hypergeometric Distribution. In the previous compound experiments the trials of the experiment were 

considered to be independent. A very important class of experimentation problems is sampling done 

without replacement, for a finite number of elements, and without independent trials. For example, if a  is 

the number of successful  s  elements and b  is the number of failure  f  elements and n  elements 

are drawn at random but not replaced, the corresponding outcomes of the experiment do not contain all 

possible n-tuples of s and f, So the n-tuple  sss ,,,   and sequences containing more than a  successes 

are not possible. 

It can be shown for this experiment that the probability of k  successes out of n  trials can be 

determined as  

,1,0,)( 








 



















 k

n

ba
kn

b

k

a

trialsninsuccesseskP                 (1.16) 

The next example is typical of the type of problems for which the hypergeometric formula above can 

be used. 
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1.2.3 Counting Experiments  

A special class of compound experiments deal with successive application of experiments where the total 

experiment may be stopped at any point depending on the results from the current experiment. Two 

common distributions result from these compound experiments. 

 

Geometric Distribution. The geometric distribution is a result of another form of compound experiment. 

Define a countable number of identical experiments   .,,: kkkk PFSE  for ,2,1k . Each of these 

experiments will be of the Bernoulli type (two possible outcomes) previously discussed, with identical 

probabilities of success; the result of the experiment, if performed, is independent of previous or future 

experiments. The new experiment is described as follows: Perform experiment 1E  if a success is obtained, 

then stop; if a success does not happen, then perform experiment 2E ; if a success occurs, then stop 

otherwise. Continue this process until a success occurs. Thus the number of trials is not the same each time 

the compound experiment is performed, and thus the sample space is not a cartesian product. 

If p  is the probability of success on each experiment, then the sample space, Borel field and 

probability measure can be described as follows: The elementary events are sequences of 1's (for success) 

and 0's for failures but with the property that they end on a 1 and only have 0's preceding the 1. Thus S  

can be described by  

         ,1,0,,0,0,,1,0,0,1,0,1S                        (1.17)  

Notice that       .,1,1,0,1,0,0,1 etc , are not elements of the sample space since the new experiment would 

stop at a 1 and not proceed to the next one. Events that are collections of outcomes are not of the same 

sequence length. For example,     1,0,1  is an event where a success is obtained in less than or equal to 2 

trials. 

The probability measure  .P  can be specified by giving the distribution function for the elementary 

events. The   1P  is the probability of getting a success on the very first trial. Since the probability of a 

success on the first experiment is p , the probability of getting   1  is also p ,  

   pP 1                                    (1.18) 

The probability of getting   1,0  equals the probability of getting a failure on performing the first 

experiment and getting a success on the performance of the second experiment. Since results of each 

experiment are independent if performed, the   1,0P  can be written as a product: 

    ppP  11,0                                 (1.19) 

Similarly the probability of the elementary event consisting of a sequence of 1k  failures (0's) 

followed by a single success (1) is 
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    
 zerosk

ppP k

1

11,0,0,0 1


 


                            (1.20) 

These probabilities as k  determine the distribution function, or equivalently the probability 

measure  .P . It can be shown that 

 




 
1

1 11
k

k pp                                 (1.21) 

The Borel field is again defined as the power set of S , that is, all possible subsets of S . The 

probabilities of arbitrary events that are the subsets of S  can then be found by adding up the probabilities 

of the elementary elements in the event. For example, define the event A  to be the set of outcomes such 

that a success occurs on the performance of an odd number of experiments. Thus A  can be written as 

          ,1,0,,1,0,0,0,0,1,0,0,1 2kA                          (1.22) 

The probability of A  can be determined by adding up the probabilities of the elementary events and using 

the properties of a geometric sequence as follows. 

           
 

  pp
ppp

PAP

k

k

k




















 2

1

11

1
1

,1,0,,1,0,0,0,0,1,0,0,1

0
2

2

2 

                     (1.23) 

 

Negative Binomial Distribution. An extension of the geometric experiment is a compound experiment in 

which the number of trials necessary to obtain k  successes is desired rather than the number of trials 

needed for a single success. The basic underlying experiment is to define a countable number of identical 

experiments   .,,: kkkk PFSE  for ,2,1k  Each of these experiments will be of the Bernoulli type 

with identical probabilities of success, and the result of the experiment, if performed, is independent of 

previous or future experiments. The new experiment is described as follows: Perform experiment iE  if a 

success is obtained and it is the kth, then stop; if not, continue to the next experiment 1iE . Continue this 

process until the kth success occurs. 

Let x  be the number of trials in which the kth success occurs; then the probability of that event can 

be shown to be 

 

  ,2,1,1
1

1












  kkkxpp
k

x

trialxththeonoccurssuccesskththethateventP

kxk                  (1.24) 

The following example illustrates the type of problems that will use the negative Binomial distribution 

given above. 

 

Example:  
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Suppose the probability of getting a 2f  on the single toss of a die is 0.2. Find (a) the probability that 

the fourth 2f  occurs on the 6th trail; (b) that the fifth 2f  occurs before the 7th trail. 

Solution:  

(a)  

           

 

  02048.02.012.0
14

16

64

464 










 

trialththeonoccurssuccessththethateventP

 

(b)  

          

 
 
 

    02048.02.012.0
15

16
2.012.0

15

15

65

55

75

565555 



































trialththeonoccurssuccessththethatevent

trialththeonoccurssuccessththethatevent
P

trialththebeforeoccurssuccessththethateventP


 

 

1.2.4 Selection Combined Experiment 

A different type of combined experiment will now be considered that is a combination of three or more 

experiments. For purpose of illustration only three component experiments are presented. Let the three 

experiments be defined as  

        .,,:,.,,:,.,,: 222211110000 PFSEPFSEPFSE  

The sample space for E0  consists of only two outcomes ( 1e  and 2e ). These outcomes serve to help us 

select which one of the other experiments will be performed. If the outcome is 1e , then �E1  is performed 

with outcome �i ; if the outcome is 2e  then E2  is performed with outcome �i . Thus the combination 

experiment   .,,: PFSE  can be described as follows: The sample space S  will consist of ordered 

pairs of elements the first either 1e  or 2e  and the second either 1Si   or 2Si  . Thus a trial of the 

combined experiment results in an outcome  ,eec  , where  21,eee  and 21 SS  . 

The Borel field F  will be defined to be the set of all possible subsets of S�, and the associated 

probability measure can be described as 

       

   
    22

11

0,

eeifPP

oreeifPP

where

PePeP

ijj

ijj

jiji













                         (1.27) 

The product of the probabilities is because of the assumption that the experiment �E0  is independent of 
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the experiments �E1  and �E2 . 

 

1.3 Conditional Probability 

The probability measure allows us to calculate the probabilities of all events that are members of the Borel 

field for the defined experiment. It will become useful to define the concept of conditional probability of 

events. Given a conditioning event C� such that   0CP , the conditional probability of any event A 

assuming C is defined as 

   
 CP

CAp
CAP



|                                 (1.28) 

The following examples consider the calculation of conditional probabilities for discrete and 

continuous sample spaces. It is seen that the fundamental set operations and the probability measure for the 

underlying experiment are used to obtain conditional probabilities. 

 

 

Example 1.11 

Consider an experiment defined as a single toss of a “crooked” die with sample space 

 654321 ,,,,, ffffffS  . The probability measure, maybe based on past history, is known to be 

     

     
32

1

32

1

16

1
8

1

4

1

2

1

654

321





fPfPfP

fPfPfP
 

Let the conditioning event C  be given as  531 ,, fffC  , the face of the die is odd, and calculate the 

 CAP |  where  21, ffA  , the face is less than or equal 2. 

Solution 

By the definition of conditional probability, Eq. (1.28),   CAP |  is 

   
 

    
  

  
   21

16

3218121

21

,,

,,

,,,
|

531

1

531

53121








fffP

fP

fffP

fffffP

CP

CAP
CAP



 

 

Example 1.13 

Define an experiment that has as outcomes, t , the set of real numbers greater than or equal to zero and that 

the outcome represents the time until a certain device fails. The probability measure for the experiment is 

described as 
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  01   xforexttimefailureP x  

The Borel field is given by the smallest field containing the intervals  xtt 0:  for all 0x . Find 

the  1|2  ttimefailurettimefailureP . 

Solution 

From the definition of conditional probability the probability that the time to failure is less than or equal 2 

for the device given that the failure time is greater than 1 is 

         
  1

12
1|2





tfailureP

tfailuretfailureP
tfailuretfailureP


 

Using set operation gives 

     2112  tfailuretfailuretfailure   

And the denominator is seen to be 

     
  1111

111
 



ee

tfailurePtfailureP
 

Substituting these two results into the first equation gives us the following result 

       
  

    1
1

12

1
11

1

21
1|2
















e
e

ee

tfailureP

tfailureP
tfailuretfailureP

 

 

1.3.1 Total Probability Theorem 

Given n  events nAAA ,,, 21   such that 

ji AA   for all ji   (mutually exclusive) 


n

i
i SA

1

  (exhaustive)                                         (1.31) 

Then it can be shown that the total probability of an arbitrary event B  can be written in terms of the 

following conditional probabilities as 

             

   i
n

i
i

nn

APABP

APABPAPABPAPABPBP








1

2211

|

||| 

               (1.32) 
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1.3.2 Bayes's Theorem 

A very important theorem that has many applications is Bayes's theorem which involves the determination 

of conditional probabilities  BAP k |  under the same framework as above. It is easily shown that 

 

   
 

   
           
   
   










n

i
ii

kk

nn

kk

k
k

APABP

APABP

APABPAPABPAPABP

APABP

BP

BAp
BAP

1

2211

|

|

|||

|

|





             (1.33) 

The communication receiver and radar signal detector are the typical examples that are representative of the 

type of problem that can be solved using Bayes's theorem and the total probability theorem. 

 

Example 1.14 

Consider an experiment involving a random selection of one of three boxes. The random selection is of a 

single ball from the box chosen. The boxes contain red, white, and blue balls with specified probabilities of 

selection. Assume that 

     
     
     
      7.03|2.02|3.01|

2.03|3.02|3.01|

1.03|5.02|4.01|

2.033.025.01







boxbluePboxbluePboxblueP

boxwhitePboxwhitePboxwhiteP

boxredPboxredPboxredP

boxPboxPboxP

 

(a) Find the probability of getting a red ball. 

(b) Find the conditional probability,  BAP | , where B  is the event box 2 selected and A  is 

the event a red ball is selected. 

Solution 

 (a) The total probability theorem can be used to obtain the probability of getting a red ball as follows: 

             
37.02.01.05.03.05.04.0

33|22|11|


 boxPboxredPboxPboxredPboxPboxredPredP

 

(b) The probability of box 2 given that the ball is red can be determined by using Bayes’s theorem and 

the results of part (a) as 

     
 

4054.0
37.0

3.05.0

22|
|2







redP

boxPboxredP
redboxP

 

 



《Random Signal Processing》          Chapter1          Experiments and Probability 

Xidian University       Liu Congfeng      E-Mail:cfliu@mail.xidian.edu.cn       Page 19 of 22 

1.4 Random Points 

The random placement of points in an interval is an important problem. Conceptually it is analogous to 

random arrival times used in basic inventory problems, and it is used as a basis for shot noise in 

communication theory. The random placement of the points can be uniformly or nonuniformly distributed 

on an interval as seen in the following sections. 

 

1.4.1 Uniform Random Points in an Interval 

Define an experiment   .,,: PFSE  as the random placement of a point t  somewhere in the closed 

interval  T,0  as shown in Figure 1.3(a). The sample space is  TttS  0: , F  is the smallest 

field containing the sets  1: ttt   for all St 1 , and  .P  is defined by   TttttP /: 11  , for all 

St 1 . Thus it can be seen that the probability that the point selected will be in any given interval is the 

ratio of that interval's length to the total length T . Probabilities of other events that are unions of 

nonoverlapping intervals can be obtained by adding up the probabilities for each of the intervals. 

 

The purpose of this section is to talk about the random placement of n  points, not just one point, in 

an interval  T,0  see Figure 1.3(b). A convenient way to design such an experiment is to form a new 

compound experiment   .,,: nnnn PFSE  composed of ordered n-tuples of times,  nttt ,,, 21  , 

obtained from repeating the experiment �E  defined above independently. Assume an independence of the 

trials so that the probability measure can be described as the product 

       nnnn xtPxtPxtPxtxtxtP   22112211 ,,,              (1.34) 

k points 

ta

t 0 T 

(a) Sample space 

Figure 1.3  Random times in interval [0, T] 

(b) Random placement of n points 

(c) k points in interval ta out of n points 

tn0 T tn-1 tn t2

t10 Tt2
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The Borel field is defined to be the smallest field containing the events  nn xtxtxt  ,,, 2211   for 

all ],0[,,, 21 Txxx n   . We are interested in answering questions relating to calculating the 

probabilities that a certain number of points fall in a given interval or intervals. 

Say that the probability that exactly k  of the points fall in a given interval  21, tt   of length at  as 

shown in Figure 1.3(c) is desired. Let A  be the event that on a single trial the point selected at random 

falls in the given interval. Using the uniform probability measure  .P , we give the probability of A  by 

    atttAP  12  Thus, on n  independent trials, the probability of getting k  points in the interval 

is binomially distributed as 

     knk pp
k

n
trialsnforttinpokP 








 1,int 21  

T

t
pwhere a                                      (1.35) 

Further assume that n , the number of trials, is very large, 1n , and that the relative width of the 

interval is very small, 1/ Tta , and k  is of the order Tnta / , The resulting Poisson approximation is 

written as 

   
!

/
exp

,int 21

k

Tnt

T

nt

trialsnofout

ttinpokexactly
P

k
aa 






 








              (1.36) 

where 12 ttta   

In the limiting case this result will give an interpretation in terms of an average number of points per unit 

interval. If n , T , and Tn / , then it can be shown that 

  


a

a

t t

tinpoexactlyP
a

int1
lim

0
                         (1.37) 

Another probability of interest is that of getting exactly ak  points in interval at  and exactly bk  in 

interval bt  as indicated in Figure 1.4. 

 

Let CBA ,,  equal the events that on a single trial of the experiment exactly one point falls in at , 

bt , and not in at  or bt , respectively. Then the probability of getting exactly ak  points in interval at , 

exactly bk  points in interval bt  , and exactly ba kkn   points not in at  or bt  out of n  trials can 

ka points 

ta 

Figure 1.4  Exactly ka points in interval ta and exactly kb in interval tb 

0 T 

kb points 

tb
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be obtained from the multinomial result as 

 
baba kkn

ba

k

b

k

a

baba
baba

bb

aa

T

t

T

t

T

t

T

t

kknkk

n

tortkkn

tink

tink

P








 




































1

!!!

!
  (1.38) 

The individual events exactly ak  points in at  and exactly bk  points in bt  out of n  trials have 

probabilities as follows: 
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 
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


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










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















1

1

                        (1.39) 

Since the product of the above two probabilities does not equal that of Eq. (1.38), the events exactly 

ak  points in at  and exactly bk  points in bt  out of n  trials are not independent events. 

 

1.4.2 Nonuniform Random Points in an Interval 

In certain problems the random points are not placed uniformly in the interval. A common way to describe 

a nonuniform rate is to assign the probability measure by using a weighting function  t  that satisfies 

the following properties: 

 
  


T

dtt

Ttallfort

0
1

],0[0




                                 (1.40) 

On a single trial of the experiment, the random placement of a single point in the interval  T,0 , the 

probability that the point selected is in  21, tt  is given by 

    2

1

],( 21

t

t
dtttttP                                     (1.41) 

Thus, if  t  has a peak at 1tt  , it means that the point selected at random has a higher probability 

of being close to 1t  than other values of t . If n  independent trials of this experiment are performed, the 

probability of exactly k  points out of n  trials being in the interval  21, tt  can be determined from Eq. 

(1.6) as 

   

   

















 

2

1

],(

1
,int

21

21

t

t

knk

dtttttPpwhere

pp
k

n

trialsnofout

ttinpok
P


                 (1.42) 

For the case of a nonuniform rate with the assumption that n , the number of trials, is very large, 1n , 
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and that the relative width of the interval  21, ttta   is very small, 1/ Tta  , and k  of the order 

Tnta / , the Poisson approximation results in the following probability where p  is given as above:  

     
!

exp
,int 21

k

np
np

trialsnofout

ttinpokexactly
P

k









                (1.43) 

 

1.5 Summary 

In this chapter the mathematical definitions of an experiment in terms of a sample space, a Borel field, and 

a probability measure were given. The concept of an experiment is basic to the understanding of random 

variables and random processes to be discussed in later chapters. The assignment of the probability 

measure for several experiments obtained by combining other experiments led to the binomial, multinonnal, 

and hypergeometric distributions. 

The important concept of conditional probability, the total probability theorem and the Bayes theorem 

are defined. Using this definition of the total probability theorem and the Bayes theorem for obtaining the a 

posteriori probability followed. These concepts have a fundamental role in the detection and estimation of 

random variables and random processes as will be seen in Chapters 2, 8, and 9.  

The chapter concluded with a short discussion on the random placement of points in a given interval. 

These experiments are important in analyzing problems involving random times of arrival and other related 

problems. 

It was not the intent of this chapter to give an exhaustive presentation on experiments and their use but 

to provide background material that would be used in the remainder of the class. For those wishing a more 

thorough presentation there are many excellent texts, such as the book, <Probability, Random Variables, 

and Stochastic Processes>(Papoulis, Athanasios, McGraw Hill, 1965). 

 

----------This is the end of Chapter01---------- 


