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Goals: The goal of this class is to establish an understanding of the instrinsic prop-
erties of transmission of information and the relation between coding and the founda-
mental limits of information transmission in the context of communication.
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Chapter 1

Introduction

The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point. — Shannon

In 1948, Claude E. Shannon published a landmark paper entitled “A Mathematical
Theory of Communication”. This paper laid the groundwork of a entirely new scientific
discipline, “Information Theory”.

Information theory studies the transmission, processing and utilization of informa-
tion.

1.1 Relationship of information theory and communica-
tion theory
Information theory answers two fundamental questions in communication theory:

1. What is the ultimate data compression? H

2. What is the ultimate transmission rate? C

Information theory also suggests means of achieving these ultimate limits of communi-
cation. (e.g. random coding, ML decoding)
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I have often remarked that the transistor and information theory, two Bell Laborato-
ries breakthroughs within months of each other, have launched and powered the vehicle
of modern digital communications. Solid state electronics provided the engine while in-
formation theory gave us the steering wheel with which to guide it. — Viterbi, IT News
Lett., 1998.
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The recent work on the information-theoretic aspects of communication concentrated
on: 1) Network information theory, and 2) MIMO systems.

1.2 What is information? (Measure of information)

For Shannon theory, information is what we receive when uncertainty is reduced.

How to measure:

e Amount of information should fulfill 7 > 0
e Amount of information should depend on probability P(x)
e For independent events: P(X,Y)=P(X)P(Y) = I=1(X)+I(Y)

It should has the form of log #(I). (Self-information of the event X = z)

1.3 Applications

e Data compression: voice coder, MPEG, LZ algorithm.

e Modem
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1.4

Deep space communication (and coding was called a “marriage made in heaven”)
CDMA, MIMO, 4G

Physical layer security (Information-theoretic securiy)

Quantum communication

Stock market

Historical notes

Sampling theorem: 1928 by Nyquist
Hartley’s measure of information (1928)

I(X) =log L,
L=number of possible values of X.

Information theory: 1948 by Shannon
Investigate how to achieve the efficient and reliable communication

Why using “entropy”?
Shannon 5V. Neuman 5/}, V. Neuman 21 “Ri”.

L AREIANEE R BAE SR 7157 DR N (entropy ).
2. BT NHIERS R R4, B A e R Az 37 T A i

fEShannon 1948%FE i+, BEXRA A “mutual information” W¥AHH—1
KRR T 5 R0E, maRfMAANf e Z. A “mutual information” K& #F
SI(X;Y)s2 5K HFano5| A

Shannon was born in Michigan, 1916. In 1936, he received B.S. degree in both
electrical engineering and mathematics from the Univ. of Michigan. Received
his M.S. and Ph.D. degree from MIT. In 1941, he joined Bell Lab. In 1958, he
accepted a permanent appointment at MIT. B /5% | KT, B FREARZLICA.

Shannon HJAR 4= 18 30 5 T AT KRB S 52 ey, Al T e i 98 TAR AR — R
& W won the 1940 Alfred Noble prize for the best paper in engineering published
by an author under 30. It is widely recognized today as the foundation of the
switching field and as one of the most important Master’s theses ever written.
His Ph.D. dissertation, “An Algebra for Theoretical Genetics,” was completed
in 1940. This thesis was never published.

In 1961, Shannon published a pioneering paper ” Two-way Communication Chan-
nels”, which established the foundation for the discipline now known as ”multi-
user information theory”; and later N. Abramson published his paper ”The Aloha
System - Another Alternative for Computer Communications” in 1970 which in-
troduced the concept of multiple access using a shared common channel. The
information theoretic approach to multiaccess communication began in 1972 with
a coding theorem developed by Ahlswede and Liao. In 1972, T. Cover published
a paper “Broadcast channels”.
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e 1995%F, Gallager$2 H “Combining queueing theory with information theory for
multiaccess”; 19984, Ephremidus/&X % | 1& 3 “Information theory and commu-
nication networks: An unconsummated union”; 20005, R. Alshwede, N. Cai,
S.-Y. R. Li, and R. W. Yeung/kK £ | 3 % 1 3 “Network information flow” $2H
T M 48 g b5 (Network coding) ) B AH; 20004F, P. GuptaflP. R. KumarkK 3% | i
X “The Capacity of wireless networks”, #H T %1% % & (Transport capacity)H
MES s 20032 )5, W90 1E A 35 RS N 2% 1) (5 S E 8 K 8 (Towards an IT of

large networks) o

1.5 A model of digital communication systems

Channel encoder

i > fgmi e |——> | ECC e — Hr il |———

! Channel!decoder i

5 5 b
i1 [ (U | e——— | ECC il le—— Mo it iiss (<

bits symbols waveform

Figure 1.2: {1815 24K

e source: discrete/continuous; memoryless/with memory

e encoder: convert the messages into the signal which is suitable for transmission
over physical channels.

e channel: wireless/cable, disk.
e interference.

e sink: destination.

1.6 Review of Probability

Bayes rule:
_ P(ANB) _ P(B|A)P(A)
PABY =5y = PB)

For a discrete random variable (r.v.),

e Probability Mass Function (PMF)
Px(z) = P(X =x)

denotes the Prob. of the event that X takes on the value z.

For a continuous r.v.,
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e Cumulative Distribution Function (CDF)
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Chapter 2

Entropy & Mutual Information
(Shannon’s measure of
information)

This chapter introduces basic concepts and definitions required for the discussion later.
Mainly include: Entropy, Mutual information(H.15 &), and relative entropy (FHX54%).

2.1 Entropy

Let X be a discrete variable with alphabet X and PMF Px(x) =Pr(X =z),z € X. For
convenience, we will often write simply P(x) for Px(z).

Definition 2.1.1. The entropy of a discrete r.v. X is defined as

ZP 1ong @)

reX

=~ P(x)log, P(x) (2.1)

reX

when b = 2, the unit is called the bit (binary digit); when b = e, the unit is called the
nat (natural unit). (Conversion is easy: log, = = logy alog, z = Hp(x) = (log, a)Hy(x)).
Unless otherwise specified, we will take all logarithms to base 2, hence all entropies will
be measured in bits.

In the above definition, we use the convention that 0log0 = 0. Note that equiva-
lently, many books adopt the convention that the summation is taken over the corre-
sponding support set. The support set of P(X), denoted by Sy, is the set of all x € X
such that P(z) > 0; i.e., Sx = supp(Px) = {z : P(x) > 0}.

The entropy H(X) is also called the uncertainty of X, meaning that it is a measure
of the randomness of X.

Note that the entropy H(X) depends on the probabilities of different outcomes of
X, but not on the names of the outcomes. For example,

X = {Green, Blue, Red} Y = {Sunday, Monday, Friday}
P(X):0.2,0.3,0.5 P(Y):0.2,0.3,0.5

9
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Remark: The entropy of X can also be interpreted as the expected value of log ﬁ

(i.e., the average uncertainty):

H(X)=EI 2.2

(%) = Elog o5 (2.2

where we define E[F(z)] = > v Px(z)F(x). Recall that I(x) = log ﬁ(gj) is the self-

information of the event X = z, so H(X) = E[I(x)] is also referred to as “F-#JHE &
E‘o

A immediate consequence of the definition is that H(X) > 0.

Example 2.1.1. Let
Y 1 with probability p
| 0 with probability 1-p

Then

H(X) = —plogp— (1 —p)log(1l —p) (2.3)

Equation (2.3) is often called the binary entropy function, and denoted by H(p). Its
graph is shown in Fig. 2.1. We can see that H(X) =1 bit when p = %

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

Figure 2.1: — JoREALAS & (1) ek 25

Example 2.1.2. Let

a with probability 1/2
)b o1
X = c 1/8
d 1/8
ThenH(X):—%log%—ilogi—%log%—%logéz% bits.

On the other hand, if X takes on values in X = {a,b,c,d} with equal probability,
then we have H(X) = —%log 1 x 4 = 2 bits=log|X|.

We can see that the uniform distribution over the range & is the maximum entropy
distribution over this range. (In other words, the entropy of X is maximized when its
values are equally likely.)
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2.2 Joint entropy and conditional entropy

We now extend the definition of the entropy of a single random variable to a pair of
random variables.

(X,Y) can be considered to be a single vector-valued random variable.

Definition 2.2.1. The joint entropy H(XY) of a pair of discrete random variables
(X,Y) with a joint distribution P(z,y) is defined as

H(XY) %= E[-log P(X,Y)]
- _ Z ZP(m,y) log P(z,y)
rzeX yey
=— Z P(z,y)log P(z,y) (2.4)

(z,y)ESxy

Definition 2.2.2. The conditional entropy of the discrete random wvariable X, given
that the event Y =y occurs, is defined as

H(X|Y =y)=—Y_ P(x|y)log P(z[y)
reX
= E[-log P(X|Y)|Y = y] (2.5)

Definition 2.2.3. If (X,Y) ~ P(x,y), then the conditional entropy of the discrete
random variable X, given the discrete random variable Y, is defined as

H(X|Y)=) PyHXY =y)
yey

==Y P(y) Y _ P(aly)log P(z]y)

yey reX

- Z Z P(x,y)log P(x|y)

zeX ye)y
= FE[-log P(X|Y)] (2.6)

Notice that H(Y|X) # H(X|Y).

Theorem 2.2.1. H(XY) = H(X) + H(Y|X) = HY) + H(X|Y)
Proof.
_;ZP(x,y) log P(z,y)
__ zszy:p(x,y) log P(z) + log P(y|z)]
:_szpy( )log P(x ZZny log P(ylz)

= H(X) + H(Y|X) (2.7)

Corollary 2.2.2. H(XY|Z)=H(X|Z)+ H(Y|XZ2)
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We now generalize the above theorem to a more general case.

Theorem 2.2.3 (Chain rule for entropy). Let X1, Xo,..., XN be discrete random vari-

ables drawn according to P(x1,x2,...,zN). Then
N
H(X1,Xg,...,XN) =Y H(Xn| X1, Xa,..., Xn 1)
n=1
Proof.

H(X1,X2, -+, Xn)=FE[-log P(X1, X2, ,Xn)]

N
=E |—log [ P(Xn|X1, -+, Xn 1) (2.8)

n=1

I
WE

E[_ logP(X’n’Xh e 7Xn—1)]

i
I

I
E

H(Xn‘Xlu Tt 7Xn—1)

n=1
O
If X, are independent of each other, then
N
H(X1,Xa,-+, Xn) =Y H(Xp). (2.9)
n=1
Similarly, we have
N
H(Xy,Xa, -+ XN|Y) =Y H(Xp| X1, Xpo1,Y).
n=1

2.3 Properties of the entropy function

Let X be a discrete random variable with alphabet X = {xp,k =1,2,--- , K}. Denote
the pmf of X by pr = Pr(X = xx),zx € X. Then the entropy H(X) of X can be
written as

K
H(p) = —Zpk log py,
k=1

where p = (p1,p2, - ,pK) is a K-vector of probabilities.

Property 2.3.1. H(p) >0 (Non-negativity of entropy)

Proof. Since 0 < p < 1, we have logpyr < 0. Hence, H(p) > 0. O

Definition 2.3.1. A function f(x) is said to be convez-\ ] over an interval (a,b) if for
every x1,22 € (a,b) and 0 < XA <1,

fQOz1 4+ (1= N)x2) < Af(z1) + (1= A) f(22)

A function f is said to be strictly convex- if equality holds only when A\ =0 or A = 1.
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X BT XD EEMAa M3, ae D, BeD, fi
A+ (1-MNBeD, 0<vA<1
JUFR D ™ X 45K
PR A AR XD RS () T A2
fOa+ (1 —a)B) < Af(a)+ (1 =N f(B), Va,3€ D,0 <A< 1.
JUIFK BR K f () 9 iTh-) BRI

Theorem 2.3.1. If the function f has a second derivative which is non-negative (resp.
positive) everywhere (f"(x) > 0), then the function is convez-{J (resp. strictly conver).

Theorem 2.3.2 (Jensen’s inequality). If f is a convez-J function and X is a random
variable, then

E[f(x)] > f(E[X])
Proof. For a two mass point distribution, the inequality becomes

prf(z1) +p2f(x2) > f(pr71 + p2x2)

which follows directly from the definition of convex function.

Suppose that the theorem is true for distributions with k& — 1 mass points. Then
writing p; = 2 i=1,2,...,k—1, we have

k k—1
> pif (i) = pef (@) + (1 — pr) Zp/f@:i)
=1 i

> pif (@) + (1 —pr)f sz ;)

k—1
> f (pk:ck + (1 —px) Zp;xz)

i=1

k
= f(>_ piwi) (2.10)
i=1

Property 2.3.2. H(p) is the convez-() function of p.

IT-inequality: For a positive real number r,

logr < (r—1)loge (2.11)
with equality if and only if r = 1.
Proof. Let f(r) =1Inr — (r —1). Then we have

fl(r)= % —1and f”(r) =—% <0.
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r-1

Inr

Figure 2.2: IT-inequality 2k
We can see that f(r) is convex-[) in the interval r > 0. Moreover, the maximize value
is zero, which is achieved with » = 1. Therefore,
Inr<r-—1

with equality iff » = 1. Equation (2.11) follows immediately. O

Theorem 2.3.3. If the discrete r.v. X has K possible values, then H(X) < log K, with
equality iff P(x) = % for all .

Proof.
H(X)—-logK = — Z P(z)log P(z) — log K
€S,
= ZP log ) — log K|
= P(z)l
Z Jog 50 KP (@)
(By IT — equality) < ;P(x)[KP(x) —1]loge (2.12)
— ZP(m)] loge
= [Z 1_ 1]loge
K
reX
=(1-1)loge=0
where equality holds in (2.12) iff KP(z) =1 for all z € S,. O

Theorem 2.3.4 (Conditioning reduces entropy). : For any two discrete r.v.’s X and
Y,
H(X]Y) < H(X)

with equality iff X and Y are independent.
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(We can also use the relationship I(X;Y) = H(X)—H(X|Y) > 0 to obtain H(X) >
H(X[Y))

Proof.
HXY)-H(X)=- > P(z,y)logPzly) + Y _ P(x)log P(z)
(z,y)ESay z€S,
P(z)
= ZP (z,y)log Plly)
_ R Cl )
ZP y l g ——= Plr, )

T,y

Y)

= (Z P(x)P(y) — ZP(m,y)) loge
)y

x?y

(By IT — equality) < ZP(x,y) < (> (y) > loge

IN

> Pa)P(y)—1|loge

zeX yey
=(1-1)loge

Note that, however H(X|Y = y) may exceed H(X).

Theorem 2.3.5 (Independence bound on entropy). Let Xi,..., Xy be drawn according
to P(X1,X2,...,XnN). Then

N
H(X1,Xs,...,.Xn) <Y H(X

with equality iff the X, are independent.

Proof. By the chain rule for entropies,

H(X1, X, ..

H(Xp|X1,..., Xn—1)

* 7

IN

N
.
Z (2.13)
2.4 Relative entropy and mutual information

2.4.1 Relative entropy

The relative entropy is a measure of the ”distance” between two distributions.
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Definition 2.4.1. The relative entropy (or Kullback Leiber distance) between two pmf
P(z) and Q(z) is defined as

P@) _ oo P)
DPIIQ) = 3 Pla)los g5 = Bllow

It is sometimes called the information divergence/ cross-entropy/ Kullback entropy be-
tween P(z) and Q(x).

e In general, D(P||Q) # D(Q||P), so that relative entropy does not have the sym-
metry required for a true ”distance” measure.

e The divergence inequality: D(P||Q) >0
with equality iff P(x) = Q(z) for all x € X.

Proof. Let Sx = {x : P(z) > 0} be the support set of P(x). Then

~D(PIQ)= Y P(x)log gg; (2.14)
rESX
(By IT —inequality) < Z P(x [ — 1} loge

= ZQ x —ZP(m)]loge
<[D_ Q)= P(x)]loge

reX zeX

2.4.2 Mutual information

Mutual information is a measure of the amount of information that one r.v. contains
about another r.v. It is the reduction in the uncertainty of one r.v. due to the knowledge
of the other.

Definition 2.4.2. Consider two random variables X and Y with a joint pmf P(x,y)
and marginal pmf P(x) and P(y). The (average) mutual information I(X;Y) between
X and 'Y is the relative entropy between P(x,y) and P(z)P(y), i.e.,

I(X;Y) = D(P(z,y)||P(z)P(y))
P(x
= ZZP x,y IOgP(()P())

reX ye)y

)

=33 P(a,y)log Plely) (2.15)

Properties of mutual information:
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1. Non-negativity of mutual information: I(X;Y) > 0
with equality iff X and Y are independent.

Proof. I(X;Y) = D(P(x,y)||P(z)P(y)) > 0, with equality iff P(z,y) = P(x)P(y).

O
2. Symmetry of mutual information: I(X;Y) = I(Y; X)
3.
1Y) = 15 Pl tog T
oy
== P(a,y)log P(@) — (= 3 Pla, y)log Plely))
= H(),() — H(X|Y) | (2.16)

By symmetry, it also follows that I(X;Y) = H(Y) — H(Y|X). Since H(XY) =
H(X)+ H(Y|X), we have

I(X;Y)=H(X)+ H(Y) - H(XY)

H(XY)
K 4

3
HX) H(Y)

Figure 2.3: mutual information and conditional entropy

4. I(X;X)=H(X)—- H(X|X) = H(X). Hence, entropy is sometimes referred to as
average self-information.
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2.4.3 Conditional mutual information

Definition 2.4.3. The conditional mutual information between the random variables X
and Y, given the r.v. Z, is defined by

I(X:Y|2) = H(X|2) — H(X|YZ)
‘ZZZP”’ )log <|(> <)r>

= Epleys) [log P(ZJTZ))} (2.17)

It follows from the definition that
I(X;YZ2)=1(Y;X|Z) >0

with equality iff conditional on each Z, X and Y are statistically independent; i.e.,
P(x,y|z) = P(x|z)P(y|z) for each element in the joint sample space for which P(z) > 0.

We can visualize the situation in which I(X;Y|Z) = 0 as a pair of channels in
cascade as shown in Fig.1l. We assume that the output of the 2nd channel depends
statistically only on the input to the 2nd channeli.e. p(y|z) = p(y|z, z), all x,y, z with

p(z,z) > 0.
Mutiplying both sides by P(z|z), we obtain P(z,y|z) = P(z|z)P(y|z), so that
I(X;Y|Z) =0.
An important property:
I(X:YZ)=I1(YZ;X)
=I(X;Y)+1(X;Z]Y)
= I(X;2)+ I(X;Y|Z) (2.18)

Proof.

I(X;YZ)=H(YZ)-H(YZ|X)
H(Y)+HZ)Y)-[HY|X)+ H(Z|XY)]
=[H(Y)-HYI[X)|+ [H(Z]Y) - H(Z|XY)]
I(X;Y)+1(X;Z|Y) (2.19)

Theorem 2.4.1 (chain rule for mutual information).

N
I(X1, Xa,.. ., X3 Y) =Y I(Xp;YIX1,.., X1)

n=1
Proof.
I(X1, X9, ..., Xn;Y) = H(X1, Xo, ..., Xn) — H(X1, Xo, ..., XN]Y)
N N
=Y H(Xu|X1,Xo, ..., Xn 1) = Y H(Xp|X1, Xo,..., Xn1,Y)
n=1 n=1
=Y I(Xp;Y|Xy,..., Xno1) (2.20)

O]
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2.4.4 Data processing inequality

The data processing inequality can be used to show that no clever manipulation of the
data can improve the inferences that can be made from the data.

Definition 2.4.4. Random variables X, Z,Y are said to form a Markov Chain in that
order (denoted by X — Z —'Y ) if the conditional distribution of Y depends only on Z
and is conditionally independent of X. Specifically,

X —>Z—=Y ifP(z,z,y) = P(x)P(z|x)P(y|z)
Theorem 2.4.2 (Data processing inequality). If X — Z — Y, then

I(X;2) > I(X;Y)

Proof. By the chain rule, we obtain

I(X;YZ)=1(X;Y)+ I(X;Z]Y)
=I1(X;2)+1(X;Y|Z)

Since X and Y are independent given Z, we have I(X;Y|Z) = 0. Thus,
I(X;2)=1(X;Y)+ I(X; Z]Y) (2.21)

From the non-negativity of mutual information, I(X; Z|Y) > 0. Thus, (2.21) implies
that
I(X;Z) > I(X;Y)

From the symmetry, it follows that
IY;Z) > 1(X;Z)
This theorem demonstrates that no processing of Z, deterministic or random, can
increase the information that Z contains about X.

Corollary 2.4.3. In particular, if Y = f(Z), we have I1(X; Z) > I(X; f(Z)).

Proof. X — Z — f(Z) forms a Markov Chain. O
Corollary 2.4.4. If X — Z =Y, then I(X;Z|Y) < I(X; Z).

Proof. Using the fact I(X;Y) > 0, the corollary follows immediately from (2.21). [

Expressing the data processing inequality in terms of entropies, we have

H(X)—-H(X|Z) > H(X) - H(X[Y)
= H(X|Z) < H(X|Y) (2.22)

The average uncertainty H(X|Z) about the input of a channel given the output is
called the equivocation on the channel, and thus the above inequality yields the intu-
itively satisfying result that this uncertainty or equivocation can never decrease as we
go further from the input on a sequence of cascaded channels.
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Example 2.4.1. Suppose that the random vector [X,Y, Z] is equally likely to take on
values in {[000], [010], [100], [101]}. Then

1
H(X) = h(3) =1 bit
Note that Py|x(0|1) =1 so that
HY|X=1)=0

Similarly, Py|x(0]0) = 3, so that
1
H(Y|X =0) = h(5) =1 bit

Thus, H(Y|X) = x 1 =1 bit.

H(Z|XY) = ZP:cy (Z|X =2,V =)

and HXYZ)=HX)+HY|X)+ H(Z|IXY) =1+ 1+ 1 =2 bits.
Because Py (1) = 1, Py(0) = 3, we have

1
H(Y) = h(7) = 0811 bits

we see that H(Y|X) = 5 < H(Y). However, H(Y|X =0) =1> H(Y).

Furthermore, I(X;Y)=H(Y)— H(Y|X) =0.811 — 0.5 = 0.311 bits
In words, the first component of the random vector [X,Y, Z] gives 0.311 bits of informa-
tion about the 2nd component, and vice versa.

2.5 Sufficient Statistics

Suppose we have a family of pmfs {fy(x)} indexed by 6, and let X be a sample from a
distribution in this family. Let 7'(X) be any statistic (like the sample mean or variance).
Then

0 — X — T(X), and I1(6; T(X)) < I(6; X)

A statistic T'(X) is called sufficient for 6 if it contains all the information in X about 6.

Definition 2.5.1. A function T(X) is said to be a sufficient statistic relative to the
family {fo(x)} if X is independent of 0 given T(X); i.e., 0 - X — T(X) forms a
Markov Chain.

It means that 1(0; X) = 1(6;T(X)) for all distributions on 6.

Example 2.5.1. Let Xy,...,X,,X; € {0,1}, be an i.i.d sequence of coin tosses of a
coin with unknown parameter @ = Pr(X; = 1). Given n, the number of 1’s is a sufficient
statistics for 0. Here, T(X1,...,Xn) = > Xi.
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Example 2.5.2. If X ~ N(0,1), i.e., if

folw) = e~ = N(O,1)

) = e = ,

0 V2T

and X1,...,X, are drawn independently according to this distribution, then X, =

T(X1,...,X,) = %Z?:l X; is a sufficient statistic for 0.

2.6 Fano’s inequality

Suppose that we wish to estimate a r.v. X based on a correlated r.v. Y. Fano’s
inequality relates the probability of error in estimating X to its conditional entropy

H(X|Y).

Theorem 2.6.1. For any r.v.’s X and Y, we try to guess X by X = g(Y'). The error
probability P. = P(X # X)) satisfies

H(P,) + P.log(|X| - 1) > H(X]Y)

Proof. Applying chain rule on H (X, E|Y), where error r.v.

E:{ 1, if X#X

0, if X=X
we have

H(E,X|Y)=H(X|Y)+ H(E|XY)=H(X|Y)

H(E,X|Y)=H(E|Y)+ H(X|EY)
< H(E)+ H(X|EY)
= H(P,)+P(E=1)H(X|Y,E=1)+ P(E=0H(X|Y,E =0)
=H(P,)+P.HX|Y,E=1)+(1—-P)H(X|Y,E =0)
= H(P)+ P.H(X|Y,E=1)+0
< H(P.) + P.log(|X]| — 1) XX ZAMOHE|X]) — 14ME
<1+ P.log|X| (2.23)

U
WEMRE: WY (ERY) WFEMET, X XA A E AT 2 AP 7>

o FUNTREIIAE BT IER, HATE N H (P.):

o IR FIVREHEN (with probability P.) , NXE XA GEHU R X 2 A HE x| —
VME. AT #EZ—A, fFEmEEE< log(|X]| —1).

2.7 Convex functions (HASEKIMHE)

2.7.1 Concavity of entropy

Theorem 2.7.1. Entropy H(X) is concave in P(z).
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That is, if X1, X5 are r.v.’s defined on X’ with distribution P;(x) and P»(x), respec-
tively. For any 0 € [0, 1], consider a r.v. X with

P_)((JZ) = 9P1(33) + (1 - Q)Pg(x) VY
then
H(X)>60H(X1)+ (1—-0)H(X2)
Proof. Let Z be a binary r.v. with P(Z =0) = 6. Let
(X iZ=0
X= { X, ifZ=1
Then

H(X) > H(X|Z)
—0H(X|Z =0)+ (1 - 0)H(X|Z =1)
— 0H(X,) + (1 — 0)H(X>) (2.24)

or

H(OP, + (1 — 0)Py) > 0H(Py) + (1 — 0)H(Py)

2.7.2 Concavity of mutual information

Theorem 2.7.2. For a fized transition probability P(y|z), I(X;Y) is a concave (convex-
() function of P(x).
Proof. Construct X1,Xo, X, and Z as above. Consider
I(XZ;Y)=I(X;Y)+ I(Z,Y|X)
=1(Z;)Y)+1(X;Y|Z) (2.25)

Conditioned on X, r.v.’s Y and Z are independent, i.e., P(y|x, z) = P(y|z). Using

I(Y;Z|X) =0, we have
I(X;Y) > I(X;Y1Z)

—0I(X;Y|Z =0)+ (1—0)I(X;Y|Z =1) (2.26)
= 0I(X1;Y) + (1 —0)I(Xp;Y) (2.27)
O

Theorem 2.7.3. For a fized input distribution P(z), 1(X;Y) is convex-|J in P(y|z).

Proof. Consider a r.v. X and two channels with P;(y|z) and Pa(y|z). When feed with
X, the outputs of the two channels are denoted by Y7 and Y5.

Now let one channel be chosen randomly according to a binary r.v. Z that is inde-
pendent of X, and denote the output by Y.

I(X;YZ)=1(X;2)+I(X;Y|Z2)
= I(X;Y) + I(X; Z]Y) (2.28)

Thus, I(X;Y) < I(X;Y|Z) = 0I1(X; Y1) + (1 — 0)I(X;Y2). 0
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Z X Y
v~ 0 ‘ y 0
Cl—> — 1
Channel
P(Y[X)
K-1 .
YO > — J-1

Figure 2.4: 25 € (518~ O35 BN
2.7.3 HEEBRKMLHE—R—UEH T

Theorem 2.7.4. Let (X,Y) ~ P(x,y) = P(x)P(y|z). The mutual information I(X;Y)
is a convez-() function of P(x) for fized P(y|x) and a convex-J function of P(y|x) for
fized P(zx).

Proof.
I(X;Y)=H(Y) - H(Y|X)
=H(Y)- )Y P@)HY|X =x) (2.29)

if P(y|z) is fixed, then P(y) is a linear function of P(x)
H(Y) is a convex-) function of P(y)

= H(Y) is a convex-() function of P(z) N
The 2nd term in (2.29) is a linear function of P(x)

The difference is a convex-[ function of P(x).

To prove the 2nd part, we fix P(x) and consider two different conditional distribu-
tions Pj(y|x) and P (y|z).

Let

Pr(ylz) = APi(ylz) + (1 = A) P2 (ylz)
Then

Pk(xvy) = )‘Pl(xvy) + (1 - )‘)PQ(‘Tvy)
and

Pa(y) = APi(y) + (1 = N Pa(y)
where Pj(z,y) = Pi(y|x)P(z) and Pa(x,y) = Pa(y|x)P(z).
If we let Qx(z,y) = P(x)P\(y), then we have
Qx(z,y) = P(x)AP1(y) + (1 = A) P (y)]
= AQ1(z,y) + (1 = N)Q2(z,y) (2.30)

Since I(X;Y) = D(P,\||Qx) and D(P||Q) is a convex function of (P, Q). it follows
that I(X;Y) is a convex-{J function of P(y|z). O
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Chapter 3

The Asymptotic Equipartition
Property (#ft 55 [ 43 ] 4)

3.1 Convergence of random variables

lim fZX — E[X] for i.i.d. r.v.’s

n—oo N

3.1.1 Type of convergence

e Almost sure convergence (also called convergence with Probability 1):

P ( lim Yy(w) = Y(w)) =1

n—o0

write Y,, — Y
a.s.

e Mean-square convergence:

lim E[|Y, - Y]’ =0

n—oo
e Convergence in probability: Ve > 0

lim P (|Yy(w) — Y(w)] > ) =0

n—oo
e Convergence in distribution: The CDF F,(y) = Pr(Y;, < y) satisfy:

lim F,(y) — Fy(y)

n—oo

at all y for which F' is continuous.

3.1.2 Weak law of large numbers (WLLN)

x1,x9, -, i.i.d., finite mean p and variance o2.

25
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Weak LLN:

1 — o?
P||- i — | > <— £
(e <

3.2 The AEP

Theorem 3.2.1 (AEP). If X1, Xs, -+, X, are i.i.d. ~ P(x), then

1
——log P(z1,22, -+ ,xpn) — H(X) in probability
n
Proof. Create r.v. Y; =log P(X;). Then apply the WLLN to Y
Liog P( )= 1 Zn:l P(X)
——log P(x1, @9, ,op) = —— ) P
n g 1,42, 3 n o g

= _iiyi—) —E[Y] in prob
=1
= H(X) (3.1)

i.e., for all € > 0,

n—o0

1
lim P ('—nlogP(:Ul,xg,--- , Tp,) —H(X)‘ Ss) =1(>1-o0)

O
Definition 3.2.1. The typical set T, with respect to P(z) is defined as
A n 1
T =<¢x = (v1,22, - ,Tp) €E X" |[——logP(x) — H(X)| <e¢
n
Thus, T is the set of sequence (x1,x2, - ,x,) € X™ for which the sample average of

the log pmf is within ¢ of its mean H(X).

It can be rewritten as
T. = {x e xm: 27O < p(x) < g-niH0-d]]

which implies that the sequences in 7. are approximately equiprobable.

As a consequence of AEP, we have
PxeT.)>1-0—1 (FHEES)

Theorem 3.2.2 (size of the typical set). The number of elements, |T|, in the typical
set T, satisfies
(1 - 6)2n[H(X)—a] < ’TE‘ < 2n[H(X)+5}
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Proof. Since P(x) > 27 "H(X)+] for each x € Ty, we have

1= Z P(x) > Z ) > 22 n[H(X)+e] _ = |T.|2~ n[H(X)+e]

xXEX™ x€eT:
This implies that |T3| < 27[H(X)+e] |

Conversely, since P,(T.) > (1 — Z—z) =1—-9d=1-¢, we have

l—e< > P <22 nH(X)=e] — | |2~ nH(X)=e]

xeT,
which implies |T.| > (1 — E)Qn[H (X)—¢] 0
Compare to |z"| = 2" lglel;
Let
a L |T6| < 2—n[log\x|—H(x)—e] asn T 0

27|
EI e 7 P 1 p K H e b AR S e 31 D
Summary:

We conclude that for large n, the typical set T, has aggregate probability approx-
imately 1 and contains approximately 2" (X)] elements, each of which has probaility
approximately 2-™7(X) That is, asymptotically for very large n, the r.v. X™ resembles
an equiprobable source with alphabet size 2H(X),

n

X = K elements

:|;(”

atypical set T

T, : 2" lements

Figure 3.1: #1787 5|4 R &

Example 3.2.1. Consider binary r.v.’s X;, i.i.d. with P(X =0)=p and P(X =1) =
L=p

A 7typical” sequence of length n has roughly np 0’s and n(1 —p) 1’s, the probability
for that to happen is

p"P(1 — p)n(1=P) = onlplogpl+(1-p)log(1-p) — 9=nH(X)
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How many ”typical” sequences are there?

n

j— ~

n n! ne~
<np> T (mp)!(n(1 = p)! T (np)mPe—(n(1 — p))n(1-p)e—n(1-p)

_ 1 _ onH(X)
= = g = (3.2)

(Note: Stirling formula: n! ~ n"e™"v/27mn)

3.3 Using the typical set for data compression

Motivated by the AEP, we divided all sequence in X™ into two sets: T. and TF (its
complement).

3.3.1 Source encoding method

e We order all elements in the 7. and 7Y according to some order.

e Then we can represent each sequence in 7. by giving the index of length <
n[H(X) 4 €] + 1 bits (correction of 1 bit because of integrality)

e We prefix all these sequences by a 0 = total length < n[H(X) + ¢] + 2

e Similarly, we can index each sequence not in 7, by using no more than nlog |X|+1
bits. Prefix these indices by 1.

e Thus, we have a code for all the sequences in X",

3.3.2 The average length of codeword

Let I(x) = length of the binary codeword corresponding x.
Then the expected length of the codeword is

Ell(x)] =) PX)Ix)+ > Px)(x)

xeT: x€Te

<N P)[n(HX)+¢e)+2]+ Y P(x)[nlogz| +2]
T: T

). (3.3)
where &’ = ¢ + e log |X| + 2.
So E[Li(x)] < H(X) +e.



Chapter 4

Entropy Rates of a Stochastic
Process

4.1

4.2

4.3

Stochastic processes

A stochastic process is an indexed sequence of random variables X, Xo, ...

map from 2 to X .

A stochastic process is characterized by the joint PMEF:
Px, Xy X, (21,72, .., )

The entropy of a stochastic process

H(Xl,XQ,):H(Xl)—I—H(XQ‘Xl)—l-+H(X1|X1XZ_1)—|-

Difficulties:
Sum to infinity.
All terms are different in general.

Entropy rate

The entropy rate of a stochastic process {X;} is defined by

H(X) = Tim ~H(X,)

n—oo N

if it exists.

Entropy rate of stationary processes

Chain rule:

1 1<
~H(X1, Xp,. . Xp) = > H(X|X1... Xi1)

=1

29
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CHAPTER 4. ENTROPY RATES OF A STOCHASTIC PROCESS

For a stationary process,

H(Xp11|X1") < H(Xp41|X2")
= H(X,|X;" ). (4.1)

Therefor, the sequence H(X,,|X;"!) is non-increasing and non-negative, so limit
exists.

Theorem 4.3.1. For a stationary process, the entropy rate

1
lim —H(X;") = lim H(X,|X;" )
n—oo

n—oo n
Markov Chain: A discrete stochastic process is a Markov Chain if
Px,1X0.. X1 (TnlTos o, Tn-1) = Px 1 x,_ (Tn|Tn-1)
forn=1,2,..., and all (zo,...,z,) € X"*!
Denote p;j = P(Xy41 = j| Xy = 1)

The entropy rate of Markov Chain:

o1 1
Jim —H(X,") = Jim - H (X Xo1) = —Zmpij log pij
1/7]

Significance of the entropy rate of a stochastic process arises from the AEP for a
stationary ergodic process:

1
——log P(X1, X2,...,X,) — H(X) with probability 1.
n



Chapter 5

Coding for Discrete Sources

5.1

Introduction

Three important classes of sources:

5.2

Discrete sources (BSHEUN ], BHUE S HUEES)

— The output of a discrete source is a sequence of letters from a given discrete
alphabet X.

— A discrete alphabet is either a finite set of letters or a countably infinite set
of letters.

Analog sources (also called continuous-time, continuous-amplitude sources)
— The output is an analog waveform.

Discrete-time continuous-amplitude sources
The output is a sequence of values which could be real number or multi-dimensional
real numbers.

Hesrk:

Tz IR e IR PAER

Hiclz)s Markovilii HRNEE
Discrete memoryless source (DMS): DMS is a device whose output is a semi-
infinite i.i.d. sequence of random variables X1, Xs, ..., drawn from the finite set
X.

An important parameter of a source is the rate R, [source letters/s].

Coding a single random variable

Definition: A source code C for a random variable X is a mapping from X to D*,
the set of finite length strings of symbols from a D-ary alphabet.

The same definition applies for sequence of r.v.’s, X™.

31
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e z (or z™) — source symbol (string) € X.
D — set of coded symbols.
C(z) — codeword corresponding to .
{(x) — length of C(x).

e For example, X = {red, blue}, C(red) = 00, C(blue) = 11 is a source code with
alphabet D = {0, 1}.

e Without loss of generality, we will assume that D = {0,1...,D — 1}.

Definition 5.2.1. The ezpected length, L(C), of a code is given by

L(C) = ) Px(x)t(z) = Elt()]

TeEX

Goal: For a given source, find a code to minimize the expected length (per source
symbol).

5.3 Fixed-length source codes (FK4uhd)

e Convert each source letter individually into a fixed-length block of ¢ D-ary symbols.

e The number of letters in the source alphabet, K = |X|, satisfies K < D, then a
different D-ary sequence of length ¢ may be assigned to each letter x € X. The
resulting code is uniquely decodable.

e For example, for X = {a,b,c,d,e, f,g}, K =7, D = {0, 1}, there exists an invert-
ible mapping for X to binary 3-tuples:

a — 000,b — 001,...,g — 110

X C(x)
a 000
b | 001

Figure 5.1: ¢ = 35 IR 14

e We can see that this coding method requires ¢ = [log|z|] bits to encode each
source letter.

e If we want to encode blocks of n source symbols at a time, the resulting source
alphabet is the n-fold Cartesian product X" = X x X x --- x X, which has size
X" = K™,
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e Using fixed-length source coding, we can encode each block of n source symbols
into £ = [logy K™| bits. The rate R = % of coded bits required per source symbol

is then
n
R_ [logy K™] > nlogy K = log, K
n
logs K™ logo K +1 1
R:[Ogi W<nog2 + :log2K+ﬁ

If n is sufficiently large, then R — log, K.

5.3.1 Zmhger

Goal: Minimize the average rate R = E[l(z")]/n

o X TEKID, MANFFRmIGHEET AL (B F 23, codebook size) ,
MR = 1log, M

e Encoder “compresses” 2" into an index w € {1,2,---,2"%}. That is, the encoder
sends nR bits for every source sequence z".

o HRMDITEKG Y, MKNL, WD F MM = DL, R = Llog, D
Yaf3F7%: Data compression by AEP

e Use nlog|X|+ 1 bits to describe (index) any sequence in X™.
e Since |Ty| < 2"H+4)  we use n(H + ¢) 4 1 bits to index all sequence in Ty.

e Use an extra bit to indicate T.

o E[((z™)] =3 n P(x")l(z™) < n[H(X)+e] = R=2E[l(z")] < H(X) +e.

F—7J71f, by Fano inequality,
nR>H(X") (- &EAEARFEFSIZ
= H(X") - H(X"X")
= I(X"; X")
= H(X") - H(X"|X")
=nH(X)— H(X"X")
_ Hy(P)
n

> n |H(X) — P, log, | X| (5.1)

(FanoA&E3: Hy(P,) 4+ P.log(|X]| —1) > H(X"|X™))
- HR P, — 0 with n,
AR H(X) = L> I

Theorem 5.3.1 (Fixed-to-fixed source coding theorem, T 4mtSE ). AR > H(X),
WRAZFIAN]:; #R < H(X), WRAAA,

o JHFE: n= %ﬁf) <1.
e Example: WA LB HI113.2.3,
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5.4 Variable-length source codes (A% K%ihd)

A variable-length source code maps each source letter z € X to a codeword C(x)
of length ¢(z).
For example,

X ={a,b,c},D ={0,1}

C(a) = 0,0(b) = 10,C(c) = 11

e The major property that we usually require for any variable-length code is that of
unique decodability. This means that the input sequence of source letters can be
reconstructed unambiguously from the encoded symbol sequence.

e Clearly, unique decodability requires that C'(z) # C(2') for x # 2'.

e Definition: The extension of a code C is the code for finite strings of X given by the
concatenation of the individual codewords: C'(z1, z2, ..., x,) = C(x1)C(x2) ... C(xy,).
For example,

0(331) =0

C({L‘Q) 1

(1) } = C(l‘lxg) = 0011

— A code is called non-singular if
zi # xj = Clz;) # C(z;)
— A code is called uniquely decodable if its extension is non-singular.

For example, C'(a) = 0,C(b) = 10, C(c) = 11 is prefix-free and uniquely decodable.
However, the code C’ defined by

C'(a) = 0,C"(b) = 1,C"(c) = 01

is not uniquely decodable.

5.4.1 Prefix-free codes

Checking whether a code is uniquely decodable can be quite complicated. However,
there is a good class of uniquely decodable codes called prefix-free codes.

Definition 5.4.1. A code is said to be prefiz-free if no codeword is a prefix of any other
codeword.

easy to check whether a code is prefix-free and therefore uniquely decodable.

Advantages { can be decoded with no delay (instantaneous code).

e Any fixed-length code is prefix-free.

e (Classes of codes:
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e Uniquely decodable,
But not prefix-free

Prefix-free

a 10 0

b 00 10
11 110

d 110 111

Figure 5.2: ME—R] B 1) 7328 J gmtd 77 =0

all codes

M — AT A

prefix-free codes

Figure 5.3: M51532K

a——>0
b——>11

c—> 101

Figure 5.4: The binary code tree

35
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5.4.2 Code tree

e The digits in the codewords are represented as the labels on the branches of a
rooted tree.

e For prefix-free codes, each codeword corresponds to a leaf node.

e A prefix-free code will be called full if no new codeword can be added without
destroying the prefix-free property.

a—>0
b—>11
c—>10

Figure 5.5: full tree

e D-ary tree: A D-ary tree is a finite rooted tree such that D branches stem outward
from each (intermediate) node. D branches are labeled with the D different D-ary
letters.

e Why the prefix-free condition guarantees unique decodability?

5.5 Kraft Inequality

The Kraft inequality tells us whether it it possible to conduct a prefix-free code for a
given source alphabet X with a given set of codeword length {/(z)} .

Theorem 5.5.1 (Kraft Inequality). There ezists a D-ary prefiz-free code with codeword
lengths 01, 0o, ... Ly if and only if

k
Y Dt (5.2)
=1

Every full prefix-free code satisfies (5.1) with equality.

Proof. First assume that C is a prefix-free code with codeword lengths {¢1,¢a, ...,k }.
Let #p42 = max¥;. Consider constructing a D-ary tree for the code C by pruning the

T
full D-ary tree of length /,,,, at all nodes corresponding to codewords:

a) A codeword at depth £; has D’ma=—% descendants(leaves) at depth £,,4..[Each of
these descendant sets must be disjoint]

b) Begin with ¢ = 1,we find the node X;: corresponding to a codeword.
c) We prune the tree to make this node a leaf at depth ¢;.

d) By this process, we delete Dfmaz=ti Jeaves from the tree. None of these leaves could
have previously been deleted because of the prefix-free condition.
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e) But there are only D= leaves that can be deleted. so we have

ZDfmaz*fi < nga:v
Q

or
Spe
i
Next, conversely, suppose that we are given the set of codeword lengths ¢1, /o, ..., ¢} for
which (5.1) is satisfied. O

e Without loss of generality, assume that we have ordered these lengths so that
b <ty < <Ay

e Consider the following algorithm:

a) Start with the full D-ary tree of length £,,,,and i < 1.

b) Choose z; as any surviving node at depth ¢;(not yet used as a codeword),
and remove its descendants from the tree. Stop if there is no such surviving
node.

c¢) If i = k,stop.Otherwise i =i + 1 and goto b).

We now show that we can indeed choose x; in step b) for all i < k. Suppose that
Z1,%2,...,2T;—1 has been chosen. The number of surviving leaves at depth £, not
stemming from any codeword is

i—1 i—1
Démaz _ (Z ngaz_ej) — Demaz(l _ ZD_Z]) > 0
j=1 J=1

with condition (3.1). There must be (unused) surviving nodes at depth ¢; < fp4z.
Since ¢4 < --- < ¥;_1 < ¥¢;, no already chosen codeword can stem outward from such a
surviving node and hence this surviving node may be chosen as x;.

Example:

Construct a binary prefix-free code with lengths /1 = ¢y = ¢35 = 2,04, = 3 and {5 = 4.
Since Z?zl 2t = % < 1, such a prefix-free code exists.

Figure 5.6: a binary prefix-free code tree
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e Note: Just because a code has lengths that satisfy (5.1), it does not follow that
the code is prefix-free, or even uniquely decodable.

e The same theorem holds for uniquely decodable codes. (IX 7 MHE X S —igF KB
Ef, AA/EME—miERS A LTS . So why use any code other than a prefix-free
code?)

Theorem 5.5.2 (Extended Kraft Inequality). For any prefiz-free code over an alphabet
of size D, the codeword length satisfy

o0
ZD*@‘ <1
=1

Conversely, for any given set of codeword lengths that satisfy the inequality, we can
construct a prefiz-free code with these lengths.

Proof. Consider a codeword y1y» . ..y, , where y; € {0,1,..., D—1} £D. Let 0.y1y2 ... yp, =

zg;l y;D~7 € [0,1]. This codeword corresponds to an interval

1
0.y1y2 .- ve;, 00192 - . . ye, + m)

Prefix-free code implies the intervals are disjoint. Hence the sum of their lengths < 1. [

5.6 Optimal codes

5.6.1 Problem formulation and Shannon codes

Let X = {ay,aq,...,a;} be the source alphabet, and P; = Px(X = a;) > 0. Suppose
that we encode each source symbol into prefix-free codeword. Denote by C(a;) the
codeword for a; and by ¢; the length of C(a;).

e Optimal code is defined as code with smallest possible L(C) with respect to Px.

e We now consider the problem of finding the prefix code with minimum expected
length:L = S°F | Pty =S,y P(x){(x).

e Mathematically, this is a standard optimization problem:

Minimize L = Z PY;
i

subject to ZD*& <1

7

and ¢; = {(x) are integers.

e We first ignore the integer constraint on ¢;. With real variables, we may assume
that >, D74 = 1.

e Using a Lagrange multiplier A\, we want to minimize

J=Y Pli+A\> D —1)
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Setting 2 8@ = 0, we obtain

=P —AD%InD =0« (a®) = (a®)Ina
equivalently, Dt = /\IP%

Since Y, P, =1 and D% = 1, we have A\ = ﬁ and hence

P,=D7"

This yields optimal lengths 7 = —logp P;
The expected codeword length

Lyin(non — integer) = Z P;logp P;
= Z P;log, P/ logy D
i
— H(X)/log, D

Theorem 5.6.1 (Entropy bounds for prefix-free codes). Let Ly be the minimum
expected codeword length over all D-ary prefix-free code. Then

H(X) _ H(X)

in < 1
logo D = ™" " logy D +

Proof. ® Let £y ...0; be the codeword lengths of an arbitrary prefix-free code.

H(X)
log D logDZ log——ZPﬁ

logszlog ZPlogDD &

Dt
— Pl
logD [Z o8 R- ]

IT Inequality < < loge

loge —4; '
— IOgD(Zi:D ¢ —zi:P,)

Kraft Inequality <0

(5.3)
(*) is satisfied with equality iff D;fi =1;ie., P, =D,
@ We now show that there exists a prefix-free code with L(C) < ﬁgg + 1.
e Let us choose the codeword length to be ¢; = [—logp P;]. Then
—logpP; < l; < —logpP; +1
b (e

Dt < P,
S D% <3P, =1 = kraftinequalityissatisfied.

Thus, a prefix-free code exists with the above length.
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e From the RHS of (**),

H(X)
L= EZ Pt < E R(—logDPi+1):10g2D+1
. HX) H(X)
®"10g2D§me§L<log2D+1

Summary [Shannon code]:

e Ideal codeword length ¢; = —logp F;.
This is optimal when —logp P; is an integer for any i.

e For general distribution, set
6 = [—logp B

e Bounds for the codeword length:
Average codeword length

Hp(X)< L < Hp(X)+1

e Example: Px(z) = {%, %, %7 T12}
Then
H(X)=1.8554
l;=[—logp P;] = (2,2,2,4)

Ell(z)] = % — 2.1667

Comparing to the obvious codeword length assignment (2,2,2,2,) loss 0.1667 bit
per source symbol.

5.6.2 Improvement

Coding over multiple i.i.d. source symbols: View (X1, Xs,...,X,,) as one super-symbol
from X™.

Apply the bounds derived above,
H(X;.. X)) <E[X]))<HX1...X,)+1
Since Xj ... X, are iid, H(X]) =), H(X;) = nH(X) implies

H(X) < BX])] < H(X) +

Theorem 5.6.2 (Prefix-free source coding theorem). For any DMS with entropy H(X),
there exists a D-ary prefiz-free coding of source blocks of length n such that the expected
codeword length per source symbol L, satisfies

H(X) <r H(X) 1

logD =™ “logD n
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From this theorem, H(X) is the minimum expected codeword length per source
symbol required to describe the source.

Usually, R = L,, logy D[bits/source symbol] is called the rate of a prefix-free code.

5.6.3 Unknown distribution
If assign the codeword length as

i = [—logq(z)]
and the true distribution of X is Px(i) = P;, then

H(P)+ D(pllg) < Ep[¢(X)] < H(P) + D(pllq) + 1

Proof.

- q(z) p(z)
x 1
:ZP(x)logZ(;—i—ZP(m) g@)—i—l

= D(pllg) + H(P) +1

e Penalty of D(p||q) bits per source symbol due to the wrong distribution.

e Discussion
— For any n, any code over i.i.d sequence X", E[¢(X])] > H(X).
— We can achieve this when n — oo, AEP code, Shannon code.

lim L E[(XT)] = H(X)

n—oo N

— True or False: for finite n,

* Shannon code is ”optimal”?

* A code with codeword length ¢; = —log Px (i),Vi is optimal
* Any prefix code must satisfy ¢; > —log P;, Vi

« The optimal code must satisfy ¢; < [—log P;], Vi
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5.7 Huffman codes

The optimal prefix code(in the sense of minimal L) for a given distribution can be
constructed by a simple algorithm discovered by Huffman in 1950(as a term paper in
Fano’s IT class at MIT).

Huffman’s trick, in today’s jargon, was to ”think outside the box”. He ignored the
kraft inequality, and looked at the binary code tree to establish properties that an op-
timal prefix-free code should have.

o Example:
A simple optimal code

P X cx) | ¢/ (x)

0.6 1 0 1
0.3 2 11 2
0.1 3 10 2

Figure 5.7: a simple optimal code

Lemma 5.7.1. Optimal codes have the property that if ¢; > {;, then P; < P;.

Proof. Let C be the optimal code. Consider a code C’, with the codewords i and j
of C interchanged. Then

L(C) = L(C) =) _ Pl — Y Pili
g p
= [Pl + Pili] — [Pili + Pyt — (P, — P)(t; — ()

Note that ¢; — ¢; > 0, and since C is optimal, L(C') — L(C) > 0. Hence we must
have Pj > Pi- ]

Lemma 5.7.2. Optimal prefix-free codes have the property that the two longest
codewords have the same length.

Proof. Otherwise, one can delete the last bit of the longer one, preserving the
prefix-free property and achieving lower codeword length. O

Lemma 5.7.3. The two longest codewords differ only in the last bit and correspond
to the two least likely symbols.

Proof. By Lemma(5.7.1), the longest codewords must belong to the least probable
source symbols.

If there is a maximal length codeword without a sibling, then we can delete the
last bit of codeword and still satisfy the prefix-free property. This reduces the
average codeword length. O
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e The Huffman algorithm chooses an optimal code tree by starting at leaves for the
least likely symbols and working in.

Example 1:
Symbol P,
1 0.4
2 0.2
3 0.15
4 0.15
5 0.1

the two least likely symbols

/N

The reduced set of probabilities={0.4,0.2,0.15,0.25}

Figure 5.8: Huffman tree

Optimal length:
—log P, = {1.32,2.32,2.74,2.74, 3.32}
~ the length{1, 3, 3, 3, 3}of the optimal code

H(X) = 2.15bits/symbol
L(C) = 2.2bits/symbol

Example 2:
Symbol P, codeword
1 0.35 11
2 0.2 01
3 0.2 00
4 0.15 101
5 0.1 100

e Let X be ar.v. over X with P, and X’ be a r.v. with reduced set of probabilities
P

e Let L’ be the expected codeword length of code for X’. Then

k—2
L=L'+P+Pk-1) (L= Pli+P(lh_,+1)+Pc(lj_,+1))
=1

Lin = L.,;,+Pr+Pi_1 = finding the optimal reduced code, yields the optimal final code.

e Note that there are many optimal codes. The Huffman algorithm produce one
such optimal code.
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e D-ary Huffman code:|X¥| = (D -1 +D K =|X|

IR EIHHEEANE = [(k — 2)mod(D — 1)] + 2
= Rp_1(k—2)+2

5.8 Shannon-Fano-Elias Coding

e Modified CDF: )
F(z)=)_ Pla)+ 5 P(@)

a<x

It is the midpoint of the step corresponding to x.

F(x)

0.75

)
—_~
=
=

0.25

Figure 5.9: P(z) = {0.25,0.5,0.125,0.125}

e Using the value of F'(z) as a code for x:
(the first £(x) bits of F(z)) F(x) in binary — codeword

then, F(z) — | F(z) ) < %
< Pl) (. 4(x) = [log P(lx)w +1 > log, P(lx) +1)

= F(z) — F(X — 1)

That is, | F(x)] () lies within the step corresponding to x. Thus £(z) bits suffice
to describe x.

e Each codeword z1 23 . .. z¢ is considered to represent the interval [0.z122 ... 2¢,0.2122 . .. 2p+
2%]—> prefix-free

e The expected length of this code is
L+ P@)i(x) = Y P)[log P(lx)w +1] < 3 Jlog P(lx) 42 = H(X)+2

o Example:
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x  P(z) F(zr)  F(x) in binary l(z) = [log P(lx) +1] C(x)
1 0.25 0.125 0.001 3 001
2 0.5 0.5 0.10 2 10
3 0.125 0.8125 0.1101 4 1101
4 0.125 0.9375 0.1111 4 1111

L(C) = 2.75 bits
H(X) = 1.75 bits

code efficiency n £

5.9 Arithmetic Coding

e Calculate the pmf P(z") and the CDF F(z") for sequence z".

e Using Elias coding, we can use a number in [(F'(z") — P(z™)), F(x™)] as the code
for x™.

o Example: X i@l 751010037 HARGifiS o
BEPx(0) = Py =%, Px(1) = P = §

F(xn)
1
A(l)
3
X A(011) AQ10D
AOD - AQ10) - A@T00)
A(0) \ C
A(00)
0
0 1 0 0 x"

Figure 5.10: B AL

— BAX[HA = [0,1]

— BN AL 07 Ja, IXTAJASZRER 2 FOUMAS X A(0) = A- Py, A(1) =
[P, 1] = APy (KB FEHLA(0) A T xkgmtIXTa], BIFTHIA + A(0).
— N AL “17 )5, XIEA = AQ0)7#E1A:

A(00) = A - Py, A(01) = AP,

FEELA = A(01) N R IR EIXH .
— WAL, AXIEFEARA/N, HWIGXIEJRLECE AN, Ea bit.
— bt 2
@ ¥lEth: ¢ =0,A=1
@ MANEMEMSFS “0”, C=0A=AR =2
® MNEMEMS “17, C=C+APy= 3 A=AP =2
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® WARMERAE <07, C=2A=3x3=-2
® WINEERES “0” ,

9 9 3 921 16. 11
= — A = — _ e — = — RN
C=15 611~ 256~ ‘256 T 236
= 0.1001 = 0.00011011 (binary)

HJESFIXEA: 0.1001 < C(z) < 0.10101011
codeword:101

5.10 Lempel-Ziv universal source coding

CARMEIRAIBER A, FATTRE FH Huffman 5EMIE S tE6% . X T RAMER AR, it
is desirable to have a one-pass (or online) algorithm to compress the data that “learns”
the probability distribution of the data and uses it to compress the incoming symbols.

e Universally optimal: asymptotic compression rate approached the entropy rate of
the source for any stationary ergodic source.
e Lempel-Ziv (LZ) algorithms do not require prior knowledge of the source statistics.

o LZ77: sliding window LZ algorithm, it uses string-matching on a sliding window.
(BRI — S, B SEE: MS Windows)

o LZ78: tree-structured LZ algorithm, it uses an adaptive dictionary. (it 75K
M: UNIXHcompress)

The key idea of LZ algorithm is to parse the string into phrases and to replace
phrases by pointers to where the string has occurred in the past.

e If a match is not found in the window, the next character is sent uncompressed.
To distinguish between these two cases, a flag bit is needed.

e Phrase types: (flag f, FLFCAZE v (RIATHED |, ILEEKE n) or (f, ¢ (RIE4EF
7))

o RJGL AT RS IR L (f, u, n) HEAT S5 WA

5.10.1 LZ77H?: (Gallager’08)

5.10.2 LZ78% 7k



