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Chapter 8  Space-Time Coded-Modulation for Multiple Antenna Systems 

(/for MIMO Channels) 

 
 

The advent of multiple-input–multiple-output (MIMO) space-time coded wireless 
systems has recently emerged as one of the most significant technical breakthroughs in 
modern communications. The research on MIMO systems, including the study of channel 
capacity and the design of communication schemes, demonstrates that MIMO systems have a 
potential to significantly increase spectral efficiency in wireless communications (without the 
requirement of increasing bandwidth and transmit power). 
 
Note: The materials presented in Sections 8.3 and 8.6.3 are based largely on B. Vucetic’s 
lecture notes. 
 
8.1 Introduction 

An MIMO system is an arbitrary wireless communication system in which the transmitter 
as well as the receiver is equipped with multiple antenna elements. A core idea in MIMO 
systems is space-time signal processing in which time is complemented with the spatial 
dimension inherent in the use of multiple spatially distributed antennas. MIMO effectively 
takes advantage of random fading and multipath delay spread for multiplying transfer rates. 
图 8.1 给出了一个有 N 根发送天线、M 根接收天线的 MIMO 系统框图。下图是采用不

同天线配置时的通信系统。 
 

 
Figure 8.0 Different antenna configurations in space-time systems. 
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Winter、Foschini 和 Telatar 的开创性工作证明，多天线阵技术可极大的提高系统信

道容量。若接收端可准确估计信道信息，并保证不同发射-接收天线对之间的信道衰落

系数相互独立，则一个拥有 N 根发射天线和 M 根接收天线的 MIMO 系统的信道容量将

随 min{M, N}线性增加。因此，信噪比、发射功率和信道带宽都相同时，多天线系统可

提供的信道容量是单天线系统的 min(M, N)倍。在频率资源日益紧张的今天，多天线信

道容量理论无疑给解决高速无线通信问题开辟了一条新思路，基于此发展起来的信道编

码和信号处理技术正越来越受到人们的关注。 
 

8.2 MIMO System Model 
Consider a single-user MIMO communication system with N transmit and M receive 

antennas. (It will be called a (N, M) system.) The system block diagram is shown in Fig.8.1. 

The transmitted signal at time t is represented by an N1 column vector Nx  , and the 

received signal is represented by an M1 column vector My   (For simplicity, we ignore 

the time index). The discrete-time MIMO channel can be described by 

 y Hx n                              (8.1) 

where H is an MN complex matrix describing the channel and the element ijh  of H 

represents the channel gain from the transmit antenna j to the receive antenna i; and 

 0,  MNn 0 I   is a zero-mean complex Gaussian noise vector whose components are 

i.i.d. circularly symmetric complex Gaussian variables. The covariance matrix of the noise is 

given by 2
0[ ] 2H

n M ME N   K nn I I , i.e., each of M receive antennas has identical noise 

power of N0 (per complex dimension) (or, 2 per real dimension). The total transmitted power 
is constrained to P, regardless of the number of transmit antennas N. It can be represented as 

 2|| || ( ) tr( )H H H
xTr Tr P                  x x x xx xxE E E E K , 

where = H
x   K xxE  is the covariance matrix of the transmitted signal x. Furthermore, if the 

channel is unknown to the transmitter, we assume that the signals transmitted from individual 
antennas have equal powers of P/N. It means that 

x N

P

N
K I                               (8.2) 

The received signal covariance matrix, defined as = H
y   K yyE , is given by 

0
H H

y x MN    K yy HK H IE  

Denoting by Pr the average signal power at the output of each receive antenna, the average 
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SNR at each receive antenna is given by 

0

rP

N
 SNR  

which is independent of N. The total received signal power can be expressed as Tr( )yK . 







 
Fig. 8.1 An MIMO wireless system model 

 
We will consider several possible scenarios for the matrix H: 

1. H is deterministic. 
2. H is a random matrix. Its entries are selected according a probability distribution at the 

beginning of each symbol interval T and are kept constant during one symbol interval. In 
other words, each use of the channel corresponding to an independent realization of H. 
Such a channel is called a fast (or independent) fading channel. 

3. H is a random matrix. Its entries change randomly and are kept constant during a fixed 
number of symbol intervals, much shorter than a transmission block. Such a channel is 
called a block fading channel. 

4. H is a random matrix but is fixed at the start of a transmission block and kept constant 
during a transmission block. Such a channel is called a slow or quasi-static fading 
channel. 

 
For normalization purposes, we assume that the received power for each of M receive 

branches is equal to the total transmitted power. Thus, in the case when H is deterministic, we 
have 

2

1

| | ,     1,2,...,
N

mn
n

h N m M


   

When H is random, we will assume that its entries are i.i.d. zero-mean complex Gaussian 
variables, each with variance 1/2 per dimension. This case is usually referred to as a rich 
scattering environment. The normalization constraint for the elements of H is given by 

2

1

| | ,     1, 2,...,
N

mn
n

h N m M


    E  
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With the normalization constraint, the total received signal power per antenna is equal to the 

total transmitted power, and the average SNR at any receive antenna is 0/P N  . 

In all cases, we will assume that the channel matrix is known to the receiver (i.e., perfect 
CSIR), equivalently, the channel output consists of the pair (y, H), and the distribution of H is 
known at the transmitter. In most situations, the realization of H (CSI) is assumed to be not 
known at the transmitter. 
 
8.3 Fundamental Capacity Limits of MIMO Channels 

Consider the case of deterministic H. The channel matrix H is assumed to be constant at 
all time and known to the receiver. The relation of (8.1) indicates a vector Gaussian channel. 
The Shannon capacity is defined as the maximum data rate that can be transmitted over the 
channel with arbitrarily small error probability. It is given in terms of the mutual information 
between vectors x and y as 

2 ( )( ): [|| || ]
( ) max ( ; , ) max ( ; ) ( ; | )

p xp P
C


  

x x
H x y H x H x y H  

E
 

 
( ) ( )

max ( ; | ) max ( | ) ( | , )
p x p x

  x y H y H y x H                (8.3) 

where p(x) is the probability distribution of the vector x, ( | )  and  ( | , )y H y x H   are the 

differential entropy and the conditional differential entropy of the vector y, respectively. Since 
the vectors x and n are independent, we have 

 2 0( | , ) ( ) log det( )MeN y x H n I   

which has fixed value and is independent of the channel input. Thus, maximizing the mutual 

information ( ; | )x y H  is equivalent to maximize ( | )y H . From (8.1), the covariance 

matrix of y is 

0= H H
y x MN    K yy H H IE K  

Among all vectors y with a given covariance matrix Ky, the differential entropy ( )y  is 

maximized when y is a zero-mean circularly symmetric complex Gaussian (ZMCSCG) 
random vector [Telatar99]. This implies that the input x must also be ZMCSCG, and therefore 

this is the optimal distribution on x. This yields the entropy ( | )y H  given by 

 2( | ) log det( )yey H K  

The mutual information then reduces to 

( ; | ) ( | ) ( ) x y H y H n    

2
0

1
log det H

M xN

  
      

I H HK                      (8.4) 
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where we have used the fact that det( ) det( )det( )AB A B  and   11det( ) det( )
 A A . And 

the MIMO capacity is given by maximizing the mutual information (8.4) over all input 
covariance matrces Kx satisfying the power constraint: 

2
: ( )

0

1
( ) max log det

x x

H
M x

Tr P
C

N

  
      

H I H H
K K

K    bits per channel use     (8.5) 

2
: ( )

0

1
max log det

x x

H
N x

Tr P N

  
      

I H H
K K

K   

where the last equality follows from the fact that    det detm n  I AB I BA  for matrices 

 ( ) and  ( )m n n m A B . 

Clearly, the optimization relative to Kx will depend on whether or not H is known at the 
transmitter. We now discuss this maximizing under different assumptions about transmitter 
CSI by decomposing the vector channel into a set of parallel, independent scalar Gaussian 
sub-channels. 
 
8.3.1 Parallel Decomposition of the MIMO Channel 

By the singular value decomposition (SVD) theorem, any MN matrix M NH   can be 

written as 

HH UΛV                              (8.6) 

where  is an MN non-negative real and diagonal matrix, U and V are MM and NN 

unitary matrices, respectively. That is,  and H H
M N UU I VV I , where the superscript “H” 

stands for the Hermitian transpose (or complex conjugate transpose). In fact, the diagonal 
entries of  are the non-negative square roots of the eigenvalues of matrix HHH, the columns 
of U are the eigenvectors of HHH and the columns of V are the eigenvectors of HHH.  

Denote by  the eigenvalues of HHH, which are defined by 

H HH z z ,  z0                          (8.7) 

where z is an M1 eigenvector corresponding to . The number of non-zero eigenvalues of 
matrix HHH is equal to the rank of H. Let r be the rank of the matrix H. Since the rank of H 

cannot exceed the number of columns or rows of H, min( , )r m M N  . If H is full rank, 

which is sometimes referred to as a rich scattering environment, then r = m. Equation (8.7) 
can be rewritten as 

( ) 0,m  I W z   z0                         (8.8) 

where W is the Wishart matrix defined to be 
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,    if 

,    if 

H

H

M N

M N

 
 



HH
W

H H
 

This implies that  

det( ) 0m  I W                            (8.9) 

The m nonzero eigenvalues of W, 1, 2, …, m, can be calculated by finding the roots of 
(8.9). The non-negative square roots of the eigenvalues of W are also referred to as singular 
values of H. 

Substituting (8.6) into (8.1), we have 

H y UΛV x n  

Let ,  ,  H H H  y U y x V x n U n  . Note that U and V are invertible, n  and n have the same 

distribution (i.e., zero-mean Gaussian with i.i.d. real and imaginary parts), and 

[ ] [ ]H HE Ex x x x  . Thus the original channel defined in (8.1) is equivalent to the channel 

 y Λx n                                (8.10) 

where  1 2, ,..., ,0,...,0mdiag   Λ  with , 1,2,...,i i m   denoting the non-zero 

singular values of H. The equivalence is summarized in Fig. 8.2. From (8.10), we obtain for 
the received signal components 

 
,    1

,          m+1
i i i i

i i

y x n i m

y n i M

   

  

  
 

                        (8.11) 

It is seen that received components ,  iy i m , do not depend on the transmitted signal. On 

the other hand, received components ,  1, 2,...,iy i m  depend only the transmitted 

component ix . Thus the equivalent MIMO channel in (8.10) can be considered as consisting 

of m uncoupled parallel Gaussian sub-channels. Specifically, 
 If N>M, (8.11) indicates that there will be at most M non-zero attenuation 

subchannels in the equivalent MIMO channel. See Fig. 8.3. 
 If M>N, there will be at most N non-zero attenuation subchannels in the equivalent 

MIMO channel. 
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Figure 8.2 Converting the MIMO channel into a parallel channel through the SVD. 
 

 
Fig. 8.3 Block diagram of an equivalent MIMO channel for N>M 

 
With the above model (parallel orthogonal channels), the fundamental capacity of an 

MIMO channel can be calculated in terms of the positive eigenvalues of the matrix HHH as 
follows. 
 
8.3.2 Channel Known to the Transmitter 

When the perfect channel knowledge is available at both the transmitter and the receiver, 
the transmitter can optimize its power allocation or input covariance matrix across antennas 
according to the “water-filling” rule (in space) to maximize the capacity formula (8.5). 
Substituting the matrix SVD (8.6) into (8.5) and using properties of unitary matrices, we get 
the MIMO capacity with CSIT and CSIR as 
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2
: ( )

0

1
max log det

x x

H
N x

Tr P
C

N

  
   

  
I Λ Λ

K K
K  

2
:

1 0

max log 1
i ii

m
i i

P P P
i

P

N


 

 
    

  

where Pi is the transmit power in the ith sub-channel. Solving the optimization leads to a 
water-filling power allocation over the parallel channels. The power allocated to channel i, 
1im, is given parametrically by 

0
i

i

N
P 




 

  
 

                             (8.12) 

where a+ denotes max(0, a), and  is a constant that is chosen to satisfy 

1

m

i
i

P P


                                 (8.13) 

The resulting capacity is then 

 WF 2 0 2
1 10 0

1 1
log 1 log

m m

i i
i i

C N
N N

 




 

   
      

   
     bits/channel use   (8.14) 

which is achieved by choosing each component ix  according to an independent Gaussian 

distribution with power Pi. The covariance matrix of the capacity-achieving transmitted signal 
is given by 

H
x  VPVK  

where  1 2diag , ,..., ,0,...,0mP P PP  is an NN matrix. Figure 8.4 depicts the SVD-based 

architechture for MIMO communication. 
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Figure 8.4 The SVD-based architechture for MIMO communication. 
 
 Water-filling algorithm: 

The power allocation in (8.12) can be determined iteratively using the water-filling 
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algorithm. We now describe it. 
We first set the iteration count p to 1 and assume that 所有(m-p+1)个并行子信道都使

用。With this assumption, the constant   is calculated (by substituting (8.12) into (8.13)) as 

1
0

1

m p

i i

N
P



 



 
  

 
  

Then we have 

1

0
1

1 1

1

m p

i i

P N
m p




 



 
     

                     (8.15a) 

Using this value of  , the power allocated to the ith subchannel is given by 

0 ,    1,2,..., 1i
i

N
P i m p


 

     
 

                 (8.15b) 

If the power allocated to the channel with the lowest gain is negative (i.e., 1 0m pP    ), 

then we discard this channel by setting 1 0m pP     and return the algorithm with the iteration 

count p = p+1. 即迭代执行(8.15a)和(8.15b)，将总功率 P 在剩余的(m-p+1)个子信道之间

进行分配。迭代计算直到获得的所有 0iP  或 p=m 为止。 

 
8.3.3 Channel Unknown to the Transmitter 

If the channel is known to the receiver, but not to the transmitter, then the transmitter 
cannot optimize its power allocation or input covariance structure across antennas. This 
implies that if the distribution of H follows the zero-mean spatially white (ZMSW) channel 
gain model, the signals transmitted from N antennas should be independent and the power 
should be equally divided among the transmit antennas, resulting an input covariance matrix 

x N

P

N
 IK . It is shown in [Telatar99] that this Kx indeed maximize the mutual information. 

Thus, the capacity in such a case is 

2

2

log det ,    if 

log det ,    if 

H
M

H
N

M N
N

C

M N
N

           
         

I HH

I H H

SNR

SNR
     bits per channel use    (8.15) 

    

where 0/P NSNR . Using the SVD of H, we can express this as 

2
1 0

log 1
m

ri

i

P
C

N

 
  

 
 2

1 0

log 1
m

i

i

P

NN
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2
1

log 1
m

i
i N




   
 

 SNR
    bits/channel use            (8.16) 

 
where Pri is the received signal power in the ith sub-channel. Equation (8.16) expresses the 
capacity of the MIMO channel as a sum of the capacities of m SISO channels, each having a 

power gain of i  and transmit power P/N. (Note: Because of the use of complex signals, the 

above unit is sometimes expressed in terms of “bits/sec/Hz”.) 
Since the nonzero eigenvalues of HHH are the same as those of HHH, the capacity of a 

channel with matrix H and HH are the same. Furthermore, the capacity can be achieved by 

choosing independent { ,1 }ix i m   with each ix  having independent Gaussian, zero-mean 

real and imaginary parts. 
 
8.3.4 MIMO Capacity Examples 
Example 1 [Single antenna channel]. Consider a channel with N=M=1 and H=h=1. The 
Shannon capacity of this channel is 

 
2

2
2 2

0

| |
log 1 log 1 | |

P h
C h

N


 
    

 
    bit/channel use      (8.17) 

 
Example 2 [MIMO channel with coherent combining]. Consider a MIMO channel with hij=1 
for all 1iN, 1jM. We can write H as 

 
1/

1/ 1/

1/

H

M

MN N N

M

 
        
 
 

H UDV    

and we see that the diagonal matrix D will have only one nonzero entry MN . Thus, the 

Shannon capacity of this channel is 

2
0

log 1
P

C MN
N

 
  

 
                         (8.18) 

The x Vx  that achieves this capacity satisfies *[ ] /i jE x x P N  for all i, j; i.e., the 

transmitters are all sending the same signal. Thus, we can see that H corresponds to such a 
system in which the same signal x is transmitted from N transmit antennas and the receiver 
performs coherent maximum ratio combining (MRC) by M antennas. Then (8.18) can be 
interpreted as follows. 

The received signal at antenna i is given by iy Nx  and the received signal power at 

antenna i is 2
ri

P
P N

N
  . Since each receiver sees the same signal, and the noises at the 
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receivers are uncorrelated, the overall SNR is 2 2/ /riMP M N P    . Then (8.18) follows 

from (8.16). 
We can see that this system achieves a diversity gain of MN relative to a single antenna 

link. However, the capacity grows logarithmically with the total number of antennas MN. 
Note: If the signals transmitted from various antennas are different and all channel entries are 
equal to 1, the capacity is given by 

2 2
log 1

P
C M


   
 

 

 
Example 3 [MIMO channel with orthogonal transmissions]. Consider a channel with N=M=n 
and H=In. Since HHH=In, from (8.15) we obtain 

2log det n nC
N

       
I I  

2 2 2
log 1 log 1

n
P

n
N N




         
   

                   (8.19) 

As the number of antennas n, the capacity approaches 

lim
ln 2n

C



  

In this case the capacity increases linearly with SNR. Equation (8.19) indicates that a MIMO 
channel gives a multiplexing gain of n. An implementation example of such system is to 
spread transmitted signals from various antennas by orthogonal spreading sequences. 

For x that achieves the capacity given in (8.19), *[ ] /i j i jE x x P N  . Notice that, 

however, we cannot conclude that to achieve capacity one has to do independent coding for 
each transmitter. It is true that the capacity of this channel can be achieved by splitting the 
incoming data stream into N streams, coding and modulating these streams separately, and 
then transmitting the N modulated signals over the different antennas. 
 
Example 4 [Receive diversity]. Consider a system with N=1 transmit and M>1 receive 

antennas. In this case, the channel matrix can be represented by the vector 1 2[   ... ]T
Mh h hH . 

Since 2

1

| |
M

H
i

i

h


 H H , from (8.15), we obtain 

2 2
2 2

1 10

log 1 | | log 1 | |
M M

i i
i i

P
C h h

N


 

       
   

                (8.20) 

This capacity corresponds to linear MRC at the receiver. In the case when |hi|
2=1 for all 

1iM, (8.20) becomes 
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2
0

log 1
P

C M
N

 
  

 
                         (8.21) 

This system achieves the diversity gain of M relative to a single antenna channel. 
 
Example 5 [Transmit diversity]. In this system there are N transmit antennas and only one 

receive antenna. The channel matrix is given by the vector 1 2[   ... ]Nh h hH . Substituting 

2

1

| |
N

H
j

j

h


 HH  into (8.15) yields 

2 2
2 2 2

1 1

log 1 | | log 1 | |
N N

j j
j j

P
C h h

N N


 

   
      

   
                (8.22) 

With the power normalization, i.e., |h1|
2=|h2|

2=…=|hN|2=1, the capacity becomes 

2 2
log 1

P
C


   
 

                          (8.23) 

This equation applies to the case when the transmitter does not know the channel. When the 
transmitter knows the channel, we can apply the capacity formula in (8.14). Since m=min(M, 
N)=1, there is only one nonzero eigenvalue given by 

2

1

| |
N

j
j

h


   

Combining (8.12) and (8.13), we have 
2

P



  . So the capacity is given by 

2
WF 2 2

1

log 1 | |
N

j
j

P
C h

 

 
  

 
                      (8.24) 

 
8.4 Capacity of MIMO Rayleigh Fading Channels (Random MIMO Channels) 

We now proceed to consider the case when the channel matrix entries are 
(complex-valued) random variables (usually referred to as random MIMO channel). Assume 
that perfect CSI is available at the receiver but no CSI at the transmitter. Furthermore, we 
assume that that the entries of H have Rayleigh distributed magnitudes, uniform phases and 

expected magnitude squares equal to unity, 2[| | ] 1ijE h  . Equivalently, each entry of H is 

assumed to be zero-mean Gaussian with independent real and imaginary parts, each with 
variance 1/2. The antenna spacing is larger than one half of the carrier wavelength to ensure 
that the entries of H are independent. According to frequency of channel coefficient changes, 
we will distinguish three scenarios: namely, fast, slow and block fading channels.  

 
 

Note: The probability density function (pdf) for a Rayleigh distributed random variable 2 2
c sz z z  , 

where zc and zs are two i.i.d Gaussian random variables each having zero mean and a variance 2
r , is 

given by 
2

2 2
( ) exp

2

z z
p z

 
 

  
 

, z  0. 
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8.4.1 Capacity in Fast and Block Fading channels 
We first consider the fast and flat fading channel. In other words, the channel is assumed 

to be memoryless: for each use of the channel an independent realization of H is drawn. In 
this case the ergodic capacity formula can be applied. 
 For the simple single antenna link, the ergodic capacity is 

   2 2
2 2 2log 1 | | log 1C E h E          X  

where 2 2 2
2 1 2x x X  is a chi-squared distributed random variable with two degrees of 

freedom, and the expectation is performed with respect to the variable 2
2X . 

 The MIMO capacity in fast fading channels can be calculated as follows. 
The channel model is described by 

[ ] [ ] [ ] [ ]k k k k y H x n  

where k=1, 2,…, is the discrete time index. 
By viewing the channel output as the pair (y, H), the mutual information between channel 

input and output is 

( ;( , )) ( ; ) ( ; | )I I I x y H x H x y H  

 
( ; | )

( ; | )

I

I H



 H

x y H

x y HE
 

From (8.15), the rate achieved in a given channel state is 

  2
0

1
; | log det H

M xI H H H
N

  
    

  
x y H I K  

where Kx is the covariance matrix of the transmitted signals, and we have assumed M<N. As 
usual, by coding over many coherence time intervals of the channel, a long-term rate of 
reliable communication (Shannon capacity) is equal to 

2
:tr[ ]

0

1
max log det

x x

H
M x

P
C

N

        
    

H I H H
K K

E K      bits/channel use     (8.25) 

With the iid Rayleigh fading model, the capacity is achieved when x is a circularly symmetric 

zero-mean complex Gaussian vector with covariance matrix x N

P

N
   
 

IK . With this equal 
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powers, the resulting capacity is 

2
0

log det m

P
C

NN

        
    

I WE  

2log det m N

          
I W

SNR
E                   (8.26) 

where 
,    if 

,    if 

H

H

M N

M N

 
 



HH
W

H H
 is a matrix with Wishart distribution. 

 
 For block fading channels, as long as the expected value with respect to the channel 

matrix H in (8.26) can be observed, we can calculate the channel capacity by using the 
same expression as in (8.26). This is usually the case of no delay constraint. Biglieri et al. 
discussed the block-fading channels with delay constraints in [Big2001]. 

 
Notice that the expectation in (8.26) is quite complex for larger values of N and M. With 

the aid of Laguerre polynominals, it can be evaluated as follows. (A detailed discussion can 
be found in [Telatar95] 

1 2

20
0

!
log 1 ( )

( )!

m
n m n m
k

k

k
C L e d

N k n m
    

   



         
           (8.27) 

where min( , ),  max( , ),  ( )n m
km N M n N M L x   is the associated Laguerre polynominal of 

order k, defined as 

1
( ) ( )

!

k
n m x m n x n m k
k k

d
L x e x e x

k dx
                          (8.28) 

Using limiting arguments, the capacity in (8.27) is upper and lower bounded by 

log log( !) log ( / )n m
mC m m L N

N

        

1

0

log ( )
m

i

C m n i
N

 




    

where  is Euler’s digamma function. 
 
Example 6 [Fast fading channel with receive diversity-SIMO]. Consider a system with N=1 
transmit and M>1 receive antennas in a fast Rayleigh fading channel. In this case, the channel 

matrix 1 2[   ... ]T
Mh h hH , and the capacity (for MRC) is given by 

2
2 22

log 1 M

P
C E


       

X                        (8.29) 
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where 2 2
2

1

| |
M

M i
i

h


 X  is a chi-squared random variable with 2M degrees of freedom. The 

capacity curves are shown in Fig. 8.5. 
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Fig.8.5 Capacity of SIMO (N=1) in a fast and block Rayleigh fading channel with MRC 
 
Example 7 [Fast fading channel with transmit diversity-MISO]. Consider a system with N>1 
transmit and M=1 receive antennas in a fast Rayleigh fading channel. In this case, the channel 

matrix is 1 2[   ... ]Nh h hH , and the Shannon capacity is given by 

2
2 22

log 1 N

P
C E

N
       

X                       (8.30) 

where 2 2
2

1

| |
N

N j
j

h


 X  is a chi-squared random variable with 2N degrees of freedom. The 

capacity curves are shown in Fig. 8.6. 
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Fig.8.6(a) Capacity of MISO (for M=1) in a fast and block Rayleigh fading channel 
 

As the number of transmit antennas increases, the capacity approaches the asymptotic 
value 

2 2
lim log 1
N

P
C



   
 

                       (8.31) 

which indicates that the system behaves as if the total power is transmitted over a single 
unfaded channel. In other words, the transmit diversity is able to remove the effect of fading 
for a large number of antennas. We can see from Fig. 8.6 that the capacity of the transmit 
diversity saturates for N2. That is, the capacity asymptotic value is achieved for the number 
of transmit antennas of 2 and there is no point in increasing it further. 
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Figure 8.6(b) Capacity for MISO system with N transmit antennas 

 
Example 8 [MIMO fast fading channel] We consider a system with N>1 transmit and M=N 
receive antennas in a fast Rayleigh fading channel. Assuming perfect channel knowledge at 
the receiver, but no channel knowledge at the transmitter.  
It has been shown [Tse2005] that 

 with M = N = m = n, the capacity can be approximated by  *nc SNR , where  *c SNR  

is a constant given by 

* 1 log
( ) 2 log 1 ( ) ( )

4 4

e
c F F     

 
SNR SNR SNR SNR

SNR
, 

where 

 2

( ) 4 1 1F   SNR SNR  

 At high SNR, the capacity is approximately equal (up to an additive constant) to 

logn SNR  bits/s/Hz. 

 At low SNR, the capacity is approximately equal to 2logn eSNR  bits/s/Hz. 

As a consequence, we can see that in a nn MIMO channel, the capacity increases linearly 
with n over the entire SNR range. 

Fig. 8.7 shows the capacity for different numbers of antennas in an iid Rayleigh fading 
channel. 
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(b) 

Figure 8.7 Capacity for MIMO systems in an iid Rayleigh fading channel 
 

The capacities, as a function of n, are plotted for the SIMO, MISO, and MIMO channels in 
Fig.8.8. 

 
Figure 8.8 Capacities of the n1 MISO channel, 1n SIMO channel and the nn MIMO 

channel, for SNR = 0dB. 
 
8.4.2 The MIMO Capacity In Slow Rayleigh Fading Channels 

In the case when H is chosen randomly at the beginning of a transmission block and held 
constant for all the uses of the channel, the maximum mutual information is in general not 
equal to the channel capacity. Specifically, for slow, flat fading channels, the model in () 
becomes 

[ ] [ ] [ ]k k k y Hx n  

and each codeword, however long, experience only one channel state. This fading model is 
nonergodic. 

The capacity estimated by (8.15) is a random variable. We estimate the capacity 
complementary cumulative distribution function (CCDF), which results in the concept of 
outage capacity. The outage probability, denoted by Pout, specifies the probability of not 
achieving a certain level of capacity. It is equal to the capacity cumulative distribution 
function (CDF). Specifically, given a rate R and power P, the outage probability is defined by 

 ( , ) Pr ( )outP R P C R H  

where  

2
0

( ) log det H
m

P
C

NN

  
   

  
H I HH  

Usually, the capacity curves are expressed in terms of “Pc = 1-Pout vs. R”; i.e., CCDF. Fig. 8.9 
shows the simulation results for the CCDF capacity per antenna on a slow Rayleigh fading 
channel in an MIMO system with N=M=8. 
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Fig. 8.9 Capacity per antenna CCDF curves for a constant number of antennas N=M=8 and a 
variable SNR 
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8.4.3 Constrained-Capacity in Fast Fading channels 
For the discrete-time channel model 

 y Hx n , 

given in (8.1), let x be an N1 vector of symbols chosen from a signal constellation   

with ||=2b signal points. Let Es = P be the total transmitted power. We assume that the vector 

1[ ,..., ,..., ]T
n Nx x x x  obeys the component-wise energy constraint 2[|| || ] /n sE x E N . As 

mentioned above, assume that the components of the zero-mean complex Gaussian noise 

vector n have identical variance 2
n  per real dimension. Then, the SNR measured at the each 

receive antenna is 

2
02

s s

n

E E

N



  .                            (8.32) 

With the normalization constraint, the average signal energy per receive antenna is Es. Hence, 

the M receive antennas collect total energy sM E , carrying N b  coded bits or cR Nb  

information bits, where Rc is the rate of the used FEC code. Let Rm denote the number of 
information bits conveyed per transmitted symbol at each transmit antenna; i.e., Rm is the 
number of information bits transmitted by each xn. We therefore have the average signal 
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energy per information bit at the receiver s s s
b

c m

ME ME ME
E

NR b NR 
   , where  is the spectral 

efficiency (in terms of b/s/Hz). The SNR can be expressed in terms of Eb/N0 as 

0 0

b sE E M M SNR

N N  


                         (8.33) 
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Figure 8.10 Constrained-capacity for MIMO system with N=M=2. 

 
8.4.4 Influence of antenna correlation on the MIMO capacity 

The capacity gain of MIMO channels, derived under the idealistic assumption that the 
channel matrix entries are independent complex Gaussian variables, might be reduced on real 
channels. Practical MIMO channel may not be iid. The effect of spatial fading correlation on 
the MIMO channel capacity has been addressed in []. Here we consider the separately 
correlated model. Assume that we model the correlation of the receive and the transmit array 
elements independently, their respective correlation matrices can be expressed as Rr and Rt. 
The correlated MIMO channel matrix can be expressed in the form [Paulraj03] 

1/ 2 1/ 2
r w tH R H R  

where Hw is a M N  matrix of uncorrelated, circularly symmetric, zero mean, complex 
Gaussian r.v.’s. with unit variance, representing a Rayleigh i.i.d. spatially white MIMO 

channel, and 1/ 2( )  denotes matrix square root. Calculation of the ergodic capacity in this 

case is an open problem; its solution is known only in some special cases. Under the 
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assumption that the entries of H are unknown at the transmitter, the MIMO capacity can be 
obtained with the independent signals across the transmit antennas, which can be written as  

 1/ 2 1/ 2
2log det

HH
r r w t w rC

N

          
I R H R H R

SNR
E  

In the special case M=N and with the assumption that the receive and transmit correlation 
matrices are full rank, for high SNR the capacity can be approximated as [] 

   2 2 2log det log det log detH
w w t rC

N

                 
H H R R

SNR
E +  

We note from above that both correlation matrixes have the same impact on the channel 
capacity. We now examine the conditions on Rt that maximize capacity. The same arguments 

apply to Rr . Let i , i=1,…,N denote the positive eigenvalues of Rt, and recall that the power 

constraint  
1

t i
i

Tr N


 R . We have 

 1/ 1/

1

1
det 1

N N
t i i

ii N
 



  R  

This means that  2

1
log det 0tN

  R  with equality iff t NR I . A similar result applies to 

Rr. Therefore, antenna correlation does reduce the number of eigenvalues and thereby reduces 
the MIMO channel capacity. This loss in ergodic or outage capacity is given by 

   2 2log det log dett r      R R  bit/s/Hz. 

Example: [Jankiraman04, pp.35] 
If we assume an orthogonal channel where M N 2 and further assume that there is 

correlation only at the receiver, then we choose a receive correlation matrix as 

1 0.8

0.8 1r

 
  
 

R  

We note from Figure 8.11 that there is a loss of 2.47 bit/s/Hz at high SNR compared with the 
case with no correlation. 
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Figure 8.11 
 
8.5 Influence of Channel-State Information [Biglieri05] 

As we have seen, the aforementioned results on MIMO capacity are based on the 
assumption of perfect CSI available to the receiver, which can be viewed as a fundamental 
limit for coherent multiple-antenna systems. In practice, the channel knowledge may be 
imperfectly known or even not be available to the receiver. Biglieri and Taricco (2004) 
investigate effects that this imperfect estimation has on system performance. In the following, 
we will discuss the fundamental limits of noncoherent communication, where estimates of the 
fading coefficients are not available. 
 Consider a block fading channel model. Let L denote the block length (coherence time of 
the channel). To compute the capacity of this channel, we assume that coding is performed 
over mutilpe blocks, each of them consisting of NL elementary symbols to be transmitted by 
N antennas in L time instants. One block is represented by the N L  matrix x. We further 

assume that the M L  noise matrix  0,  MNn 0 I  . The received signal is the M L  

matrix 
 y Hx n  

It has been shown [Marzetta and Hochwald, 1999] that the pdf of y can be expressed as 

   1

1

1
( | ) ( | ) exp Tr

det

M
H H

i LM M H
i L

p p






   
  

y x y x x x I y y
x x I

 

We observe the following: 

(a) The pdf of y depends on its argument only through the product Hy y , which consequently 

plays the role of a sufficient statistic. 
(b) The pdf of y depends on the transmitted signal x only through the L L  matrix Hx x . 
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Observation (b) above is the basis of the following theorem, which, in its essence, says 

that there is no increase in capacity if we have N>L; hence, there is no point in making the 
number of transmit antennas greater than L if there is no CSI. In particular, if L=1 (an 
independent fade occurs at each symbol interval), only one transmit antenna is useful. Note 
how this result contrasts sharply with its counterpart of CSI known at the receiver, where the 
capacity grows linearly with min{N, M}. 
 
Theorem 8.1: If the entries of H are i.i.d. (空间白 MIMO 信道), then (for any coherence 
interval of L symbols and any number of receive antennas) the channel capacity obtained with 
N>L equals the capacity for N=L. 
 

Marzetta and Hochwald also showed that the signal matrix that achieves capacity can be 
written in the form 

x DΦ  

where  is a N L  (unitary) matrix such that H
NΦΦ I , and D is a NN real, 

non-negative, diagonal matrix independent of . Moreover,  has a pdf that is unchanged 
when the matrix is multiplied by a deterministic unitary matrix. The role of D is to scale x to 
meet the power constraint. In general, the optimal D is unknown; however, for the high-SNR 
regime, the following results are available (Marzetta and Hochwald, 1999; Zheng and Tse, 
2002), but note that they depend critically on the assumed fading model (Lapidoth and Moser, 
2003): 

(a) If  and min{ / 2, }L N N L M , then capacity is attained when 0 / NLN ND ISNR , 

so that 0 /LN Nx ΦSNR . 

(b) For every 3 dB increase of SNR, the capacity increase is * *(1 / )N N L , where 

 * min , , / 2N N M L    . 

(c) If L2N, there is no capacity increase by using M>N. 
 

An obvious upper bound to capacity can be obtained if we assume that the receiver is 
provided with perfect knowledge of the realization of H. Hence, the bound to capacity per 
block of L symbols is 

2log det H
MC L

N

        
I HH

SNR
 

 
8.6 Design of MIMO Systems 

Many practical MIMO techniques have been developed to capitalize on the theoretical 
capacity gains predicted by Shannon theory. A major focus of such work is space-time coding. 
Other techniques for MIMO systems include space–time modulation, adaptive modulation 
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and coding, space–time equalization, space–time signal processing, and space–time OFDM. 
An overview of the recent advances in these areas and other practical techniques along with 
their performance can be found in [4-10]. 
 
8.6.1 Two Usages of Multiple Antennas: Diversity and Multiplexing 

Two key performance metrics associated with any communication system are the 
transmission rate and the frame-error rate (FER). In a MIMO system, multiple antennas can 
be utilized to achieve a higher transmission rate (as we have seen in capacity analysis), or 
provide a higher diversity gain, resulting in improved FER performance. Therefore, the 
advantage of a MIMO channel can be utilized in two ways: (1) to increase the diversity of the 
system and (2) to increase the number of transmitted symbols. This represents two way of the 
use of multiple antennas. It has been shown that there exists a fundamental trade-off between 
the transmission rate and FER. In [Zheng03], this trade-off is referred to as the 
diversity-multiplexing tradeoff (DMT) with diversity signifying the FER reduction and 
multiplexing signifying an increase in transmission rate. 它主要用来刻画空时传输方案在

慢衰落信道上的性能。 
Traditionally, multiple antennas have been used to increase diversity to combat channel 

fading. Each pair of transmit and receive antennas provides a signal path from the transmitter 
to the receiver. By sending signals that carry the same information through different paths, 
multiple independently faded replicas of the data symbol can be obtained at the receiver end; 
hence, more reliable reception is achieved. For example, in a slow Rayleigh-fading channel 
with one transmit and M receive antennas, the transmitted signal is passed through different 
paths. It is well known that if the fading is independent across antenna pairs, a maximal 
diversity gain of M can be achieved: the average error probability can be made to decay like 

1/SNR M  at high SNR, in contrast to the 1/SNR for the single-antenna fading channel. 

Space-time coding is such a method that uses multiple transmit antennas to get diversity. In a 
system with N transmit and M receive antennas, assuming the path gains between individual 
antenna pairs are i.i.d. Rayleigh faded, the maximal diversity gain is MN, which is the total 
number of fading gains that one can average over. (For example, transmitting only one 
symbol per time slot) 

A different line of thought suggests that in a MIMO channel, fading can in fact be 
beneficial, through increasing the degrees of freedom available for communication. 
Essentially, if the path gains between individual transmit–receive antenna pairs fade 
independently, the channel matrix is well conditioned with high probability, in which case 
multiple parallel spatial channels are created (as we have shown in SVD of H). By 
transmitting independent information streams in parallel through the spatial channels, the data 
rate can be increased. This effect is also called spatial multiplexing, and is particularly 
important in the high-SNR regime (where the system is degree-of-freedom limited). For a 
channel with N transmit and M receive antennas, from (8.16) and (8.26), the capacity in a fast 
fading scenario is given by 

2
1

( ) log 1
m

i
i

C
N




       
 SNR

SNR E  
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where m=min(M, N) is the number of spatial degrees of freedom in the channel. At high SNR, 
this ergodic capacity increases linearly with log2SNR according to the number of antennas; 
i.e., 

 
2

( )
lim min ,

log

C
N M




SNR

SNR

SNR
                      (8.34) 

[ min( , ) log (1)C M N SNR O  , which increases linearly with the number of antennas.] 

The BLAST-type (Bell Labs space–time architecture) schemes are typical examples of such 
systems to exploit the spatial multiplexing (where m symbols are sent per time slot). 

When we restrict our attention to communications over a slow fading channel, we have to 
back off from this ergodic capacity to achieve small error rates, but can still benefit from the 
increased degrees of freedom. To explore this, we consider rates that are a fixed fraction of 

this ergodic capacity at high SNR, i.e., rates of the form 2logR r SNR  with 

0 min{ , }r N M  , and evaluate the associate error behavior. The value of r can therefore be 

viewed as the spatial multiplexing gain.  
In [Zheng03], it was shown that, for a given MIMO channel, both diversity gain and 

spatial multiplexing gain can be simultaneously obtained, but there is a fundamental tradeoff 
between them. 两种增益的最大值不能同时达到(For finite block lengths, it is not possible 
to achieve full diversity and full multiplexing gain)。 

 
In the following discussions, we focus our attention on the non-ergodic fading channel 

with CSI available to the receiver only, and to a high-SNR situation. Denote by Pe and Pout the 
FER and the outage capacity of MIMO channels, respectively. In a situation where different 
data rates are involved, a sequence of codes with increasing rate, rather than a single code, 
must be considered. 
 Spatial multiplexing gain 
A spatial multiplexing gain r that can be achieved over a MIMO channel is given by the 

asymptotic (in SNR) slope of the transmission rate (for fixed FER) plotted as a function of the 
SNR  in a linear-log scale; i.e., 

2

( )
lim

log

R
r






                            (8.35) 

where R is the rate of the code (b/s/Hz), in bits per channel use. The main rational behind such 
a rate normalization is the fact that spatial multiplexing gain measures how far the rate R is 
from the capacity. For the Rayleigh iid spatially white MIMO channel with optimal 
transceiver design (i.e., Gaussian code books, asymptotically large frame length, ML 

detection, etc), max min{ , }r M N  indicating that for a fixed FER, the transmission rate may 

be increased by min{M, N} b/s/Hz for every 3 dB increase in SNR. 
 
 Diversity gain 
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A diversity gain d that can be achieved over a MIMO channel is given by the negative of 
the asymptotic (in SNR) slope of the error probability for a fixed transmission rate, plotted as 
a function of the SNR in a log-log scale; i.e., 

log ( )
lim

log
eP

d





                           (8.36) 

where ( )eP   is the error probability at an SNR equal to  . The log in (8.36) can be in any 

base. For the Rayleigh iid spatially white MIMO channel with optimal transceiver design, 

maxd M N  , indicating that for a fixed transmission rate, with every 3 dB increase in SNR, 

the FER decreases by a factor of 2 MN . For convenience, we rewrite (8.36) as ( ) d
eP     

with = denoting exponential equality. 
 
 Diversity-multiplexing tradeoff 
A diversity gain d and a spatial multiplexing gain r are said to be simultaneously 

achievable if there exists a sequence of codes, satisfying 

2logR r SNR  and out ( ) dP R SNR , 

or more precisely, 

out 2log ( log )
lim

log

P r
d


 

SNR

SNR

SNR
                     (8.37) 

The above tradeoff characterizes the slow fading performance limit of the channel. 
Similarly, we can formulate a diversity-multiplexing tradeoff for any space-time coding 
scheme, with outage probabilities replaced by FER [Tse05]. 

 

 
 

DMT indicates that an increase in SNR can be utilized for some combination of 
transmission rate increase and FER reduction.  

 
 Optimal tradeoff 
The following theorem from [Zheng03] derives the optimal trade-off between 

multiplexing and diversity gains.  

A space-time coding scheme is a family of codes, indexed by the SNR. It attains a 
multiplexing gain r and a diversity gain d if the data rates R (b/s/Hz) and the error 
probability Pe satisfy  

2logR r SNR  and
log

lim
log

eP
d


 

SNR SNR
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Theorem 8.2: Let us assume a code at the transmitter of a MIMO channel with N transmit 
antennas and M receive antennas. For a given spatial multiplexing gain r, where 

0,1,...,min{ , }r M N  is an integer, the maximum diversity gain is given by 

*( ) ( )( )d r N r M r                           (8.38) 

If the block length of the code 1L N M   , the optimal tradeoff curve is achieved by 

connecting the points  *, ( )r d r  by lines. 

An example of the optimal tradeoff for N=4 transmit antennas and M=3 receive antennas 
is depicted in Fig. 8.12. 

 

Figure 8.12 

The main point here is that the maximum values of multiplexing gain and diversity gain 
cannot be achieved simultaneously. More generally, (8.38) shows that, out of the total number 
of N transmit and M receive antennas, r transmit and r receive antennas are allocated to 
increase the rate, and the remaining N-r and M-r create diversity, as shown in Fig.8.13. This 
diversity-multiplexing tradeoff curve can be used to compare different MIMO transmission 
schemes and to interpret their behavior.  

STC设计目标：取得最佳互换。 
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Figure 8.13 Diversity-multiplexing tradeoff, d*(r) for the i.i.d. Rayleigh fading channel. 

 
8.6.2 Beamforming and Precoding (Known channels) 
利用 Diversity 的方法: a) 发端已知信道：Precoding / beamforming; b) 发端未知信道：空

时编码，靠时间来弥补。 
 
 
8.6.3 Space-Time Coding (for Unknown channels at transmitter) – Transmit Diversity 

Space-time coding is an effective and practical way to approach the capacity of MIMO 
wireless channels. It does not require CSI at the transmitter. Space-time codes (STCs) are 
designed based on combining error control coding and transmit diversity techniques, aiming 
at achieving both coding gains and diversity gains without sacrificing the bandwidth or total 
transmitted power. Coding is performed in both spatial and temporal domains to introduce 
correlation between signals transmitted from various antennas at various time periods.  

The earliest form of spatial transmit diversity is the delay diversity scheme, where a 
signal is transmitted from one antenna, then delayed one time slot, and transmitted from the 
other antenna. Signal processing is used at the receiver to decode the superposition of the 
original and time-delayed signals. By viewing multiple-antenna diversity as independent 
information streams, more sophisticated coding schemes were proposed. Typical examples of 
STCs include space-time trellis codes (STTC), STBC, turbo STTC, etc. Fig. 8.14 shows a 
simple block diagram for STC. 
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Fig. 8.14 Space-time coding 
 

Now, STC are designed with the objective to achieve the optimal tradeoff. The tradeoff 
performance of specific coding schemes will be analyzed in Section x. 
 
 Model of a space-time coded system 

As stated above, the MIMO channel with N transmit and M receive antennas can be 
represented by an (MN) channel matrix H. At time t, the channel matrix is given by 

1,1 1,2 1,

2,1 2,2 2,

,1 ,1 ,

t t t
N

t t t
N

t

t t t
M M M N

h h h

h h h

h h h

 
 
   
 
  

H




   


 

Assume that the fading coefficients ,
t
j ih  are independent complex Gaussian random variables 

with mean ,j i  and variance 1/2 per dimension.  

Transmitter: Suppose that an input data sequence is encoded by a ST encoder into N parallel 
sequences of coded symbols. At each time instant t, the N parallel modulated symbols 

1 2, ,..., N
t t tx x x  are simultaneously transmitted from N different antennas, where ,1i

tx i N  , 

is transmitted from antenna i. Denote by L the length of output signal sequences. An NL ST 
codeword matrix is given by 

1 1 1
1 2
2 2 2
1 2

1 2

L

L

N N N
L

x x x

x x x

x x x

 
 
 
 
 
  

x




   


 

Here, the t-th column 1 2( , ,..., )N T
t t t tx x xx  is the space-time symbol at time t. Denote by  

the space-time code. In the following, we will use the space-time trellis coding (STTC) as an 
example to illustrate the design rule for STCs. For a STTC, the encoding process is 
represented by a trellis diagram. 
 
Receiver: The received signal sequence is given by 

1[ ,..., ,..., ]t Ly y y y  
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where 1 2( , ,..., )M T
t t t ty y yy , and  

,
1

N
j t i j

t j i t t
i

y h x n


  ,  for j=1,2,…,M 

Here 0(0, )j
tn N   is the noise component of receive antenna j at time t, which is 

assumed to be iid complex Gaussian variable with zero mean and variance 2
0 / 2N   per 

dimension.  

Let 1 2( , ,..., )M T
t t t tn n nn . In matrix form, yt and xt can be related by 

t t t t y H x n  

Assume that the Viterbi algorithm (VA) is used by the STTC decoder. The branch metric of 
the VA at time t is calculated as 

2

,
1 1

M N
j t i

t j i t
j i

y h x
 

   

The path metric is given by 
2

,
1 1 1

L M N
j t i

t j i t
t j i

y h x
  

   

Assume that CSI is available to the receiver. Then the ML decoding corresponds to choosing 
the codeword x that minimizes the metric 

2
2

,
1 1 1

L M N
j t i

t j i t
t j i

y h x
  

   y Hx  

 
8.6.3.1 Error Performance Analysis and Design Criteria for STCs 
Problems: What is error probability of a multiple antenna system? How can we design ST 
codes matched to the channel structure? 
 
 Pairwise Error Probability 

Assume that 1[ ,..., ,..., ]t Lx x x x  is the transmitted sequence, and perfect CSI is available at 

the receiver. A decoding error occurs if 
2 2

, ,
1 1 1 1 1 1

L M N L M N
j t i j t i

t j i t t j i t
t j i t j i

y h x y h x
     

        

where { }t x   is another space-time codeword rather than x. The conditional pairwise error 

probability (i.e., the probability of transmitting x and deciding in favor of x  is given by 
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2 0

( , ) 1
( , | ) exp ( , ) / 4

2 2

d
P Q d N


    
 

x x
x x H x x

              (8.39) 

where 2
0 / 2N   is the noise variance per dimension, and 

 
2

2
,

1 1 1

( , )
L M N

t i i
j i t t

t j i

d h x x
  

 x x                      (8.40) 

 
 Error Probability on Slow Fading Channels 

On slow fading channels, the fading coefficients within each frame are constant; i.e., 

1 2
, , , ,... ,   for 1 ,1L

j i j i j i j ih h h h i N j M         

Let  ,B X X  be an NL codeword difference matrix defined by 

 

1 1 1 1 1 1
1 1 2 2
2 2 2 2 2 2
1 1 2 2

1 1 2 2

,

L L

L L

N N N N N N
L L

x x x x x x

x x x x x x

x x x x x x

   
      
 
 

    

B X X X X

  
   
   
  

 

Then the code distance matrix  ,A X X  is an NN matrix defined as 

     , , ,HA X X B X X B X X                       (8.41) 

It is clear that  ,A X X  is Hermitian matrix, and the eigenvalues of  ,A X X  are 

nonnegative real numbers. Therefore, there exists an NN unitary matrix V and an NN real 
diagonal matrix  such that 

 , H  VA X X V  

Here, the rows of V are the eigenvectors of  ,A X X , and 1 2( , ,..., )Ndiag      with i0 

being the eigenvalues of  ,A X X . 

Let  ,1 ,2 ,, ,...,j j j j Nh h hh  and  ,1 ,2 ,, ,..., H
j j j N j    h V . Then (8.40) can be written in 

matrix form as 

   2

1

, ,
M

H
j j

j

d


x x h A x x h   

2
,

1 1

| |
M N

i j i
j i

 
 

                        (8.42) 

Substituting (8.42) into (8.39) yields 
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  2
2 ,

1 10

1 1
, | exp | |

2 4

M N

i j i
j i

P
N

 
 

 
  

 
x x H                (8.43) 

We now consider the evaluation of (8.43). First we determine the distribution of ,| |j i . 

Since  , 0,1j ih    are iid complex Gaussian random variables and V is an unitary matrix, 

it is obvious that ,j i  are independent complex Gaussian random variables with zero mean 

and variance 1/2 per dimension. Thus, ,| |j i  has a Rayleigh distribution with pdf 

   2
, , ,| | 2 | | exp | |j i j i j ip                      (8.44) 

Using (8.44) and (8.43), and take expectation with respect to ,| |j i , we have 

         2 2 1,1 1,2 , 1,1 ,, , | | | | | | | | | | |M N M NP P p p p d d      x x x x H     

In the case of Rayleigh fading, it is given by 

 2
1 0

1
,

1 / 4

M
N

i i

P
N

 
   
x x  

At high SNR’s, the above upper bound can be simplified as 

2
1 0

( , )
4

rMMr
s

i
i

E
P

N






     
   
x x                     (8.45) 

where r=rank(A) is the rank of matrix A, and i  are the nonzero eigenvalues of matrix 

 ,A X X , Es is the symbol energy. 

 
We define the diversity gain as an approximate measure of the gain of a system with 

space diversity over a reference system without space diversity. From (8.45) it is equal to rM. 
The diversity gain determines the slope of the PEP curve. 

The coding gain is defined as the gain of the coded system over an uncoded system with 
the same diversity gain. From (8.45) the coding gain of a ST coded system is equal to 

1/
1 2( ... ) r

r   . The coding gain determines a horizontal shift of a PEP curve for a coded system 

relative to an uncoded system with the same diversity gain. 



 35

 
Fig. Diversity gain and coding gain 

 
Applying a union bound on the basis of (8.45) and the code weight distribution, we may 

obtain bit (or frame) error probability bounds. Both bit and frame error probabilities are 
dominated by error paths corresponding to the code distance matrices with the minimum rank 
and the minimum product of eigenvalues. 

Since the diversity gain is an exponent in the error probability upper bound (8.45), it is 
clear that achieving a large diversity gain is more important than achieving a high coding gain 
for systems with a small value of rN. 

For large values of rN, the PEP is upper-bounded by 

2 22

1 11 1
2 4 2

2 2

1

8
1

( , ) exp
2 128 8

8

r rr r

i ii i
i ii i

r

i
i

MM M
P Q

   

 
 

  



            
  
       

  


x x        (8.46) 

 
 Space-Time Code Design Criteria for Slow Rayleigh Fading Channels (for achieving 

coding gain & diversity gain) 
STC design criteria are based on minimizing the PEP bound stated above. We summarize 
them as follows.  

a) Maximize the minimum rank r of the matrix ( , )A x x  over all pairs of distinct codewords. 

b) Maximize the minimum product, 
1

r

ii


 , of the matrix ( , )A x x  along the pairs of 

distinct codewords with the minimum rank. 
 

Recall that 
1

r

ii


  is the absolute value of the sum of determinants of all the principal 

rr cofactors of matrix determinant ( , )A x x , these criteria are referred to as rank & 

determinant criteria. The minimum rank of the matrix ( , )A x x  over all pairs of distinct 
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codewords is called the minimum rank of the space-time code. Maximizing the minimum 
rank r means to make the matrix full rank such that r=N. However, the full rank is not always 
achievable due to the restriction of the trellis structure. 

For large values of NM, in order to get an insight into the code design for systems of 
practical interest, we assume that the space-time code operates at a reasonably high SNR, 
which corresponds to 

1

20

1

1

4

r

i
i
r

i
i

N













 

By using the inequality 
2 / 21

( ) , 0
2

xQ x e x  , the bound (8.46) can be approximated by 
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i
i

N
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x x  

It is seen that in order to minimize the error probability, the minimum of the sum of all 

eigenvalues of the matrix ( , )A x x  among all pairs of distinct codewords should be 

maximized. Since, for a square matrix, the sum of all eigenvalues is equal to the trace of the 
matrix, we obtain 

  2

1 1 1

tr ( , ) | |
r N L

i i
i t t

i i t

x x
  

   A x x                     (8.47) 

Equation (8.47) indicates that maximizing the minimum trace of the matrix ( , )A x x  is 

equivalent to maximizing the minimum Euclidean distance between all pairs of distinct 
codewords. This design criterion is called the trace criterion. In this case, the ST code design 
criteria can be stated as follows: 

a) Make sure that the minimum rank r of the matrix ( , )A x x  over all pairs of distinct 

codewords is large enough, such that rN4. 

b) Maximize the minimum trace 
1

r

i
i



 of the matrix ( , )A x x  among all pairs of distinct 

codewords. 
 
 Error Probability on Fast Fading Channels 

The method for PEP analysis for slow fading channels can be directly applied to fast 
fading channels. 

A code symbol distance matrix  ,t tC x x  at time t is an NN matrix defined by 

    ,
H

t t t t t t  C x x x x x x    
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It is clear that the matrix  ,t tC x x  is Hermitian, and there exists an unitary matrix V(t) and 

a real diagonal matrix D(t) such that 

 ( ) , ( ) ( )H
t tt t tV C x x V D  

The diagonal elements of D(t), , 1, 2,...,i
tD i N , are the eigenvalues of  ,t tC x x . In the case 

that t tx x , the matrix  ,t tC x x  has only one nonzero eigenvalue and the other N-1 

eigenvalues are zero. Let 1
tD  be the nonzero eigenvalue element that is equal to 

221

1

N
i i

t t t t t
i

D x x


   x x   

Let  ,1 ,2 ,( ) , ,...,t t t
j j j j Nt h h hh  and  ,1 ,2 ,( ), ( ),..., ( ) ( ) ( )H

j j j N jt t t t t    h V . Eq. (8.40) can be 

expressed as 

22
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L M N

i
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t j i

d t D
  

x x  

Since at each time t, there is only one nonzero eigenvalue, 1
tD , the above equation can be 

represented by 

22
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                (8.48) 

where  ( , ) 0,1t tt t L     x x x x   denotes the set of time indexes t=1,2,…L such that 

t tx x . 

Substituting (8.48) into (8.39), we obtain 
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            (8.49) 

Note that ,
t
j i  are independent complex Gaussian random variables with zero mean and 
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variance 1/2 per dimension. Therefore, ,| |t
j i  follows a Rayleigh distribution. Take 

expectation of (8.49) with respect to ,| |t
j i , the PEP at high SNR’s is upper-bounded by 
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1
,
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M
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                         (8.50) 

where 
22

t t
t

d


  x x  is the product of the squared Euclidean distance between two 

space-time symbol sequences, and H  is the ST symbol Hamming distance which is defined 

as the number of ST symbols in which two codewords x and x  differ. 
 
 Space-Time Code Design Criteria for Fast Rayleigh Fading Channels 
Based on (8.50), we can summarize the code design criteria for fast Rayleigh fading below. 

a) Maximize the minimum space-time symbol Hamming distance H  between all pairs of 

distinct codewords; 

b) Maximize the minimum product distance 2d  along the path with the minimum symbol 

Hamming distance H . 

 
 
 

References 
[1] E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels: Information-theoretic 

and communication aspects,” IEEE Trans. Inform. Theory, vol.44, pp.2619-2692, Oct. 
1998. 

[2] E. Telatar, “Capacity of multi-antenna Gaussian channels,” European. Trans. Telecomm., 
vol.10, no.6, pp.585-596, Nov. 1999. 

[3] G. J. Foschini and M. J. Gans “On limits of wireless communications in a fading 
environment when using multiple antennas,” Wireless Personal Commun., vol.6, 
pp.311-335, Mar. 1998. 

[4] Special issue on MIMO systems and applications. Part I. IEEE J-SAC, vol.21, no.3, April 
2003. 

[5] Special issue on MIMO systems and applications. Part II. IEEE J-SAC, vol.21, no.5, 
June 2003. 

[6] Special issue on Space-time transmission, reception, coding and signal processing. IEEE 
Trans. Inform. Theory, vol.49, no.10, Oct. 2003. 

[7] Special issue on Space-time signal processing. IEEE Trans. Signal Processing, vol.50, 



 39

Oct. 2002. 
[8] Special issue on Space-time signal processing. IEEE Trans. Signal Processing, vol.51, 

Nov. 2003. 
[9] S. N. Diggavi, N. A.-Dhahie, A. Stamoulis and A. R. Calderbank, “Great expectations: 

The value of spatial diversity in wireless networks,” Proceedings of the IEEE, vol.92, 
no.2, pp.219-292, Feb. 2004. 

[10] A. J. Paulraj, D. A. Gore, R. U. Nabar, and H. Bolcskel, “An Overview of MIMO 
Communications—A Key to Gigabit Wireless,” Proceedings of the IEEE, vol.92, no.2, 
pp. 198-218, Feb. 2004. 

[11] B. Vucetic and Jinhong Yuan, Space-Time Coding. John Wiley & Sons, Ltd., 2003. 
[12] L. Zheng and D. N. C. Tse, “Diversity and Multiplexing: A fundamental tradeoff in 

multiple-antenna channels,” IEEE Trans. Inform. Theory, vol.49, no.10, pp. 1073-1096, 
Oct. 2003. 

[13] T. H. Liew and L. Hanzo, “Space-time codes and concatenated channel codes for 
wireless communications,” Proceedings of IEEE, vol.90, no.2, pp.187-219, Feb. 2002. 

[14] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate 
wireless communication: Performance criterion and code construction,” IEEE Trans. 
Inform. Theory, vol.44, no.2, pp. 744-765, Mar. 1998. 

[15] M. Jankiraman, Space-Time Codes and MIMO Systems. Artech House, 2004. 
[16] A. J. Paulraj, Rohit Nabar, and D. Gore, Introduction to Space-Time Wireless 

Communications, Cambridge, UK: Cambridge University Press, 2003. 
[17] T. Marzetta, and B. Hochwald, ‘‘Capacity of a mobile multiple-antenna communication 

link in Rayleigh flat fading,’’ IEEE Trans. Inf. Theory, 45(1), January 1999, pp. 
139–157. 

 
 
 

 


